1
|
Martineau S, Perrin L, Kerleau H, Rahal A, Marcotte K. Comparison of Objective Facial Metrics on Both Sides of the Face Among Patients with Severe Bell's Palsy Treated with Mirror Effect Plus Protocol Rehabilitation Versus Controls. Facial Plast Surg Aesthet Med 2024; 26:172-179. [PMID: 37819748 DOI: 10.1089/fpsam.2023.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Objective: The extent to which the healthy hemiface dynamically contributes to facial synchronization during facial rehabilitation has been largely unstudied. This study compares the synchronization of both hemifaces in severe Bell's palsy patients who either received facial rehabilitation called "Mirror Effect Plus Protocol" (MEPP) or basic counseling. Methods: Baseline and 1-year postonset data from 39 patients (19 = MEPP and 20 = basic counseling) were retrospectively analyzed using Emotrics+, a software that generates facial metrics with artificial intelligence (AI) algorithms. Paired t-tests were used for intrasubject comparisons of hemifaces, and mixed model analysis were used to compare between groups. Results: For voluntary movements, a significant difference in favor of the MEPP group was only found for smiling (p = 0.025*). However, at 1-year postonset, the control group showed significant variability between hemifaces for most synkinesis measurements [nasolabial fold (p = 0.029*); eye area (p = 0.043*); palpebral fissure (p = 0.011*)]. Conclusion: In this study, a better synchronization of both hemifaces was found in the MEPP group. Interestingly, motor adaptation in movement amplitude of the healthy hemiface seemed to contribute to this synchronization in MEPP patients. Further studies are needed to standardize the procedure of AI measurements and to adapt it for clinical use.
Collapse
Affiliation(s)
- Sarah Martineau
- Département de chirurgie et Direction des Services Multidisciplinaires, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Centre de recherche du Centre intégré universitaire de santé et services sociaux du Nord-de-l'île-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
- École d'Orthophonie et d'Audiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Lucie Perrin
- Département universitaire d'enseignement et de formation en orthophonie, Faculté de Médecine, Université de Sorbonne, Paris, France
| | - Hélène Kerleau
- Département universitaire d'enseignement et de formation en orthophonie, Faculté de Médecine, Université de Sorbonne, Paris, France
| | - Akram Rahal
- Département de chirurgie et Direction des Services Multidisciplinaires, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- École d'Orthophonie et d'Audiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Karine Marcotte
- Centre de recherche du Centre intégré universitaire de santé et services sociaux du Nord-de-l'île-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
- École d'Orthophonie et d'Audiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Lin CS, Chang WJ, Fuh JL. Lower masticatory function relates to cognitive health and intrinsic brain network in older adults. Oral Dis 2023; 29:2895-2906. [PMID: 36577658 DOI: 10.1111/odi.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Mastication is associated with brain activation at the primary somatosensory cortex (S1) and the primary motor cortex (M1). Masticatory functions differ between patients with cognitive impairment (CI) and cognitively healthy older adults (non-CI). The association between cognitive health, brain network of functional connectivity, and mastication has remained unknown. The study investigated the association between masticatory performance (MP) and the topological feature of the functional network at the M1 and S1 in the CI and non-CI groups. SUBJECTS AND METHODS Forty-nine non-CI and 15 CI subjects received resting-state (rs) fMRI and assessment of MP. The topological feature of the M1 and S1 was quantified by eigenvector centrality (EC), an index that reflects a brain region as a functional "hub" of brain network. RESULTS In the non-CI group, MP was significantly correlated with EC of the left M1 and the right M1. The correlation was not statistically significant in the CI group. Cognitive status (CI or non-CI) and EC of the left M1 and the right M1, respectively, were statistically significant predictors to individual MP. CONCLUSION Cognitive status and the topological feature of the M1 in the intrinsic functional network may contribute to the individual difference in masticatory function.
Collapse
Affiliation(s)
- Chia-Shu Lin
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Ju Chang
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ling Fuh
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Mélotte E, Maudoux A, Panda R, Kaux JF, Lagier A, Herr R, Belorgeot M, Laureys S, Gosseries O. Links Between Swallowing and Consciousness: A Narrative Review. Dysphagia 2023; 38:42-64. [PMID: 35773497 DOI: 10.1007/s00455-022-10452-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
This literature review explores a wide range of themes addressing the links between swallowing and consciousness. Signs of consciousness are historically based on the principle of differentiating reflexive from volitional behaviors. We show that the sequencing of the components of swallowing falls on a continuum of voluntary to reflex behaviors and we describe several types of volitional and non-volitional swallowing tasks. The frequency, speed of initiation of the swallowing reflex, efficacy of the pharyngeal phase of swallowing and coordination between respiration and swallowing are influenced by the level of consciousness during non-pathological modifications of consciousness such as sleep and general anesthesia. In patients with severe brain injury, the level of consciousness is associated with several components related to swallowing, such as the possibility of extubation, risk of pneumonia, type of feeding or components directly related to swallowing such as oral or pharyngeal abnormalities. Based on our theoretical and empirical analysis, the efficacy of the oral phase and the ability to receive exclusive oral feeding seem to be the most robust signs of consciousness related to swallowing in patients with disorders of consciousness. Components of the pharyngeal phase (in terms of abilities of saliva management) and evoked cough may be influenced by consciousness, but further studies are necessary to determine if they constitute signs of consciousness as such or only cortically mediated behaviors. This review also highlights the critical lack of tools and techniques to assess and treat dysphagia in patients with disorders of consciousness.
Collapse
Affiliation(s)
- Evelyne Mélotte
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium.
- Physical and Rehabilitation Medicine Department, University and University Hospital of Liège, Avenue de l'Hopital 1, 4000, Liège, Belgium.
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium.
| | - Audrey Maudoux
- Sensation and Perception Research Group, GIGA, University and University Hospital of Liège, Liège, Belgium
- Otorhinolaryngology Head and Neck Surgery Department, Robert Debré University Hospital, APHP, Paris, France
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Jean-François Kaux
- Physical and Rehabilitation Medicine Department, University and University Hospital of Liège, Avenue de l'Hopital 1, 4000, Liège, Belgium
| | - Aude Lagier
- Otorhinolaryngology Head and Neck Surgery Department, University Hospital of Liège, Liège, Belgium
| | - Roxanne Herr
- Department of Speech and Language Pathology, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Marion Belorgeot
- Physical and Rehabilitation Medicine Department, University Hospital of Nîmes, Nîmes, France
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| |
Collapse
|
4
|
Boscato N, Hayakawa H, Iida T, Costa YM, Kothari SF, Kothari M, Svensson P. Impact of oral motor task training on corticomotor pathways and diadochokinetic rates in young healthy participants. J Oral Rehabil 2022; 49:924-934. [PMID: 35722734 PMCID: PMC9543743 DOI: 10.1111/joor.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
Abstract
Background Studies addressing the training‐induced neuroplasticity and interrelationships of the lip, masseter, and tongue motor representations in the human motor cortex using single syllable repetition are lacking. Objective This study investigated the impact of a repeated training in a novel PaTaKa diadochokinetic (DDK) orofacial motor task (OMT) on corticomotor control of the lips, masseter, and tongue muscles in young healthy participants. Methods A total of 22 young healthy volunteers performed 3 consecutive days of training in an OMT. Transcranial magnetic stimulation was applied to elicit motor evoked potentials (MEPs) from the lip, masseter, tongue, and first dorsal interosseous (FDI, internal control) muscles. MEPs were assessed by stimulus–response curves and corticomotor mapping at baseline and after OMT. The DDK rate from PaTaKa single syllable repetition and numeric rating scale (NRS) scores were also obtained at baseline and immediately after each OMT. Repeated‐measures analysis of variance was used to detect differences at a significance level of 5%. Results There was a significant effect of OMT and stimulus intensity on the lips, masseter, and tongue MEPs compared to baseline (p < .001), but not FDI MEPs (p > .05). OMT increased corticomotor topographic maps area (p < .001), and DDK rates (p < .01). Conclusion Our findings suggest that 3 consecutive days of a repeated PaTaKa training in an OMT can induce neuroplastic changes in the corticomotor pathways of orofacial muscles, and it may be related to mechanisms underlying the improvement of orofacial fine motor skills due to short‐term training. The clinical utility should now be investigated.
Collapse
Affiliation(s)
- Noéli Boscato
- Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Hidetoshi Hayakawa
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Division of Oral Function and Rehabilitation, Department of Oral Health Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Takashi Iida
- Division of Oral Function and Rehabilitation, Department of Oral Health Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yuri M Costa
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Simple Futarmal Kothari
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Hammel Neurorehabilitation Centre and University Research Clinic, Department of Clinical Medicine, Aarhus University, Hammel, Denmark.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - Mohit Kothari
- Hammel Neurorehabilitation Centre and University Research Clinic, Department of Clinical Medicine, Aarhus University, Hammel, Denmark.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark.,JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, India
| | - Peter Svensson
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark.,Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
5
|
Bono D, Belyk M, Longo MR, Dick F. Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates. Neurosci Biobehav Rev 2022; 139:104730. [PMID: 35691470 DOI: 10.1016/j.neubiorev.2022.104730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The English idiom "on the tip of my tongue" commonly acknowledges that something is known, but it cannot be immediately brought to mind. This phrase accurately describes sensorimotor functions of the tongue, which are fundamental for many tongue-related behaviors (e.g., speech), but often neglected by scientific research. Here, we review a wide range of studies conducted on non-primates, non-human and human primates with the aim of providing a comprehensive description of the cortical representation of the tongue's somatosensory inputs and motor outputs across different phylogenetic domains. First, we summarize how the properties of passive non-noxious mechanical stimuli are encoded in the putative somatosensory tongue area, which has a conserved location in the ventral portion of the somatosensory cortex across mammals. Second, we review how complex self-generated actions involving the tongue are represented in more anterior regions of the putative somato-motor tongue area. Finally, we describe multisensory response properties of the primate and non-primate tongue area by also defining how the cytoarchitecture of this area is affected by experience and deafferentation.
