1
|
Liu C, Jiang Y, Xue W, Liu J, Wang Z, Li X. Multiple tail ionizable lipids improve in vivo mRNA delivery efficiency with biosafety. Int J Pharm 2024; 667:124868. [PMID: 39454975 DOI: 10.1016/j.ijpharm.2024.124868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Ionizable lipid-based lipid nanoparticles (LNP) play a crucial role in the delivery of mRNA. The hydrophobic tail of ionizable lipid affects the formation of LNP and the release of mRNA. In this report, we focus on the effect of the number, chain length, and double bond number of the hydrophobic tail on the delivery efficiency. First, a series of ionizable lipids with two, three and four tails were synthesized and characterized featured with imidazole group as the head. The ionizable lipids derived LNP were prepared using a microfluidic co-mixing device, yielding particles primarily in the size range of 100 to 150 nm, with a polydispersity index (PDI) below 0.2. Screening identified ionizable lipids with four tails exhibiting superior delivery efficiency, of which U-15, U-17, U-18 and U-19 demonstrated the highest performance. Additionally, the U-19 significantly prolongs mRNA expression duration, and along with specific extrahepatic delivery effect compared to ALC-0315. Tissue slice tests on representatives (U-06: two tails, U-19: four tails, U-29: three tails) revealed no notable abnormalities. Analysis of immunogenicity, liver and kidney function tests indicated that all samples exhibited no evident immunogenicity or in vivo toxicity. Findings from tests on lysosome escape, cell transfection, and cytotoxicity revealed excellent in vitro delivery effectiveness. In summary, among the 35 imidazole-based ionizable lipids screened, optimal effects were exhibited by four tails, which providing a new strategy for the development of ionizable lipids.
Collapse
Affiliation(s)
- Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenliang Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
2
|
Hamza M, Sankhyan D, Shukla S, Pandey P. Advances in body fluid identification: MiRNA markers as powerful tool. Int J Legal Med 2024; 138:1223-1232. [PMID: 38467753 DOI: 10.1007/s00414-024-03202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Body fluids are one of the most encountered types of evidence in any crime and are commonly used for identifying a person's identity. In addition to these, they are also useful in ascertaining the nature of crime by determining the ty pe of fluid such as blood, semen, saliva, urine etc. Body fluids collected from crime scenes are mostly found in degraded, trace amounts and/or mixed with other fluids. However, the existing immunological and enzyme-based methods used for differentiating these fluids show limited specificity and sensitivity in such cases. To overcome these challenges, a new method utilizing microRNA expression of the body fluids has been proposed. This method is believed to be non-destructive as well as sensitive in nature and researches have shown promising results for highly degraded samples as well. This systematic review focuses on and explores the use and reliability of miRNAs in body fluid identification. It also summarizes the researches conducted on various aspects of miRNA in terms of body fluid examination in forensic investigations.
Collapse
Affiliation(s)
- Mohd Hamza
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deeksha Sankhyan
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Saurabh Shukla
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preeti Pandey
- Department of Forensic Science, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
3
|
Farshbaf A, Mohajertehran F, Aghaee‐Bakhtiari SH, Ayatollahi H, Douzandeh K, Pakfetrat A, Mohtasham N. Downregulation of salivary miR-3928 as a potential biomarker in patients with oral squamous cell carcinoma and oral lichen planus. Clin Exp Dent Res 2024; 10:e877. [PMID: 38481355 PMCID: PMC10938069 DOI: 10.1002/cre2.877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVES Recent studies highlighted the role of miR expressed in saliva as reliable diagnostic and prognostic tools in the long-term monitoring of cancer processes such as oral squamous carcinoma (OSCC). Based on a few previous studies, it seems the miR-3928 can be considered a master regulator in carcinogenesis, and it can be therapeutically exploited. This is the first study that compared oral potentially malignant disorder (OLP) and malignant (OSCC) lesions for miR-3928 expression. MATERIALS AND METHODS In this cross-sectional study, saliva samples from 30 healthy control individuals, 30 patients with erosive/atrophic oral lichen planus, and 31 patients with OSCC were collected. The evaluation of miR-3928 expression by q-PCR and its correlation with clinicopathological indices were analyzed by Shapiro-Wilk, Kruskal-Wallis, Pearson's χ2 , and Mann-Whitney tests. The p-value less than .05 indicated statistically significant results. RESULTS Based on nonparametric Kruskal-Wallis test results, there was a statistically significant difference between the ages of three study groups (p < .05). This test demonstrated a statistically significant difference between the average of miR-3928 expression in three study groups (p < .05). The result of the χ2 test showed a statistically significant difference in miR-3928 expression between patients with OLP (p = .01) and also patients with OSCC (p < .0001) in comparison to the control group. CONCLUSIONS The salivary miR-3928 can play a tumor suppressive role in the pathobiology of OSCC, and it is significantly downregulated in patients. According to the potential tumor suppressive role of miR-3928 in the OSCC process, we can consider this microRNA as a biomarker for future early diagnosis, screening, and potential target therapy.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farnaz Mohajertehran
- Oral and Maxillofacial Diseases Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Seyed Hamid Aghaee‐Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Bioinformatics Research CenterMashhad University of Medical SciencesMashhadIran
| | - Hossein Ayatollahi
- Hematology Department, Faculty of MedicineMashhad University of Medical ScienceMashhadIran
- Pathology Department, Cancer Molecular Pathology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Katayoun Douzandeh
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Kumar P, Gupta S, Das BC. Saliva as a potential non-invasive liquid biopsy for early and easy diagnosis/prognosis of head and neck cancer. Transl Oncol 2024; 40:101827. [PMID: 38042138 PMCID: PMC10701368 DOI: 10.1016/j.tranon.2023.101827] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the most devastating diseases in India and southeast Asia. It is a preventable and curable disease if detected early. Tobacco and alcohol consumption are the two major risk-factors but infection of high-risk HPVs are also associated with development of predominantly oral and oropharyngeal carcinomas. Interestingly, unlike cervical cancer, HPV-induced HNSCCs show good prognosis and better survival in contrast, majority of tobacco-associated HPV-ve HNSCCs are highly aggressive with poor clinical outcome. Biomarker analysis in circulatory body-fluids for early cancer diagnosis, prognosis and treatment monitoring are becoming important in clinical practice. Early diagnosis using non-invasive saliva for oral or other diseases plays an important role in successful treatment and better prognosis. Saliva mirrors the body's state of health as it comes into direct contact with oral lesions and needs no trained manpower to collect, making it a suitable bio-fluid of choice for screening. Saliva can be used to detect not only virus, bacteria and other biomarkers but variety of molecular and genetic markers for an early detection, treatment and monitoring cancer and other diseases. The performance of saliva-based diagnostics are reported to be highly (≥95 %) sensitive and specific indicating the test's ability to correctly identify true positive or negative cases. This review focuses on the potentials of saliva in the early detection of not only HPV or other pathogens but also identification of highly reliable gene mutations, oral-microbiomes, metabolites, salivary cytokines, non-coding RNAs and exosomal miRNAs. It also discusses the importance of saliva as a reliable, cost-effective and an easy alternative to invasive procedures.
Collapse
Affiliation(s)
- Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
5
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Manenti I, Viola I, Ala U, Cornale P, Macchi E, Toschi P, Martignani E, Baratta M, Miretti S. Adaptation Response in Sheep: Ewes in Different Cortisol Clusters Reveal Changes in the Expression of Salivary miRNAs. Animals (Basel) 2023; 13:3273. [PMID: 37893997 PMCID: PMC10603754 DOI: 10.3390/ani13203273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Farm procedures have an impact on animal welfare by activating the hypothalamic-pituitary-adrenal axis that induces a wide array of physiological responses. This adaptive system guarantees that the animal copes with environmental variations and it induces metabolic and molecular changes that can be quantified. MicroRNAs (miRNAs) play a key role in the regulation of homeostasis and emerging evidence has identified circulating miRNAs as promising biomarkers of stress-related disorders in animals. Based on a clustering analysis of salivary cortisol trends and levels, 20 ewes were classified into two different clusters. The introduction of a ram in the flock was identified as a common farm practice and reference time point to collect saliva samples. Sixteen miRNAs related to the adaptation response were selected. Among them, miR-16b, miR-21, miR-24, miR-26a, miR-27a, miR-99a, and miR-223 were amplified in saliva samples. Cluster 1 was characterized by a lower expression of miR-16b and miR-21 compared with Cluster 2 (p < 0.05). This study identified for the first time several miRNAs expressed in sheep saliva, pointing out significant differences in the expression patterns between the cortisol clusters. In addition, the trend analyses of these miRNAs resulted in clusters (p = 0.017), suggesting the possible cooperation of miR-16b and -21 in the integrated stress responses, as already demonstrated in other species as well. Other research to define the role of these miRNAs is needed, but the evaluation of the salivary miRNAs could support the selection of ewes for different profiles of response to sources of stressors common in the farm scenario.
Collapse
Affiliation(s)
- Isabella Manenti
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Irene Viola
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Ugo Ala
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Paolo Cornale
- Department of Agricultural, Forestry and Food Sciences (DISAFA), Animal Production Unit, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Elisabetta Macchi
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Paola Toschi
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| | - Mario Baratta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy;
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (I.M.); (I.V.); (U.A.); (E.M.); (P.T.); (E.M.)
| |
Collapse
|
7
|
Savino F, Gambarino S, Dini M, Savino A, Clemente A, Calvi C, Galliano I, Bergallo M. Peripheral Blood and Nasopharyngeal Swab MiRNA-155 Expression in Infants with Respiratory Syncytial Virus Infection. Viruses 2023; 15:1668. [PMID: 37632011 PMCID: PMC10459845 DOI: 10.3390/v15081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION MicroRNA (miR) 155 has been implicated in the regulation of innate and adaptive immunity as well as antiviral responses, but its role during respiratory syncytial virus (RSV) infections is not known. The objective of this study was to investigate the expression of miR-155 using pharyngeal swabs and peripheral blood in infants with RSV infection and uninfected controls. METHODS A prospective age-matched study was conducted in primary care in Torino from 1 August 2018 to 31 January 2020. We enrolled 66 subjects, 29 of them patients with RSV infection and 37 age-matched uninfected controls, and collected pharyngeal swabs and peripheral blood in order to assess miR-155 expression with real-time stem-loop-TaqMan real-time PCR. RESULTS The data show that there is no correlation between pharyngeal swabs and peripheral blood with respect to miR-155 expression. The 1/ΔCq miR-155 expression levels in throat swabs in RSV bronchiolitis patients and healthy controls were 0.19 ± 0.11 and 0.21 ± 0.09, respectively, and were not significantly different between healthy controls and bronchiolitis (p = 0.8414). In the peripheral blood, miR-155 levels were higher than those of healthy control subjects: 0.1 ± 0.013 and 0.09 ± 0.0007, respectively; p = 0.0002. DISCUSSION Our data provide evidence that miR-155 expression is higher in peripheral blood during RSV infection but not in swabs. This difference in the timing of sample recruitment could explain the differences obtained in the results; miR-155 activation is probably only assessable in the very early stages of infection in the swab and remains visible for longer in the blood. New investigations are needed in order to clarify whether the miR-155 expression in swabs can be influenced by different stages of virus disease of infants.
