1
|
Yamanaka A, Mine A, Shintani A, Aoki-Matsumoto M, Yumitate M, Ban S, Ishida M, Takaishi M, Yatani H, Van Meerbeek B, Minamino T, Ishigaki S. Advanced statistical analyses to reduce inconsistencies in bond strength data focused on donor factors: A six-factor analysis using linear mixed and nonlinear regression models. J Prosthodont Res 2024; 68:585-590. [PMID: 38432943 DOI: 10.2186/jpr.jpr_d_23_00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
PURPOSE This study aimed to investigate the effects of the age and sex of tooth donors on dentin bond strength. METHODS A total of 38 extracted teeth (12 male and 26 female donors; age range: 17-82 years) were used in this study. In addition to donor age and sex, four other microtensile bond strength (μTBS) test specimen factors were evaluated: dentin position, bonding area, presence of voids at the interface, and computed tomography (CT) values of dentin. The μTBS was measured immediately (24 h) and 6 months after storage in water. After the μTBS testing, linear mixed and nonlinear regression models were used to analyze the effects of these factors on the μTBS data. RESULTS The results from the linear mixed model revealed that the bonding area (P = 0.02), presence of voids at the interface (P = 0.04), and storage time (P < 0.001) significantly affected bond strength. In contrast, no correlation was observed between the μ TBS and dentin position (P = 0.08) or sex (P = 0.07). The results of the nonlinear regression model with robust variance-covariance estimators revealed that age significantly affected bond strength (P < 0.001). In addition, a significant positive correlation was found between μTBS and age (P < 0.001), with nonlinearity (P = 0.002). However, no correlation was observed between the μTBS and CT values (P = 0.69) without nonlinearity (P = 0.39). CONCLUSIONS These findings suggest that bond strength increases with age until 60 years but not afterward.
Collapse
Affiliation(s)
- Azusa Yamanaka
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Atsushi Mine
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine and Faculty of Medicine, Osaka, Japan
| | - Mariko Aoki-Matsumoto
- Department of Restorative Dentistry, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| | - Masahiro Yumitate
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shintaro Ban
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masaya Ishida
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Munechika Takaishi
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hirofumi Yatani
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| | - Takuya Minamino
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shoichi Ishigaki
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
2
|
Tang K, Ceteznik S, Kim M, Bornfeldt KE, Kanter JE, Zhang H, Arola DD. Changes in the composition and mechanical properties of dentin in mouse models of diabetes. Dent Mater 2024:S0109-5641(24)00283-5. [PMID: 39343702 DOI: 10.1016/j.dental.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES This study employed mouse models of type 1 (T1D) and type 2 (T2D) diabetes to characterize the changes in tooth dentin composition and its mechanical properties. METHODS Thirty-two mice were used in this study and divided into T1D, T2D and corresponding control groups. Mandibles were extracted 12 weeks after the onset of diabetes, and dentin from the first molars was evaluated in varying regions of the root. The composition was assessed using Raman Spectroscopy. Nanoindentation and Vickers indentation were employed to study the mechanical properties of the tissue. Statistical significance was evaluated by two-way analysis of variance with respect to the diabetic group and region of the tooth (p ≤ 0.05). RESULTS In the T2D model, the mineral-to-collagen ratio, hardness, and storage modulus of the intertubular dentin were significantly reduced compared to tissue from the controls, especially in the cervical regions of the tooth. The reduction in the mineral-to-collagen ratio was also observed in the T1D model, but changes in nanomechanical properties were not evident. However, the bulk hardness of the teeth in the T1D model was lower than in the littermate controls. Optical microscopy revealed significant wear of the tooth crowns in both models of diabetes, which appear to result from parafunctional activities. CONCLUSION This study suggests that both type 1 and type 2 models of diabetes are associated with detrimental changes in dentin. CLINICAL SIGNIFICANCE Better understanding of how diabetes affects dentin and the contributing mechanisms will be key to improving treatments for people with diabetes.
Collapse
Affiliation(s)
- K Tang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - S Ceteznik
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - M Kim
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - K E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, Seattle, WA, USA
| | - J E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, Seattle, WA, USA
| | - H Zhang
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - D D Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA; Department of Mechanical, Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
PradeepKumar AR, JothiLatha S, Durvasulu A, Muralidhar L, Vimalesh Alagu J, Shereen J, Kishen A. Impact of Type 2 Diabetes Mellitus on the Occurrence of Vertical Root Fracture: A Case Control Study. J Endod 2024; 50:450-455.e1. [PMID: 38272442 DOI: 10.1016/j.joen.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The aim of this case-control study was to examine the relationship between type 2 diabetes mellitus (DM) and the occurrence of VRFs. The crack extension, dentin sclerosis, and chemical characteristics of root dentin in teeth with VRF from patients with/without DM were also compared. METHODS One hundred and thirty-two patients diagnosed with VRF in crowned root filled posterior teeth were selected. The study was conducted in 2 parts. In Part-1: The cases were matched with control teeth (1:1) for age (±5 years), sex, tooth type, apical extent of root filling, time period after root filling to a diagnosis of VRF, presence or absence of intracanal post and abutment status. The presence or absence of type 2 DM (HbA1c > 6.5) was recorded. In Part-2: The extracted teeth with VRF from the case control study were used to evaluate the extension of VRF, presence of sclerotic dentin and isthmus using a microscopic analysis; while the levels of pentosidine, collagen cross-linking ratio and mineral-collagen ratio were determined by Fourier-transform infrared spectroscopy. The distribution of DM between cases and controls was analyzed using Pearson Chi-Square test and Odds Ratio estimated. Chemical composition data was analyzed using Mann-Whitney test. The extent of sclerotic dentin was analyzed using Pearson Chi-Square test. RESULTS When compared to patients without DM, patients with DM had 2.67 (95% CI: 1.6-4.45) folds higher odds for occurrence of VRF. Pentosidine (P = .014), collagen cross-linking ratio(P = .047), mineral-collagen ratio (P = .009) and sclerotic dentin extent (P = .0009) were significantly higher in patients with DM and VRF. CONCLUSIONS Type 2 DM was more often associated with VRFs in root canal treated teeth with crowns. Root dentin from patients with type 2 DM and VRF had higher levels of pentosidine, collagen cross-linking ratio, mineral to collagen ratio and sclerotic dentin.
