1
|
Liu Y, Li T, Xiong J. Alzheimer's disease and diabetes-associated cognitive dysfunction: the microglia link? Metab Brain Dis 2025; 40:85. [PMID: 39754611 DOI: 10.1007/s11011-024-01516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD. Although AD and DACD share some common features related to symptomatology and pathophysiology, the characteristics and heterogeneity of microglia remain largely unknown in these two diseases. In this study, multiple bioinformatics analyses were performed to analyze the frequency, altered genes, cell-cell communication, and subtypes of microglia in AD and DACD mouse models based on two publicly single-nucleus RNA sequencing (snRNA-Seq) datasets. The results revealed that the frequency of microglia was increased in both AD and DACD mouse models when compared with control mice. After analyzing the differentially expressed genes of microglia from the two mouse models, only six common upregulated genes were found. The CellChat analysis revealed the complex cell-cell communication network (microglia clusters with other cell types) in 5XFAD vs. control mice and db/db vs. control mice. The microglia subtypes and their transcription factor activity profile in 5XFAD mice were different from that in db/db mice. In summary, this study provided some insights into the alterations of microglia in 5XFAD and db/db mice, which might open up potential avenues for the microglial-targeted therapy in AD and DACD.
Collapse
Affiliation(s)
- Yaqiong Liu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Tao Li
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Juliang Xiong
- Department of Pharmacy, the Second Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China.
| |
Collapse
|
2
|
Folloso MC, Villaraza SG, Yi-Wen L, Pek-Lan K, Tanaka T, Hilal S, Venketasubramanian N, Li-Hsian Chen C. The AHA/ASA and DSM-V diagnostic criteria for vascular cognitive impairment identify cases with predominant vascular pathology. Int J Stroke 2024; 19:925-934. [PMID: 38651759 PMCID: PMC11408959 DOI: 10.1177/17474930241252556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND There are major challenges in determining the etiology of vascular cognitive impairment (VCI) clinically, especially in the presence of mixed pathologies, such as vascular and amyloid. Most recently, two criteria (American Heart Association/American Stroke Association (AHA/ASA) and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V)) have been proposed for the clinical diagnosis of VCI but have not as yet been validated using neuroimaging. AIMS This study aims to determine whether the AHA/ASA and DSM-V criteria for VCI can distinguish between cases with predominantly vascular pathology and cases with mixed pathology. METHODS A total of 186 subjects were recruited from a cross-sectional memory clinic-based study at the National University Hospital, Singapore. All subjects underwent clinical and neuropsychological assessment, magnetic resonance imaging (MRI) and carbon 11-labeled Pittsburgh Compound B ([11C] PiB) positron emission tomography (PET) scans. Diagnosis of the etiological subtypes of VCI (probable vascular mild cognitive impairment (VaMCI), possible VaMCI, non-VaMCI, probable vascular dementia (VaD), possible VaD, non-VaD) were performed following AHA/ASA and DSM-V criteria. Brain amyloid burden was determined for each subject with standardized uptake value ratio (SUVR) values ⩾1.5 classified as amyloid positive. RESULTS Using κ statistics, both criteria had excellent agreement for probable VaMCI, probable VaD, and possible VaD (κ = 1.00), and good for possible VaMCI (κ = 0.71). Using the AHA/ASA criteria, the amyloid positivity of probable VaMCI (3.8%) and probable VaD (15%) was significantly lower compared to possible VaMCI (26.7%), non-VaMCI (33.3%), possible VaD (73.3%), and non-VaD (76.2%) (p < 0.001). Similarly, using the DSM-V criteria, the amyloid positivity of probable VaMCI (3.8%) and probable VaD (15%) was significantly lower compared to possible VaMCI (26.3%), non-VaMCI (32.1%), possible VaD (73.3%), and non-VaD (76.2%) (p < 0.001). In both criteria, there was good agreement in differentiating individuals with non-VaD and possible VaD, with significantly higher (p < 0.001) global [11C]-PiB SUVR, from individuals with probable VaMCI and probable VaD, who had predominant vascular pathology. CONCLUSION The AHA/ASA and DSM-V criteria for VCI can identify VCI cases with little to no concomitant amyloid pathology, hence supporting the utility of AHA/ASA and DSM-V criteria in diagnosing patients with predominant vascular pathology. DATA ACCESS STATEMENT Data supporting this study are available from the Memory Aging and Cognition Center, National University of Singapore. Access to the data is subject to approval and a data sharing agreement due to University policy.
Collapse
Affiliation(s)
- Melmar C Folloso
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Steven G Villaraza
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Lo Yi-Wen
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Khong Pek-Lan
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Tomotaka Tanaka
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Christopher Li-Hsian Chen
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| |
Collapse
|
3
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
4
|
Yang Y, Tong M, de la Monte SM. Early-Stage Moderate Alcohol Feeding Dysregulates Insulin-Related Metabolic Hormone Expression in the Brain: Potential Links to Neurodegeneration Including Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1211-1228. [PMID: 39247872 PMCID: PMC11380283 DOI: 10.3233/adr-240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD), one of the most prevalent causes of dementia, is mainly sporadic in occurrence but driven by aging and other cofactors. Studies suggest that excessive alcohol consumption may increase AD risk. Objective Our study examined the degree to which short-term moderate ethanol exposure leads to molecular pathological changes of AD-type neurodegeneration. Methods Long Evans male and female rats were fed for 2 weeks with isocaloric liquid diets containing 24% or 0% caloric ethanol (n = 8/group). The frontal lobes were used to measure immunoreactivity to AD biomarkers, insulin-related endocrine metabolic molecules, and proinflammatory cytokines/chemokines by duplex or multiplex enzyme-linked immunosorbent assays (ELISAs). Results Ethanol significantly increased frontal lobe levels of phospho-tau, but reduced Aβ, ghrelin, glucagon, leptin, PAI, IL-2, and IFN-γ. Conclusions Short-term effects of chronic ethanol feeding produced neuroendocrine molecular pathologic changes reflective of metabolic dysregulation, together with abnormalities that likely contribute to impairments in neuroplasticity. The findings suggest that chronic alcohol consumption rapidly establishes a platform for impairments in energy metabolism that occur in both the early stages of AD and alcohol-related brain degeneration.