Collapse
Affiliation(s)
- Francesco Savino
- Early Infancy Special Care Unit, Regina Margherita Children Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| | - Stefano Gambarino
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
| | - Maddalena Dini
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
| | - Andrea Savino
- Post Graduate School of Pediatrics, Univeristy of Turin, 10124 Turin, Italy;
| | - Anna Clemente
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| |
Collapse
|
8
|
Săsăran MO, Bănescu C. Role of salivary miRNAs in the diagnosis of gastrointestinal disorders: a mini-review of available evidence. Front Genet 2023; 14:1228482. [PMID: 37456668 PMCID: PMC10346860 DOI: 10.3389/fgene.2023.1228482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
MiRNAs are short, non-coding RNA molecules, which are involved in the regulation of gene expression and which play an important role in various biological processes, including inflammation and cell cycle regulation. The possibility of detecting their extracellular expression, within body fluids, represented the main background for their potential use as non-invasive biomarkers of various diseases. Salivary miRNAs particularly gained interest recently due to the facile collection of stimulated/unstimulated saliva and their stability among healthy subjects. Furthermore, miRNAs seem to represent biomarker candidates of gastrointestinal disorders, with miRNA-based therapeutics showing great potential in those conditions. This review aimed to highlight available evidence on the role of salivary miRNAs in different gastrointestinal conditions. Most salivary-based miRNA studies available in the literature that focused on pathologies of the gastrointestinal tract have so far been conducted on pancreatic cancer patients and delivered reliable results. A few studies also showed the diagnostic utility of salivary miRNAs in conditions such as esophagitis, esophageal cancer, colorectal cancer, or inflammatory bowel disease. Moreover, several authors showed that salivary miRNAs may confidently be used as biomarkers of gastric cancer, but the use of salivary miRNA candidates in gastric inflammation and pre-malignant lesions, essential stages of Correa's cascade, is still put into question. On the other hand, besides miRNAs, other salivary omics have shown biomarker potential in gastro-intestinal conditions. The limited available data suggest that salivary miRNAs may represent reliable biomarker candidates for gastrointestinal conditions. However, their diagnostic potential requires validation through future research, performed on larger cohorts.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics 3, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Târgu Mureș, Romania
| | - Claudia Bănescu
- Genetics Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Targu Mures, Romania
| |
Collapse
|
9
|
Urbizu A, Arnaldo L, Beyer K. Obtaining miRNA from Saliva-Comparison of Sampling and Purification Methods. Int J Mol Sci 2023; 24:ijms24032386. [PMID: 36768706 PMCID: PMC9916721 DOI: 10.3390/ijms24032386] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The use of saliva as a biomarker source has advantages over other biofluids and imaging techniques, and miRNAs are ideal biomarker candidates. They are involved in numerous cellular processes, and their altered expression suggests that miRNAs play a crucial regulatory role in disease development. We wanted to find an easily reproducible and executable miRNA-obtaining methodology suitable for quantification. Three commercial miRNA extraction kits (mirVana, Nucleospin and miRNeasy) and three saliva collectors (50 mL tubes, Salimetrics and Oragene) were tested. Several features, including RNA quality and technical parameters, were evaluated. The expression of five synthetic spike-in controls and seven saliva-miRNAs was analyzed independently and grouped by the collectors and the extraction kits. The combination of Oragene and miRNeasy assured the most sensitive detection of all seven saliva miRNAs. Testing different combinations of saliva collectors and RNA purification kits permitted the establishment of combinations for different uses. The results of our study highlight that optimization of resources for biomarker studies is possible after careful planning of each study.
Collapse
Affiliation(s)
- Aintzane Urbizu
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Laura Arnaldo
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
10
|
Mestry C, Ashavaid TF, Shah SA. Key methodological challenges in detecting circulating miRNAs in different biofluids. Ann Clin Biochem 2023; 60:14-26. [PMID: 36113172 DOI: 10.1177/00045632221129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The technological advancement in diagnostic techniques has immensely improved the capability of predicting disease progression. Yet, there is a great interest in developing newer biomarkers that can enhance disease risk prediction thereby minimising the associated morbidity and mortality. Circulating miRNAs, a non-coding RNA molecule, are critical regulators in the pathophysiology of various complex multifactorial diseases. In recent years, circulating miRNAs have been enormously studied and are considered as an emerging biomarker due to their easy accessibility, stability, and detection by sequence-specific amplification methods. However, there is a distinct lack of consensus regarding the preanalytical factors such as preferred sample selection, methodological aspects, etc that may independently or together influence the detection of circulating miRNAs resulting in erroneous expression profiles. Therefore, the present review makes an attempt to highlight the various pre-analytical and analytical factors that can potentially influence the circulating miRNA levels. Literature on circulating miRNA's stability, processing and quantitation in different biofluids along with the effect of various controllable and uncontrollable factors influencing circulating miRNA expression have been summarised in the current review.
Collapse
Affiliation(s)
- Chitra Mestry
- Research Laboratories, 29537P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| | - Tester F Ashavaid
- Department of Laboratory Medicine, P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| | - Swarup Av Shah
- Department of Laboratory Medicine, P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| |
Collapse
|
11
|
Kamijo S, Hamatani T, Sasaki H, Suzuki H, Abe A, Inoue O, Iwai M, Ogawa S, Odawara K, Tanaka K, Mikashima M, Suzuki M, Miyado K, Matoba R, Odawara Y, Tanaka M. MicroRNAs secreted by human preimplantation embryos and IVF outcome. Reprod Biol Endocrinol 2022; 20:130. [PMID: 36042522 PMCID: PMC9425991 DOI: 10.1186/s12958-022-00989-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/29/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To generate an effective embryo prediction model and identify a non-invasive evaluation method by analyzing microRNAs (miRNAs) in embryo culture medium. DESIGN Analysis of microRNA profiles from spent culture medium of blastocysts with good morphology that did or did not result in pregnancy. SETTING Clinical and experimental research. PATIENTS Sixty patients who underwent thawed embryo transfer of blastocysts after intracytoplasmic sperm injection. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The association of miRNA abundance levels secreted by blastocysts in culture medium and implantation success. RESULTS Our RNA sequencing analysis found a total of 53 differentially expressed miRNAs in the culture media of pregnancy and non-pregnancy groups. Twenty-one miRNAs were analyzed for their potential to predict implantation success. Eight miRNAs (hsa-miR-191-5p, hsa-miR-320a, hsa-miR-92a-3p, hsa-miR-509-3p, hsa-miR-378a-3p, hsa-miR-28-3p, hsa-miR-512-5p, and hsa-miR-181a-5p) were further extracted from the results of a logistic regression analysis of qPCR Ct values. A prediction model for high-quality blastocysts was generated using the eight miRNAs, with an average accuracy of 0.82 by 5-fold cross validation. CONCLUSION We isolated blastocyst miRNAs that may predict implantation success and created a model to predict viable embryos. Increasing the number of investigated cases and further studying the effect of each miRNA on embryonic development is needed to refine the miRNA-based predictive model.
Collapse
Affiliation(s)
- Shintaro Kamijo
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hiroyuki Sasaki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | - Akane Abe
- Fertility Clinic Tokyo, Tokyo, Japan
| | - Osamu Inoue
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Maki Iwai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Seiji Ogawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | - Kenji Miyado
- Center for Regenerative Medicine, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | | | | | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
12
|
Bendifallah S, Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E. A Bioinformatics Approach to MicroRNA-Sequencing Analysis Based on Human Saliva Samples of Patients with Endometriosis. Int J Mol Sci 2022; 23:8045. [PMID: 35887388 PMCID: PMC9317484 DOI: 10.3390/ijms23148045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Endometriosis, defined by the presence of endometrium-like tissue outside the uterus, affects 2-10% of the female population, i.e., around 190 million women, worldwide. The aim of the prospective ENDO-miRNA study was to develop a bioinformatics approach for microRNA-sequencing analysis of 200 saliva samples for miRNAome expression and to test its diagnostic accuracy for endometriosis. Among the 200 patients, 76.5% (n = 153) had confirmed endometriosis and 23.5% (n = 47) had no endometriosis (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). The number of expressed miRNAs ranged from 1250 (outlier) to 2561 per sample. Some 2561 miRNAs were found to be differentially expressed in the saliva samples of patients with endometriosis compared with the control patients. Among these, 1.17% (n = 30) were up- or downregulated. Among these, the F1-score, sensitivity, specificity, and AUC ranged from 11-86.8%, 5.8-97.4%, 10.6-100%, and 39.3-69.2%, respectively. Here, we report a bioinformatic approach to saliva miRNA sequencing and analysis. We underline the advantages of using saliva over blood in terms of ease of collection, reproducibility, stability, safety, non-invasiveness. This report describes the whole saliva transcriptome to make miRNA quantification a validated, standardized, and reliable technique for routine use. The methodology could be applied to build a saliva signature of endometriosis.
Collapse
Affiliation(s)
- Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6: Endometriosis Expert Center (C3E), Sorbonne University (GRC6 C3E SU), 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6: Endometriosis Expert Center (C3E), Sorbonne University (GRC6 C3E SU), 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute-Institut du Cerveau-ICM, Sorbonne University, Inserm U1127, CNRS UMR 7225, AP-HP-Hôpital Pitié-Salpêtrière, 75013 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6: Endometriosis Expert Center (C3E), Sorbonne University (GRC6 C3E SU), 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hospital Tenon, Sorbonne University, 4 rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6: Endometriosis Expert Center (C3E), Sorbonne University (GRC6 C3E SU), 75020 Paris, France
| |
Collapse
|
13
|
Cressatti M, Schipper HM. Dysregulation of a Heme Oxygenase-Synuclein Axis in Parkinson Disease. NEUROSCI 2022; 3:284-299. [PMID: 39483365 PMCID: PMC11523740 DOI: 10.3390/neurosci3020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2024] Open
Abstract
α-Synuclein is a key driver of the pathogenesis of Parkinson disease (PD). Heme oxygenase-1 (HO-1), a stress protein that catalyzes the conversion of heme to biliverdin, carbon monoxide and free ferrous iron, is elevated in PD-affected neural tissues and promotes iron deposition and mitochondrial dysfunction in models of the disease, pathways also impacted by α-synuclein. Elevated expression of human HO-1 in astrocytes of GFAP.HMOX1 transgenic mice between 8.5 and 19 months of age elicits a parkinsonian phenotype characterized by nigrostriatal hypodopaminergia, locomotor incoordination and overproduction of neurotoxic native S129-phospho-α-synuclein. Two microRNAs (miRNA) known to regulate α-synuclein, miR-153 and miR-223, are significantly decreased in the basal ganglia of GFAP.HMOX1 mice. Serum concentrations of both miRNAs progressively decline in wild-type (WT) and GFAP.HMOX1 mice between 11 and 18 months of age. Moreover, circulating levels of miR-153 and miR-223 are significantly lower, and erythrocyte α-synuclein concentrations are increased, in GFAP.HMOX1 mice relative to WT values. MiR-153 and miR-223 are similarly decreased in the saliva of PD patients compared to healthy controls. Upregulation of glial HO-1 may promote parkinsonism by suppressing miR-153 and miR-223, which, in turn, enhance production of neurotoxic α-synuclein. The aim of the current review is to explore the link between HO-1, α-synuclein and PD, evaluating evidence derived from our laboratory and others. HO-1, miR-153 and miR-223 and α-synuclein may serve as potential biomarkers and targets for disease-modifying therapy in idiopathic PD.