Collapse
Affiliation(s)
- Angambakkam Rajasekaran PradeepKumar
- Department of Conservative Dentistry and Endodontics, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute (Deemed to be University), Chennai, India
| | - Sundaramurthy JothiLatha
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital, The Tamil Nadu Dr. M.G.R. Medical University, Chennai, India
| | - Archana Durvasulu
- Department of Conservative Dentistry and Endodontics, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute (Deemed to be University), Chennai, India
| | | | - Jeffery Vimalesh Alagu
- Department of Conservative Dentistry and Endodontics, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute (Deemed to be University), Chennai, India
| | - Judith Shereen
- Department of Conservative Dentistry and Endodontics, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute (Deemed to be University), Chennai, India
| | - Anil Kishen
- Faculty of Dentistry, Toronto, Canada; Department of Dentistry, Mount Sinai Hospital, Sinai Health System, Toronto, Canada.
| |
Collapse
|
4
|
Takashima A, Miura J, Sugiyama K, Shimizu M, Okada M, Otani T, Nagashima T, Tsuda T, Araki T. Glycation promotes pulp calcification in Type 2 diabetes rat model. Oral Dis 2024; 30:593-603. [PMID: 36843542 DOI: 10.1111/odi.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVES Intrapulpal calcifications can occur in the dental pulp of patients with diabetes. We focused on the association between ectopic calcifications in the dental pulp and advanced glycation end products (AGEs) in Spontaneously Diabetic Torii (SDT)-fatty rats, an obese type 2 diabetic rat model, to determine the mechanism of calcification with pulp stone in the dental pulp. MATERIALS AND METHODS Pathologic calcification in the dental pulp of SDT-fatty rats was observed using electron microscopy and immunohistochemical analysis. Moreover, mechanical analysis of periapical region of molar tooth against occlusal force was performed. RESULTS In SDT-fatty rats, pathogenic pulpal calcifications occurred during blood glucose elevation after 6 weeks, and granular calcification was observed in the dental pulp after 11 weeks. Pentosidine, a major AGE, and the receptor for AGEs were strongly expressed in the dental pulp of SDT-fatty rats. S100A8, TNF-α, and IL-6 also showed positive response in the dental pulp of the SDT-fatty rat, which indicated pulpal inflammation. Blood flow disorder and hypoxic dental pulp cells were also observed. In silico simulation, strain from occlusal force concentrates on the root apex. CONCLUSIONS Glycation makes blood vessels fragile, and occlusal forces damage the vessels mechanically. These are factors for intrapulpal calcification of diabetes.
Collapse
Affiliation(s)
- Aoi Takashima
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Jiro Miura
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Keita Sugiyama
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Masato Shimizu
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Misa Okada
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Tadashi Nagashima
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Tetsuya Tsuda
- Department of Materials Science, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Tsutomu Araki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
5
|
Hui WH, Chen YL, Chang SW. Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity. Int J Biol Macromol 2024; 254:127603. [PMID: 37871726 DOI: 10.1016/j.ijbiomac.2023.127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Crosslinking plays an important role in collagen-based tissues since it affects mechanical behavior and tissue metabolism. Aging and diabetes affect the type and density of crosslinking, effectively altering tissue properties. However, most studies focus on these effects under large stress rather than daily activities. We focus on the deformation mechanisms and structural change at the binding sites for integrins, proteoglycans, and collagenase in collagen fibrils using a fully atomistic model. We show that high-connectivity enzymatic crosslinking (our "HC" model, representing normal tissues) and advanced-glycation end-products (our "Glucosepane" model, which increase in diabetes) result in uniform deformation under daily activity, but low-connectivity enzymatic crosslinking (our "LC" model, representing aging tissues) does not. In particular, the HC model displays more sliding, which may explain the ability of healthy tissues to absorb more strain energy. In contrast, AGEs induce instability in the structures near the binding sites, which would affect the tissue metabolism of the collagen molecule. Our results provide important insights into the molecular mechanisms of collagen and a possible explanation for the role of crosslinking in tissues undergoing daily activity.
Collapse
Affiliation(s)
- Wei-Han Hui
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan
| | - Yen-Lin Chen
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
6
|
Marques JV, Carlos NR, Turssi CP, França FMG, Vieira Junior WF, Basting RT. Effectiveness of changing the color of darker teeth is potentiated by association with violet LED light. Photodiagnosis Photodyn Ther 2023; 44:103794. [PMID: 37699468 DOI: 10.1016/j.pdpdt.2023.103794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The effectiveness of in-office bleaching protocols performed with violet LED light either combined with a bleaching agent containing 37% carbamide peroxide, or not, was determined by comparing teeth with different degrees of darkening. METHODOLOGY Eighty bovine incisors were separated into groups of "light" teeth (luminosity greater than or equal to B3) and "dark" teeth (less than or equal to A3.5) to receive the protocols: HP - 35% hydrogen peroxide (Whiteness HP), CP - 37% carbamide peroxide (Whiteness SuperEndo), LED - violet LED light (Bright Max Whitening), CPLED - CP associated with the LED. For color analysis the CIEL*a*b* e WID, ΔEab, ΔE00 e ΔWID parameters were used. Data were analyzed using Mann-Whitney, Kruskal-Wallis, Dunn, Friedman or Nemenyi tests (α = 5%). RESULTS HP and CP resulted in similar color change values (ΔEab, ΔE00 e ΔWID) for light and dark teeth (p > 0.05). Dark teeth showed better bleaching effectiveness (ΔEab, ΔE00 e ΔWID) than light teeth when CPLED was used (p < 0.05). LED showed color change that were below the limits of acceptability and perceptibility for ΔWID. CONCLUSION light teeth are effectively bleached with the use of HP or CP, whereas dark teeth respond better to treatment with the CPLED protocol. Violet LED used alone did not show a satisfactory result.