Collapse
Affiliation(s)
- Davide Bono
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK.
| | - Michel Belyk
- Department of Speech, Hearing, and Phonetic Sciences, UCL Division of Psychology and Language Sciences, 2 Wakefield Street, London WC1N 1PJ, UK
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK
| | - Frederic Dick
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK; Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK.
| |
Collapse
|
6
|
Unilateral nasal obstruction affects development of cortical orofacial motor representation in the cortical masticatory area of growing rats. Neurosci Lett 2022; 783:136700. [DOI: 10.1016/j.neulet.2022.136700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
|
7
|
Stipancic KL, Kuo YL, Miller A, Ventresca HM, Sternad D, Kimberley TJ, Green JR. The effects of continuous oromotor activity on speech motor learning: speech biomechanics and neurophysiologic correlates. Exp Brain Res 2021; 239:3487-3505. [PMID: 34524491 PMCID: PMC8599312 DOI: 10.1007/s00221-021-06206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Sustained limb motor activity has been used as a therapeutic tool for improving rehabilitation outcomes and is thought to be mediated by neuroplastic changes associated with activity-induced cortical excitability. Although prior research has reported enhancing effects of continuous chewing and swallowing activity on learning, the potential beneficial effects of sustained oromotor activity on speech improvements is not well-documented. This exploratory study was designed to examine the effects of continuous oromotor activity on subsequent speech learning. Twenty neurologically healthy young adults engaged in periods of continuous chewing and speech after which they completed a novel speech motor learning task. The motor learning task was designed to elicit improvements in accuracy and efficiency of speech performance across repetitions of eight-syllable nonwords. In addition, transcranial magnetic stimulation was used to measure the cortical silent period (cSP) of the lip motor cortex before and after the periods of continuous oromotor behaviors. All repetitions of the nonword task were recorded acoustically and kinematically using a three-dimensional motion capture system. Productions were analyzed for accuracy and duration, as well as lip movement distance and speed. A control condition estimated baseline improvement rates in speech performance. Results revealed improved speech performance following 10 min of chewing. In contrast, speech performance following 10 min of continuous speech was degraded. There was no change in the cSP as a result of either oromotor activity. The clinical implications of these findings are discussed in the context of speech rehabilitation and neuromodulation.
Collapse
Affiliation(s)
- Kaila L Stipancic
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yi-Ling Kuo
- Department of Physical Therapy, Upstate Medical University, Syracuse, NY, USA
| | - Amanda Miller
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA, USA
| | - Hayden M Ventresca
- Department of Rehabilitation Sciences, MGH Institute of Health Professions, Building 79/96, 2nd Floor 13th Street, Boston, MA, 02129, USA
| | - Dagmar Sternad
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Teresa J Kimberley
- Department of Rehabilitation Sciences, MGH Institute of Health Professions, Building 79/96, 2nd Floor 13th Street, Boston, MA, 02129, USA
| | - Jordan R Green
- Department of Rehabilitation Sciences, MGH Institute of Health Professions, Building 79/96, 2nd Floor 13th Street, Boston, MA, 02129, USA.
| |
Collapse
|
8
|
Jockusch J, Hopfenmüller W, Nitschke I. Chewing function and related parameters as a function of the degree of dementia: Is there a link between the brain and the mouth? J Oral Rehabil 2021; 48:1160-1172. [PMID: 34288029 PMCID: PMC9291087 DOI: 10.1111/joor.13231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Background To date, no study has investigated the association between chewing function and related parameters as a function of the degree of dementia using a finer subdivision of the values of the Mini‐Mental State Examination (MMSE). Objective This study aimed to investigate the differences in chewing function and related parameters as a function of the degree of dementia. Methods An analysis of cross‐sectional data obtained from the OrBiD (Oral Health, Bite Force, and Dementia) pilot study was performed. The participants were stratified into five groups based on the outcomes of the MMSE (no dementia, MMSE 28–30; mild cognitive impairment, MMSE 25–27; mild dementia, MMSE 18–24; moderate dementia, MMSE 10–17; severe dementia, MMSE <10). The chewing efficiency, maximum occlusal force and related parameters (number of supporting zones, number of teeth, Eichner index, tooth/denture status, denture quality, and dental treatment needs) were recorded. Results The MMSE groups showed significantly different chewing efficiencies (p = .003, Jonckheere‐Terpstra test) and maximum occlusal forces (p = .003, Jonckheere‐Terpstra test), but the number of supporting zones (p = .055, chi‐square test) and the number of natural teeth (p = .126, chi‐square test) were not different. The Eichner index, tooth/denture status, denture quality and dental treatment need showed no significant associations with the degree of dementia. Conclusion An improvement in the usability of the measurement methods for assessing chewing function in people with dementia is needed. Research involving people with dementia is necessary because the nutritional situation often deteriorates rapidly within a multifactorial system, which includes chewing ability and oral health.
Collapse
Affiliation(s)
- Julia Jockusch
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Werner Hopfenmüller
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ina Nitschke
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.,Department of Prosthodontics and Materials Science, Gerodontology Section, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Manzon L, Vozza I, Poli O. Bite Force in Elderly with Full Natural Dentition and Different Rehabilitation Prosthesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041424. [PMID: 33546493 PMCID: PMC7913710 DOI: 10.3390/ijerph18041424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/05/2023]
Abstract
(1) Background: This study aimed to investigate maximum bite force (MBF) in elderly patients with natural full dentition (FD), patients rehabilitated with Traditional Complete Dentures (CD), with overdentures (IRO) and edentulous patients (ED). We also tested whether MBF changes are associated with gender, age of the patients and body mass index (BMI) as result of altered food; (2) Methods: Three hundred and sixty-eight geriatric patients were included. We studied two types of prostheses: (a) IRO with telescopic attachments. (b) CD (heat polymerized polymethyl methacrylate resin). The MBF was measured using a digital dynamometer with a bite fork; (3) Results: We found that MBF is higher in males than females, regardless of teeth presence or absence (p < 0.01). In patients with CD or IRO, there are no differences between males and females; prostheses improve MBF compared to edentulous patients (p < 0.0001) and this effect is greater with IRO prostheses (p < 0.0001); the chewing force of FD subjects remains greater (p < 0.0001); there are no differences among chewing strength based on different BMI categories, although FD subjects have a reduced incidence of obesity; there is a significant negative correlation between MBF and age (p = 0.038; R = 0.145), and no correlation between MBF and BMI; (4) Conclusions: This study showed that MBF improves more in patients using IRO prostheses, although not reaching the MBF of FD subjects. MBF does not correlate with BMI, although we found increased percentages of obesity in edentulous subjects or those with prostheses. Thus, old people wearing prostheses require special attention by a nutritionist to avoid risk of malnutrition.
Collapse
Affiliation(s)
- Licia Manzon
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (O.P.)
| | - Iole Vozza
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-0649976612 or +39-0649976649
| | - Ottavia Poli
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (O.P.)
| |
Collapse
|
10
|
Martineau S, Rahal A, Piette É, Chouinard AM, Marcotte K. The Mirror Effect Plus Protocol for acute Bell's palsy: a randomised and longitudinal study on facial rehabilitation. Acta Otolaryngol 2021; 141:203-208. [PMID: 33215948 DOI: 10.1080/00016489.2020.1842905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Small but interesting evidences suggest that facial rehabilitation for acute Bell Palsy (BP) could improve facial outcomes in patients who benefited from optimal medication, but whose symptoms are still severe two weeks after BP's onset. AIMS This study aimed to provide preliminary evidence of the long-term effects of a new facial retraining based on motor imagery and mirror therapy, the Mirror Effect Plus Protocol (MEPP). MATERIAL AND METHODS Twenty BP patients received the standard medication for acute BP and were then randomly allocated to the treatment (MEPP) or control group, if their palsy was still at least moderate-to-severe at 14 days post onset. Three blind independent assessors graded the patients' evolution until 6 months after onset. RESULTS Significant differences between the groups were not found for any measured variable; however, a trend toward better recovery was found in the treatment group for every measured variable. This trend grew bigger for patients with severe or total BP. CONCLUSIONS This study suggests a promising effect of the MEPP on acute severe to total BP but requires further investigation with a larger number of participants. SIGNIFICANCE Facial rehabilitation should be considered as an adjunct to medication for acute and most severe degrees of BP.