Collapse
Affiliation(s)
- Marisa Cressatti
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3T1E2, Canada;
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Neurology & Neurosurgery, McGill University, 3999 Cote Sainte-Catherine Road, Montreal, QC H3T1E2, Canada
| | - Hyman M Schipper
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3T1E2, Canada;
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Neurology & Neurosurgery, McGill University, 3999 Cote Sainte-Catherine Road, Montreal, QC H3T1E2, Canada
| |
Collapse
|
14
|
Increased plasma miR-24 and miR-191 levels in patients with severe atopic dermatitis: Possible involvement of platelet activation. Clin Immunol 2022; 237:108983. [DOI: 10.1016/j.clim.2022.108983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
|
15
|
Sodnom-Ish B, Eo MY, Myoung H, Lee JH, Kim SM. Next generation sequencing-based salivary biomarkers in oral squamous cell carcinoma. J Korean Assoc Oral Maxillofac Surg 2022; 48:3-12. [PMID: 35221302 PMCID: PMC8890960 DOI: 10.5125/jkaoms.2022.48.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
Selection of potential disease-specific biomarkers from saliva or epithelial tissues through next generation sequencing (NGS)-based protein studies has recently become possible. The early diagnosis of oral squamous cell carcinoma (OSCC) has been difficult, if not impossible, until now due to the lack of an effective OSCC biomarker and efficient molecular validation method. The aim of this study was to summarize the advances in the application of NGS in cancer research and to propose potential proteomic and genomic saliva biomarkers for NGS-based study in OSCC screening and diagnosis programs. We have reviewed four categories including definitions and use of NGS, salivary biomarkers and OSCC, current biomarkers using the NGS-based technique, and potential salivary biomarker candidates in OSCC using NGS.
Collapse
Affiliation(s)
- Buyanbileg Sodnom-Ish
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hoon Myoung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jong Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Ostheim P, Alemu SW, Tichý A, Sirak I, Davidkova M, Stastna MM, Kultova G, Schuele S, Paunesku T, Woloschak G, Ghandhi SA, Amundson SA, Haimerl M, Stroszczynski C, Port M, Abend M. Examining potential confounding factors in gene expression analysis of human saliva and identifying potential housekeeping genes. Sci Rep 2022; 12:2312. [PMID: 35145126 PMCID: PMC8831573 DOI: 10.1038/s41598-022-05670-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Isolation of RNA from whole saliva, a non-invasive and easily accessible biofluid that is an attractive alternative to blood for high-throughput biodosimetry of radiological/nuclear victims might be of clinical significance for prediction and diagnosis of disease. In a previous analysis of 12 human samples we identified two challenges to measuring gene expression from total RNA: (1) the fraction of human RNA in whole saliva was low and (2) the bacterial contamination was overwhelming. To overcome these challenges, we performed selective cDNA synthesis for human RNA species only by employing poly(A)+-tail primers followed by qRT-PCR. In the current study, this approach was independently validated on 91 samples from 61 healthy donors. Additionally, we used the ratio of human to bacterial RNA to adjust the input RNA to include equal amounts of human RNA across all samples before cDNA synthesis, which then ensured comparable analysis using the same base human input material. Furthermore, we examined relative levels of ten known housekeeping genes, and assessed inter- and intra-individual differences in 61 salivary RNA isolates, while considering effects of demographical factors (e.g. sex, age), epidemiological factors comprising social habits (e.g. alcohol, cigarette consumption), oral hygiene (e.g. flossing, mouthwash), previous radiological diagnostic procedures (e.g. number of CT-scans) and saliva collection time (circadian periodic). Total human RNA amounts appeared significantly associated with age only (P ≤ 0.02). None of the chosen housekeeping genes showed significant circadian periodicity and either did not associate or were weakly associated with the 24 confounders examined, with one exception, 60% of genes were altered by mouthwash. ATP6, ACTB and B2M represented genes with the highest mean baseline expression (Ct-values ≤ 30) and were detected in all samples. Combining these housekeeping genes for normalization purposes did not decrease inter-individual variance, but increased the robustness. In summary, our work addresses critical confounders and provides important information for the successful examination of gene expression in human whole saliva.
Collapse
Affiliation(s)
- P Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany.
| | - S W Alemu
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - A Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Brno, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Králové, Czech Republic
| | - I Sirak
- Department of Oncology and Radiotherapy, University Hospital and Medical Faculty in Hradec Kralove, Hradec Králové, Czech Republic
| | - M Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - M Markova Stastna
- Institute for Hematology and Blood Transfusion, Hospital Na Bulovce, Prague, Czech Republic
| | - G Kultova
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Kralove, University of Defence in Brno, Brno, Czech Republic
| | - S Schuele
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - T Paunesku
- Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - G Woloschak
- Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - S A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - S A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - M Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| |
Collapse
|
17
|
Bendifallah S, Suisse S, Puchar A, Delbos L, Poilblanc M, Descamps P, Golfier F, Jornea L, Bouteiller D, Touboul C, Dabi Y, Daraï E. Salivary MicroRNA Signature for Diagnosis of Endometriosis. J Clin Med 2022; 11:612. [PMID: 35160066 PMCID: PMC8836532 DOI: 10.3390/jcm11030612] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endometriosis diagnosis constitutes a considerable economic burden for the healthcare system with diagnostic tools often inconclusive with insufficient accuracy. We sought to analyze the human miRNAome to define a saliva-based diagnostic miRNA signature for endometriosis. METHODS We performed a prospective ENDO-miRNA study involving 200 saliva samples obtained from 200 women with chronic pelvic pain suggestive of endometriosis collected between January and June 2021. The study consisted of two parts: (i) identification of a biomarker based on genome-wide miRNA expression profiling by small RNA sequencing using next-generation sequencing (NGS) and (ii) development of a saliva-based miRNA diagnostic signature according to expression and accuracy profiling using a Random Forest algorithm. RESULTS Among the 200 patients, 76.5% (n = 153) were diagnosed with endometriosis and 23.5% (n = 47) without (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). Quantification of the filtered reads and identification of known miRNAs yielded ~190 M sequences that were mapped to 2561 known miRNAs. Of the 2561 known miRNAs, the feature selection with Random Forest algorithm generated after internally cross validation a saliva signature of endometriosis composed of 109 miRNAs. The respective sensitivity, specificity, and AUC for the diagnostic miRNA signature were 96.7%, 100%, and 98.3%. CONCLUSIONS The ENDO-miRNA study is the first prospective study to report a saliva-based diagnostic miRNA signature for endometriosis. This could contribute to improving early diagnosis by means of a non-invasive tool easily available in any healthcare system.
Collapse
Affiliation(s)
- Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| | | | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| | - Léa Delbos
- Department of Obstetrics and Reproductive Medicine, Centre Hospitalier Universitaire, 49000 Angers, France; (L.D.); (P.D.)
- Endometriosis Expert Center, Pays de la Loire, 49000 Angers, France
| | - Mathieu Poilblanc
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, 69008 Lyon, France; (M.P.); (F.G.)
- Endometriosis Expert Center, Steering Committee of the EndAURA Network, 75020 Paris, France
| | - Philippe Descamps
- Department of Obstetrics and Reproductive Medicine, Centre Hospitalier Universitaire, 49000 Angers, France; (L.D.); (P.D.)
- Endometriosis Expert Center, Pays de la Loire, 49000 Angers, France
| | - Francois Golfier
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, 69008 Lyon, France; (M.P.); (F.G.)
- Endometriosis Expert Center, Steering Committee of the EndAURA Network, 75020 Paris, France
| | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 75020 Paris, France;
| | - Delphine Bouteiller
- Genotyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Epinière, Institut du Cerveau, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| | - Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.P.); (C.T.); (Y.D.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
18
|
Mead EA, Boulghassoul-Pietrzykowska N, Wang Y, Anees O, Kinstlinger NS, Lee M, Hamza S, Feng Y, Pietrzykowski AZ. Non-Invasive microRNA Profiling in Saliva can Serve as a Biomarker of Alcohol Exposure and Its Effects in Humans. Front Genet 2022; 12:804222. [PMID: 35126468 PMCID: PMC8812725 DOI: 10.3389/fgene.2021.804222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is one of the most prevalent mental disorders worldwide. Considering the widespread occurrence of AUD, a reliable, cheap, non-invasive biomarker of alcohol consumption is desired by healthcare providers, clinicians, researchers, public health and criminal justice officials. microRNAs could serve as such biomarkers. They are easily detectable in saliva, which can be sampled from individuals in a non-invasive manner. Moreover, microRNAs expression is dynamically regulated by environmental factors, including alcohol. Since excessive alcohol consumption is a hallmark of alcohol abuse, we have profiled microRNA expression in the saliva of chronic, heavy alcohol abusers using microRNA microarrays. We observed significant changes in salivary microRNA expression caused by excessive alcohol consumption. These changes fell into three categories: downregulated microRNAs, upregulated microRNAs, and microRNAs upregulated de novo. Analysis of these combinatorial changes in microRNA expression suggests dysregulation of specific biological pathways leading to impairment of the immune system and development of several types of epithelial cancer. Moreover, some of the altered microRNAs are also modulators of inflammation, suggesting their contribution to pro-inflammatory mechanisms of alcohol actions. Establishment of the cellular source of microRNAs in saliva corroborated these results. We determined that most of the microRNAs in saliva come from two types of cells: leukocytes involved in immune responses and inflammation, and buccal cells, involved in development of epithelial, oral cancers. In summary, we propose that microRNA profiling in saliva can be a useful, non-invasive biomarker allowing the monitoring of alcohol abuse, as well as alcohol-related inflammation and early detection of cancer.