Collapse
Affiliation(s)
- Yiwen Yang
- Molecular Pharmacology, Physiology and Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, the Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology and Neurosurgery, Rhode Island Hospital, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Mohamed-Mohamed H, García-Morales V, Sánchez Lara EM, González-Acedo A, Pardo-Moreno T, Tovar-Gálvez MI, Melguizo-Rodríguez L, Ramos-Rodríguez JJ. Physiological Mechanisms Inherent to Diabetes Involved in the Development of Dementia: Alzheimer's Disease. Neurol Int 2023; 15:1253-1272. [PMID: 37873836 PMCID: PMC10594452 DOI: 10.3390/neurolint15040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease reaching pandemic levels worldwide. In parallel, Alzheimer's disease (AD) and vascular dementia (VaD) are the two leading causes of dementia in an increasingly long-living Western society. Numerous epidemiological studies support the role of T2D as a risk factor for the development of dementia. However, few basic science studies have focused on the possible mechanisms involved in this relationship. On the other hand, this review of the literature also aims to explore the relationship between T2D, AD and VaD. The data found show that there are several alterations in the central nervous system that may be promoting the development of T2D. In addition, there are some mechanisms by which T2D may contribute to the development of neurodegenerative diseases such as AD or VaD.
Collapse
Affiliation(s)
- Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Victoria García-Morales
- Physiology Area, Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain
| | - Encarnación María Sánchez Lara
- Department of Personalidad, Evaluación y Tratamiento Psicológico, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Anabel González-Acedo
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Teresa Pardo-Moreno
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - María Isabel Tovar-Gálvez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Lucía Melguizo-Rodríguez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| |
Collapse
|
6
|
Li Z, Chen D, Li Z, Fan H, Guo L, Sui B, Ventikos Y. A computational study of fluid transport characteristics in the brain parenchyma of dementia subtypes. J Biomech 2023; 159:111803. [PMID: 37734184 DOI: 10.1016/j.jbiomech.2023.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The cerebral environment is a complex system consisting of parenchymal tissue and multiple fluids. Dementia is a common class of neurodegenerative diseases, caused by structural damages and functional deficits in the cerebral environment. In order to better understand the pathology of dementia from a cerebral fluid transport angle and provide clearer evidence that could help differentiate between dementia subtypes, such as Alzheimer's disease and vascular dementia, we conducted fluid-structure interaction modelling of the brain using a multiple-network poroelasticity model, which considers both neuropathological and cerebrovascular factors. The parenchyma was further subdivided and labelled into parcellations to obtain more localised and detailed data. The numerical results were converted to computed functional images by an in-house workflow. Different cerebral blood flow (CBF) and cerebrospinal fluid (CSF) clearance abnormalities were identified in the modelling results, when comparing Alzheimer's disease and vascular dementia. This paper presents our preliminary results as a proof of concept for a novel clinical diagnostic tool, and paves the way for a larger clinical study.
Collapse
Affiliation(s)
- Zeyan Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Duanduan Chen
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhiye Li
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Haojun Fan
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Liwei Guo
- Department of Mechanical Engineering, University College London, London, United Kingdom.
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China.
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom; School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Bedel HA, Sivgin I, Dalmaz O, Dar SUH, Çukur T. BolT: Fused window transformers for fMRI time series analysis. Med Image Anal 2023; 88:102841. [PMID: 37224718 DOI: 10.1016/j.media.2023.102841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Deep-learning models have enabled performance leaps in analysis of high-dimensional functional MRI (fMRI) data. Yet, many previous methods are suboptimally sensitive for contextual representations across diverse time scales. Here, we present BolT, a blood-oxygen-level-dependent transformer model, for analyzing multi-variate fMRI time series. BolT leverages a cascade of transformer encoders equipped with a novel fused window attention mechanism. Encoding is performed on temporally-overlapped windows within the time series to capture local representations. To integrate information temporally, cross-window attention is computed between base tokens in each window and fringe tokens from neighboring windows. To gradually transition from local to global representations, the extent of window overlap and thereby number of fringe tokens are progressively increased across the cascade. Finally, a novel cross-window regularization is employed to align high-level classification features across the time series. Comprehensive experiments on large-scale public datasets demonstrate the superior performance of BolT against state-of-the-art methods. Furthermore, explanatory analyses to identify landmark time points and regions that contribute most significantly to model decisions corroborate prominent neuroscientific findings in the literature.
Collapse
Affiliation(s)
- Hasan A Bedel
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Irmak Sivgin
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Onat Dalmaz
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Salman U H Dar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Neuroscience Program, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
8
|
Liu Q, Zhang X. Multimodality neuroimaging in vascular mild cognitive impairment: A narrative review of current evidence. Front Aging Neurosci 2023; 15:1073039. [PMID: 37009448 PMCID: PMC10050753 DOI: 10.3389/fnagi.2023.1073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The vascular mild cognitive impairment (VaMCI) is generally accepted as the premonition stage of vascular dementia (VaD). However, most studies are focused mainly on VaD as a diagnosis in patients, thus neglecting the VaMCI stage. VaMCI stage, though, is easily diagnosed by vascular injuries and represents a high-risk period for the future decline of patients' cognitive functions. The existing studies in China and abroad have found that magnetic resonance imaging technology can provide imaging markers related to the occurrence and development of VaMCI, which is an important tool for detecting the changes in microstructure and function of VaMCI patients. Nevertheless, most of the existing studies evaluate the information of a single modal image. Due to the different imaging principles, the data provided by a single modal image are limited. In contrast, multi-modal magnetic resonance imaging research can provide multiple comprehensive data such as tissue anatomy and function. Here, a narrative review of published articles on multimodality neuroimaging in VaMCI diagnosis was conducted,and the utilization of certain neuroimaging bio-markers in clinical applications was narrated. These markers include evaluation of vascular dysfunction before tissue damages and quantification of the extent of network connectivity disruption. We further provide recommendations for early detection, progress, prompt treatment response of VaMCI, as well as optimization of the personalized treatment plan.