Collapse
Affiliation(s)
- Sarah Martineau
- Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Centre de recherche du Centre intégré universitaire de santé et services sociaux du Nord-de-l’île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- École d’orthophonie et d’audiologie, Université de Montréal, Montréal, QC, Canada
| | - Akram Rahal
- Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Éric Piette
- Centre de recherche du Centre intégré universitaire de santé et services sociaux du Nord-de-l’île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- Département de médecine d’urgence, Centre intégré universitaire de santé et services sociaux du Nord-de-l’île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
| | - Anne-Marie Chouinard
- Centre de recherche du Centre intégré universitaire de santé et services sociaux du Nord-de-l’île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- École d’orthophonie et d’audiologie, Université de Montréal, Montréal, QC, Canada
| | - Karine Marcotte
- Centre de recherche du Centre intégré universitaire de santé et services sociaux du Nord-de-l’île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- École d’orthophonie et d’audiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Plasticity in corticomotor pathways linked to a jaw protrusion training task: Potential implications for management of patients with obstructive sleep apnea. Brain Res 2020; 1749:147124. [DOI: 10.1016/j.brainres.2020.147124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
|
12
|
Mélotte E, Maudoux A, Delhalle S, Lagier A, Thibaut A, Aubinet C, Kaux JF, Vanhaudenhuyse A, Ledoux D, Laureys S, Gosseries O. Swallowing in individuals with disorders of consciousness: A cohort study. Ann Phys Rehabil Med 2020; 64:101403. [PMID: 32535170 DOI: 10.1016/j.rehab.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND After a period of coma, a proportion of individuals with severe brain injury remain in an altered state of consciousness before regaining partial or complete recovery. Individuals with disorders of consciousness (DOC) classically receive hydration and nutrition through an enteral-feeding tube. However, the real impact of the level of consciousness on an individual's swallowing ability remains poorly investigated. OBJECTIVE We aimed to document the incidence and characteristics of dysphagia in DOC individuals and to evaluate the link between different components of swallowing and the level of consciousness. METHODS We analyzed clinical data on the respiratory status, oral feeding and otolaryngologic examination of swallowing in DOC individuals. We analyzed the association of components of swallowing and participant groups (i.e., unresponsive wakefulness syndrome [UWS] and minimally conscious state [MCS]). RESULTS We included 92 individuals with DOC (26 UWS and 66 MCS). Overall, 99% of the participants showed deficits in the oral and/or pharyngeal phase of swallowing. As compared with the MCS group, the UWS group more frequently had a tracheostomy (69% vs 24%), with diminished cough reflex (27% vs 54%) and no effective oral phase (0% vs 21%). CONCLUSION Almost all DOC participants had severe dysphagia. Some components of swallowing (i.e., tracheostomy, cough reflex and efficacy of the oral phase of swallowing) were related to consciousness. In particular, no UWS participant had an efficient oral phase, which suggests that its presence may be a sign of consciousness. In addition, no UWS participant could be fed entirely orally, whereas no MCS participant orally received ordinary food. Our study also confirms that objective swallowing assessment can be successfully completed in DOC individuals and that specific care is needed to treat severe dysphagia in DOC.
Collapse
Affiliation(s)
- Evelyne Mélotte
- Physical and Rehabilitation Medicine Department, University Hospital of Liege, Liege, Belgium; Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau(2), University Hospital of Liege, Liège, Belgium.
| | - Audrey Maudoux
- Sensation and Perception Research Group GIGA, University of Liege, Liege, Belgium; Otorhinolaryngology Head and Neck Surgery Department, University Hospital of Liege, Liege, Belgium
| | - Sabrina Delhalle
- Otorhinolaryngology Head and Neck Surgery Department, University Hospital of Liege, Liege, Belgium
| | - Aude Lagier
- Otorhinolaryngology Head and Neck Surgery Department, University Hospital of Liege, Liege, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau(2), University Hospital of Liege, Liège, Belgium
| | - Charlène Aubinet
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau(2), University Hospital of Liege, Liège, Belgium
| | - Jean-François Kaux
- Physical and Rehabilitation Medicine Department, University Hospital of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Sensation and Perception Research Group GIGA, University of Liege, Liege, Belgium; Algology Department, University Hospital of Liege, Liege, Belgium
| | - Didier Ledoux
- Intensive Care Unit Department, University Hospital of Liege, Liege, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau(2), University Hospital of Liege, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau(2), University Hospital of Liege, Liège, Belgium
| |
Collapse
|
13
|
Morrison RA, Danaphongse TT, Pruitt DT, Adcock KS, Mathew JK, Abe ST, Abdulla DM, Rennaker RL, Kilgard MP, Hays SA. A limited range of vagus nerve stimulation intensities produce motor cortex reorganization when delivered during training. Behav Brain Res 2020; 391:112705. [PMID: 32473844 DOI: 10.1016/j.bbr.2020.112705] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
Pairing vagus nerve stimulation (VNS) with rehabilitation has emerged as a potential strategy to improve recovery after neurological injury, an effect ascribed to VNS-dependent enhancement of synaptic plasticity. Previous studies demonstrate that pairing VNS with forelimb training increases forelimb movement representations in motor cortex. However, it is not known whether VNS-dependent enhancement of plasticity is restricted to forelimb training or whether VNS paired with other movements could induce plasticity of other motor representations. We tested the hypothesis that VNS paired with orofacial movements associated with chewing during an unskilled task would drive a specific increase in jaw representation in motor cortex compared to equivalent behavioral experience without VNS. Rats performed a behavioral task in which VNS at a specified intensity between 0 and 1.2 mA was paired with chewing 200 times per day for five days. Intracortical microstimulation (ICMS) was then used to document movement representations in motor cortex. VNS paired with chewing at 0.8 mA significantly increased motor cortex jaw representation compared to equivalent behavioral training without stimulation (Bonferroni-corrected unpaired t-test, p < 0.01). Higher and lower intensities failed to alter cortical plasticity. No changes in other movement representations or total motor cortex area were observed between groups. These results demonstrate that 0.8 mA VNS paired with training drives robust plasticity specific to the paired movement, is not restricted to forelimb representations, and occurs with training on an unskilled task. This suggests that moderate intensity VNS may be a useful adjuvant to enhance plasticity and support benefits of rehabilitative therapies targeting functions beyond upper limb movement.
Collapse
Affiliation(s)
- Robert A Morrison
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States.
| | - Tanya T Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - David T Pruitt
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Katherine S Adcock
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Jobin K Mathew
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Stephanie T Abe
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Dina M Abdulla
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Robert L Rennaker
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States
| |
Collapse
|
14
|
Kobayashi T, Fukami H, Ishikawa E, Shibata K, Kubota M, Kondo H, Sahara Y. An fMRI Study of the Brain Network Involved in Teeth Tapping in Elderly Adults. Front Aging Neurosci 2020; 12:32. [PMID: 32256334 PMCID: PMC7090023 DOI: 10.3389/fnagi.2020.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/03/2020] [Indexed: 11/18/2022] Open
Abstract
Cortical activity during jaw movement has been analyzed using various non-invasive brain imaging methods, but the contribution of orofacial sensory input to voluntary jaw movements remains unclear. In this study, we used functional magnetic resonance imaging (fMRI) to observe brain activities during a simple teeth tapping task in adult dentulous (AD), older dentulous (OD), and older edentulous subjects who wore dentures (OEd) or did not wear dentures (OE) to analyze their functional network connections. (1) To assess the effect of age on natural activation patterns during teeth tapping, a comparison of groups with natural dentition—AD and OD—was undertaken. A general linear model analysis indicated that the major activated site in the AD group was the primary sensory cortex (SI) and motor cortex (MI) (p < 0.05, family wise error corrected). In the OD group, teeth tapping induced brain activity at various foci (p < 0.05, family wise error corrected), including the SI, MI, insula cortex, supplementary motor cortex (SMC)/premotor cortex (PMA), cerebellum, thalamus, and basal ganglia in each group. (2) Group comparisons between the OD and OEd subjects showed decreased activity in the SI, MI, Brodmann’s area 6 (BA6), thalamus (ventral posteromedial nucleus, VPM), basal ganglia, and insular cortex (p ¡ 0.005, uncorrected). This suggested that the decreased S1/M1 activity in the OEd group was related to missing teeth, which led to reduced periodontal afferents. (3) A conjunction analysis in the OD and OEd/OE groups revealed that commonly activated areas were the MI, SI, cerebellum, BA6, thalamus (VPM), and basal ganglia (putamen; p < 0.05, FWE corrected). These areas have been associated with voluntary movements. (4) Psychophysiological interaction analysis (OEd vs OE) showed that subcortical and cortical structures, such as the MI, SI, DLPFC, SMC/PMA, insula cortex, basal ganglia, and cerebellum, likely function as hubs and form an integrated network that participates in the control of teeth tapping. These results suggest that oral sensory inputs are involved in the control of teeth tapping through feedforward control of intended movements, as well as feedback control of ongoing movements.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - H Fukami
- Department of Physiology, School of Dentistry, Iwate Medical University, Shiwa-gun, Japan.,Department of Oral Health Sciences, Faculty of Nursing and Health Care, Baika Women's University, Osaka, Japan
| | - E Ishikawa
- Department of Physiology, School of Dentistry, Iwate Medical University, Shiwa-gun, Japan
| | - K Shibata
- Department of Physiology, School of Dentistry, Iwate Medical University, Shiwa-gun, Japan
| | - M Kubota
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - H Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Y Sahara
- Department of Physiology, School of Dentistry, Iwate Medical University, Shiwa-gun, Japan
| |
Collapse
|
15
|
Wang Y, Sibaii F, Custead R, Oh H, Barlow SM. Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity. Front Neurosci 2020; 14:182. [PMID: 32210753 PMCID: PMC7068713 DOI: 10.3389/fnins.2020.00182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Research on Children, Youth, Families and schools, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fatima Sibaii
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca Custead
- Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyuntaek Oh
- Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
16
|
Lin C, Yeung AWK. What do we learn from brain imaging?—A primer for the dentists who want to know more about the association between the brain and human stomatognathic functions. J Oral Rehabil 2020; 47:659-671. [DOI: 10.1111/joor.12935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/10/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Chia‐shu Lin
- Department of Dentistry School of Dentistry National Yang‐Ming University Taipei Taiwan
- Institute of Brain Science School of Medicine National Yang‐Ming University Taipei Taiwan
- Brain Research Center National Yang‐Ming University Taipei Taiwan
| | - Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology Applied Oral Sciences and Community Dental Care Faculty of Dentistry The University of Hong Kong Hong Kong China
| |
Collapse
|
17
|
Grigoriadis A, Kumar A, Åberg MK, Trulsson M. Effect of Sudden Deprivation of Sensory Inputs From Periodontium on Mastication. Front Neurosci 2019; 13:1316. [PMID: 31920486 PMCID: PMC6914695 DOI: 10.3389/fnins.2019.01316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023] Open
Abstract
Objective To investigate the effect of sudden deprivation of sensory inputs from the periodontium on jaw kinematics and time-varying activation profile of the masseter muscle. Methods Fourteen (age range: 22–26 years; four men) healthy and natural dentate volunteers participated in a single experimental session. During the experiment, the participants were asked to eat six hard visco-elastic test food models, three each before and after an anesthetic intervention. The movements of the jaw in three dimensions and electromyographic (EMG) activity of the masseter muscle on the chewing side were recorded. Results The results of the study showed no significant differences in the number of chewing cycles (P = 0.233) and the duration of chewing sequence (P = 0.198) due to sudden deprivation of sensory inputs from the periodontium. However, there was a significant increase in the jaw opening velocity (P = 0.030) and a significant increase in the duration of occlusal phase (P = 0.004) during the anesthetized condition. The EMG activity of the jaw closing phase was significantly higher during the control condition [116.5 arbitrary units (AU)] than anesthetized condition (93.9 AU). The temporal profile of the masseter muscle showed a biphasic increase in the excitatory muscle drive in the control condition but this increase was virtually absent during the anesthetized condition. Conclusion Sudden deprivation of sensory inputs from the periodontium affects the jaw kinematics and jaw muscle activity, with a clear difference in the time-varying activation profile of the masseter muscle. The activation profile of the masseter muscle shows that periodontal mechanoreceptors contribute to approximately 20% of the EMG activity during the jaw closing phase.