Collapse
Affiliation(s)
- Joana Vasconcellos Marques
- Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil
| | - Natália Russo Carlos
- Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil
| | - Cecilia Pedroso Turssi
- Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil
| | | | | | - Roberta Tarkany Basting
- Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| |
Collapse
|
7
|
Alsamahi S, Milne TJ, Mohd Hussaini HM, Rich AM, Cooper PR, Friedlander LT. Effects of glycation end-products on the dental pulp in patients with type 2 diabetes. Int Endod J 2023; 56:1373-1384. [PMID: 37615995 DOI: 10.1111/iej.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
AIM This ex vivo study aimed to compare protein expression of advanced glycation end-products (AGE) and receptor (RAGE), and the levels of selected genes associated with inflammation and collagen within dental pulp tissue from patients with type 2 (T2D) diabetes and non-T2D. METHODOLOGY Noncarious extracted permanent molar teeth from patients with well-controlled T2D (n = 19) and non-T2D (controls) (n = 19) were collected and compared. The coronal pulp was examined using immunohistochemistry (IHC) (n = 10 per group) for anti-AGE and anti-RAGE. Quantitative PCR (n = 9 per group) was used to analyse the gene expression levels of NFKB, S100A12 and COLIA1. Data analyses were performed between the groups using GraphPad Prism using Pearson correlation, Shapiro-Wilk and Mann-Whitney U-tests, and multiple regression using SPSS. RESULTS AGEs were distributed diffusely throughout the pulp extracellular matrix associated with collagen fibres and were present on several cell types. RAGE was expressed at the pulp-dentine interface and was observed on odontoblasts, immune cells, endothelial cells and fibroblasts. Semi-quantitative analysis of IHC samples showed significantly increased expression of AGE (p < .0001) and RAGE (p = .02) in T2D samples compared with controls. The expression of NFKB (p < .0001), S100A12 (p < .0001) and COLIA1 (p = .01) genes were significantly higher in the T2D pulp, and multivariate logistic regression analysis showed that these findings were not affected by age. CONCLUSION T2D may exert a similar glycation response in the dental pulp to other body sites. This could occur through activation of NF-κB pathways with a concomitant increase in genes associated with inflammation and collagen.
Collapse
Affiliation(s)
- Shaikhah Alsamahi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Trudy J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | | - Alison M Rich
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Paul R Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Lara T Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Haupt F, Dullin C, Krebs M, Hettwer-Steeger I, Kanzow P, Rödig T. Micro-CT evaluation of frozen and embalmed human cadavers on the effect of root canal preparation on microcrack formation in old dentin. PLoS One 2023; 18:e0281124. [PMID: 36716302 PMCID: PMC9886256 DOI: 10.1371/journal.pone.0281124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to evaluate the existence of preoperative dentinal defects among differently preserved dentoalveolar bone-blocks (frozen vs. embalmed) and to investigate the effect of varying apical forces (low: <4 N, high: 4-8 N) during root canal preparation on microcrack formation using micro-computed tomography (micro-CT). Thirteen embalmed and seven frozen bone-blocks containing 1-3 single rooted teeth were collected. The teeth were evenly divided into three groups (n = 10): FLow (frozen, <4 N), ELow (embalmed, <4 N), EHigh (embalmed, 4-8 N). After working length determination all specimens were scanned preoperatively. Root canal preparation was performed using nickel-titanium instruments sizes 25/.06 and 40/.06 (F6 SkyTaper; Komet, Lemgo, Germany). A postoperative scan was performed and image stacks were co-registered. All cross-sectional images were screened to identify the presence of dentinal defects. The results were expressed as the percentage of teeth/slices presenting dentinal defects. The statistical analyses were performed with Kruskal-Wallis-Test and Mann-Whitney-U-Test (α = 5%). Embalmed specimens presented a significantly higher percentage of slices with preoperative microcracks (p<0.05) than frozen specimens. No significant difference between groups was observed regarding the induction of microcracks (p>0.05). Root canal preparation does not induce microcracks in dentoalveolar bone-blocks from donors of old age, irrespective of the preservation method and the apically directed forces.
Collapse
Affiliation(s)
- Franziska Haupt
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, Göttingen, Germany
- * E-mail:
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Marcel Krebs
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Philipp Kanzow
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, Göttingen, Germany
| | - Tina Rödig
- Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Weerakoon AT, Meyers IA, Thomson DH, Cooper C, Ford PJ, Symons AL. Coronal dentin differs between young and mature adult humans: A systematic review. Arch Oral Biol 2022; 144:105553. [DOI: 10.1016/j.archoralbio.2022.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
|
10
|
Weerakoon AT, Condon N, Cox TR, Sexton C, Cooper C, Meyers IA, Thomson D, Ford PJ, Roy S, Symons AL. Dynamic dentin: A quantitative microscopic assessment of age and spatial changes to matrix architecture, peritubular dentin, and collagens types I and III. J Struct Biol 2022; 214:107899. [PMID: 36208858 DOI: 10.1016/j.jsb.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
To investigate age and site-related changes to human dentin collagen, sound human teeth collected from donors aged 13-29 (young) and 50-74 (aged) years (n = 9/group) were cut to shallow and deep sites. Dentin collagen orientation and fibril bundling was investigated using the Picrosirius Red (PSR) stain observed under cross-polarized light microscopy (Pol), and collagen distribution was investigated using Confocal Laser Scanning Microscopy (CLSM). Collagen types III to I distribution in peritubular dentin (PTD) was revealed using Herovici stain and brightfield microscopy. Image analysis software and linear mixed modelling quantified outcomes. In situ dentin collagen was observed using Xenon Plasma Focussed Ion Beam Scanning Electron Microscopy (Xe PFIB-SEM). The PSR-Pol analysis revealed less coherently aligned and more bundled collagen fibrils in aged dentin (P = 0.005). Deep inner dentin collagen in both groups were less coherently aligned with reduced bundling. Regardless of age, CLSM showed collagen distribution remained stable; and more collagen type III was detectable in PTD located in inner dentin (Young: P = 0.006; Aged: P = 0.008). Observations following Xe PFIB-SEM cross-sectioning showed apatite-like deposits surrounding large intratubular collagen fibers, and evidence of smaller intertubular dentin collagen fibrils in situ. In conclusion, aging changes collagen network architecture, but not distribution or content.
Collapse
Affiliation(s)
- Arosha T Weerakoon
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia.