Collapse
Affiliation(s)
- Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
9
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Yeung MK, Chau AKY, Chiu JYC, Shek JTL, Leung JPY, Wong TCH. Differential and subtype-specific neuroimaging abnormalities in amnestic and nonamnestic mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2022; 80:101675. [PMID: 35724862 DOI: 10.1016/j.arr.2022.101675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
While mild cognitive impairment (MCI) has been classified into amnestic MCI (aMCI) and nonamnestic MCI (naMCI), the neuropathological bases of these two subtypes remain elusive. Here, we performed a systematic review and meta-analysis to determine the subtype specificity of neuroimaging abnormalities in MCI and to identify neural features that may differ between aMCI and naMCI. We synthesized 50 studies that used common neuroimaging modalities, including magnetic resonance imaging and positron emission tomography, to compare brain atrophy, white matter abnormalities, cortical thinning, cerebral hypometabolism, amyloid/tau deposition, or other features among aMCI, naMCI, and normal cognition. Compared with normal cognition, aMCI shows diverse neuroimaging abnormalities of large effect sizes. In contrast, naMCI exhibits restricted abnormalities of small effect sizes. Some features, including medial temporal lobe atrophy and white matter abnormalities, are shared by the two MCI subtypes. Overall, brain abnormalities are worse, if not similar, in aMCI than in naMCI. The only neuroimaging abnormality specific to aMCI is increased amyloid burden; no feature specific to naMCI was found. Taken together, our findings have elucidated the neuropathological changes that occur in aMCI and naMCI. Clarifying the neuroimaging profiles of aMCI and naMCI can improve the early identification, differentiation, and intervention of prodromal dementia.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Anson Kwok-Yun Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Yin-Chuen Chiu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jay Tsz-Lok Shek
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jody Po-Yi Leung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Toby Chun-Ho Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
11
|
Xu A, Tang Y, Zeng Q, Wang X, Tian H, Zhou Y, Li Z. Electroacupuncture Enhances Cognition by Promoting Brain Glucose Metabolism and Inhibiting Inflammation in the APP/PS1 Mouse Model of Alzheimer's Disease: A Pilot Study. J Alzheimers Dis 2021; 77:387-400. [PMID: 32741819 DOI: 10.3233/jad-200242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease, yet there is no effective treatment. Electroacupuncture (EA) is a complementary alternative medicine approach. In clinical and animal studies, EA promotes cognition in AD and vascular dementia. It has been previously reported that cognitive decline in AD might be closely related to reduced glucose intake in the brain. It is worth mentioning that the regions of glucose hypometabolism are usually found to be associated with neuroinflammation. OBJECTIVE This study is to explore whether the protective mechanism of EA on cognition is related to the regulation of glucose metabolism and neuroinflammation. METHODS APP/PS1 mice were randomly divided into AD group and the treatment (AD + EA) group. In the AD + EA group, EA was applied on Baihui (GV20) and Yintang (GV29) for 20 min and then pricked at Shuigou (GV26), once every alternate day for 4 weeks. Morris water maze (MWM) tests were performed to evaluate the effects of EA treatment on cognitive functions. 18F-FDG PET, immunofluorescence, and western blot were used to examine the mechanisms underlying EA effects. RESULTS From MWM tests, EA treatment significantly improved cognition of APP/PS1 mice. From the 18F-FDG PET, the levels of uptake rate of glucose in frontal lobe were higher than the AD group after EA. From immunofluorescence and western blot, amyloid-β (Aβ) and neuroinflammation were reduced after EA. CONCLUSION These results suggest that EA may prevent cognitive decline in AD mouse models by enhancing glucose metabolism and inhibiting inflammation-mediated Aβ deposition in the frontal lobe.
Collapse
Affiliation(s)
- Anping Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yinshan Tang
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingtao Zeng
- Information Engineering Institute, Beijing Institute of Graphic Communication, Beijing, China
| | - Xin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huiling Tian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - You Zhou
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Wang YY, Sun YP, Luo YM, Peng DH, Li X, Yang BY, Wang QH, Kuang HX. Biomarkers for the Clinical Diagnosis of Alzheimer's Disease: Metabolomics Analysis of Brain Tissue and Blood. Front Pharmacol 2021; 12:700587. [PMID: 34366852 PMCID: PMC8333692 DOI: 10.3389/fphar.2021.700587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
With an increase in aging populations worldwide, age-related diseases such as Alzheimer's disease (AD) have become a global concern. At present, a cure for neurodegenerative disease is lacking. There is an urgent need for a biomarker that can facilitate the diagnosis, classification, prognosis, and treatment response of AD. The recent emergence of highly sensitive mass-spectrometry platforms and high-throughput technology can be employed to discover and catalog vast datasets of small metabolites, which respond to changed status in the body. Metabolomics analysis provides hope for a better understanding of AD as well as the subsequent identification and analysis of metabolites. Here, we review the state-of-the-art emerging candidate biomarkers for AD.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Ping Sun
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu-Meng Luo
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dong-Hui Peng
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao Li
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Frantellizzi V, Pani A, Ricci M, Locuratolo N, Fattapposta F, De Vincentis G. Neuroimaging in Vascular Cognitive Impairment and Dementia: A Systematic Review. J Alzheimers Dis 2021; 73:1279-1294. [PMID: 31929166 DOI: 10.3233/jad-191046] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebrovascular diseases are well established causes of cognitive impairment. Different etiologic entities, such as vascular dementia (VaD), vascular cognitive impairment, subcortical (ischemic) VaD, and vascular cognitive disorder, are included in the umbrella definition of vascular cognitive impairment and dementia (VCID). Because of the variability of VCID clinical presentation, there is no agreement on criteria defining the neuropathological threshold of this disorder. In fact, VCID is characterized by cerebral hemodynamic alteration which ranges from decreased cerebral blood flow to small vessels disease and involves a multifactorial process that leads to demyelination and gliosis, including blood-brain barrier disruption, hypoxia, and hypoperfusion, oxidative stress, neuroinflammation and alteration on neurovascular unit coupling, cerebral microbleeds, or superficial siderosis. Numerous criteria for the definition of VaD have been described: the National Institute of Neurological Disorders and Stroke Association Internationale pour Recherche'-et-l'Enseignement en Neurosciences criteria, the State of California Alzheimer's Disease Diagnostic and Treatment Centers criteria, DSM-V criteria, the Diagnostic Criteria for Vascular Cognitive Disorders (a VASCOG Statement), and Vascular Impairment of Cognition Classification Consensus Study. Neuroimaging is fundamental for definition and diagnosis of VCID and should be used to assess the extent, location, and type of vascular lesions. MRI is the most sensible technique, especially if used according to standardized protocols, even if CT plays an important role in several conditions. Functional neuroimaging, in particular functional MRI and PET, may facilitate differential diagnosis among different forms of dementia. This systematic review aims to explore the state of the art and future perspective of non-invasive diagnostics of VCID.