Collapse
Affiliation(s)
- Anastasios Grigoriadis
- Section of Oral Rehabilitation, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Abhishek Kumar
- Section of Oral Rehabilitation, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| | - Magnus K Åberg
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Mats Trulsson
- Section of Oral Rehabilitation, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences, Huddinge, Sweden
| |
Collapse
|
18
|
Effects of Motor Training on Accuracy and Precision of Jaw and Finger Movements. Neural Plast 2019; 2019:9593464. [PMID: 31827500 PMCID: PMC6885803 DOI: 10.1155/2019/9593464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To compare the effects of training of jaw and finger movements with and without visual feedback on precision and accuracy. Method Twenty healthy participants (10 men and 10 women; mean age 24.6 ± 0.8 years) performed two tasks: a jaw open-close movement and a finger lifting task with and without visual feedback before and after 3-day training. Individually determined target positions for the jaw corresponded to 50% of the maximal jaw opening position, and a fixed target position of 20 mm was set for the finger. Movements were repeated 10 times each. The variability in the amplitude of the movements was expressed as percentage in relation to the target position (Daccu—accuracy) and as coefficient of variation (CVprec—precision). Result Daccu and CVprec were significantly influenced by visual feedback (P = 0.001 and P < 0.001, respectively) and reduced after training jaw and finger movements (P < 0.001). Daccu (P = 0.004) and CVprec (P = 0.019) were significantly different between jaw and finger movements. The relative changes in Daccu (P = 0.017) and CVprec (P = 0.027) were different from pretraining to posttraining between jaw and finger movements. Conclusion The accuracy and precision of standardized jaw and finger movements are dependent on visual feedback and appears to improve more by training in the trigeminal system possibly reflecting significant neuroplasticity in motor control mechanisms.
Collapse
|
19
|
Villaça Avoglio JL. Dental occlusion as one cause of tinnitus. Med Hypotheses 2019; 130:109280. [PMID: 31383322 DOI: 10.1016/j.mehy.2019.109280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/11/2019] [Indexed: 11/26/2022]
Abstract
There is large support in literature linking tinnitus to dental occlusion and temporomandibular joint disorders (TMD). However, there is no model to explain such a link. This hypothesis explains how the fusimotor system of the muscles innervated by the trigeminal motor nucleus is affected by inadequacies in the occlusion of the teeth that cause changes in posture and movement of the mandible. Reptile to mammal evolution shows that stomatognathic structures underwent changes related to mastication. Among several changes, there was the appearance of a new articulation between the mandible and skull: the temporomandibular joint. The bones of the old reptile joint, quadrate-articular, have detached from the mandible and are part of the middle ear bone chain. The former becomes the incus and the latter the malleus. This bone change also carried the tensor tympani and its trigeminal motor innervation. Inadequate occlusal contacts give rise to an adapted function of the mandible and the most common compensatory muscular response is hypertonia involving all mandibular muscles, including the tensor tympani. A fundamental clinical feature that demonstrates the involvement of the trigeminal fusimotor system is the characteristic pain by palpation, but no pain on the mandibular movement. Muscle pain is always felt in the dermatome innervated by the mandibular branch of the trigeminal nerve, which carries the motor fibers, reported as tightening, similar to cramp, and has regular behavior in intensity, duration and frequency. In addition, the patient has increased musculature volume, detected by palpation of certain anatomical landmarks, but with loss of functional efficiency. The neuromotor control of the mandibular movements is poor and when asked to make lateral jaw movement touching the teeth, it is common to observe that the patient moves the lips, eyes, and even turns the head in the same direction as the movement. There is also difficulty eating hard foods and talking fast. Tongue biting while chewing is frequent, meaning that these non-physiological events surpass protective reflex circuits. The report of ear pain, tinnitus, blocked ear sensation and sudden hearing loss is common in such patients, compatible with the tonic contraction of the tensor tympani. The fusimotor system hypothesis is able to explain all events related to the symptoms and helps to establish a correct diagnosis for certain types of hearing disorders.
Collapse
|
20
|
Robinson JL, Soria P, Lu HH, Chen J, Wadhwa S. Structure-Function Relationships of the Temporomandibular Joint in Response to Altered Loading. J Oral Facial Pain Headache 2019; 33:451–458. [PMID: 31339966 DOI: 10.11607/ofph.2094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIMS To elucidate the effects of decreased occlusal loading (DOL), with or without reloading (RL), on the structure and bite force function of the mandibular condylar fibrocartilage in skeletally mature male mice. METHODS At 13 weeks old, 30 wild type (WT) male mice were subjected to: (1) 6 weeks normal loading (NL); (2) 6 weeks DOL; or (3) 4 weeks DOL + 2 weeks RL. Histomorphometry, cell metabolic activity, gene expression of chondrogenic markers, and bite force tests were performed. RESULTS DOL resulted in a significant increase in apoptosis (P < .0001) and significant decreases in fibrocartilage thickness (P < .05) and hypertrophic chondrocyte markers indian hedgehog and collagen type X (P < .05). A corresponding decrease in bite force was also observed (P < .05). RL treatment resulted in a return to values comparable to NL of chondrogenic maturation markers (P > .10), apoptosis (P > .999), and bite force (P > .90), but not in mandibular condylar fibrocartilage thickness (P > .05). CONCLUSIONS DOL in skeletally mature mice induces mandibular condylar fibrocartilage atrophy at the hypertrophic cell layer with a corresponding decrease in bite force.
Collapse
|
21
|
The role of EEG and EMG combined virtual reality gaming system in facial palsy rehabilitation - A case report. J Bodyw Mov Ther 2019; 23:425-431. [PMID: 31103130 DOI: 10.1016/j.jbmt.2019.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND The recovery rates for facial palsy are usually excellent; however, regularly patients present with problems with their fine facial movements that affect their emotional expressions. OBJECTIVE To discover the viability and ease of using an Electroencephalogram (EEG) and Electromyography (EMG) combined Virtual Reality (VR) gaming system - the 'Oculus Rift' device in the evaluation and rehabilitation of facial palsy. DESIGN Single case study. PATIENT INFORMATION A young 23-year-old female with facial palsy. CLINICAL FINDINGS Most of the patient's facial features were re-established within the recovery time frame, except for her right forehead and eyebrow movements. INTERVENTION A 10 day exercise program (Day 2-11) with an immersive virtual reality device, which randomly shoots virtually animated white balls in an unpredictable and testing pattern. OUTCOME MEASURES EEG and EMG patterns corresponding to the facial upper quadrant were taken at baseline, post-intervention, and at follow up. RESULTS EMG and EEG investigation revealed a progressive improvement in the muscle activation in response to the impulsive and unpredictable activities in the virtual environment provided through the immersive VR device. CONCLUSION The case report found a positive relationship between VR, facial upper quadrant EMG activation and EEG pattern changes following the intervention.
Collapse
|
22
|
Yao D, Sessle BJ. Face sensorimotor cortex undergoes neuroplastic changes in a rat model of trigeminal neuropathic pain. Exp Brain Res 2018. [PMID: 29520443 DOI: 10.1007/s00221-018-5226-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Trigeminal nerve injury can result in neuropathic pain behavior and alterations in motor function, but it is unclear if such injury produces neuroplastic alterations in face sensorimotor cortex that could contribute to the alterations in motor function. Therefore, this study aimed to determine if trigeminal nerve injury in a rat neuropathic pain model induces neuroplastic changes in jaw and tongue motor representations in face sensorimotor cortex in association with facial nociceptive behavior. Right infraorbital nerve transection was performed in adult male Sprague-Dawley rats; sham-operated rats served as controls. Nociceptive behavior was assessed by testing facial mechanical sensitivity pre-operatively and post-operatively (1-28 days). Intracortical microstimulation was also applied post-operatively in a series of microelectrode penetrations to map jaw and tongue motor representations in the face sensorimotor cortex by analyzing anterior digastric and genioglossus electromyographic activities evoked by microstimulation at histologically verified sites in face primary somatosensory cortex (face-SI) as well as face primary motor cortex (face-MI). Compared to sham, infraorbital nerve injury induced a significant (2-way repeated-measures analysis of variance, P < 0.001) bilateral decrease in facial mechanical threshold that lasted up to 28 days post-operatively. Nerve injury also induced a significant bilateral decrease compared to sham (P < 0.05) in the number of anterior digastric and/or genioglossus sites in face-MI and in face-SI. These findings indicate that trigeminal nerve injury induces neuroplastic alterations in jaw and tongue motor representations in face sensorimotor cortex that are associated with facial nociceptive behavior and that may contribute to sensorimotor changes following trigeminal nerve injury.