| | - Nicholas Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research & School of Clinical Medicine, UNSW, Sydney, Australia
| | - Christopher Sexton
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Crystal Cooper
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia, Australia
| | - Ian A Meyers
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - David Thomson
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Pauline J Ford
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Sandrine Roy
- Translational Research Institute, Brisbane, Queensland, Australia; Olympus Life Science, Australia
| | - Anne L Symons
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Maghami E, Najafi AR. Influence of age-related changes on crack growth trajectories and toughening mechanisms in human dentin. Dent Mater 2022; 38:1789-1800. [DOI: 10.1016/j.dental.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
|
12
|
Haluszka D, Aminmansour S, Tóth P, Aminmansour S, Kellermayer M. Nanomechanical and Nonlinear Optical Properties of Glycated Dental Collagen. J Dent Res 2022; 101:1510-1516. [PMID: 35722958 DOI: 10.1177/00220345221100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nonenzymatic glycation is a multistep, slow reaction between reducing sugars and free amino groups of long-lived proteins, which affects the structural and mechanical properties of collagen-rich tissues via accumulation of advanced glycation end products (AGEs). Dental collagen is exposed to glycation as part of the natural aging process. However, in case of chronically high blood glucose, the process can be accelerated, resulting in premature stiffening of dentin, leading to tooth fragility. The molecular mechanisms whereby collagen glycation evokes the loss of mechanical stability in teeth are currently unknown. In this study, we used 2-photon and atomic force microscopies to correlate structural and mechanical changes in dental collagen induced by in vitro glycation. Young tooth samples were demineralized and cut longitudinally into 30-µm sections, then artificially glycated in 0.5 M ribose solution for 10 wk. Two-photon microscopy analysis showed that both the autofluorescence and second harmonic-generated (SHG) signal intensities of glycated samples were significantly greater than those of the controls. Regarding the structural alteration of individual collagen fibers, a remarkable increase could be measured in fiber length of ribose-treated sections. Furthermore, nanoindentation of intertubular dentin regions revealed significantly higher stiffness in the ribose-treated samples, which points at a significant accumulation of AGEs. Thus, collagen glycation occurring during sustained exposure to reducing sugars leads to profound structural and mechanical changes in dentin. Besides the numerous oral complications associated with type 2 diabetes, the premature structural and mechanical deterioration of dentin may also play an important role in dental pathology.
Collapse
Affiliation(s)
- D Haluszka
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - S Aminmansour
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - P Tóth
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Hungary
| | - S Aminmansour
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - M Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Schuh CMAP, Leiva-Sabadini C, Huang S, Barrera NP, Bozec L, Aguayo S. Nanomechanical and Molecular Characterization of Aging in Dentinal Collagen. J Dent Res 2022; 101:840-847. [PMID: 35130787 DOI: 10.1177/00220345211072484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Methylglyoxal (MGO) is an important molecule derived from glucose metabolism with the capacity of attaching to collagen and generating advanced glycation end products (AGEs), which accumulate in tissues over time and are associated with aging and diseases. However, the accumulation of MGO-derived AGEs in dentin and their effect on the nanomechanical properties of dentinal collagen remain unknown. Thus, the aim of the present study was to quantify MGO-based AGEs in the organic matrix of human dentin as a function of age and associate these changes with alterations in the nanomechanical and ultrastructural properties of dentinal collagen. For this, 12 healthy teeth from <26-y-old and >50-y-old patients were collected and prepared to obtain crown and root dentin discs. Following demineralization, MGO-derived AGEs were quantified with a competitive ELISA. In addition, atomic force microscopy nanoindentation was utilized to measure changes in elastic modulus in peritubular and intertubular collagen fibrils. Finally, principal component analysis was carried out to determine aging profiles for crown and root dentin. Results showed an increased presence of MGO AGEs in the organic matrix of dentin in the >50-y-old specimens as compared with the <26-y-old specimens in crown and root. Furthermore, an increase in peritubular and intertubular collagen elasticity was observed in the >50-y-old group associated with ultrastructural changes in the organic matrix as determined by atomic force microscopy analysis. Furthermore, principal component analysis loading plots suggested different "aging profiles" in crown and root dentin, which could have important therapeutic implications in restorative and adhesive dentistry approaches. Overall, these results demonstrate that the organic matrix of human dentin undergoes aging-related changes due to MGO-derived AGEs with important changes in the nanomechanical behavior of collagen that may affect diagnostic and restorative procedures in older people.
Collapse
Affiliation(s)
- C M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - C Leiva-Sabadini
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Huang
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - N P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - S Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Pillalamarri M, Manyam R, Pasupuleti S, Birajdar S, Akula ST. Biochemical analyses for dental age estimation: a review. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2022. [DOI: 10.1186/s41935-021-00260-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
For various legal and forensic scenarios, establishing an individual’s age, both living and dead, plays a crucial role. Various morphological, radiographic, and molecular methods can be used for age estimation. In children and adolescents, age estimation is based on the established developmental stages. However, in adults, where the development ceases into maturation, the degenerative changes play a role in determining the age.
Main body of the abstract
In the natural aging process, several molecular changes occur most commonly in the long-living proteins and hard tissues like the teeth and bone. These molecular changes gradually lead to alterations in several organs and organ systems, which can be quantified and correlated with age, including aspartic acid racemization, collagen crosslinks, advanced glycation-end products, and mitochondrial DNA mutations.
Short conclusion
Among the above methods, the racemization of aspartic acid can be considered as the most precise method. The main advantage of using aspartic acid racemization is that the sample can be collected from tissues (teeth) protected from various environmental and nutritional factors. If all the confounding factors are stable, the utilization of advanced glycation-end products can also be considered valuable. Environmental factors like lead accumulations may also help determine the age. However, further studies need to be conducted, focusing on providing a more standardized method. This review provides a concise summary of the biochemical techniques that can be used for estimation of age.
Collapse
|
15
|
Heberer MT, Roggendorf HC, Faber FJ, Lawrenz NA, Frankenberger R, Roggendorf MJ. Longitudinal craze line propagation in human root dentin after instrumentation with NiTi rotary files of different instrument tapers after long-term chewing simulation. Clin Oral Investig 2021; 26:2671-2679. [PMID: 34787719 PMCID: PMC8898247 DOI: 10.1007/s00784-021-04238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Objectives The aim of this study was to investigate whether file design and taper significantly influence microcrack initiation during machine preparation. Materials and methods Sixty extracted teeth with straight single canals were selected. The teeth were randomly assigned to four groups based on their root canal anatomy and the corresponding NiTi rotary file system (I, Mtwo; II, ProTaper Universal; III, F6 SkyTaper; control, no preparation and filling). The root canals of the experimental groups were filled using the single-cone technique. The tested teeth were all subjected to a mechanical chewing simulation with flat lead loading over a period of 3 years (corresponding to 150,000 cycles). The teeth were checked for dentinal defects (accumulative crack growth in length) under the digital microscope (Keyence VHX-5000) at time 0 (baseline prior to chewing simulation) and after 3, 6, 12, 24, and 36 months of loading. The cumulative crack increase was statistically analyzed using the Kruskal–Wallis test, Jonckheere–Terpstra test, and the Wilcoxon rank-sum test. The significance was set at p < 0.05. Results In contrast to preparation with greater-tapered instruments, ProTaper Universal (group II) and F6 SkyTaper (group III) instrumentation with the smaller tapered Mtwo files (group I) showed less accumulative propagation of craze lines (p < 0.05) at all time points. Conclusion Instruments with greater taper for root canal instrumentation should be used with care to avoid negative long-term effects in the form of propagation of dentinal defects over time. A positive cutting-edge angle and a smaller taper have a positive effect on a lower craze line development. Clinical relevance Instruments with a positive cutting-edge angle and a smaller taper are beneficial for the long-term preservation of dentinal tooth structure.