Collapse
Affiliation(s)
| | - Arianna Pani
- Clinical Pharmacology and Toxicology, University of Milan "Statale", Italy
| | - Maria Ricci
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | | | | | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
de la Monte SM, Tong M, Wands JR. The 20-Year Voyage Aboard the Journal of Alzheimer's Disease: Docking at 'Type 3 Diabetes', Environmental/Exposure Factors, Pathogenic Mechanisms, and Potential Treatments. J Alzheimers Dis 2019; 62:1381-1390. [PMID: 29562538 PMCID: PMC5870020 DOI: 10.3233/jad-170829] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Journal of Alzheimer’s Disease (JAD), founded in 1998, played a pivotal role in broadening the field of research on Alzheimer’s disease (AD) by publishing a diverse range of clinical, pathological, molecular, biochemical, epidemiological, experimental, and review articles from its birth. This article recounts my own journey as an author who contributed articles to JAD over the 20 years of the journal’s existence. In retrospect, it seems remarkable that a considerable body of work that originated from our group marks a trail that began with studies of vascular, stress, and mitochondrial factors in AD pathogenesis, exploded into the concept of ‘Type 3 Diabetes’, and continued with the characterization of how environmental, exposure, and lifestyle factors promote neurodegeneration and which therapeutic strategies could reverse the neurodegeneration cascade.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Neurology, Pathology (Neuropathology), Neurosurgery, and Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Departments of Neurology, Pathology (Neuropathology), Neurosurgery, and Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, RI, USA
| | - Jack R Wands
- Departments of Neurology, Pathology (Neuropathology), Neurosurgery, and Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
15
|
Liou CJ, Tong M, Vonsattel JP, de la Monte SM. Altered Brain Expression of Insulin and Insulin-Like Growth Factors in Frontotemporal Lobar Degeneration: Another Degenerative Disease Linked to Dysregulation of Insulin Metabolic Pathways. ASN Neuro 2019; 11:1759091419839515. [PMID: 31081340 PMCID: PMC6535914 DOI: 10.1177/1759091419839515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is the third most common dementing neurodegenerative disease with nearly 80% having no known etiology. OBJECTIVE Growing evidence that neurodegeneration can be linked to dysregulated metabolism prompted us to measure a panel of trophic factors, receptors, and molecules that modulate brain metabolic function in FTLD. METHODS Postmortem frontal (Brodmann's area [BA]8/9 and BA24) and temporal (BA38) lobe homogenates were used to measure immunoreactivity to Tau, phosphorylated tau (pTau), ubiquitin, 4-hydroxynonenal (HNE), transforming growth factor-beta 1 (TGF-β1) and its receptor (TGF-β1R), brain-derived neurotrophic factor (BDNF), nerve growth factor, neurotrophin-3, neurotrophin-4, tropomyosin receptor kinase, and insulin and insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-2) and their receptors by direct-binding enzyme-linked immunosorbent assay. RESULTS FTLD brains had significantly elevated pTau, ubiquitin, TGF-β1, and HNE immunoreactivity relative to control. In addition, BDNF and neurotrophin-4 were respectively reduced in BA8/9 and BA38, while neurotrophin-3 and nerve growth factor were upregulated in BA38, and tropomyosin receptor kinase was elevated in BA24. Lastly, insulin and insulin receptor expressions were elevated in the frontal lobe, IGF-1 was increased in BA24, IGF-1R was upregulated in all three brain regions, and IGF-2 receptor was reduced in BA24 and BA38. CONCLUSIONS Aberrantly increased levels of pTau, ubiquitin, HNE, and TGF-β1, marking neurodegeneration, oxidative stress, and neuroinflammation, overlap with altered expression of insulin/IGF signaling ligand and receptors in frontal and temporal lobe regions targeted by FTLD. Dysregulation of insulin-IGF signaling networks could account for brain hypometabolism and several characteristic neuropathologic features that characterize FTLD but overlap with Alzheimer's disease, Parkinson's disease, and Dementia with Lewy Body Disease.
Collapse
Affiliation(s)
- Connie J. Liou
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Division of Neuropathology, Departments of Pathology, Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, the Providence VA Medical Center, Providence, RI, USA
| | - Jean P. Vonsattel
- New York Brain Bank, Taub Institute, Columbia University, New York, NY, USA
| | - Suzanne M. de la Monte
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Division of Neuropathology, Departments of Pathology, Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, the Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
16
|
Wei H, Kong M, Zhang C, Guan L, Ba M. The structural MRI markers and cognitive decline in prodromal Alzheimer's disease: a 2-year longitudinal study. Quant Imaging Med Surg 2018; 8:1004-1019. [PMID: 30598878 DOI: 10.21037/qims.2018.10.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Being clinically diagnosed with a mild cognitive impairment (MCI) due to Alzheimer's disease (AD) is widely studied. Yet, the clinical and structural neuroimaging characteristics for prodromal AD, which are defined as A+T+MCI based on the AT (N) system are still highly desirable. This study evaluates the differences of the cognitive assessments and structural magnetic resonance imaging (MRI) between the early MCI (EMCI) and late MCI (LMCI) participants based on the AT (N) system. The potential clinical value of the structural MRI as a predictor of cognitive decline during follow-up in prodromal AD is further investigated. Methods A total of 406 MCI participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were chosen and dichotomized into EMCI and LMCI groups according to the Second Edition (Logical Memory II) Wechsler Memory Scale. Multiple markers' data was collected, including age, sex, years of education, ApoE4 status, cerebrospinal fluid (CSF) biomarkers, standardized uptake values ratios (SUVR) means of florbetapir-PET-AV45, cognitive measures, and structural MRI. We chose 197 A+T+MCI participants (prodromal AD) with positive biomarkers of Aβ plaques (labeled "A") and fibrillar tau (labeled "T"). We diagnosed Aβ plaques positive by the SUVR means of florbetapir-PET-AV45 (cut-off >1.1) and fibrillar tau positive by CSF phosphorylated-tau at threonine 181 (p-tau) (cut-off >23 pg/mL). The differences of cognitive assessments and regions of interest (ROIs) defined on the MRI template between EMCI and LMCI were compared. Furthermore, the potential clinical utility of the MRI as the predictor of cognitive decline in prodromal AD was evaluated by investigating the relationship between baseline MRI markers and cognition decline at the follow-up period, through a linear regression model. Results The LMCI participants had a significantly more amyloid burden and CSF levels of total t-tau than the EMCI participants. The LMCI participants scored a lower result than the EMCI group in the global cognition scales and subscales which included tests for memory, delayed recall memory, executive function, language, attention and visuospatial skills. The cognition levels declined faster in the LMCI participants during the 12- and 24-month follow-up. There were significant differences in ROIs on the structural MRI between the two groups, including a bilateral entorhinal, a bilateral hippocampus, a bilateral amygdala, a bilateral lateral ventricle and cingulate, a corpus callosum, and a left temporal. The thickness average of the left entorhinal, the left middle temporal, the left superior temporal, and the right isthmus cingulate was a main contributor to the decreased global cognition levels. The thickness average of the left superior temporal and bilateral entorhinal played a key role in the memory domain decline. The thickness average of the left middle temporal, and the right isthmus cingulate was significantly associated with an executive function decline. Conclusions Based on the AT (N) system, surely, both the EMCI and LMCI diagnoses presented significant differences in multiple cognition domains. Signature ROIs from the structural MRI tests had correlated a cognitive decline, and could act as one potential predictive marker.