Collapse
Affiliation(s)
- Dongyuan Yao
- School of Pharmaceutical Science and Jiangxi Mental Hospital, Nanchang University, 461 Bayi Road, Nanchang, 330006, Jiangxi, China. .,Department of Physiology, Faculty of Dentistry, and Faculty of Medicine, University of Toronto, 124 Edward St., Toronto, ON, M5G 1G6, Canada.
| | - Barry J Sessle
- Department of Physiology, Faculty of Dentistry, and Faculty of Medicine, University of Toronto, 124 Edward St., Toronto, ON, M5G 1G6, Canada
| |
Collapse
|
23
|
Kim D, Chung S, Lee SH, Choi SY, Kim SM, Koo J, Lee JH, Jahng JW. Decreased hippocampal brain-derived neurotrophic factor and impaired cognitive function by hypoglossal nerve transection in rats. J Cell Mol Med 2017; 21:3752-3760. [PMID: 28767193 PMCID: PMC5706565 DOI: 10.1111/jcmm.13284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
The hypoglossal nerve controls tongue movements, and damages of it result in difficulty in mastication and food intake. Mastication has been reported to maintain hippocampus‐dependent cognitive function. This study was conducted to examine the effect of tongue motor loss on the hippocampus‐dependent cognitive function and its underlying mechanism. Male Sprague Dawley rats were subjected to the initial training of Morris water maze task before or after the bilateral transection of hypoglossal nerves (Hx). When the initial training was given before the surgery, the target quadrant dwelling time during the probe test performed at a week after the surgery was significantly reduced in Hx rats relative to sham‐operated controls. When the initial training was given after the surgery, Hx affected the initial and reversal trainings and probe tests. Brain‐derived neurotrophic factor (BDNF) expression, cell numbers and long‐term potentiation (LTP) were examined in the hippocampus on the 10th day, and BrdU and doublecortin staining on the 14th day, after the surgery. Hx decreased the hippocampal BDNF and cells in the CA1/CA3 regions and impaired LTP. BrdU and doublecortin staining was decreased in the dentate gyrus of Hx rats. Results suggest that tongue motor loss impairs hippocampus‐dependent cognitive function, and decreased BDNF expression in the hippocampus may be implicated in its underlying molecular mechanism in relation with decreased neurogenesis/proliferation and impaired LTP.
Collapse
Affiliation(s)
- Doyun Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, Seoul National University, School of Dentistry, Seoul, Korea.,Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, Dae Gu, Korea
| | - Sena Chung
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, Seoul National University, School of Dentistry, Seoul, Korea
| | - Seung-Hyun Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, Seoul National University, School of Dentistry, Seoul, Korea
| | - JaeHyung Koo
- Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, Dae Gu, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, Seoul National University, School of Dentistry, Seoul, Korea
| | - Jeong Won Jahng
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, Seoul National University, School of Dentistry, Seoul, Korea
| |
Collapse
|
24
|
Perturbed oral motor control due to anesthesia during intraoral manipulation of food. Sci Rep 2017; 7:46691. [PMID: 28425479 PMCID: PMC5397972 DOI: 10.1038/srep46691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
Sensory information from periodontal mechanoreceptors (PMRs) surrounding the roots of natural teeth is important for optimizing the positioning of food and adjustment of force vectors during precision biting. The present experiment was designed to test the hypothesis; that reduction of afferent inputs from the PMRs, by anesthesia, perturbs the oral fine motor control and related jaw movements during intraoral manipulation of morsels of food. Thirty healthy volunteers with a natural dentition were equally divided into experimental and control groups. The participants in both groups were asked to manipulate and split a spherical candy into two equal halves with the front teeth. An intervention was made by anesthetizing the upper and lower incisors of the experimental group while the control group performed the task without intervention. Performance of the split was evaluated and the jaw movement recorded. The experimental group demonstrated a significant decrease in measures of performance following local anesthesia. However, there was no significant changes in the duration or position of the jaw during movements in the experimental and control group. In conclusion, transient deprivation of sensory information from PMRs perturbs oral fine motor control during intraoral manipulation of food, however, no significant alterations in duration or positions of the jaw during movements can be observed.
Collapse
|
25
|
Abe Y, Kato C, Uchima Koecklin KH, Okihara H, Ishida T, Fujita K, Yabushita T, Kokai S, Ono T. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats. J Appl Physiol (1985) 2017; 122:1494-1503. [PMID: 28336541 DOI: 10.1152/japplphysiol.01130.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control (n = 36) and experimental (n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups (n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity.NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO2) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated as soon as possible to avoid adverse effects on normal growth, development, and physiological functions.
Collapse
Affiliation(s)
- Yasunori Abe
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chiho Kato
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Karin Harumi Uchima Koecklin
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidemasa Okihara
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Ishida
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Fujita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadachika Yabushita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Kokai
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Ono
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
26
|
Grondin F, Hall T, von Piekartz H. Does altered mandibular position and dental occlusion influence upper cervical movement: A cross-sectional study in asymptomatic people. Musculoskelet Sci Pract 2017; 27:85-90. [PMID: 27847242 DOI: 10.1016/j.math.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 05/25/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Gross mandibular position and masticatory muscle activity have been shown to influence cervical muscles electromyographic activity. The purpose of this study was to investigate the influence of three different mandible positions including conscious occlusion, tongue tip against the anterior hard palate (Palate tongue position) and natural resting position (Rest), on sagittal plane cervical spine range of motion (ROM) as well as the flexion-rotation test (FRT) in asymptomatic subjects. MATERIALS AND METHODS An experienced single blinded examiner evaluated ROM using an Iphone in 22 subjects (7 females; mean age of 29.91years, SD 5.44). RESULTS Intra-rater reliability for range recorded was good for the FRT with ICC (intraclass correlation) 0.95 (95% CI: 0.88-0.98) and good for sagittal plane cervical ROM with ICC 0.90 (95% CI: 0.77-0.96). A repeated measures ANOVA determined that mean ROM recorded during the FRT differed significantly between assessment points (F(1.99, 41.83) = 19.88, P < 0.001). Bonferroni Post hoc tests revealed that both conscious Occlusion and Palate tongue position elicited a significant large reduction in ROM recorded during the FRT from baseline (p < 0.01). Despite this, one activation strategy did not influence ROM more than the other. An additional repeated measures ANOVA determined that mean sagittal cervical ROM did not significantly vary between assessment points (F(2, 42) = 8.18, P = 0.08). CONCLUSION This current study provided further evidence for the influence of the temporomandibular region on upper cervical ROM. Results suggest that clinicians should focus on the natural mandible rest position when evaluating upper cervical mobility.
Collapse
Affiliation(s)
- Francis Grondin
- Laboratory of Anatomy, Bordeaux University Hospital, Hôpital Pellegrin, Place Amélie-Raba-Léon, 33076, Bordeaux, France.
| | - Toby Hall
- School of Physiotherapy and Exercise Science, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia.
| | - Harry von Piekartz
- University of Applied Science, Department of Rehabilitation, Osnabrück, Germany.
| |
Collapse
|
27
|
Zhang H, Kumar A, Kothari M, Luo X, Trulsson M, Svensson KG, Svensson P. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles? Exp Brain Res 2016; 234:1935-1943. [DOI: 10.1007/s00221-016-4598-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/11/2016] [Indexed: 01/17/2023]
|
28
|
Komoda Y, Iida T, Kothari M, Komiyama O, Baad-Hansen L, Kawara M, Sessle B, Svensson P. Repeated tongue lift movement induces neuroplasticity in corticomotor control of tongue and jaw muscles in humans. Brain Res 2015; 1627:70-9. [DOI: 10.1016/j.brainres.2015.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/29/2022]
|
29
|
Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement. Behav Pharmacol 2015; 26:18-32. [PMID: 25485640 DOI: 10.1097/fbp.0000000000000118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current concepts of basal ganglia function have evolved from the essentially motoric, to include a range of extramotoric functions that involve not only dopaminergic but also cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic mechanisms. We consider these mechanisms and their efferent systems, including spiralling, feed-forward striato-nigro-striatal circuitry, involving the dorsal and ventral striatum and the nucleus accumbens (NAc) core and shell. These processes are illustrated using three behavioural models: turning-pivoting, orofacial movements in rats and orofacial movements in genetically modified mice. Turning-pivoting indicates that dopamine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-nigro-striato-nigro-pedunculopontine pathway, whereas acetylcholine-dependent behaviour elicited from the NAc shell is funnelled through the NAc-ventral pallidum-mediodorsal thalamus pathway. Cooperative/synergistic interactions between striatal D1-like and D2-like dopamine receptors regulate individual topographies of orofacial movements that are funnelled through striatal projection pathways and involve interactions with GABAergic and glutamatergic receptor subtypes. This application of concerted behavioural, neurochemical and neurophysiological techniques implicates a network that is yet broader and interacts with other neurotransmitters and neuropeptides within subcortical, cortical and brainstem regions to 'sculpt' aspects of behaviour into its topographical collective.