Collapse
Affiliation(s)
- Marie-Therese Heberer
- Department of Operative Dentistry, Endodontics, and Pediatric Dentistry, Philipps University Marburg and University Hospital Giessen and Marburg, Campus Marburg, Georg-Voigt-Straße 3, 35039, Marburg, Germany.
| | - Hubert C Roggendorf
- Interdisciplinary Department of Oral Surgery an Implantology, University of Cologne, Kerpener Straße 32, 50931, Cologne, Germany
| | - Franz-Josef Faber
- Pre-Clinical Department, University of Cologne, Kerpener Straße 32, 50931, Cologne, Germany
| | - Nicolai-Alexander Lawrenz
- Department of Mathematics and Computer Science, Philipps University of Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Roland Frankenberger
- Department of Operative Dentistry, Endodontics, and Pediatric Dentistry, Philipps University Marburg and University Hospital Giessen and Marburg, Campus Marburg, Georg-Voigt-Straße 3, 35039, Marburg, Germany
| | - Matthias J Roggendorf
- Department of Operative Dentistry, Endodontics, and Pediatric Dentistry, Philipps University Marburg and University Hospital Giessen and Marburg, Campus Marburg, Georg-Voigt-Straße 3, 35039, Marburg, Germany
| |
Collapse
|
16
|
Yi Q, Feng X, Zhang C, Wang X, Wu X, Wang J, Cui F, Wang S. Comparison of dynamic mechanical properties of dentin between deciduous and permanent teeth. Connect Tissue Res 2021; 62:402-410. [PMID: 32308055 DOI: 10.1080/03008207.2020.1758684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Even though differences between deciduous and permanent dentin have been widely studied, their dynamic mechanical behavior has never been compared. The objective of the present study was to quantify the differences between deciduous and permanent dentin under cyclic mechanical loading, which is similar to masticatory stress.Materials and Methods: Deciduous and permanent teeth, respectively from children (9 ~ 12 years old) and young people (18 ~ 25 years old), were wet-sectioned perpendicular to the longitudinal axis and the central specimens of coronal dentin were evaluated by nanoscopic dynamic mechanical analysis (nanoDMA).Results: The average storage, loss, and complex moduli, as well as the hardness of deciduous dentin were significantly (p < 0.05) lower than those of permanent dentin. Moreover, the tan δ value of permanent dentin was significantly (p < 0.05) lower than that of deciduous dentin across the loading frequency range, indicating that viscoelastic behavior and loss of elastic energy were significantly reduced in the stiffer permanent dentin. All the nanoDMA responses showed a significant influence of the dynamic loading frequency (p < 0.05): Both deciduous and permanent dentin showed reduced viscoelasticty with increased loading frequencies.Conclusions: Compared with deciduous dentin, permanent dentin exhibits higher stiffness with reduced energy loss during deformation, and therefore superior mechanical characteristics for the mastication process.
Collapse
Affiliation(s)
- Qiao Yi
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China
| | - Xiaoyu Feng
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China
| | - Chunmei Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China
| | - Xiaoshan Wu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China.,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Shangsha, China
| | - Jingsong Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, P. R. China
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, P. R. China
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, P. R. China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, P. R. China
| |
Collapse
|
17
|
Sugiyama K, Miura J, Shimizu M, Takashima A, Matsuda Y, Kayashima H, Okamoto M, Nagashima T, Araki T. Effects of advanced glycation end products on dental pulp calcification. Oral Dis 2021; 28:745-755. [PMID: 33539626 DOI: 10.1111/odi.13792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/26/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The main aim of this study was to elucidate the effects of advanced glycation end products (AGEs) on the calcification of cultured rat dental pulp cells (RDPCs) and to investigate the crystallisation ability of glycated collagen. MATERIALS AND METHODS AGEs were prepared via non-enzymatic glycation of a dish coated with type I collagen using dl-glyceraldehyde. To investigate the effects of AGEs on RDPCs, we performed WST-1 and lactate dehydrogenase assays; alkaline phosphatase, Alizarin Red S and immunohistochemical staining; and real-time quantitative reverse transcription PCR. In addition, we performed crystallisation experiments on glycated collagen. All microstructures were analysed using scanning electron microscopy/energy-dispersive X-ray spectroscopy and transmission electron microscopy/diffraction pattern analysis. RESULTS AGEs did not affect the proliferation or differentiation of RDPCs, but enhanced the calcification rate and cytotoxicity. No major calcification-related genes or proteins were involved in these calcifications, and glycated collagen was found to exhibit a negative polarity and form calcium phosphate crystals. Cytotoxicity due to drastic changes in the concentration of pericellular ions led to dystrophic calcification, assumed to represent an aspect of diabetic pulp calcifications. CONCLUSION Glycated collagen-containing AGEs provide a nurturing environment for crystallisation and have a significant effect on the early calcification of RDPCs.
Collapse
Affiliation(s)
- Keita Sugiyama
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Jiro Miura
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Masato Shimizu
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Aoi Takashima
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yusuke Matsuda
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroki Kayashima
- Department of Fixed Prosthodontics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Motoki Okamoto
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Tadashi Nagashima
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Tsutomu Araki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Alania Y, Trevelin LT, Hussain M, Zamperini CA, Mustafa G, Bedran-Russo AK. On the bulk biomechanical behavior of densely cross-linked dentin matrix: The role of induced-glycation, regional dentin sites and chemical inhibitor. J Mech Behav Biomed Mater 2020; 103:103589. [PMID: 32090918 PMCID: PMC7042333 DOI: 10.1016/j.jmbbm.2019.103589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/17/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Collagen glycation takes place under physiological conditions during chronological aging, leading to the formation of advanced glycation end-products (AGEs). AGEs accumulation induces non-enzymatic collagen cross-links increasing tissue stiffness and impairing function. Here, we focused on determining the cumulative effect of induced glycation on the mechanical behavior of highly collagen cross-linked dentin matrices and assess the topical inhibition potential of aminoguanidine. Bulk mechanical characterization suggests that early glycation cross-links significantly increase the tensile strength and stiffness of the dentin matrix and promote a brittle failure response. Histologically, glycation yielded a more mature type I collagen in a densely packed collagen matrix. The time-dependent effect of glycation indicates cumulative damage of dentin matrices that is partially inhibited by aminoguanidine. The regional dentin sites were differently affected by induced-glycation, revealing the crown dentin to be mechanically more affected by the glycation protocol. These findings in human dentin set the foundation for the proposed in vitro ribose-induced glycation model, which produces an early matrix stiffening mechanism by reducing tissue viscoelasticity and can be partially inhibited by topical aminoguanidine.