Collapse
Affiliation(s)
- Hongchun Wei
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai 264000, China
| | - Chunhua Zhang
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Lina Guan
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Maowen Ba
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | | |
Collapse
|
17
|
Abstract
Dementia is any decline in cognition that is significant enough to interfere with independent, daily functioning. Dementia is best characterized as a syndrome rather than as one particular disease. The causes of dementia are myriad and include primary neurologic, neuropsychiatric, and medical conditions. It is common for multiple diseases to contribute to any one patient's dementia syndrome. Neurodegenerative dementias, like Alzheimer disease and dementia with Lewy bodies, are most common in the elderly, while traumatic brain injury and brain tumors are common causes in younger adults. While the recent decade has seen significant advancements in molecular neuroimaging, in understanding clinico-pathologic correlation, and in the development of novel biomarkers, clinicians still await disease-modifying therapies for neurodegenerative dementias. Until then, clinicians from varied disciplines and medical specialties are well poised to alleviate suffering, aggressively treat contributing conditions, employ medications to improve cognitive, neuropsychiatric, and motor symptoms, promote evidence-based brain-healthy behaviors, and improve overall quality of life for patients and families.
Collapse
Affiliation(s)
- Seth A Gale
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| | - Diler Acar
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Kirk R Daffner
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
18
|
Classification of Alzheimer's and MCI Patients from Semantically Parcelled PET Images: A Comparison between AV45 and FDG-PET. Int J Biomed Imaging 2018; 2018:1247430. [PMID: 29736165 PMCID: PMC5875062 DOI: 10.1155/2018/1247430] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 02/01/2023] Open
Abstract
Early identification of dementia in the early or late stages of mild cognitive impairment (MCI) is crucial for a timely diagnosis and slowing down the progression of Alzheimer's disease (AD). Positron emission tomography (PET) is considered a highly powerful diagnostic biomarker, but few approaches investigated the efficacy of focusing on localized PET-active areas for classification purposes. In this work, we propose a pipeline using learned features from semantically labelled PET images to perform group classification. A deformable multimodal PET-MRI registration method is employed to fuse an annotated MNI template to each patient-specific PET scan, generating a fully labelled volume from which 10 common regions of interest used for AD diagnosis are extracted. The method was evaluated on 660 subjects from the ADNI database, yielding a classification accuracy of 91.2% for AD versus NC when using random forests combining features from cross-sectional and follow-up exams. A considerable improvement in the early versus late MCI classification accuracy was achieved using FDG-PET compared to the AV-45 compound, yielding a 72.5% rate. The pipeline demonstrates the potential of exploiting longitudinal multiregion PET features to improve cognitive assessment.
Collapse
|
19
|
Wallin A, Román GC, Esiri M, Kettunen P, Svensson J, Paraskevas GP, Kapaki E. Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease. J Alzheimers Dis 2018; 62:1417-1441. [PMID: 29562536 PMCID: PMC5870030 DOI: 10.3233/jad-170803] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neuropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age. Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea. Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts. The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies. Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex information, to formulate strategies, and to exercise self-control. In comparison with Alzheimer's disease (AD), patients with SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers that separate AD from SSVD include reduction of cerebrospinal fluid amyloid-β (Aβ)42 and of the ratio Aβ42/Aβ40 often with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed. The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder.
Collapse
Affiliation(s)
- Anders Wallin
- Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden and Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University, Hospital, Gothenburg, Sweden
| | - Gustavo C. Román
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Margaret Esiri
- Neuropathology Department, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden and Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University, Hospital, Gothenburg, Sweden
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Johan Svensson
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - George P. Paraskevas
- 1st Department of Neurology, Neurochemistry Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, Neurochemistry Unit, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Duncan HD, Nikelski J, Pilon R, Steffener J, Chertkow H, Phillips NA. Structural brain differences between monolingual and multilingual patients with mild cognitive impairment and Alzheimer disease: Evidence for cognitive reserve. Neuropsychologia 2018; 109:270-282. [DOI: 10.1016/j.neuropsychologia.2017.12.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 01/17/2023]
|
21
|
Henriksen OM, Hansen NL, Osler M, Mortensen EL, Hallam DM, Pedersen ET, Chappell M, Lauritzen MJ, Rostrup E. Sub-Clinical Cognitive Decline and Resting Cerebral Blood Flow in Middle Aged Men. PLoS One 2017; 12:e0169912. [PMID: 28095458 PMCID: PMC5241142 DOI: 10.1371/journal.pone.0169912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/22/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although dementia is associated with both global and regional cerebral blood flow (CBF) changes, little is known about cerebral perfusion in the early pre-clinical stages of cognitive decline preceding overt cognitive dysfunction. The aim of this study was to investigate the association of early sub-clinical cognitive decline with CBF. MATERIALS AND METHODS The study participants were recruited from a cohort of Danish men born in 1953. Based on a regression model we selected men who performed better (Group A, n = 94) and poorer (Group B, n = 95) on cognitive testing at age 57 than expected from testing at age 20. Participants underwent supplementary cognitive testing, blood sampling and MRI including measurements of regional and global CBF. RESULTS Regional CBF was lower in group B than in group A in the posterior cingulate gyrus and the precuneus. The associations were attenuated when corrected for global atrophy, but remained significant in regions of interest based analysis adjusting for regional gray matter volume and vascular risk factors. No influence of group on global CBF was observed. CONCLUSIONS We conclude that early sub-clinical cognitive decline is associated with reduced perfusion in the precuneus and posterior cingulate gyrus independently of regional atrophy and vascular risk factors, but cannot be statistically separated from an association with global atrophy.