Collapse
Affiliation(s)
- Edward A. Mead
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadia Boulghassoul-Pietrzykowska
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Mayo Clinic Health System, NWWI, Barron, WI, United States
- Department of Medicine, Capital Health, Trenton, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| | - Yongping Wang
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Holmdel Township School, Holmdel, NJ, United States
| | - Onaiza Anees
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Virginia Commonwealth University Health, CMH Behavioral Health, South Hill, VA, United States
| | - Noah S. Kinstlinger
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maximillian Lee
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- George Washington University, School of Medicine and Health Sciences, Washington DC, MA, United States
| | - Shireen Hamza
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Yaping Feng
- Waksman Genomics Core Facility, Rutgers University, Piscataway, NJ, United States
- Bioinformatics Department, Admera Health, South Plainfield, NJ, United States
| | - Andrzej Z. Pietrzykowski
- Laboratory of Adaptation, Reward and Addiction, Department of Animal Sciences, Rutgers University, New Brunswick, NJ, United States
- Weight and Life MD, Hamilton, NJ, United States
| |
Collapse
|
19
|
Abstract
The use of saliva as a diagnostic biofluid has been increasing in recent years, thanks to the identification and validation of new biomarkers and improvements in test accuracy, sensitivity, and precision that enable the development of new noninvasive and cost-effective devices. However, the lack of standardized methods for sample collection, treatment, and storage contribute to the overall variability and lack of reproducibility across analytical evaluations. Furthermore, the instability of salivary biomarkers after sample collection hinders their translation into commercially available technologies for noninvasive monitoring of saliva in home settings. The present review aims to highlight the status of research on the challenges of collecting and using diagnostic salivary samples, emphasizing the methodologies used to preserve relevant proteins, hormones, genomic, and transcriptomic biomarkers during sample handling and analysis.
Collapse
Affiliation(s)
- Luciana d'Amone
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Giusy Matzeu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Physics, Tufts University, Medford, Massachusetts 02155, United States.,Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
20
|
Yasukochi Y, Shin S, Wakabayashi H, Maeda T. Upregulation of cathepsin L gene under mild cold conditions in young Japanese male adults. J Physiol Anthropol 2021; 40:16. [PMID: 34686211 PMCID: PMC8533667 DOI: 10.1186/s40101-021-00267-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/09/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Physiological thermoregulatory systems in humans have been a key factor for adaptation to local environments after their exodus from Africa, particularly, to cold environments outside Africa. Recent studies using high-throughput sequencing have identified various genes responsible for cold adaptation. However, the molecular mechanisms underlying initial thermoregulation in response to acute cold exposure remain unclear. Therefore, we investigated transcriptional profiles of six young Japanese male adults exposed to acute cold stress. METHODS In a climatic chamber, the air temperature was maintained at 28°C for 65 min and was then gradually decreased to 19°C for 70 min. Saliva samples were obtained from the subjects at 28°C before and after 19°C cold exposure and were used for RNA sequencing. RESULTS In the cold exposure experiment, expression levels of 14 genes were significantly changed [false discovery rate (FDR) < 0.05] although the degree of transcriptional changes was not high due to experimental conditions or blunted transcriptional reaction in saliva to cold stress. As a result, differential gene expression analyses detected the cathepsin L (CTSL) gene to be significantly upregulated, with FDR < 0.05 and log2 fold change value > 1; thus, this gene was identified as a differentially expressed gene. Given that the cathepsin L protein is related to invasion of the novel coronavirus (SARS-CoV-2), mild cold stress might alter the susceptibility to coronavirus disease-19 in humans. The gene ontology enrichment analysis for 14 genes with FDR < 0.05 suggested that immune-related molecules could be activated by mild cold stress. CONCLUSIONS The results obtained from this study indicate that CTSL expression levels can be altered by acute mild cold stress.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan.
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Sora Shin
- Department of Human Science, Graduate School of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| | - Hitoshi Wakabayashi
- Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Takafumi Maeda
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
- Physiological Anthropology Research Center, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| |
Collapse
|
21
|
Jadhav KB, Shah V, Chauhan N, Shah N, Parmar G. Expression of microRNA-21 in saliva and tumor tissue of patients with oral squamous cell carcinoma: a predictor of cervical lymph node metastasis. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 133:60-69. [PMID: 34518132 DOI: 10.1016/j.oooo.2021.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Evaluation of diagnostic accuracy of microRNA-21 (miR-21) in saliva and tumor tissue for presurgical assessment of lymph node metastasis in patients with oral squamous cell carcinoma (OSCC). STUDY DESIGN Unstimulated whole saliva and tumor tissue was obtained from clinically suspected patients with OSCC. A total of 130 patients diagnosed with OSCC were included as study participants. The assessment of cervical lymph node metastasis was done before surgery using imaging scans and post surgically confirmed by histopathologic examination of excised lymph nodes. miR-21 expression was evaluated using real-time polymerase chain reaction. The data was statistically analyzed for correlation analysis, cutoff values, sensitivity, and specificity. The κ statistic was applied to assess the degree of agreement between the lymph node metastasis and miR-21 expression. RESULTS miR-21 expression showed a statistically significant correlation with cervical lymph node metastasis with a diagnostic accuracy of 65% to 71.54% in saliva and 69% to 81.54% in tumor tissue. Very good agreement was observed between tumor tissue miR-21-3p and cervical lymph node metastasis with a specificity of 80.60% and a sensitivity of 82.40%. CONCLUSIONS miR-21 expression in saliva and tumor tissue of patients with OSCC showed high diagnostic accuracy for assessment of cervical lymph node metastasis. It can be used as an alternative for assessment of cervical lymph node metastasis before surgery.
Collapse
Affiliation(s)
- Kiran B Jadhav
- PhD Scholar, Department of Oral Pathology and Microbiology, K M Shah Dental College and Hospital, Sumandeep Vidyapeeth, Piparia, Vadodara, Gujarat, India; Professor, Department of Oral Pathology and Microbiology, Vasant Dada Patil Dental College and Hospital, Maharashtra University of Health Sciences, Sangli, India.
| | - Vandana Shah
- Professor and Head, Department of Oral Pathology and Microbiology, K M Shah Dental College and Hospital, Sumandeep Vidyapeeth, Piparia, Vadodara, Gujarat, India
| | - Nirali Chauhan
- Professor, Department of ENT, Smt. B K Shah Medical College and Research Centre, Sumandeep Vidyapeeth, Piparia, Vadodara, Gujarat, India
| | - Naveen Shah
- Professor and Head, Department of Oral and Maxillofacial Surgery, K M Shah Dental College and Hospital, Sumandeep Vidyapeeth, Piparia, Vadodara. Gujarat, India
| | - Ghanshyam Parmar
- Associate Professor, Department of Pharmacy, Sumandeep Vidyapeeth, Piparia, Vadodara, Gujarat, India
| |
Collapse
|
22
|
Diagnostic Value of Salivary miRNA in Head and Neck Squamous Cell Cancer: Systematic Review and Meta-Analysis. Int J Mol Sci 2021; 22:ijms22137026. [PMID: 34209954 PMCID: PMC8268325 DOI: 10.3390/ijms22137026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Several studies have highlighted the diagnostic potential of salivary microRNA (miRNA) in head and neck squamous cell cancer (HNSCC). The purpose of this meta-analysis was to summarize published studies and evaluate the diagnostic accuracy of salivary miRNA in HNSCC detection. In this meta-analysis, we systematically searched PubMed, EMBASE, and Cochrane Library databases for studies on miRNA and HNSCC diagnosis. Pooled sensitivity, specificity, and diagnostic odds ratio (DOR) with a summary receiver-operating characteristic curve were calculated using a bivariate random-effect meta-analysis model. Furthermore, subgroup analyses were conducted to explore the main sources of heterogeneity. Seventeen studies from ten articles, including 23 miRNA and a total of 759 subjects, were included in this meta-analysis. The pooled sensitivity and specificity of salivary miRNA in the diagnosis of HNSCC were 0.697 (95% CI: 0.644–0.744) and 0.868 (95% CI: 0.811–0.910), respectively. The overall area under the curve was 0.803 with a DOR of 12.915 (95% CI: 9.512–17.534). Salivary miRNAs are a promising non-invasive diagnostic biomarker with moderate accuracy for HNSCC. These results must be verified by large-scale prospective studies.
Collapse
|
23
|
Menini M, Dellepiane E, Pera F, Izzotti A, Baldi D, Delucchi F, Bagnasco F, Pesce P. MicroRNA in Implant Dentistry: From Basic Science to Clinical Application. Microrna 2021; 10:14-28. [PMID: 33970853 DOI: 10.2174/2211536610666210506123240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
Specific microRNA (miRNA) expression profiles have been reported to be predictive of specific clinical outcomes of dental implants and might be used as biomarkers in implant dentistry with diagnostic and prognostic purposes. The aim of the present narrative review was to summarize current knowledge regarding the use of miRNAs in implant dentistry. The authors attempted to identify all available evidence on the topic and critically appraise it in order to lay the foundation for the development of further research oriented towards the clinical application of miRNAs in implant dentistry.
Collapse
Affiliation(s)
- Maria Menini
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Elena Dellepiane
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesco Pera
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Domenico Baldi
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesca Delucchi
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesco Bagnasco
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Paolo Pesce
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| |
Collapse
|
24
|
Tomei S, Manjunath HS, Murugesan S, Al Khodor S. The Salivary miRNome: A Promising Biomarker of Disease. Microrna 2021; 10:29-38. [PMID: 33845754 DOI: 10.2174/2211536610666210412154455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs ranging from 18-24 nucleotides also known to regulate the human genome mainly at the post-transcriptional level. MiRNAs were shown to play an important role in most biological processes such as apoptosis and in the pathogenesis of many diseases such as cardiovascular diseases and cancer. Recent developments of advanced molecular high-throughput technologies have enhanced our knowledge of miRNAs. MiRNAs can now be discovered, interrogated, and quantified in various body fluids, and hence can serve as diagnostic and therapeutic markers for many diseases. While most studies use blood as a sample source to measure circulating miRNAs as possible biomarkers for disease pathogenesis, fewer studies have assessed the role of salivary miRNAs in health and disease. This review aims at providing an overview of the current knowledge of the salivary miRNome, addressing the technical aspects of saliva sampling and highlighting the applicability of miRNA screening to clinical practice.
Collapse
Affiliation(s)
- Sara Tomei
- Research Department, Sidra Medicine, Doha. Qatar
| | | | | | | |
Collapse
|
25
|
Zheng Y, Yang Z, Jin C, Chen C, Wu N. hsa-miR-191-5p inhibits replication of human immunodeficiency virus type 1 by downregulating the expression of NUP50. Arch Virol 2021; 166:755-766. [PMID: 33420627 DOI: 10.1007/s00705-020-04899-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/13/2020] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are important host molecules involved in human immunodeficiency virus type 1 (HIV-1) infection. Antiretroviral therapy (ART) can affect the miRNA expression profile, but differentially expressed miRNAs still remain to be identified. In this study, we used gene chips to analyze miRNA expression profiles in peripheral blood mononuclear cells from ART-naive HIV-1 patients and those receiving ART, as well as from uninfected individuals. We measured differences in miRNA expression by quantitative polymerase chain reaction (qPCR) in an expanded sample. We found significant differences in the expression of has-miR-191-5p among the three groups (P < 0.05). Furthermore, we showed that hsa-miR-191-5p has an inhibitory effect on HIV-1 replication in cell models in vitro. We identified CCR1 and NUP50 as target molecules of hsa-miR-191-5p and found that hsa-miR-191-5p inhibits the expression of CCR1 and NUP50. Knockdown of NUP50 resulted in significant inhibition of HIV-1 replication. In summary, our research shows that hsa-miR-191-5p expression is reduced in HIV-1-infected patients and acts an inhibitor of HIV-1 infection via a mechanism that may involve targeted repression of NUP50 expression.