Collapse
Affiliation(s)
- Yvette Alania
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Livia T Trevelin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA; Department of Restorative Dentistry, School of Dentistry, University of São Caetano Do Sul, Rua Santo Antônio 50, São Caetano Do Sul, São Paulo, 09521-160, Brazil
| | - Mohammad Hussain
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Camila A Zamperini
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Gresa Mustafa
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
19
|
Magno MB, Jural LA, Pithon MM, Maia LC. Influence of Vestibular Bevel on the Success of Traumatized Teeth Restorations: Single-Blind Randomized Controlled Trial - Preliminary Results with 6-Months Follow-Up. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2020. [DOI: 10.1590/pboci.2020.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Matheus Melo Pithon
- Federal University of Rio de Janeiro, Brazil; Southwest Bahia State University, Brazil
| | | |
Collapse
|
20
|
Karunanayake G, Ng YL, Knowles JC, Delgado AHS, Young AM, Gulabivala K, Nazhat SN. The effect of NaOCl and heat treatment on static and dynamic mechanical properties and chemical changes of dentine. J Mech Behav Biomed Mater 2019; 97:330-338. [PMID: 31153114 DOI: 10.1016/j.jmbbm.2019.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine the effect of heat on flexural strength (FS), maximum strain (MS), storage modulus (SM), tan delta (TD) and chemical changes through micro-Raman spectroscopy of dentine exposed to 2.5% NaOCl or saline. METHOD ology: Dentine bars were randomly allocated to 8 test groups. Half (groups 2,4,6,8) were treated with NaOCl for 20 min; the rest (groups 1,3,5,7) remained in saline. FS/MS were measured in groups 1-4 (n = 15) (3/4 were also heated to 200 °C & re-hydrated in saline). Micro-Raman spectroscopy was performed on bars from groups 1-4. SM/TD were measured in 5-8: in 5/6 (n = 10), repeated after heating (200 °C), then following re-hydration; in 7/8 (n = 3) after heating to 25-185 °C. RESULTS Increase in MS on heat and FS/MS on heat + NaOCl was not significant (P > 0.05). SM increased (P = 0.06) after heat treatment but reduced to initial state after rehydration (P = 0.03). TD did not change (P = 0.4) after heat (200 °C) treatment but rehydration increased it compared with pre-treatment state (P = 0.001). For dentine bars pre-treated with NaOCl, SM did not change (P = 0.6) after heat (200 °C) treatment or rehydration but TD significantly increased (P = 0.02) upon re-hydration compared with pre- (P=0.007), or post- (P = 0.03) heat-treatment states. SM and TD varied between 25-185 °C with no consistent trend amongst the NaOCl pre-treated bars. Micro-Raman only detected chemical changes following NaOCl treatment in the mineral phase. CONCLUSIONS Exposure of dentine bars to heat and NaOCl produced only moderate changes to quasi-static but marked changes to viscoelastic properties, which may be explained by chemical alterations.
Collapse
Affiliation(s)
- G Karunanayake
- Unit of Endodontology, Division of Restorative Dental Science, UCL Eastman Dental Institute, University College London, London, UK
| | - Y-L Ng
- Unit of Endodontology, Division of Restorative Dental Science, UCL Eastman Dental Institute, University College London, London, UK.
| | - J C Knowles
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK; Institute of Tissue Regeneration Engineering (ITREN) and Department of NanobiomedicalScience and BK21 Plus NBM, Global Research Center for Regenerative Medicine, DankookUniversity, 518-10, Anseo-dong, Dongnam-gu, Cheonan, Chungcheongnam-do, South Korea; The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, GowerStreet, London, WC1E 6BT, UK
| | - A H S Delgado
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - A M Young
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - K Gulabivala
- Unit of Endodontology, Division of Restorative Dental Science, UCL Eastman Dental Institute, University College London, London, UK
| | - S N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Qc, H3A 0C5, Canada
| |
Collapse
|
21
|
Coelho MC, Sanchez PKV, Fernandes RR, Souza FPPD, Siéssere S, Bombonato-Prado KF. Effect of grape seed extract (GSE) on functional activity and mineralization of OD-21 and MDPC-23 cell lines. Braz Oral Res 2019; 33:e013. [PMID: 30758410 DOI: 10.1590/1807-3107bor-2019.vol33.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/14/2019] [Indexed: 11/21/2022] Open
Abstract
Recent studies on functional tissue regeneration have focused on substances that favor cell proliferation and differentiation, including the bioactive phenolic compounds present in grape seed extract (GSE). The aim of this investigation was to evaluate the stimulatory potential of GSE in the functional activity of undifferentiated pulp cells and odontoblast-like cells. OD-21 and MDPC-23 cell lines were cultivated in odontogenic medium until subconfluence, seeded in 24-well culture plates in a concentration of 2x104/well and divided into: 1) OD-21 without GSE; 2) OD-21+10 µg/mL of GSE; 3) MDPC-23 without GSE; 4) MDPC-23+10 µg/mL of GSE. Cell proliferation, in situ detection of alkaline phosphatase (ALP) and total protein content were assessed after 3, 7 and 10 days, and mineralization was evaluated after 14 days. The data were analyzed by ANOVA statistical tests set at a 5% level of significance. Results revealed that cell proliferation increased after 10 days, and protein content, after 7 days of culture in MDPC-23 cells. In situ ALP staining intensity was higher in undifferentiated pulp cells and odontoblast-like cells after 7 and 10 days, respectively. A discrete increase in MDPC-23 mineralization after GSE treatment was observed despite OD-21 cells presenting a decrease in mineralized nodule deposits. Data suggest that GSE favors functional activity of differentiated cells more broadly than undifferentiated cells (OD-21). More studies with different concentrations of GSE must be conducted to confirm its benefits to cells regarding dentin regeneration.