Collapse
Affiliation(s)
- Otto Mølby Henriksen
- Functional Imaging Unit, Dept. of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Dept. of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Blegdamsvej, Copenhagen, Denmark
| | - Naja Liv Hansen
- Functional Imaging Unit, Dept. of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Dept. of Clin. Physiology and Nuclear Medicine, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Merete Osler
- Dept. of Public Health, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
| | - Erik Lykke Mortensen
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Dept. of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Merete Hallam
- Dept. of Radiology, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
| | - Esben Thade Pedersen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Michael Chappell
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Functional MRI of the Brain, Nuffield Dept. of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Martin Johannes Lauritzen
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Dept. of Neuroscience & Pharmacology, University of Copenhagen, Copenhagen Denmark
- Dept. of Clinical Neurophysiology, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
| | - Egill Rostrup
- Functional Imaging Unit, Dept. of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet Glostrup, Glostrup, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Lacalle-Aurioles M, Navas-Sánchez FJ, Alemán-Gómez Y, Olazarán J, Guzmán-De-Villoria JA, Cruz-Orduña I, Mateos-Pérez JM, Desco M. The Disconnection Hypothesis in Alzheimer's Disease Studied Through Multimodal Magnetic Resonance Imaging: Structural, Perfusion, and Diffusion Tensor Imaging. J Alzheimers Dis 2016; 50:1051-64. [PMID: 26890735 DOI: 10.3233/jad-150288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to the so-called disconnection hypothesis, the loss of synaptic inputs from the medial temporal lobes (MTL) in Alzheimer's disease (AD) may lead to reduced activity of target neurons in cortical areas and, consequently, to decreased cerebral blood flow (CBF) in those areas. The aim of this study was to assess whether hypoperfusion in parietotemporal and frontal cortices of patients with mild cognitive impairment who converted to AD (MCI-c) and patients with mild AD is associated with atrophy in the MTL and/or microstructural changes in the white matter (WM) tracts connecting these areas. We assessed these relationships by investigating correlations between CBF in hypoperfused areas, mean cortical thickness in atrophied regions of the MTL, and fractional anisotropy (FA) in WM tracts. In the MCI-c group, a strong correlation was observed between CBF of the superior parietal gyri and FA in the parahippocampal tracts (left: r = 0.90, p < 0.0001; right: r = 0.597, p = 0.024), and between FA in the right parahippocampal tract and the right precuneus (r = 0.551, p = 0.041). No significant correlations between CBF in hypoperfused regions and FA in the WM tract were observed in the AD group. These results suggest an association between perfusion deficits and altered WM tracts in prodromal AD, while microvasculature impairments may have a greater influence in more advanced stages. We did not find correlations between cortical thinning in the medial temporal lobes and decreased FA in the WM tracts of the limbic system in either group.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Francisco Javier Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Yasser Alemán-Gómez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Javier Olazarán
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Isabel Cruz-Orduña
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José María Mateos-Pérez
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| |
Collapse
|
23
|
Sansoni J, Duncan C, Grootemaat P, Capell J, Samsa P, Westera A. Younger Onset Dementia. Am J Alzheimers Dis Other Demen 2016; 31:693-705. [PMID: 26888862 PMCID: PMC10852741 DOI: 10.1177/1533317515619481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
This literature review focused on the experience, care, and service requirements of people with younger onset dementia. Systematic searches of 10 relevant bibliographic databases and a rigorous examination of the literature from nonacademic sources were undertaken. Searches identified 304 articles assessed for relevance and level of evidence, of which 74% were academic literature. The review identified the need for (1) more timely and accurate diagnosis and increased support immediately following diagnosis; (2) more individually tailored services addressing life cycle issues; (3) examination of the service needs of those living alone; (4) more systematic evaluation of services and programs; (5) further examination of service utilization, costs of illness, and cost effectiveness; and (6) current Australian clinical surveys to estimate prevalence, incidence, and survival rates. Although previous research has identified important service issues, there is a need for further studies with stronger research designs and consideration of the control of potentially confounding factors.
Collapse
Affiliation(s)
- Janet Sansoni
- 1 Australian Health Services Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Cathy Duncan
- 1 Australian Health Services Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Pamela Grootemaat
- 1 Australian Health Services Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jacquelin Capell
- 1 Australian Health Services Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Peter Samsa
- 1 Australian Health Services Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Anita Westera
- 1 Australian Health Services Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
24
|
Khan F, Oloketuyi SF. A future perspective on neurodegenerative diseases: nasopharyngeal and gut microbiota. J Appl Microbiol 2016; 122:306-320. [PMID: 27740729 DOI: 10.1111/jam.13327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/23/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are considered a serious life-threatening issue regardless of age. Resulting nerve damage progressively affects important activities, such as movement, coordination, balance, breathing, speech and the functioning of vital organs. Reports on the subject have concluded that neurodegenerative disease can be caused by mutations of susceptible genes, alcohol consumption, toxins, chemicals and other unknown environmental factors. Although several diagnostic techniques can be used to determine aetiologies, the process is difficult and often fails. Research shows that nasopharyngeal and gut microbiota play important roles in brain to spinal cord coordination. However, no conclusive epidemiologic evidence is available on the roles played by respiratory and gut microbiota in the development of neurodegenerative diseases. Thus, understanding the connection between respiratory and gut microbiota and the nervous system could provide information on causal links. The present review describes future perspectives on the role played by nasopharyngeal and gut microbiota in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- F Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| | - S F Oloketuyi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, India
| |
Collapse
|
25
|
Multimodality Imaging of Neurodegenerative Processes: Part 1, The Basics and Common Dementias. AJR Am J Roentgenol 2016; 207:871-882. [PMID: 27505704 DOI: 10.2214/ajr.14.12842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Multimodality imaging plays an important role in the structural and functional characterization of neurodegenerative conditions. This article illustrates the basic concepts of anatomic, metabolic, and amyloid imaging and describes the application of a multimodality approach in the evaluation of patients with the more common neurodegenerative dementia processes. Proper utilization of clinically available imaging techniques allows greater insight into these common disease processes. CONCLUSION Recognizing the strength of combined anatomic, metabolic, and amyloid imaging can allow a more complete and confident assessment of patients with common degenerative dementias. This added knowledge can improve clinical care, allow initiation of appropriate therapies and counseling, and improve prognostication.
Collapse
|
26
|
Discharge Against Medical Advice in Traumatic Brain Injury: Follow-Up and Readmission Rate. Can J Neurol Sci 2016; 44:311-317. [PMID: 27226130 DOI: 10.1017/cjn.2016.241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Patients who leave hospital against medical advice (AMA) may be at risk of adverse health outcomes, medical complications, and readmission. In this study, we examined the characteristics of patients who left AMA after traumatic brain injury (TBI), their rates of follow-up visits, and readmission. METHODS We retrospectively studied 106 consecutive patients who left the tertiary trauma center AMA (1.8% of all admitted patients with a TBI). Preinjury health and social issues, mechanism of injury, computed tomography findings, and injury markers were collected. They were correlated to compliance with follow-up visits and unplanned emergency room (ER) visits and readmission rates. RESULTS The most prevalent premorbid health or social-related issues were alcohol abuse (33%) and assault as a mechanism of trauma (33%). Only 15 (14.2%) subjects came to follow-up visit for their TBI. Sixteen (15.1%) of the 106 subjects had multiple readmissions and/or ER visits related to substance abuse. Seven (6.6%) had multiple readmissions or ER visits with psychiatric reasons. Those patients with multiple readmissions and ER visits showed in higher proportion preexisting neurological condition (p=0.027), homelessness (p=0.012), previous neurosurgery (p=0.014), preexisting encephalomalacia (p=0.011), and had a higher ISS score (p=0.014) than those who were not readmitted multiple times. CONCLUSIONS The significantly increased risks of multiple follow-up visits and readmission among TBI patients who leave hospital AMA are related to a premorbid vulnerability and psychosocial issues. Clinicians should target AMA TBI patients with premorbid vulnerability for discharge transition interventions.