Collapse
Affiliation(s)
- Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | | | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Chaoyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
26
|
Ueda S, Goto M, Hashimoto K, Hasegawa S, Imazawa M, Takahashi M, Oh-Iwa I, Shimozato K, Nagao T, Nomoto S. Salivary CCL20 Level as a Biomarker for Oral Squamous Cell Carcinoma. Cancer Genomics Proteomics 2021; 18:103-112. [PMID: 33608307 DOI: 10.21873/cgp.20245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIM This study investigated the utility of C-C motif chemokine ligand 20 (CCL20) expression in saliva as a biomarker for oral squamous cell carcinoma (OSCC) and also examined the associated microbiome. MATERIALS AND METHODS The study group included patients with OSCC or oral potentially malignant disorder (OPMD), and healthy volunteers (HVs). microarray and qRT-PCR were used to compare salivary CCL20 expression levels among groups. Data on CCL20 levels in oral cancer tissues and normal tissues were retrieved from a public database and examined. Furthermore, next-generation sequencing was used to investigate the salivary microbiome. RESULTS A significant increase in the expression level of CCL20 was observed in both OSCC tissues and saliva from patients with oral cancer. Fusobacterium was identified as the predominant bacteria in OSCC and correlated with CCL20 expression level. OSCC screening based on salivary CCL20 expression enabled successful differentiation between patients with OSCC and HVs. CONCLUSION CCL20 expression may be a useful biomarker for OSCC.
Collapse
Affiliation(s)
- Sei Ueda
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Goto
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Kengo Hashimoto
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Hasegawa
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Imazawa
- Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Marico Takahashi
- Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Ichiro Oh-Iwa
- Department of Maxillofacial Surgery, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kazuo Shimozato
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Nomoto
- Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan;
| |
Collapse
|
27
|
Liu D, Xin Z, Guo S, Li S, Cheng J, Jiang H. Blood and Salivary MicroRNAs for Diagnosis of Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. J Oral Maxillofac Surg 2020; 79:1082.e1-1082.e13. [PMID: 33516682 DOI: 10.1016/j.joms.2020.12.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE This meta-analysis aimed to compare and evaluate the diagnostic accuracy of blood and salivary microRNAs (miRNAs) in discriminating oral squamous cell carcinoma (OSCC). METHODS The PubMed, Embase, Web of Science, and Cochrane Library were searched (updated to February 2020) to identify all articles describing the diagnostic value of blood and salivary miRNAs for OSCC. The pooled parameters were calculated using Revman (v.5.3) and STATA (v.14.0). RESULTS Twenty articles involving 1,106 patients and 732 controls were included in this meta-analysis. The pooled sensitivity and specificity of salivary miRNAs were 0.70 (95% CI: 0.63-0.77) and 0.82 (95% CI: 0.72-0.90). For blood miRNAs, they were 0.79 (95% CI: 0.73-0.84) and 0.82 (95% CI: 0.77-0.86). The areas under receiver operating characteristic curve in saliva, blood, and body fluid miRNAs were 0.80 (95% CI: 0.77-0.84), 0.88 (95% CI: 0.84-0.90), and 0.87 (95% CI: 0.84-0.90), respectively. CONCLUSIONS The results of this meta-analysis indicate a moderate diagnostic accuracy of blood and salivary miRNAs presented for OSCC. These findings may provide less invasive and relatively reliable diagnostic tools for OSCC detection.
Collapse
Affiliation(s)
- Dingshan Liu
- Student, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu Province, China; and Resident, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhili Xin
- Student, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu Province, China; and Resident, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Songsong Guo
- Resident, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sheng Li
- Associated Professor, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Cheng
- Associated Professor, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongbing Jiang
- Professor, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu Province, China; and Department Head, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
28
|
Emami N, Mohamadnia A, Mirzaei M, Bayat M, Mohammadi F, Bahrami N. miR-155, miR-191, and miR-494 as diagnostic biomarkers for oral squamous cell carcinoma and the effects of Avastin on these biomarkers. J Korean Assoc Oral Maxillofac Surg 2020; 46:341-347. [PMID: 33122459 PMCID: PMC7609927 DOI: 10.5125/jkaoms.2020.46.5.341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives Oral squamous cell carcinoma (OSCC) is one of the most common types of head and neck cancer. MicroRNAs, as new biomarkers, are recommended for diagnosis and treatment of different types of cancers. Bevacizumab, sold under the trade name Avastin, is a humanized whole monoclonal antibody that targets and blocks VEGF-A (vascular endothelial growth factor A; angiogenesis) and oncogenic signaling pathways. Materials and Methods This study comprised 50 cases suffering from OSCC and 50 healthy participants. Peripheral blood samples were collected in glass test tubes, and RNA extraction was started immediately. Expression levels of miR-155, miR-191, and miR-494 biomarkers in the peripheral blood of OSCC-affected individuals and healthy volunteers in vivo were evaluated using real-time PCR. The influence of Avastin on the expression levels of the aforementioned biomarkers in vitro and in the HN5 cell line was also investigated. Results Expression levels of miR-155, miR-191, and miR-494 in the peripheral blood of individuals affected by OSCC were higher than in those who were healthy. Moreover, Avastin at a concentration of 400 µM caused a decrease in the expression levels of the three biomarkers and a 1.5-fold, 3.5-fold, and 4-fold increase in apoptosis in the test samples compared to the controls in the HN5 cell line after 24, 48, and 72 hours, respectively. Conclusion The findings of this study demonstrate that overexpression of miR-155, miR-191, and miR-494 is associated with OSCC, and Avastin is able to regulate and downregulate the expression of those biomarkers and increase apoptosis in cancerous cells in the HN5 cell line
Collapse
Affiliation(s)
- Naghmeh Emami
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Mirzaei
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohammad Bayat
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoush Mohammadi
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Deutsch FT, Khoury SJ, Sunwoo JB, Elliott MS, Tran NT. Application of salivary noncoding microRNAs for the diagnosis of oral cancers. Head Neck 2020; 42:3072-3083. [PMID: 32686879 DOI: 10.1002/hed.26348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Oral cancer is on the rise globally and survival rates, despite improvements in clinical care, have not significantly improved. Early detection followed by immediate intervention is key to improving patient outcomes. The use of biomarkers has changed the diagnostic landscape for many cancers. For oral cancers, visual inspection followed by a tissue biopsy is standard practice. The discovery of microRNAs as potential biomarkers has attracted clinical interest but several challenges remain. These microRNAs can be found in bodily fluids such as blood and saliva which have been investigated as potential sources of biomarker discovery. As oral cancer is localized within the oral cavity, saliva may contain clinically relevant molecular markers for disease detection. Our review provides an outline of the current advances for the application of salivary microRNAs in oral cancer. We also provide a technical guide for the processing of salivary RNAs to ensure accurate clinical measurement and validation.
Collapse
Affiliation(s)
- Fiona T Deutsch
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Samantha J Khoury
- Office of the Deputy Vice Chancellor Innovation and Enterprise, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - John B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Michael S Elliott
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Nham T Tran
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, New South Wales, Australia.,The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
30
|
Ishige F, Hoshino I, Iwatate Y, Chiba S, Arimitsu H, Yanagibashi H, Nagase H, Takayama W. MIR1246 in body fluids as a biomarker for pancreatic cancer. Sci Rep 2020; 10:8723. [PMID: 32457495 PMCID: PMC7250935 DOI: 10.1038/s41598-020-65695-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/08/2020] [Indexed: 01/28/2023] Open
Abstract
Pancreatic cancer is an aggressive tumor associated with poor survival, and early detection is important to improve patient outcomes. In the present study, we examined MIR1246 expression as a biomarker of pancreatic cancer. Total RNA was extracted from serum, urine and saliva samples from healthy subjects (n = 30) and patients with pancreatic cancer (n = 41, stage 0–IV). The MIR1246 level in each fluid was analyzed by quantitative reverse transcription-polymerase chain reaction. Significantly higher MIR1246 expression in serum and urine was observed in patients with cancer than in healthy controls. A significant positive correlation was found between serum and urine MIR1246 expression (r = 0.34). Receiver operating characteristic curves were constructed for MIR1246 in all three body fluids. The area under the curve for serum MIR1246 was 0.87 (sensitivity, 92.3%; specificity, 73.3%), and that for urine MIR1246 was 0.90 (sensitivity, 90.2%; specificity, 83.3%). With a cut-off of the control group’s mean plus twice the standard deviation, the sensitivities of MIR1246 in serum and urine for pancreatic cancer were 60.9 and 58.5%, respectively. Combining both serum and urine MIR1246 expression yielded a sensitivity of 85%. These results indicate that MIR246 may be a useful diagnostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Fumitaka Ishige
- Division of Hepatobiliarypancreatic Surgery, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| | - Isamu Hoshino
- Division of Gastrointestinal Surgery, Chiba Cancer Center, Chuo-ku, Chiba, Japan.
| | - Yosuke Iwatate
- Division of Hepatobiliarypancreatic Surgery, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| | - Satoshi Chiba
- Division of Hepatobiliarypancreatic Surgery, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| | - Hidehito Arimitsu
- Division of Hepatobiliarypancreatic Surgery, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| | - Hiroo Yanagibashi
- Division of Hepatobiliarypancreatic Surgery, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan
| | - Wataru Takayama
- Division of Hepatobiliarypancreatic Surgery, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| |
Collapse
|
31
|
Fadhil RS, Wei MQ, Nikolarakos D, Good D, Nair RG. Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLoS One 2020; 15:e0221779. [PMID: 32208417 PMCID: PMC7092992 DOI: 10.1371/journal.pone.0221779] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDS MicroRNAs (miRNA) are a class of non-protein-coding RNAs that have significant biological and pathological functions. The importance of miRNAs as potential cancer diagnostic biomarkers is gaining attention due to their influence in the regulation of cellular processes such as cell differentiation, proliferation and apoptosis. The aim of this study was to identify significant miRNAs from saliva as potential diagnostic biomarkers in the early diagnosis and prognosis of head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS Five differentially expressed miRNAs (miR-7703, miR- let-7a-5p, miR- 345-5p, miR- 3928 and miR- 1470) were selected from Next Generation Sequencing (NGS) miRNA data generated from our previous study using saliva of 12 HNSCC patients and 12 healthy controls. Their differential expressed miRNAs were subsequently validated by RT-qPCR using saliva samples from healthy controls (n = 80) and HNSCC patients (n = 150). Total RNA was isolated from 150 saliva samples of HNSCC patients and was transcripted into cDNA by TaqMan MicroRNA Reverse Transcription Kit. Using quantitative RT-PCR analysis, salivary miRNAs were identified in HNSCC patients (n = 150) and healthy controlled cases (n = 80). T-tests were used to compare the differences among the various clinical variants. RESULTS On average 160 ng/μl was isolated from 500 μl of saliva. Overall, a good correlation observed between the HNSCC and some of miRNAs expression levels. Salivary miR-let-7a-5p (P<0.0001) and miR-3928 (P< 0.01) were significantly down regulated in saliva of HNSCC patients relative to age and sex-matched healthy controls. A number of salivary miRNAs (miR-let-7a-5p and miR-3928) were correlated with lymph node metastasis (p = 0.003, p = 0.049) and tumour size (p = 0.01, p = 0.02), respectively. However, our preliminary analysis showed no significant differences in salivary miR-1470, miR-345-5p or miR-7703 expression between patients and healthy controls. Most notably, our analysis showed that salivary miR-let-7a-5p and miR-3928 expression levels have significant sensitivity and specificity to distinguish between patients with HNSCC and healthy controls. CONCLUSION This study concluded that salivary miR-let-7a-5p and miR-3928 has the potential to be novel non-invasive biomarkers for early detection and prognosis of HNSCC.