Collapse
|
30
|
Avivi-Arber L, Lee JC, Sessle B. Dental Occlusal Changes Induce Motor Cortex Neuroplasticity. J Dent Res 2015; 94:1757-64. [DOI: 10.1177/0022034515602478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Modification to the dental occlusion may alter oral sensorimotor functions. Restorative treatments aim to restore sensorimotor functions; however, it is unclear why some patients fail to adapt to the restoration and remain with sensorimotor complaints. The face primary motor cortex (face-M1) is involved in the generation and control of orofacial movements. Altered sensory inputs or motor function can induce face-M1 neuroplasticity. We took advantage of the continuous eruption of the incisors in Sprague-Dawley rats and used intracortical microstimulation (ICMS) to map the jaw and tongue motor representations in face-M1. Specifically, we tested the hypothesis that multiple trimming of the right mandibular incisor, to keep it out of occlusal contacts for 7 d, and subsequent incisor eruption and restoration of occlusal contacts, can alter the ICMS-defined features of jaw and tongue motor representations (i.e., neuroplasticity). On days 1, 3, 5, and 7, the trim and trim-recovered groups had 1 to 2 mm of incisal trimming of the incisor; a sham trim group had buccal surface trimming with no occlusal changes; and a naive group had no treatment. Systematic mapping was performed on day 8 in the naive, trim, and sham trim groups and on day 14 in the trim-recovered group. In the trim group, the tongue onset latency was shorter in the left face-M1 than in the right face-M1 ( P < .001). In the trim-recovered group, the number of tongue sites and jaw/tongue overlapping sites was greater in the left face-M1 than in the right face-M1 ( P = 0.0032, 0.0016, respectively), and the center of gravity was deeper in the left than in the right face-M1 ( P = 0.026). Therefore, incisor trimming and subsequent restoration of occlusal contacts induced face-M1 neuroplasticity, reflected in significant disparities between the left and right face-M1 in some ICMS-defined features of the tongue motor representations. Such neuroplasticity may reflect or contribute to subjects’ ability to adapt their oral sensorimotor functions to an altered dental occlusion.
Collapse
Affiliation(s)
- L. Avivi-Arber
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Canada
- Department of Prosthodontics, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - J.-C. Lee
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - B.J. Sessle
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Increasing functional connectivity of the anterior cingulate cortex during the course of recovery from Bell's palsy. Neuroreport 2015; 26:6-12. [PMID: 25426823 DOI: 10.1097/wnr.0000000000000295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bell's palsy (BP), a unilateral and idiopathic palsy of the facial nerve, is a common disorder generally followed by a good natural recovery. The aim of this study was to investigate the relationship between the functional connectivity of the anterior cingulate cortex (ACC) and the recovery process of BP. Thirty-seven healthy volunteers and 67 patients were studied by functional MRI (fMRI). The seed regions of bilateral ACC were first extracted from the task-state fMRI data of healthy participants performing the task of mouth opening and closing. The connectivity of bilateral ACC was calculated from resting-state fMRI data of patients in whom only resting-state fMRI data were collected. The correlation between the strength of ACC's connectivity with the duration (time course of disease) was computed by analysis of covariance. It was found that the functional connectivity of the ACC ipsilateral to the lesioned side was enforced as the duration increased. The enforced brain areas included the sensorimotor areas and the ACC contralateral to the palsy. It was suggested that enforced functional connectivity of ACC might be related to cortical reorganization, which is important in the process of BP recovery.
Collapse
|
32
|
Kumar A, Grigoriadis J, Trulsson M, Svensson P, Svensson KG. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task. Neuroscience 2015; 306:10-7. [PMID: 26162238 DOI: 10.1016/j.neuroscience.2015.06.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022]
Abstract
Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor skill. Hence, the aim of the experiment was to test the hypothesis that repeated splitting of a food morsel during a short-term training with an oral fine motor task would result in increased performance and optimization of jaw movements, in terms of reduction in duration of various phases of the jaw movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with 10 trials) of the task before and after a short-term (approximately 30 min) training. The accuracy of the split and vertical jaw movement during the task were recorded. The precision of task performance improved significantly after training (22% mean deviation from ideal split after vs. 31% before; P<0.001). There was a significant decrease in the total duration of jaw movements during the task after the training (1.21 s total duration after vs. 1.56 s before; P<0.001). Further, when the jaw movements were divided into different phases, the jaw opening phase and contact phase were significantly shorter after training than before training (P=0.001, P=0.002). The results indicate that short-term training of an oral fine motor task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights into how humans learn oral motor behaviors or the kind of adaptation that takes place after a successful prosthetic rehabilitation.
Collapse
Affiliation(s)
- A Kumar
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Denmark; Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden.
| | - J Grigoriadis
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden
| | - M Trulsson
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden
| | - P Svensson
- Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Denmark; Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden
| | - K G Svensson
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; Scandinavian Center for Orofacial Neurosciences (SCON), Sweden
| |
Collapse
|
33
|
Avivi-Arber L, Lee JC, Sood M, Lakschevitz F, Fung M, Barashi-Gozal M, Glogauer M, Sessle BJ. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats. J Comp Neurol 2015; 523:2372-89. [DOI: 10.1002/cne.23793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Limor Avivi-Arber
- Department of Prosthodontic; Faculty of Dentistry; University of Toronto; Ontario Canada
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Jye-Chang Lee
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Mandeep Sood
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
- Department of Orthodontics; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Flavia Lakschevitz
- Department of Periodontics; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Michelle Fung
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Maayan Barashi-Gozal
- Department of Periodontics; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Michael Glogauer
- Department of Periodontics; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Barry J. Sessle
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
| |
Collapse
|
34
|
Sood M, Lee JC, Avivi-Arber L, Bhatt P, Sessle BJ. Neuroplastic changes in the sensorimotor cortex associated with orthodontic tooth movement in rats. J Comp Neurol 2015; 523:1548-68. [DOI: 10.1002/cne.23753] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 01/18/2015] [Accepted: 01/24/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Mandeep Sood
- Graduate Program in Orthodontics and Collaborative Program in Neuroscience; Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| | - Jye-Chang Lee
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| | - Limor Avivi-Arber
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
- Department of Prosthodontics; Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| | - Poolak Bhatt
- Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| | - Barry J. Sessle
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| |
Collapse
|
35
|
Chen H, Iinuma M, Onozuka M, Kubo KY. Chewing Maintains Hippocampus-Dependent Cognitive Function. Int J Med Sci 2015; 12:502-9. [PMID: 26078711 PMCID: PMC4466515 DOI: 10.7150/ijms.11911] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023] Open
Abstract
Mastication (chewing) is important not only for food intake, but also for preserving and promoting the general health. Recent studies have showed that mastication helps to maintain cognitive functions in the hippocampus, a central nervous system region vital for spatial memory and learning. The purpose of this paper is to review the recent progress of the association between mastication and the hippocampus-dependent cognitive function. There are multiple neural circuits connecting the masticatory organs and the hippocampus. Both animal and human studies indicated that cognitive functioning is influenced by mastication. Masticatory dysfunction is associated with the hippocampal morphological impairments and the hippocampus-dependent spatial memory deficits, especially in elderly. Mastication is an effective behavior for maintaining the hippocampus-dependent cognitive performance, which deteriorates with aging. Therefore, chewing may represent a useful approach in preserving and promoting the hippocampus-dependent cognitive function in older people. We also discussed several possible mechanisms involved in the interaction between mastication and the hippocampal neurogenesis and the future directions for this unique fascinating research.
Collapse
Affiliation(s)
- Huayue Chen
- 1. Department of Anatomy Gifu University Graduate School of Medicine, Gifu, 501-1194, Gifu, Japan
| | - Mitsuo Iinuma
- 2. Department of Pediatric Dentistry, Division of Oral Structure, Function and Development, Asahi University, School of Dentistry, Mizuho, 501-0296, Gifu, Japan
| | - Minoru Onozuka
- 3. Department of Judo Therapy and Medical Science, Faculty of Medical Science, Nippon Sport Science University, Yokohama 227-0033, Kanagawa, Japan
| | - Kin-Ya Kubo
- 4. Seijoh University Graduate School of Health Care Studies, Tokai, 476-8588, Aichi, Japan
| |
Collapse
|
36
|
Spontaneous neural activity alterations in temporomandibular disorders: a cross-sectional and longitudinal resting-state functional magnetic resonance imaging study. Neuroscience 2014; 278:1-10. [PMID: 25110816 DOI: 10.1016/j.neuroscience.2014.07.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 02/05/2023]
Abstract
The involvement of the central nervous system in the pathophysiology of temporomandibular disorders (TMD) has been noticed. TMD patients have been shown dysfunction of motor performance and reduced cognitive ability in neuropsychological tests. The aim of this study is to explore the spontaneous neural activity in TMD patients with centric relation (CR)-maximum intercuspation (MI) discrepancy before and after stabilization splint treatment. Twenty-three patients and twenty controls underwent clinical evaluations, including CR-MI discrepancy, Helkimo indices and chronic pain, and resting state functional magnetic resonance imaging scans at baseline. Eleven patients repeated the evaluations and scanning after the initial wearing (T1) and 3months of wearing (T2) of the stabilization splint. The fractional amplitude of low-frequency fluctuation (fALFF) was calculated to compare the neural functions. At baseline, the patients showed decreased fALFF in the left precentral gyrus, supplementary motor area, middle frontal gyrus and right orbitofrontal cortex compared with the controls (P<0.05, AlphaSim corrected). Negative correlations were found between the fALFF in the left precentral gyrus and vertical CR-MI discrepancy of bilateral temporomandibular joints of patients (P<0.05, two-tailed). At T2, the symptoms and signs of the patients were improved, and a stable condylar position on the CR was recovered, with increased fALFF in the left precentral gyrus and left posterior insula compared with pretreatment. The fALFF decrease in the patients before treatment was no longer evident at T2 compared with the controls. The results suggested that TMD patients with CR-MI discrepancy showed significantly decreased brain activity in their frontal cortexes. The stabilization splint elicited functional recovery in these cortical areas. These findings provided insight into the cortical neuroplastic processes underlying TMD with CR-MI discrepancy and the therapeutic mechanisms of stabilization splint.