Collapse
|
27
|
Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof F, Tijms B, Lemstra AW, Tong T, Guerrero R, Schuh A, Ledig C, Rueckert D, Soininen H, Remes AM, Waldemar G, Hasselbalch S, Mecocci P, van der Flier W, Lötjönen J. Differential diagnosis of neurodegenerative diseases using structural MRI data. NEUROIMAGE-CLINICAL 2016; 11:435-449. [PMID: 27104138 PMCID: PMC4827727 DOI: 10.1016/j.nicl.2016.02.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/02/2016] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. Differential diagnostics of dementias was studied using structural MRI data. 504 patients with both T1 and FLAIR MRIs from five patient classes were evaluated. Different fully automatic quantification methods were compared and combined. Classification accuracy of 70.6% was obtained for 5-class classification problem. Combination of several quantification methods was needed for optimal accuracy.
Collapse
Affiliation(s)
- Juha Koikkalainen
- VTT Technical Research Centre of Finland, Tampere, Finland; Combinostics Ltd., Tampere, Finland.
| | - Hanneke Rhodius-Meester
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Antti Tolonen
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Betty Tijms
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Tong Tong
- Department of Computing, Imperial College London, London, UK
| | | | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Christian Ledig
- Department of Computing, Imperial College London, London, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Gunhild Waldemar
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steen Hasselbalch
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Wiesje van der Flier
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Jyrki Lötjönen
- VTT Technical Research Centre of Finland, Tampere, Finland; Combinostics Ltd., Tampere, Finland
| |
Collapse
|
28
|
Nunez K, Kay J, Krotow A, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Cigarette Smoke-Induced Alterations in Frontal White Matter Lipid Profiles Demonstrated by MALDI-Imaging Mass Spectrometry: Relevance to Alzheimer's Disease. J Alzheimers Dis 2016; 51:151-63. [PMID: 26836183 PMCID: PMC5575809 DOI: 10.3233/jad-150916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Meta-analysis has shown that smokers have significantly increased risks for Alzheimer's disease (AD), and neuroimaging studies showed that smoking alters white matter (WM) structural integrity. OBJECTIVE Herein, we characterize the effects of cigarette smoke (CS) exposures and withdrawal on WM myelin lipid composition using matrix assisted laser desorption and ionization-imaging mass spectrometry (MALDI-IMS). METHODS Young adult male A/J mice were exposed to air (8 weeks; A8), CS (4 or 8 weeks; CS4, CS8), or CS8 followed by 2 weeks recovery (CS8 + R). Frontal lobe WM was examined for indices of lipid and protein oxidation and lipid profile alterations by MALDI-IMS. Lipid ions were identified by MS/MS with the LIPID MAPS prediction tools database. Inter-group comparisons were made using principal component analysis and R-generated heatmap. RESULTS CS increased lipid and protein adducts such that higher levels were present in CS8 compared with CS4 samples. CS8 + R reversed CS8 effects and normalized the levels of oxidative stress. MALDI-IMS demonstrated striking CS-associated alterations in WM lipid profiles characterized by either reductions or increases in phospholipids (phosphatidylinositol, phosphatidylserine, phosphatidylcholine, or phosphatidylethanolamine) and sphingolipids (sulfatides), and partial reversal of CS's inhibitory effects with recovery. The heatmap hierarchical dendrogram and PCA distinguished CS exposure, duration, and withdrawal effects on WM lipid profiles. CONCLUSION CS-mediated WM degeneration is associated with lipid peroxidation, protein oxidative injury, and alterations in myelin lipid composition, including shifts in phospholipids and sphingolipids needed for membrane integrity, plasticity, and intracellular signaling. Future goals are to delineate WM abnormalities in AD using MALDI-IMS, and couple the findings with MRI-mass spectroscopy to improve in vivo diagnostics and early detection of brain biochemical responses to treatment.
Collapse
Affiliation(s)
- Kavin Nunez
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI, USA
| | - Jared Kay
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alexander Krotow
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Pathobiology Graduate Programs at Brown University, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R. Agarwal
- The Department of Pharmacology Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- The Department of Pharmacology Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Divisions of Neuropathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
29
|
Yu R, Deochand C, Krotow A, Leão R, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Tobacco Smoke-Induced Brain White Matter Myelin Dysfunction: Potential Co-Factor Role of Smoking in Neurodegeneration. J Alzheimers Dis 2016; 50:133-48. [PMID: 26639972 PMCID: PMC5577392 DOI: 10.3233/jad-150751] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Meta-analysis studies showed that smokers have increased risk for developing Alzheimer's disease (AD) compared with non-smokers, and neuroimaging studies revealed that smoking damages white matter structural integrity. OBJECTIVE The present study characterizes the effects of side-stream (second hand) cigarette smoke (CS) exposures on the expression of genes that regulate oligodendrocyte myelin-synthesis, maturation, and maintenance and neuroglial functions. METHODS Adult male A/J mice were exposed to air (8 weeks; A8), CS (4 or 8 weeks; CS4, CS8), or CS8 followed by 2 weeks recovery (CS8 + R). The frontal lobes were used for histology and qRT-PCR analysis. RESULTS Luxol fast blue, Hematoxylin and Eosin stained histological sections revealed CS-associated reductions in myelin staining intensity and narrowing of the corpus callosum. CS exposures broadly decreased mRNA levels of immature and mature oligodendrocyte myelin-associated, neuroglial, and oligodendrocyte-related transcription factors. These effects were more prominent in the CS8 compared with CS4 group, suggesting that molecular abnormalities linked to white matter atrophy and myelin loss worsen with duration of CS exposure. Recovery normalized or upregulated less than 25% of the suppressed genes; in most cases, inhibition of gene expression was either sustained or exacerbated. CONCLUSION CS exposures broadly inhibit expression of genes needed for myelin synthesis and maintenance. These adverse effects often were not reversed by short-term CS withdrawal. The results support the hypothesis that smoking contributes to white matter degeneration, and therefore could be a key risk factor for a number of neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Rosa Yu
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Chetram Deochand
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Molecular Pharmacology and Physiology Graduate Program at Brown University, Providence, RI, USA
| | - Alexander Krotow
- Molecular Pharmacology and Physiology Graduate Program at Brown University, Providence, RI, USA