Collapse
Affiliation(s)
- Rushdi S. Fadhil
- School of Medical Science, Griffith University and Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
- School of Dentistry and Oral Health, Griffith University Gold Coast, Queensland, Australia
| | - Ming Q. Wei
- School of Medical Science, Griffith University and Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Dimitrios Nikolarakos
- Oral and Maxillofacial Surgery, Queensland Health, Gold Coast University Hospital, Gold Coast, Queensland, Australia
| | - David Good
- Discipline of Physiotherapy, School of Allied Health, Australian Catholic University, Queensland, Australia
| | - Raj G. Nair
- School of Dentistry and Oral Health, Griffith University Gold Coast, Queensland, Australia
- Oral Oncology, Haematology and Oncology, Gold Coast University Hospital, Gold Coast, Queensland, Australia
| |
Collapse
|
32
|
Cressatti M, Juwara L, Galindez JM, Velly AM, Nkurunziza ES, Marier S, Canie O, Gornistky M, Schipper HM. Salivary microR‐153 and microR‐223 Levels as Potential Diagnostic Biomarkers of Idiopathic Parkinson's Disease. Mov Disord 2019; 35:468-477. [DOI: 10.1002/mds.27935] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Marisa Cressatti
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
- Department of Neurology and NeurosurgeryMcGill University Montreal Quebec Canada
| | - Lamin Juwara
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
- Department of Quantitative Life SciencesMcGill University Montreal Quebec Canada
| | - Julia M. Galindez
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
- Department of Neurology and NeurosurgeryMcGill University Montreal Quebec Canada
| | - Ana M. Velly
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
- Department of DentistryJewish General Hospital Montreal Quebec Canada
- Faculty of DentistryMcGill University Montreal Quebec Canada
| | - Eva S. Nkurunziza
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
| | - Sara Marier
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
- Department of Neurology and NeurosurgeryMcGill University Montreal Quebec Canada
| | - Olivia Canie
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
| | - Mervyn Gornistky
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
- Department of DentistryJewish General Hospital Montreal Quebec Canada
- Faculty of DentistryMcGill University Montreal Quebec Canada
| | - Hyman M. Schipper
- Lady Davis Institute for Medical ResearchJewish General Hospital Montreal Quebec Canada
- Department of Neurology and NeurosurgeryMcGill University Montreal Quebec Canada
| |
Collapse
|
33
|
Ramón Y Cajal S, Segura MF, Hümmer S. Interplay Between ncRNAs and Cellular Communication: A Proposal for Understanding Cell-Specific Signaling Pathways. Front Genet 2019; 10:281. [PMID: 31001323 PMCID: PMC6454836 DOI: 10.3389/fgene.2019.00281] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
Intercellular communication is essential for the development of specialized cells, tissues, and organs and is critical in a variety of diseases including cancer. Current knowledge states that different cell types communicate by ligand–receptor interactions: hormones, growth factors, and cytokines are released into the extracellular space and act on receptors, which are often expressed in a cell-type-specific manner. Non-coding RNAs (ncRNAs) are emerging as newly identified communicating factors in both physiological and pathological states. This class of RNA encompasses microRNAs (miRNAs, well-studied post-transcriptional regulators of gene expression), long non-coding RNAs (lncRNAs) and other ncRNAs. lncRNAs are diverse in length, sequence, and structure (linear or circular), and their functions are described as transcriptional regulation, induction of epigenetic changes and even direct regulation of protein activity. They have also been reported to act as miRNA sponges, interacting with miRNA and modulating its availability to endogenous mRNA targets. Importantly, lncRNAs may have a cell-type-specific expression pattern. In this paper, we propose that lncRNA–miRNA interactions, analogous to receptor–ligand interactions, are responsible for cell-type-specific outcomes. Specific binding of miRNAs to lncRNAs may drive cell-type-specific signaling cascades and modulate biochemical feedback loops that ultimately determine cell identity and response to stress factors.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,Translational Molecular Pathology, Vall d'Hebron Research Institute, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Research Institute, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
34
|
Salazar-Ruales C, Arguello JV, López-Cortés A, Cabrera-Andrade A, García-Cárdenas JM, Guevara-Ramírez P, Peralta P, Leone PE, Paz-y-Miño C. Salivary MicroRNAs for Early Detection of Head and Neck Squamous Cell Carcinoma: A Case-Control Study in the High Altitude Mestizo Ecuadorian Population. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9792730. [PMID: 30584540 PMCID: PMC6280231 DOI: 10.1155/2018/9792730] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer with the highest incidence worldwide. HNSCC is often diagnosed at advanced stages, incurring significant high mortality and morbidity. The use of saliva, as a noninvasive tool for the diagnosis of cancer, has recently increased. Salivary microRNAs (miRNAs) have emerged as a promising molecular tool for early diagnosis of HNSCC. The aim was to identify the differential expression of salivary miRNAs associated with HNSCC in the high altitude mestizo Ecuadorian population. Using PCR Arrays, miR-122-5p, miR-92a-3p, miR-124-3p, miR-205-5p, and miR-146a-5p were found as the most representative ones. Subsequently, miRNAs expression was confirmed in saliva samples from 108 cases and 108 controls. miR-122-5p, miR-92a-3p, miR-124-3p, and miR-146a-5p showed significant statistical difference between cases and controls with areas under the curve (AUC) of 0.73 (p < 0.001), 0.70 (p < 0.001), 0.71 (p = 0.002), and 0.66 (p = 0.008), respectively. miRNAs were also deregulated in between HNSCC localizations. A differentiated expression of miR-122-5p between oral cancer and oropharynx cancer (AUC of 0.96 p = 0.01) was found: miR-124-3p between larynx and pharynx (AUC = 0.97, p < 0.01) and miR-146a-5p between larynx, oropharynx, and oral cavity (AUC = 0.96, p = 0.01). Moreover, miR-122-5p, miR-124-3p, miR-205-5p, and miR-146a-5p could differentiate between HPV+ and HPV- (p=0.004). Finally, the expression profiles of the five miRNAs were evaluated to discriminate HNSCC patient's tumor stages (TNM 2-4). miR-122-5p differentiates TNM 2 and 3 (p = 0.002, AUC = 0.92), miR-124-3p TNM 2, 3, and 4 (p < 0.001, AUC = 98), miR-146a-5p TNM 2 and 3 (p < 0.001, AUC = 0.97), and miR-92a-3p TNM 3 (p < 0.001, AUC = 0.99). Taken together, these findings show that altered expression of miRNAs could be used as biomarkers for HNSCC diagnosis in the high altitude mestizo Ecuadorian population.
Collapse
Affiliation(s)
- Carolina Salazar-Ruales
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Jessica-Viviana Arguello
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de las Américas, Avenue de los Granados, 170125 Quito, Ecuador
| | - Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Alejandro Cabrera-Andrade
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Jennyfer M. García-Cárdenas
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - Patricio Peralta
- Hospital Oncológico Solón Espinosa Ayala, Avenue Eloy Alfaro, 170138 Quito, Ecuador
| | - Paola E. Leone
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| | - César Paz-y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Avenue Mariscal Sucre, 170129 Quito, Ecuador
| |
Collapse
|
35
|
Stress-associated changes in salivary microRNAs can be detected in response to the Trier Social Stress Test: An exploratory study. Sci Rep 2018; 8:7112. [PMID: 29740073 PMCID: PMC5940676 DOI: 10.1038/s41598-018-25554-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/20/2018] [Indexed: 01/05/2023] Open
Abstract
Stress is an important co-factor for the genesis and maintenance of many diseases and is known to have an effect on gene expression via epigenetic regulation. MicroRNAs (miRNAs) appear to function as one of the key factors of this regulation. This is the first study to investigate the response of 11 stress-associated miRNAs in human saliva - as a non-invasive source - in an experimental condition of acute psychological stress, and also their correlation with established psychological (subjective stress perception), physiological (heart rate and heart rate variability) and biochemical stress parameters (salivary cortisol and alpha-amylase). 24 healthy participants between 20 and 35 years of age were investigated, using the Trier Social Stress Test (TSST) to induce acute psychological stress. Stress-associated changes were significant for miR-20b, -21 and 26b, and changes in miR-16 and -134 were close to significance, recommending further research on these miRNAs in the context of stress reactions. Significant correlations with alpha-amylase suggest their integration in sympathetic stress regulation processes. Additionally, our results demonstrate the TSST as a reliable tool for studying salivary miRNAs as non-invasive indicators of epigenetic processes in acute psychological stress reactions.
Collapse
|
36
|
Marczak S, Richards K, Ramshani Z, Smith E, Senapati S, Hill R, Go DB, Chang HC. Simultaneous isolation and preconcentration of exosomes by ion concentration polarization. Electrophoresis 2018; 39:10.1002/elps.201700491. [PMID: 29484678 PMCID: PMC6110980 DOI: 10.1002/elps.201700491] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
Abstract
Exosomes carry microRNA biomarkers, occur in higher abundance in cancerous patients than in healthy ones, and because they are present in most biofluids, including blood and urine, these can be obtained noninvasively. Standard laboratory techniques to isolate exosomes are expensive, time consuming, provide poor purity, and recover on the order of 25% of the available exosomes. We present a new microfluidic technique to simultaneously isolate exosomes and preconcentrate them by electrophoresis using a high transverse local electric field generated by ion-depleting ion-selective membrane. We use pressure-driven flow to deliver an exosome sample to a microfluidic chip such that the transverse electric field forces them out of the cross flow and into an agarose gel which filters out unwanted cellular debris while the ion-selective membrane concentrates the exosomes through an enrichment effect. We efficiently isolated exosomes from 1× PBS buffer, cell culture media, and blood serum. Using flow rates from 150 to 200 μL/h and field strengths of 100 V/cm, we consistently captured between 60 and 80% of exosomes from buffer, cell culture media, and blood serum as confirmed by both fluorescence spectroscopy and nanoparticle tracking analysis. Our microfluidic chip maintained this recovery rate for more than 20 min with a concentration factor of 15 for 10 min of isolation.