Collapse
|
37
|
Abstract
The orofacial sensorimotor cortex is known to play a role in motor learning. However, how motor learning changes the dynamics of neuronal activity and whether these changes differ between orofacial primary motor (MIo) and somatosensory (SIo) cortices remain unknown. To address these questions, we used chronically implanted microelectrode arrays to track learning-induced changes in the activity of simultaneously recorded neurons in MIo and SIo as two naive monkeys (Macaca mulatta) were trained in a novel tongue-protrusion task. Over a period of 8-12 d, the monkeys showed behavioral improvements in task performance that were accompanied by rapid and long-lasting changes in neuronal responses in MIo and SIo occurring in parallel: (1) increases in the proportion of task-modulated neurons, (2) increases in the mutual information between tongue-protrusive force and spiking activity, (3) reductions in the across-trial firing rate variability, and (4) transient increases in coherent firing of neuronal pairs. More importantly, the time-resolved mutual information in MIo and SIo exhibited temporal alignment. While showing parallel changes, MIo neurons exhibited a bimodal distribution of peak correlation lag times between spiking activity and force, whereas SIo neurons showed a unimodal distribution. Moreover, coherent activity between pairs of MIo neurons was higher and centered around force onset compared with pairwise coherence of SIo neurons. Overall, the results suggest that the neuroplasticity in MIo and SIo occurring in parallel serves as a substrate for linking sensation and movement during sensorimotor learning, whereas the differing dynamic organizations reflect specific ways to control movement parameters as learning progresses.
Collapse
|
38
|
Huckabee ML, Macrae P. Rethinking Rehab: Skill-Based Training for Swallowing Impairment. ACTA ACUST UNITED AC 2014. [DOI: 10.1044/sasd23.1.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current rehabilitation approaches for swallowing impairment are limited by a general lack of specificity to associated pathophysiology, with many of our practices focusing on increasing strength of muscle activation. However, alternative rehabilitative options are emerging. One of these speculates on the concept of “skill training” for swallowing rehabilitation in neurogenic dysphagia. The presumed intent of this approach is to modulate neural substrates and refine motor planning for swallowing using intrinsically generated cortical modulation and adaptive practice. This manuscript provides a discussion of skill training in the context of physical rehabilitation, illustrating how this information may translate to the diagnosis and remediation of swallowing impairment. This information prompts the consideration of more diverse swallowing pathophysiologies, beyond peripheral muscle weakness. The focus on skill training approaches provides a pathway by which greater specificity of diagnosis and treatment can occur.
Collapse
Affiliation(s)
- Maggie-Lee Huckabee
- Department of Communication Disorders, University of CanterburyChristchurch, New Zealand
| | - Phoebe Macrae
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of MedicineBaltimore, MD
| |
Collapse
|
39
|
Iida T, Komiyama O, Obara R, Baad-Hansen L, Kawara M, Svensson P. Repeated clenching causes plasticity in corticomotor control of jaw muscles. Eur J Oral Sci 2013; 122:42-8. [DOI: 10.1111/eos.12101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Iida
- Department of Oral Function and Rehabilitation; Nihon University School of Dentistry at Matsudo; Matsudo Chiba Japan
- Clinical Oral Physiology; Department of Dentistry; Aarhus University; Aarhus Denmark
| | - Osamu Komiyama
- Department of Oral Function and Rehabilitation; Nihon University School of Dentistry at Matsudo; Matsudo Chiba Japan
| | - Ryoko Obara
- Department of Oral Function and Rehabilitation; Nihon University School of Dentistry at Matsudo; Matsudo Chiba Japan
| | - Lene Baad-Hansen
- Clinical Oral Physiology; Department of Dentistry; Aarhus University; Aarhus Denmark
| | - Misao Kawara
- Department of Oral Function and Rehabilitation; Nihon University School of Dentistry at Matsudo; Matsudo Chiba Japan
| | - Peter Svensson
- Clinical Oral Physiology; Department of Dentistry; Aarhus University; Aarhus Denmark
- Center for Functionally Integrative Neuroscience; Mind Laboratory; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
40
|
Arce FI, Lee JC, Ross CF, Sessle BJ, Hatsopoulos NG. Directional information from neuronal ensembles in the primate orofacial sensorimotor cortex. J Neurophysiol 2013; 110:1357-69. [PMID: 23785133 DOI: 10.1152/jn.00144.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neurons in the arm and orofacial regions of the sensorimotor cortex in behaving monkeys display directional tuning of their activity during arm reaching and tongue protrusion, respectively. While studies on population activity abound for the arm motor cortex, how populations of neurons from the orofacial sensorimotor cortex represent direction has never been described. We therefore examined and compared the directional information contained in the spiking activity of populations of single neurons recorded simultaneously from chronically implanted microelectrode arrays in the orofacial primary motor (MIo, N = 345) and somatosensory (SIo, N = 336) cortices of monkeys (Macaca mulatta) as they protruded their tongue in different directions. Differential modulation to the direction of tongue protrusion was found in >60% of task-modulated neurons in MIo and SIo and was stronger in SIo (P < 0.05). Moreover, mutual information between direction and spiking was significantly higher in SIo compared with MIo at force onset and force offset (P < 0.01). Finally, the direction of tongue protrusion was accurately predicted on a trial-by-trial basis from the spiking activity of populations of MIo or SIo neurons by using a discrete decoder (P < 0.01). The highly reliable decoding was comparable between MIo and SIo neurons. However, the temporal evolution of the decoding performance differed between these two areas: MIo showed late-onset, fast-rising, and phasic performance, whereas SIo exhibited early-onset, slow-rising, and sustained performance. Overall, the results suggest that both MIo and SIo are highly involved in representing the direction of tongue protrusion but they differ in the amplitude and temporal processing of the directional information distributed across populations of neurons.
Collapse
Affiliation(s)
- F I Arce
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
41
|
Pilurzi G, Hasan A, Saifee TA, Tolu E, Rothwell JC, Deriu F. Intracortical circuits, sensorimotor integration and plasticity in human motor cortical projections to muscles of the lower face. J Physiol 2013; 591:1889-906. [PMID: 23297305 DOI: 10.1113/jphysiol.2012.245746] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous studies of the cortical control of human facial muscles documented the distribution of corticobulbar projections and the presence of intracortical inhibitory and facilitatory mechanisms. Yet surprisingly, given the importance and precision in control of facial expression, there have been no studies of the afferent modulation of corticobulbar excitability or of the plasticity of synaptic connections in the facial primary motor cortex (face M1). In 25 healthy volunteers, we used standard single- and paired-pulse transcranial magnetic stimulation (TMS) methods to probe motor-evoked potentials (MEPs), short-intracortical inhibition, intracortical facilitation, short-afferent and long-afferent inhibition and paired associative stimulation in relaxed and active depressor anguli oris muscles. Single-pulse TMS evoked bilateral MEPs at rest and during activity that were larger in contralateral muscles, confirming that corticobulbar projection to lower facial muscles is bilateral and asymmetric, with contralateral predominance. Both short-intracortical inhibition and intracortical facilitation were present bilaterally in resting and active conditions. Electrical stimulation of the facial nerve paired with a TMS pulse 5-200 ms later showed no short-afferent inhibition, but long-afferent inhibition was present. Paired associative stimulation tested with an electrical stimulation-TMS interval of 20 ms significantly facilitated MEPs for up to 30 min. The long-term potentiation, evoked for the first time in face M1, demonstrates that excitability of the facial motor cortex is prone to plastic changes after paired associative stimulation. Evaluation of intracortical circuits in both relaxed and active lower facial muscles as well as of plasticity in the facial motor cortex may provide further physiological insight into pathologies affecting the facial motor system.
Collapse
Affiliation(s)
- G Pilurzi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Milliken GW, Plautz EJ, Nudo RJ. Distal forelimb representations in primary motor cortex are redistributed after forelimb restriction: a longitudinal study in adult squirrel monkeys. J Neurophysiol 2012; 109:1268-82. [PMID: 23236004 DOI: 10.1152/jn.00044.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary motor cortex (M1) movement representations reflect acquired motor skills. Representations of muscles and joints used in a skilled task expand. However, it is unknown whether motor restriction in healthy individuals results in complementary reductions in M1 representations. With the use of intracortical microstimulation techniques in squirrel monkeys, detailed maps of movement representations in M1 were derived before and up to 35 wk after restriction of the preferred distal forelimb (DFL) by use of a soft cast. Although total DFL area and movement threshold remained constant, casting resulted in a redistribution of digit and wrist/forearm representations. Digit representations progressively decreased, whereas wrist/forearm representations progressively increased in areal extent. In three of four monkeys, hand preference returned to normal by the end of the postcast recovery period, and postrecovery maps demonstrated reversal of restriction-induced changes. However, in one monkey, a chronic motor impairment occurred in the casted limb. Rehabilitation via a forced-use paradigm resulted in recovery in use and skill of the impaired limb, as well as restoration of normal motor maps. These results demonstrate that plasticity in motor representations can be induced by training or restricting movements of the limb. Physiological changes induced by restriction appear to be reversible, even in the case of adverse motor outcomes. The respective contributions of both disuse and lost motor skills are discussed. These results have relevance for clinical conditions requiring forelimb casting as well as interpreting the differential effects of injury and disuse that are necessarily intertwined after cortical injury, as occurs in stroke.