Collapse
Affiliation(s)
- Maria Carolina Coelho
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Basic and Oral Biology, Ribeirão Preto, SP, Brazil
| | - Paula Katherine Vargas Sanchez
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Basic and Oral Biology, Ribeirão Preto, SP, Brazil
| | - Roger Rodrigo Fernandes
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Fernanda Panzeri Pires de Souza
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Dental Materials and Prosthesis, Ribeirão Preto, SP, Brazil
| | - Selma Siéssere
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Basic and Oral Biology, Ribeirão Preto, SP, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Basic and Oral Biology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Nanomechanical characterization of time-dependent deformation/recovery on human dentin caused by radiation-induced glycation. J Mech Behav Biomed Mater 2019; 90:248-255. [DOI: 10.1016/j.jmbbm.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023]
|
23
|
Ilea A, Băbţan AM, Boşca BA, Crişan M, Petrescu NB, Collino M, Sainz RM, Gerlach JQ, Câmpian RS. Advanced glycation end products (AGEs) in oral pathology. Arch Oral Biol 2018; 93:22-30. [DOI: 10.1016/j.archoralbio.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/07/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023]
|
24
|
Valenzuela A, Guerra-Hernández E, Rufián-Henares JÁ, Márquez-Ruiz AB, Hougen HP, García-Villanova B. Differences in non-enzymatic glycation products in human dentine and clavicle: changes with aging. Int J Legal Med 2018; 132:1749-1758. [DOI: 10.1007/s00414-018-1908-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/26/2018] [Indexed: 01/22/2023]
|
25
|
Abstract
This article provides a brief review of recent investigations concerning the structure and properties of the tooth. The last decade has brought a greater emphasis on the durability of the tooth, an improved understanding of the fatigue and fracture behavior of the principal tissues, and their importance to tooth failures. The primary contributions to tooth durability are discussed, including the process of placing a restoration, the impact of aging, and challenges posed by the oral environment. The significance of these findings to the dental community and their importance to the pursuit of lifelong oral health are highlighted.
Collapse
Affiliation(s)
- Dwayne D Arola
- Department of Materials Science and Engineering, University of Washington School of Dentistry, Roberts Hall, 333, Box 352120, Seattle, WA 98195-2120, USA; Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA 98195-2120, USA; Department of Restorative Dentistry, Box 357456, University of Washington School of Dentistry, Seattle, WA 98195-7456, USA.
| | - Shanshan Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Renmin South Road, Chengdu, 610041, China
| | - Hai Zhang
- Department of Restorative Dentistry, Box 357456, University of Washington School of Dentistry, Seattle, WA 98195-7456, USA
| | - Radi Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, 650 West Baltimore Street, 4th Floor, Suite 4228, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Trend-analysis of dental hard-tissue conditions as function of tooth age. J Dent 2018; 74:107-112. [PMID: 29800639 DOI: 10.1016/j.jdent.2018.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This retrospective in-vitro study investigated tooth age effect on dental hard-tissue conditions. METHODS Unidentified extracted premolars (n = 1500) were collected and their individual age was estimated (10-100 (±10) years old (yo)) using established dental forensic methods Dental caries, fluorosis and tooth wear (TW) were assessed using the International Caries Detection and Assessment System (ICDAS; 0-5 for crown and 0-2 for root), Thylstrup-Fejerskov (TFI; 0-9) and Basic Erosive Wear Examination (BEWE; 0-3) indices, respectively. Staining and color were assessed using the modified-Lobene (MLI) (0-3) and VITA shade (B1-C4) indices, respectively. Relationships between indices and age were tested using regression models. RESULTS Starting at age ∼10yo, presence of caries increased from 35% to 90% at ∼50yo (coronal), and from 0% to 35% at ∼80yo (root). Caries severity increased from ICDAS 0.5 to 2 at ∼40yo and from ICDAS 0 to 0.5 at ∼60yo for coronal and root caries, respectively. Presence of TW increased from 25% (occlusal) and 15% (smooth-surfaces) to 100% at ∼80yo. TW severity increased from BEWE 0.5 to 2 at ∼50yo (occlusal) and ∼0.3 to 1.5 at ∼50yo (smooth-surfaces). Percentage and severity of fluorosis decreased from 70% to 10% at ∼80yo, and from TFI 1 to 0 at ∼90yo, respectively. Percentage of extrinsic staining increased from 0% to 85% at ∼80yo and its severity increased from MLI 0 to 2 at ∼70yo. Color changed from A3 to B3 at ∼50yo (crown), and from C2 to A4 at ∼85yo (root). CONCLUSIONS Aging is proportionally related to the severity of caries, TW, staining, and inversely to dental fluorosis. Teeth become darker with age.
Collapse
|
27
|
Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent Mater 2018; 34:78-96. [DOI: 10.1016/j.dental.2017.11.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
|
28
|
Analysis of advanced glycation end products (AGEs) in dentine: useful for age estimation? Int J Legal Med 2017; 132:799-805. [DOI: 10.1007/s00414-017-1671-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/28/2017] [Indexed: 11/26/2022]
|
29
|
Time dependent deformation behavior of dentin. Arch Oral Biol 2017; 76:20-29. [DOI: 10.1016/j.archoralbio.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 01/03/2017] [Indexed: 11/23/2022]
|
30
|
On the permanence of tooth bleaching. Dent Mater 2016; 32:1281-1288. [DOI: 10.1016/j.dental.2016.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/26/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023]
|
31
|
Matsuda Y, Miura J, Shimizu M, Aoki T, Kubo M, Fukushima S, Hashimoto M, Takeshige F, Araki T. Influence of Nonenzymatic Glycation in Dentinal Collagen on Dental Caries. J Dent Res 2016; 95:1528-1534. [PMID: 27523626 DOI: 10.1177/0022034516662246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Advanced glycation end-products (AGEs) are generated via nonenzymatic glycation of dentinal collagen, resulting in accumulation of AGEs in dentin tissue. Since accumulated AGEs cause crosslinking between amino acid polypeptides in the collagen molecule and modify mechanical properties of dentinal collagen, the authors assumed that there would be a significant interaction between the generation of AGEs and progression of caries in dentin. To confirm such an interaction, spectroscopic imaging analyses (i.e., nanosecond fluorescence lifetime imaging and second harmonic generation light imaging) were performed in addition to biochemical and electron microscopic analyses in the present study. Seven carious human teeth were fixed in paraformaldehyde and cut longitudinally into 1-mm sections using a low-speed diamond saw for the following analyses. In transmission electron microscopy (TEM) analysis, nondecalcified specimens were embedded in epoxy resin and sliced into thin sections for observation. For the immunohistochemical analysis, the specimens were paraffin embedded after decalcification for 2 wk and sectioned with a microtome. Resultant sections were stained with anti-AGE and anticollagen antibodies. The demineralized specimens were used for spectroscopic analyses without additional treatment. For Western blotting analysis, specimens were separated into carious and sound dentin. Each specimen was homogenized with a bead crusher and an ultrasonic homogenizer and then treated with hydrochloric acid. In carious dentin, the collagen fibers showed an amorphous structure in the TEM image, and the AGEs were localized in the areas of bacterial invasion in the immunostaining image. The total amount of AGEs in carious dentin was higher than in sound dentin in Western blotting. The ultrastructure of type I collagen and total amount of AGEs varied markedly in the dentinal caries region. The fluorescence lifetime was shorter in the carious area than that in the sound areas, indicating an increase of AGEs in the carious area. The increase of AGEs could influence the progression of dentinal caries.