Collapse
Affiliation(s)
| | | | - Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering
- Harper Cancer Research Institute
| | - Elaine Smith
- Department of Chemical and Biomolecular Engineering
| | | | - Reginald Hill
- Department of Biological Sciences
- Harper Cancer Research Institute
| | - David B. Go
- Department of Chemical and Biomolecular Engineering
- Department of Aerospace and Mechanical Engineering University of Notre Dame
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering
- Department of Aerospace and Mechanical Engineering University of Notre Dame
| |
Collapse
|
37
|
Wang LL, Liu Y, Chung JJ, Wang T, Gaffey AC, Lu M, Cavanaugh CA, Zhou S, Kanade R, Atluri P, Morrisey EE, Burdick JA. Local and sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischemic injury. Nat Biomed Eng 2017; 1:983-992. [PMID: 29354322 PMCID: PMC5773070 DOI: 10.1038/s41551-017-0157-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MicroRNA-based therapies that target cardiomyocyte proliferation have great potential for the treatment of myocardial infarction (MI). In previous work, we showed that the miR-302/367 cluster regulates cardiomyocyte proliferation in the prenatal and postnatal heart. Here, we describe the development and application of an injectable hyaluronic acid (HA) hydrogel for the local and sustained delivery of miR-302 mimics to the heart. We show that the miR-302 mimics released in vitro promoted cardiomyocyte proliferation over one week, and that a single injection of the hydrogel in the mouse heart led to local and sustained cardiomyocyte proliferation for two weeks. After MI, gel/miR-302 injection caused local clonal proliferation and increased cardiomyocyte numbers in the border zone of a Confetti mouse model. Gel/miR-302 further decreased cardiac end-diastolic (39%) and end-systolic (50%) volumes, and improved ejection fraction (32%) and fractional shortening (64%) four weeks after MI and injection, compared to controls. Our findings suggest that biomaterial-based miRNA delivery systems can lead to improved outcomes in cardiac regeneration.
Collapse
Affiliation(s)
- Leo L Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J Chung
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Tao Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann C Gaffey
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Minmin Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Kanade
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Pavan Atluri
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Wiegand C, Savelsbergh A, Heusser P. MicroRNAs in Psychological Stress Reactions and Their Use as Stress-Associated Biomarkers, Especially in Human Saliva. Biomed Hub 2017; 2:1-15. [PMID: 31988918 PMCID: PMC6945927 DOI: 10.1159/000481126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/30/2017] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) play a central role in the regulation of many cellular processes including physiological and psychological stress reaction pathways. Psychological stress is an important factor for the genesis and maintenance of many diseases. Several miRNAs have already been described to be involved in its regulation. The presence of miRNAs in all body fluids implies a widespread role in communication throughout the whole organism and together with their stability makes them formidable candidates as biomarkers. Alterations of stress-associated miRNA expression levels have been found in the brain and whole blood of humans and animals. In this paper, we review the participation of miRNAs in stress-reactive processes as well as their usability as salivary biomarkers of such processes. In conclusion, we suggest that salivary miRNAs may be useful as noninvasive biomarkers to assess epigenetic regulation processes of chronic or acute psychological stress reactions.
Collapse
Affiliation(s)
- Conrad Wiegand
- Institute of Integrative Medicine, University of Witten/Herdecke, Herdecke, Germany
| | - Andreas Savelsbergh
- Chair for Biochemistry and Molecular Medicine, Division of Functional Genomics, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| | - Peter Heusser
- Institute of Integrative Medicine, University of Witten/Herdecke, Herdecke, Germany
| |
Collapse
|
39
|
Exosomes, DAMPs and miRNA: Features of Stress Physiology and Immune Homeostasis. Trends Immunol 2017; 38:768-776. [PMID: 28838855 DOI: 10.1016/j.it.2017.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Psychological/physical stressors and local tissue damage increase inflammatory proteins in tissues and blood in humans and animals, in the absence of pathogenic disease. Stress-evoked cytokine/chemokine responses, or sterile inflammation, can facilitate host survival and/or negatively affect health, depending on context. Recent evidence supports the hypothesis that systemic stress-evoked sterile inflammation is initiated by the sympathetic nervous system, resulting in the elevation of exosome-associated immunostimulatory endogenous danger/damage associated molecular patterns (DAMPs) and a reduction in immunoinhibitory miRNA, which are carried in the circulation to tissues throughout the body. We propose that sterile inflammation should be considered an elemental feature of the stress response and that circulating exosomes transporting immunomodulatory signals, may play a role fundamental role in immune homeostasis.
Collapse
|
40
|
Greither T, Vorwerk F, Kappler M, Bache M, Taubert H, Kuhnt T, Hey J, Eckert AW. Salivary miR-93 and miR-200a as post-radiotherapy biomarkers in head and neck squamous cell carcinoma. Oncol Rep 2017; 38:1268-1275. [PMID: 28677748 DOI: 10.3892/or.2017.5764] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/27/2017] [Indexed: 11/06/2022] Open
Abstract
Head and neck squamous cell carcinoma is the 6th most malignant tumor entity worldwide and has exhibited a 5-year mortality of approximately 50% for the last fifty years. For the therapy monitoring and successful management of this tumor entity new and easily accessible biomarkers are greatly needed. The aim of the study was to determine whether and to what extent microRNAs, a class of small regulatory RNAs, are detectable in saliva post-radiation therapy. The expression and feasibility as therapy monitoring marker of the microRNAs were analyzed by RT-qPCR in 83 saliva samples from 33 patients collected at several time points pre-, during and post-radiotherapy treatment. Ten head and neck squamous cell carcinoma- or radiation-associated microRNAs (miR-93, miR-125a, miR-142-3p, miR-200a, miR-203, miR-213, let-7a, let-7b, let-7g and let-7i) were analyzed. All were detectable to a different extent in the saliva of the patients. miR-93 and miR-200a were significantly higher expressed 12 months post-radiotherapy than at baseline (p=0.047 and p=0.036). These results point towards miR-93 and miR-200a as biomarkers for the treatment monitoring post-radiation of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Germany
| | - Freya Vorwerk
- Department of Prosthetic Dentistry, University School of Dental Medicine, Martin Luther University Halle-Wittenberg, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Helge Taubert
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kuhnt
- Department of Imaging and Radiation Medicine, University Clinic of Radiotherapy Leipzig, Leipzig, Germany
| | - Jeremias Hey
- Department of Prosthetic Dentistry, University School of Dental Medicine, Martin Luther University Halle-Wittenberg, Germany
| | - Alexander W Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
41
|
Kulkarni V, Uttamani JR, Naqvi AR, Nares S. microRNAs: Emerging players in oral cancers and inflammatory disorders. Tumour Biol 2017; 39:1010428317698379. [PMID: 28459366 DOI: 10.1177/1010428317698379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Association of oral diseases and disorders with altered microRNA profiles is firmly recognized. These evidences support the potential use of microRNAs as therapeutic tools for diagnosis, prognosis, and treatment of various diseases. In this review, we highlight the association of altered microRNA signatures in oral cancers and oral inflammatory diseases. Advances in our ability to detect microRNAs in human sera and saliva further highlight their clinical value as potential biomarkers. We have discussed key mechanisms underlying microRNA dysregulation in pathological conditions. The use of microRNAs in diagnostics and their potential therapeutic value in the treatment of oral diseases are reviewed.
Collapse
Affiliation(s)
- Varun Kulkarni
- 1 Department of Periodontics, College of Dentistry, The University of Illinois at Chicago, Chicago, IL, USA
| | - Juhi Raju Uttamani
- 1 Department of Periodontics, College of Dentistry, The University of Illinois at Chicago, Chicago, IL, USA
| | - Afsar Raza Naqvi
- 1 Department of Periodontics, College of Dentistry, The University of Illinois at Chicago, Chicago, IL, USA
| | - Salvador Nares
- 1 Department of Periodontics, College of Dentistry, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
42
|
Singh P, Golla N, Singh P, Baddela VS, Chand S, Baithalu RK, Singh D, Onteru SK. Salivary miR-16, miR-191 and miR-223: intuitive indicators of dominant ovarian follicles in buffaloes. Mol Genet Genomics 2017; 292:935-953. [PMID: 28447195 DOI: 10.1007/s00438-017-1323-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
Estrus or sexual receptivity determination is utmost important for efficient breeding programs for female buffaloes. Prominent estrus behavioral symptoms are the result of several molecular and neuroendocrine events involving the ovary and the brain. Expression of estrus behavior is poor in buffaloes during the summer season. Hence, the discovery of biomarkers specific to the estrus stage or its related ovarian events, like the presence of dominant ovarian follicle, is helpful for developing an easy estrus determination method. MicroRNA are small non-coding RNA with a potential to be biomarkers. Therefore, the present study targeted to investigate the potential of estrogen responsive miRNAs (miR-24, miR-200c, miR-16, miR-191, miR-223 and miR-203) as estrus biomarkers in buffalo saliva, a non-invasive fluid representing animals' pathophysiology. There was a significant (P < 0.05) increase in the salivary presence of the miR-16, miR-191 and miR-223 at 6th and 18th-19th days than the 0 day (estrus), 10th day and the following consecutive estrus day. These observations may indicate an association between the representative lower presence of these miRNA in saliva and the presence of dominant ovarian follicles. To test this association, pathway analysis, target gene identification, functional annotation and protein-protein interaction networks (PPI) were performed for miR-16, miR-191 and miR-223 by different bioinformatics tools. Interestingly, the top pathways (fatty acid biosynthesis and oocyte meiosis), target genes (FGF, BDNF and IGF1) and PPI hub genes (KRAS, BCL2 and IGF1) of these miRNAs were found essential for ovarian follicular dominance. In conclusion, the miR-16, miR-191 and miR-223 may not be the perfect estrus stage-specific biomarkers. However, their lower presence in saliva at estrus and 9th-10th day of estrous cycles, when the ovary usually has a dominant follicle in buffaloes, may intuitively indicate the follicular dominance. Further studies are needed to prove this association in a large population.
Collapse
Affiliation(s)
- Prashant Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Naresh Golla
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Pankaj Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Vijay Simha Baddela
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Subhash Chand
- AI Lab, Artificial Breeding Research Center, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Rubina Kumari Baithalu
- Livestock Production and Management, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
43
|
Abstract
Saliva is an easily accessible fluid that has led to increasing interest in the development of salivary diagnostics. This chapter describes some of the newer tools and procedures for collection, stabilization, and storage of oral fluid matrices that aid in the successful use of saliva as a test specimen. This chapter focuses particularly on nucleic acid components for downstream molecular diagnostic (MDx) testing, since this is probably the area where saliva is likely to have the greatest impact in improving healthcare for the general population.