Collapse
Affiliation(s)
- Garrett W Milliken
- Department of Molecular and Integrative Physiology and Landon Center on Aging, Kansas University Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
43
|
Trulsson M, van der Bilt A, Carlsson GE, Gotfredsen K, Larsson P, Müller F, Sessle BJ, Svensson P. From brain to bridge: masticatory function and dental implants. J Oral Rehabil 2012; 39:858-77. [DOI: 10.1111/j.1365-2842.2012.02340.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 12/11/2022]
Affiliation(s)
- M. Trulsson
- Department of Dental Medicine; Karolinska Institutet; Huddinge; Sweden
| | - A. van der Bilt
- Department of Oral Maxillofacial Surgery; Prosthodontics and Special Dental Care; University Medical Center Utrecht; Utrecht; The Netherlands
| | - G. E. Carlsson
- Institute of Odontology; The Sahlgrenska Academy; University of Gothenburg; Gothenburg; Sweden
| | - K. Gotfredsen
- Department of Oral Rehabilitation; Institute of Odontology; Faculty of Health Science; University of Copenhagen; Copenhagen; Denmark
| | - P. Larsson
- Department of Prosthetic Dentistry; Institute for Postgraduate Dental Education; Jönköping; Sweden
| | - F. Müller
- Division of Gerodontology and Removable Prosthodontics; University of Geneva; Geneva; Switzerland
| | - B. J. Sessle
- Faculty of Dentistry; University of Toronto; Toronto; ON; Canada
| | | |
Collapse
|
44
|
Avivi-Arber L, Martin R, Lee JC, Sessle BJ. Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions. Arch Oral Biol 2011; 56:1440-65. [DOI: 10.1016/j.archoralbio.2011.04.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/20/2022]
|
45
|
Increased occlusal vertical dimension induces cortical plasticity in the rat face primary motor cortex. Behav Brain Res 2011; 228:254-60. [PMID: 22123413 DOI: 10.1016/j.bbr.2011.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/23/2022]
Abstract
Previous studies have demonstrated that functional plasticity in the primary motor cortex (M1) is related to motor-skill learning and changes in the environment. Increased occlusal vertical dimension (iOVD) may modulate mastication, such as in the masticatory cycle, and the firing properties of jaw-muscle spindles. However, little is known about the changes in motor representation within the face primary motor cortex (face-M1) after iOVD. The purpose of the present study was to determine the effect of iOVD on the face-M1 using intracortical microstimulation (ICMS). In an iOVD group, the maxillary molars were built-up by 2mm with acrylic. The electromyographic (EMG) activities from the left (LAD) and right (RAD) anterior digastric (AD), masseter and genioglossus (GG) muscles elicited by ICMS within the right face-M1 were recorded 1, 2 and 8 weeks after iOVD. IOVD was associated with a significant increase in the number of sites within the face-M1 from which ICMS evoked LAD and/or GG EMG activities, as well as a lateral shift in the center of gravity of the RAD and LAD muscles at 1 and 2 weeks, but not at 8 weeks. These findings suggest that a time-dependent neuroplastic change within the rat face-M1 occurs in association with iOVD. This may be related to the animal's ability to adapt to a change in the oral environment.
Collapse
|
46
|
Klingner CM, Volk GF, Brodoehl S, Burmeister HP, Witte OW, Guntinas-Lichius O. Time Course of Cortical Plasticity After Facial Nerve Palsy. Neurorehabil Neural Repair 2011; 26:197-203. [DOI: 10.1177/1545968311418674] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Functional connectivity is defined as the temporal correlation between spatially remote neurophysiological events. This method has become particularly useful for studying neuroplasticity to detect changes in the collaboration of brain areas during cortical reorganization. Methods. In this article, the authors longitudinally studied voxel-based morphometry and resting state functional magnetic resonance imaging 10 times in 1 patient during the course of Bell palsy (idiopathic facial nerve palsy) up to complete clinical recovery. Results. Morphometric analysis revealed a significant alteration in the face area of the primary motor cortex (M1) contralateral to the paretic face, with an initial increase in gray matter concentration. Functional connectivity analysis between the M1 and other parts of the facial motor network revealed acutely disrupted intrahemispheric connectivity but unaltered interhemispheric connectivity. The disrupted functional connectivity was most pronounced on the day of the onset of symptoms, with a subsequent return toward normal during the course of recovery. This time course was found to differ between the selected parts of the facial motor network. However, the increase in functional connectivity strength preceded clinical recovery in all areas and reached a stable level before the patient fully recovered. Conclusion. These results demonstrate that recovery from facial nerve palsy is complemented by cortical reorganization, with pronounced changes of functional connectivity that precede clinical recovery.
Collapse
|
47
|
Luraschi J, Schimmel M, Bernard JP, Gallucci GO, Belser U, Müller F. Mechanosensation and maximum bite force in edentulous patients rehabilitated with bimaxillary implant-supported fixed dental prostheses. Clin Oral Implants Res 2011; 23:577-83. [PMID: 22092337 DOI: 10.1111/j.1600-0501.2011.02283.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to compare tactile sensitivity and maximum voluntary bite force (MBF) of edentulous patients with implant-supported fixed dental prostheses (IFDP/IFDPs) to those wearing complete dentures (CG-CC) and fully dentate subjects (CG-DD). METHODS Seven edentulous subjects with IFDP/IFDPs, seven with CG-CC and seven CG-DD, matched for age and gender, participated in the pilot experiments. Three active tactile thresholds (absolute, 50% and 100%) were evaluated by means of copper foils of decreasing thickness (12 foils: 700-5 μm). The passive thresholds were measured in six different sites per quadrant using a custom-made computer-supported strain gauge. MBF was evaluated electronically using the central-bearing point method. RESULTS Active tactile thresholds were different between all three groups of dental state (Kruskal-Wallis: absolute P = 0.0156; 50% P = 0.0019; 100% P = 0.0059). The active tactile sensitivity with IFDP/IFDPs was between those of the two other groups, except for the 100% threshold. The median passive tactile threshold was higher in patients with IFDP/IFDPs (5.7 N) than in CG-CC (1.7 N) and CG-DD (0.5 N) (Kruskal-Wallis P < 0.0005). MBF did not differ significantly between the dental states (ns). CONCLUSION IFDP/IFDPs are a valuable treatment option for restoring edentulous patients. Limitations concerning their physiological integration into the orofacial system are mainly related to a poor passive rather than active tactile sensitivity or maximum bite force.
Collapse
Affiliation(s)
- Julien Luraschi
- Division of Gerodontology and Removable Prosthodontics, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Arima T, Yanagi Y, Niddam DM, Ohata N, Arendt-Nielsen L, Minagi S, Sessle BJ, Svensson P. Corticomotor plasticity induced by tongue-task training in humans: a longitudinal fMRI study. Exp Brain Res 2011; 212:199-212. [PMID: 21590261 DOI: 10.1007/s00221-011-2719-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
Abstract
Corticomotor pathways may undergo neuroplastic changes in response to acquisition of new motor skills. Little is known about the motor control strategies for learning new tongue tasks. The aim of this study was to investigate the longitudinal effect of novel tongue-task training on corticomotor neuroplasticity. Thirteen healthy, right-handed men, aged 24-35 years (mean age ± SD: 27.3 ± 0.3 years), performed a training task consisting of standardized tongue protrusion onto a force transducer. The tongue task consisted of a relax-protrude-hold-relax cycle with 1.0 N as the target at the hold phase lasting for 1.5 s. Subjects repeated this task for 1 h. Functional magnetic resonance imaging was carried out before the tongue-task training (baseline), 1-h after the training, and one-day and one-week follow-up. During scanning, the subjects performed tongue protrusion in blocks interspersed with rest. A region-of-interest (ROI) approach and an explorative search were implemented for the analysis of corticomotor activity across conditions. All subjects completed the tongue-task training (mean success rate 43.0 ± 13.2%). In the baseline condition, tongue protrusion resulted in bilateral activity in regions most typically associated with a motor task including medial frontal gyrus (supplementary motor area [SMA]), precentral gyrus (tongue motor cortex), putamen, thalamus, and cerebellum. The ROI analysis revealed increased activity in the precentral gyrus already 1 h post-training. One day after the training, increased activity was observed in the precentral gyrus, SMA, putamen, and cerebellum. No increase was found 1 week after training. Correlation analyses between changes in success rates and changes in the numbers of voxels showed robust associations for left Area 4a in primary motor cortex 1 h, 1 day, and 1 week after the tongue-task training and for the left Area 4p in primary motor cortex and the left lateral premotor cortex 1 day after the training. In the unrestricted analysis, increased activity was found in the parahippocampal gyrus 1 h after the tongue-task training and remained for a week. Decreased activity was found in right post-central and middle frontal gyri 1 h and 1 week post-training. The results verified the involvement of specific corticomotor areas in response to tongue protrusion. Short-term tongue-task training was associated with longer-lasting (up to 1 week) changes in motor-related brain activity. The results suggested that primary motor areas are involved in the early and late stages, while other motor areas mainly are engaged in the later stage of corticomotor neuroplasticity of the tongue.
Collapse
Affiliation(s)
- Taro Arima
- Department of Oral Rehabilitation, Graduate School of Dental Medicine, University of Hokkaido, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Motor control of jaw movements: An fMRI study of parafunctional clench and grind behavior. Brain Res 2011; 1383:206-17. [DOI: 10.1016/j.brainres.2011.01.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 01/14/2011] [Accepted: 01/26/2011] [Indexed: 01/30/2023]
|
50
|
Grigoriadis A, Johansson RS, Trulsson M. Adaptability of mastication in people with implant-supported bridges. J Clin Periodontol 2011; 38:395-404. [DOI: 10.1111/j.1600-051x.2010.01697.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|