Collapse
Affiliation(s)
- Y Matsuda
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - J Miura
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - M Shimizu
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - T Aoki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - M Kubo
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - S Fukushima
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - M Hashimoto
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - F Takeshige
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - T Araki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
32
|
Montoya C, Arola D, Ossa E. Importance of tubule density to the fracture toughness of dentin. Arch Oral Biol 2016; 67:9-14. [DOI: 10.1016/j.archoralbio.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/15/2016] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
|
33
|
Shinno Y, Ishimoto T, Saito M, Uemura R, Arino M, Marumo K, Nakano T, Hayashi M. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Sci Rep 2016; 6:19849. [PMID: 26797297 PMCID: PMC4726429 DOI: 10.1038/srep19849] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023] Open
Abstract
In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen.
Collapse
Affiliation(s)
- Yuko Shinno
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering, 1-2 Yamadaoka, Suita 565-0871, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minatoku, Tokyo 105-0003, Japan
| | - Reo Uemura
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita 565-0871, Japan
| | - Masumi Arino
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita 565-0871, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minatoku, Tokyo 105-0003, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering, 1-2 Yamadaoka, Suita 565-0871, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
34
|
Montoya C, Arango-Santander S, Peláez-Vargas A, Arola D, Ossa E. Effect of aging on the microstructure, hardness and chemical composition of dentin. Arch Oral Biol 2015; 60:1811-20. [DOI: 10.1016/j.archoralbio.2015.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/17/2015] [Accepted: 10/01/2015] [Indexed: 10/23/2022]
|
35
|
Müller HD, Cvikl B, Janjić K, Nürnberger S, Moritz A, Gruber R, Agis H. Effects of Prolyl Hydroxylase Inhibitor L-mimosine on Dental Pulp in the Presence of Advanced Glycation End Products. J Endod 2015; 41:1852-61. [PMID: 26395911 DOI: 10.1016/j.joen.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. METHODS In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. RESULTS In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. CONCLUSIONS Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization.
Collapse
Affiliation(s)
- Heinz-Dieter Müller
- Department of Prosthodontics, Medical University of Vienna, Vienna, Austria; Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Cvikl
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Department of Conservative Dentistry and Periodontology, Medical University of Vienna, Vienna, Austria
| | - Klara Janjić
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Department of Conservative Dentistry and Periodontology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Nürnberger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria; Department of Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Department of Conservative Dentistry and Periodontology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Department of Oral Biology, Medical University of Vienna, Vienna, Austria; Laboratory for Oral Cell Biology, University of Bern, Bern, Switzerland
| | - Hermann Agis
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Department of Conservative Dentistry and Periodontology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Fukushima S, Shimizu M, Miura J, Matsuda Y, Kubo M, Hashimoto M, Aoki T, Takeshige F, Araki T. Decrease in fluorescence lifetime by glycation of collagen and its application in determining advanced glycation end-products in human dentin. BIOMEDICAL OPTICS EXPRESS 2015; 6:1844-56. [PMID: 26137384 PMCID: PMC4467697 DOI: 10.1364/boe.6.001844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 05/12/2023]
Abstract
Advanced Glycation End-products (AGEs) are produced by the Maillard reaction, which causes cross-linking of collagen and results in changes in the mechanical properties of collagen tissues. Several types of AGE fluoresce, and measurement of this fluorescence is effective for determining the presence of AGEs. Because fluorescence intensity by steady-state fluorometry is affected by sample surface condition and light source, we focused on fluorescence lifetime measurement (FLM). We found that fluorescence lifetime of collagen gel decreased with glycation progress. In vivo application of FLM for determination of AGEs was confirmed in human dentin.
Collapse
Affiliation(s)
- Shuichiro Fukushima
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University,
Japan
- These authors contributed equally to the work
| | - Masato Shimizu
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University,
Japan
- These authors contributed equally to the work
| | - Jiro Miura
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University,
Japan
| | - Yusuke Matsuda
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University,
Japan
| | - Mizuho Kubo
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University,
Japan
| | - Mamoru Hashimoto
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University,
Japan
| | - Takuya Aoki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University,
Japan
| | - Fumio Takeshige
- Division for Interdisciplinary Dentistry, Graduate School of Dentistry, Osaka University,
Japan
| | - Tsutomu Araki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University,
Japan
| |
Collapse
|
37
|
Importance of age on the dynamic mechanical behavior of intertubular and peritubular dentin. J Mech Behav Biomed Mater 2014; 42:229-42. [PMID: 25498296 DOI: 10.1016/j.jmbbm.2014.11.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 11/23/2022]
Abstract
An experimental evaluation of human coronal dentin was performed using nanoscopic dynamic mechanical analysis (nanoDMA). The primary objectives were to quantify any unique changes in mechanical behavior of intertubular and peritubular dentin with age, and to evaluate the microstructure and mechanical behavior of the mineral deposited within the lumens. Specimens of coronal dentin were evaluated by nanoDMA using single indents and in scanning mode via scanning probe microscopy. Results showed that there were no significant differences in the storage modulus or complex modulus between the two age groups (18-25 versus 54-83 yrs) for either the intertubular or peritubular tissue. However, there were significant differences in the dampening behavior between the young and old dentin, as represented in the loss modulus and tanδ responses. For both the intertubular and peritubular components, the capacity for dampening was significantly lower in the old group. Scanning based nanoDMA showed that the tubules of old dentin exhibit a gradient in elastic behavior, with decrease in elastic modulus from the cuff to the center of tubules filled with newly deposited mineral.
Collapse
|