Collapse
|
44
|
Ding Y, Ma Q, Liu F, Zhao L, Wei W. The Potential Use of Salivary miRNAs as Promising Biomarkers for Detection of Cancer: A Meta-Analysis. PLoS One 2016; 11:e0166303. [PMID: 27832115 PMCID: PMC5104484 DOI: 10.1371/journal.pone.0166303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Accumulating evidence has demonstrated that microRNAs (miRNAs) could serve as promising molecular biomarkers for cancer detection. This study aims to systematically assess the diagnostic performance of salivary miRNAs in detection of cancer through a comprehensive meta-analysis. METHODS Eligible studies were identified using PubMed and other computerized databases up to October 31, 2015, supplemented by a manual search of references from retrieved articles. The pooled sensitivity, specificity, and other measurements of accuracy of salivary miRNAs in the diagnosis of cancer were analyzed using the bivariate binomial mixed model. RESULTS Seventeen studies from 8 articles with 694 subjects were included in this meta-analysis. All studies have a relatively high score of quality assessment. The overall sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) of salivary miRNAs in detection of cancer were 0.77 (95% confidence intervals [CI]: 0.69-0.84), 0.77 (95%CI: 0.65-0.88), 3.37 (95%CI: 2.26-5.02), 0.29 (95%CI: 0.23-0.38), and 11.41 (95%CI: 7.35-17.73), respectively. The AUC was 0.84 (95%CI: 0.80-0.87). Moreover, both whole saliva and saliva supernatant could be used as sources of clinical specimens for miRNAs detection. CONCLUSIONS Our meta-analysis demonstrated that salivary miRNAs may serve as potential noninvasive biomarkers for cancer detection. The findings need to be confirmed with further research before it can be applied in the clinic.
Collapse
Affiliation(s)
- Yuanjie Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Qing Ma
- Department of Cancer Epidemiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- * E-mail: (FL); (WW)
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Wenqiang Wei
- Department of Cancer Epidemiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- * E-mail: (FL); (WW)
| |
Collapse
|
45
|
Prasad G, Seers C, Reynolds E, McCullough MJ. The assessment of the robustness of microRNAs from oral cytological scrapings. J Oral Pathol Med 2016; 46:359-364. [PMID: 27560550 DOI: 10.1111/jop.12489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Sampling of suspect oral lesions in the general dental clinic may increase early carcinoma detection thus oral cancer survival rates. One means of lesion sampling that is an alternative to incisional biopsy is cytological scraping. MicroRNA alterations are also being explored as a means of diagnosing carcinoma as an alternative to histopathology. METHODS We obtained cytological scrapings using 10 strokes ('light') or 40 strokes ('heavy') from the buccal mucosa of one healthy subject using a dermatological curette. MicroRNA was isolated from oral cytological scrapings immediately, or the scrapings were stored in buffer or RNA later, at 4°C, room temperature or 36°C, from 1 to 7 days prior to RNA isolation. All scrape comparisons and test conditions were conducted in triplicate. MicroRNAs were measured using qRT-PCR. RESULTS MicroRNAs can be obtained from cytological scrapings independent of the number of strokes and can be measured using qRT-PCR after storage under all conditions tested. CONCLUSION MicroRNAs are robust to a wide range of storage conditions that bodes well for use of cytological scrapings to be of use in a clinical setting as a chair side sampling method for suspect oral lesions.
Collapse
Affiliation(s)
- Gareema Prasad
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia.,Oral Health Cooperative Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Christine Seers
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia.,Oral Health Cooperative Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Reynolds
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia.,Oral Health Cooperative Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia.,Oral Health Cooperative Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
46
|
MicroRNAs as Salivary Markers for Periodontal Diseases: A New Diagnostic Approach? BIOMED RESEARCH INTERNATIONAL 2016; 2016:1027525. [PMID: 27429973 PMCID: PMC4939343 DOI: 10.1155/2016/1027525] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022]
Abstract
The aim of this review is to discuss current findings regarding the roles of miRNAs in periodontal diseases and the potential use of saliva as a diagnostic medium for corresponding miRNA investigations. For periodontal disease, investigations have been restricted to tissue samples and five miRNAs, that is, miR-142-3p, miR-146a, miR-155, miR-203, and miR-223, were repeatedly validated in vivo and in vitro by different validation methods. Particularly noticeable are the small sample sizes, different internal controls, and different case definitions of periodontitis in in vivo studies. Beside of that, the validated miRNAs are associated with inflammation and therefore with various diseases. Furthermore, several studies successfully explored the use of salivary miRNA species for the diagnosis of oral cancer. Different cancer types were investigated and heterogeneous methodology was used; moreover, no overlap of results was found. In conclusion, five miRNAs have consistently been reported for periodontitis; however, their disease specificity, detectability, and expression in saliva and their importance as noninvasive markers are questionable. In principle, a salivary miRNA diagnostic method seems feasible. However, standardized criteria and protocols for preanalytics, measurements, and analysis should be established to obtain comparable results across different studies.
Collapse
|
47
|
Xie ZJ, Chen G, Zhang XC, Li DF, Huang J, Li ZJ. Saliva supernatant miR-21: a novel potential biomarker for esophageal cancer detection. Asian Pac J Cancer Prev 2016; 13:6145-9. [PMID: 23464420 DOI: 10.7314/apjcp.2012.13.12.6145] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To identify whether saliva supernatant miR-21 can serve as a novel potential biomarker in patients with esophageal cancer (EC). METHODS 32 patients with EC and 16 healthy controls were recruited in this study. Total RNA was extracted from saliva supernatant samples for measurement of miR-21 levels using RT-qPCR and relationships between miR-21 levels and clinical characteristics of EC patients were analyzed. RESULTS miR-21 was significantly higher in the EC than control groups. The sensitivity and specificity were 84.4% and 62.5% respectively. Supernatant miR-21 levels showed no significant correlation with cancer stage, differentiation and nodal metastasis. CONCLUSIONS Saliva supernatant miR-21 may be a novel biomarker for EC.
Collapse
Affiliation(s)
- Zi-Jun Xie
- Department of Gastroenterology, Guangdong General Hospital, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
48
|
Hernandez YG, Lucas AL. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World J Gastrointest Oncol 2016; 8:18-29. [PMID: 26798434 PMCID: PMC4714143 DOI: 10.4251/wjgo.v8.i1.18] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/09/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the 4th deadliest cancer in the United States, due to its aggressive nature, late detection, and resistance to chemotherapy. The majority of PDAC develops from 3 precursor lesions, pancreatic intraepithelial lesions (PanIN), intraductual papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm. Early detection and surgical resection can increase PDAC 5-year survival rate from 6% for Stage IV to 50% for Stage I. To date, there are no reliable biomarkers that can detect PDAC. MicroRNAs (miRNA) are small noncoding RNAs (18-25 nucleotides) that regulate gene expression by affecting translation of messenger RNA (mRNA). A large body of evidence suggests that miRNAs are dysregulated in various types of cancers. MiRNA has been profiled as a potential biomarker in pancreatic tumor tissue, blood, cyst fluid, stool, and saliva. Four miRNA biomarkers (miR-21, miR-155, miR-196, and miR-210) have been consistently dysregulated in PDAC. MiR-21, miR-155, and miR-196 have also been dysregulated in IPMN and PanIN lesions suggesting their use as early biomarkers of this disease. In this review, we explore current knowledge of miRNA sampling, miRNA dysregulation in PDAC and its precursor lesions, and advances that have been made in using miRNA as a biomarker for PDAC and its precursor lesions.
Collapse
|
49
|
Bekris LM, Leverenz JB. The biomarker and therapeutic potential of miRNA in Alzheimer's disease. Neurodegener Dis Manag 2016; 5:61-74. [PMID: 25711455 DOI: 10.2217/nmt.14.52] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Currently, a clinical diagnosis of AD is based on evidence of both cognitive and functional decline. Progression is monitored by detailed clinical evaluations over many months to years. It is increasingly clear that to advance disease-modifying therapies for AD, patients must be identified and treated early, before obvious cognitive and functional changes. In addition, better methods are needed to sensitively monitor progression of disease and therapeutic efficacy. Therefore, considerable research has focused on characterizing biomarkers that can identify the disease early as well as accurately monitor disease progression. miRNA offer a unique opportunity for biomarker development. Here, we review research focused on characterizing miRNA as potential biomarkers and as a treatment for disease.
Collapse
Affiliation(s)
- Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
50
|
Peng F, He J, Loo JFC, Yao J, Shi L, Liu C, Zhao C, Xie W, Shao Y, Kong SK, Gu D. Identification of microRNAs in Throat Swab as the Biomarkers for Diagnosis of Influenza. Int J Med Sci 2016; 13:77-84. [PMID: 26917988 PMCID: PMC4747873 DOI: 10.7150/ijms.13301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Influenza is a serious worldwide disease that captures global attention in the past few years after outbreaks. The recent discoveries of microRNA (miRNA) and its unique expression profile in influenza patients have offered a new method for early influenza diagnosis. The aim of this study was to examine the utility of miRNAs for the diagnosis of influenza. METHODS Thirteen selected miRNAs were investigated with the hosts' throat swabs (25 H1N1, 20 H3N2, 20 influenza B and 21 healthy controls) by real-time quantitative polymerase chain reaction (RT-qPCR) using U6 snRNA as endogenous control for normalization, and receiver operating characteristic (ROC) curve/Area under curve (AUC) for analysis. RESULTS miR-29a-3p, miR-30c-5p, miR-34c-3p and miR-181a-5p are useful biomarkers for influenza A detection; and miR-30c-5p, miR-34b-5p, miR-205-5p and miR-449b-5p for influenza B detection. Also, use of both miR-30c-5p and miR-34c-3p (AUC=0.879); and miR-30c-5p and miR-449b-5p (AUC=0.901) are better than using one miRNA to confirm influenza A and influenza B infection, respectively. CONCLUSIONS Given its simplicity, non-invasiveness and specificity, we found that the throat swab-derived miRNAs miR-29a-3p, miR-30c-5p, miR-34b-5p, miR-34c-3p, miR-181a-5p, miR-205-5p and miR-449b-5p are a useful tool for influenza diagnosis on influenza A and B.
Collapse
Affiliation(s)
- Fang Peng
- 1. Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, China; 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jianan He
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jacky Fong Chuen Loo
- 3. Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyu Yao
- 4. Guangdong Medical University, Zhanjiang, China
| | - Lei Shi
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Chunxiao Liu
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Chunzhong Zhao
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Weidong Xie
- 5. Shenzhen Key Lab of Health Science and Technology, Division of Life Sciences & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yonghong Shao
- 6. College of Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems, Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, China
| | - Siu Kai Kong
- 3. Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dayong Gu
- 1. Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, China; 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| |
Collapse
|