| | - Raiane Leão
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ming Tong
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R. Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Divisions of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Gastroenterology and Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neuropathology, and Departments of Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
30
|
Yang EJ, Cai M, Lee JH. Neuroprotective Effects of Electroacupuncture on an Animal Model of Bilateral Common Carotid Artery Occlusion. Mol Neurobiol 2015; 53:7228-7236. [PMID: 26687230 DOI: 10.1007/s12035-015-9610-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/03/2015] [Indexed: 11/30/2022]
Abstract
Mild cognitive impairment (MCI) is considered as an intermediate zone between normal aging and dementia. The most prominent feature of MCI is an isolated mild decline in memory, whereas other cognitive functions remain intact. The symptoms of vascular cognitive impairment (VCI) range from MCI to dementia, and an animal model of VCI has been established in a gerbil by transient bilateral common carotid artery occlusion (BCCAO). In the current study, we set out to investigate whether electroacupuncture (EA) could improve memory in gerbils with BCCAO-induced MCI. Animals were randomly divided into two groups: sham-operated group (n = 17) and a model group that was subdivided into BCCAO, n = 17, and EA-treated BCCAO, n = 28. Gerbils were treated with EA at KI3 or GV20 four times every other day using a set of electrical stimulus pulses (1 mA, 2 Hz) that were applied for 20 min. For investigation of cognitive function, we performed a Y-maze test and Western blotting to identify the expression of neuroinflammatory proteins. EA treatment at KI3 ("Taegye" acupoint) improved cognitive function and reduced the expression of neuroinflammatory proteins including ionized calcium-binding adaptor molecule 1, toll-like receptor 4, tumor necrosis factor alpha, and phospho-extracellular signal-regulated kinase in the hippocampus of gerbils that had undergone BCCAO. Furthermore, using micro-positron emission tomography/computed tomography, we demonstrated that EA treatment increased glucose metabolism in the hippocampus of these animals. The present study highlights the neuroprotective effect of EA treatment against BCCAO-induced memory dysfunction, neuroinflammation, and glucose metabolism. Our findings suggest that EA, which has previously been used in complementary and alternative medicine, might also be considered as a therapy that can improve memory and reduce neuroinflammation associated with dementia.
Collapse
Affiliation(s)
- Eun Jin Yang
- Clinical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 305-811, Republic of Korea
| | - MuDan Cai
- Clinical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 305-811, Republic of Korea
| | - Jun-Hwan Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 305-811, Republic of Korea.
| |
Collapse
|
31
|
Ding W, Cao W, Wang Y, Sun Y, Chen X, Zhou Y, Xu Q, Xu J. Altered Functional Connectivity in Patients with Subcortical Vascular Cognitive Impairment--A Resting-State Functional Magnetic Resonance Imaging Study. PLoS One 2015; 10:e0138180. [PMID: 26376180 PMCID: PMC4573963 DOI: 10.1371/journal.pone.0138180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/27/2015] [Indexed: 12/28/2022] Open
Abstract
Recent neuroimaging studies have shown that people with subcortical vascular cognitive impairment (sVCI) have structural and functional abnormalities in the frontal lobe and subcortical brain sites. In this study, we used seed-based resting-state functional connectivity (rsFC) analysis and voxel-mirrored homotopic connectivity (VMHC) techniques to investigate the alteration of rsFC in patients with sVCI. rsFC and structural magnetic resonance images were acquired for 51 patients with subcortical cerebrovascular disease. All patients were subdivided based on cognitive status into 29 with sVCI and 22 controls; patient characteristics were matched. rsFC of the posterior cingulate cortex (PCC) and VMHC were calculated separately, and rsFC of the PCC and VMHC between the two groups were compared. The regions showing abnormal rsFC of the PCC or VMHC in sVCI patients were adopted as regions of interest for correlation analyses. Our results are as follows: The patients with sVCI exhibited increases in rsFC in the left middle temporal lobe, right inferior temporal lobe and left superior frontal gyrus, and significant decreases in rsFC of the left thalamus with the PCC. sVCI patients showed a significant deficit in VMHC between the bilateral lingual gyrus, putamen, and precentral gyrus. Additionally, the z-memory score was significantly positively associated with connectivity between the left thalamus and the PCC (r = 0.41, p = 0.03, uncorrected) in the sVCI group. Our findings suggest that the frontal lobe and subcortical brain sites play an important role in the pathogenesis of sVCI. Furthermore, rsFC between the left thalamus and the PCC might indicate the severity of sVCI.
Collapse
Affiliation(s)
- Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Wenwei Cao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Xue Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
- * E-mail: (YZ); (QZ)
| | - Qun Xu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
- * E-mail: (YZ); (QZ)
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| |
Collapse
|
32
|
Boraxbekk CJ, Lundquist A, Nordin A, Nyberg L, Nilsson LG, Adolfsson R. Free Recall Episodic Memory Performance Predicts Dementia Ten Years prior to Clinical Diagnosis: Findings from the Betula Longitudinal Study. Dement Geriatr Cogn Dis Extra 2015; 5:191-202. [PMID: 26078750 PMCID: PMC4463780 DOI: 10.1159/000381535] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Early dementia diagnosis is a considerable challenge. The present study examined the predictive value of cognitive performance for a future clinical diagnosis of late-onset Alzheimer's disease or vascular dementia in a random population sample. METHODS Cognitive performance was retrospectively compared between three groups of participants from the Betula longitudinal cohort. Group 1 developed dementia 11-22 years after baseline testing (n = 111) and group 2 after 1-10 years (n = 280); group 3 showed no deterioration towards dementia during the study period (n = 2,855). Multinomial logistic regression analysis was used to investigate the predictive value of tests reflecting episodic memory performance, semantic memory performance, visuospatial ability, and prospective memory performance. RESULTS Age- and education-corrected performance on two free recall episodic memory tests significantly predicted dementia 10 years prior to clinical diagnosis. Free recall performance also predicted dementia 11-22 years prior to diagnosis when controlling for education, but not when age was added to the model. CONCLUSION The present results support the suggestion that two free recall-based tests of episodic memory function may be useful for detecting individuals at risk of developing dementia 10 years prior to clinical diagnosis.
Collapse
Affiliation(s)
| | - Anders Lundquist
- Department of Statistics, Department of Integrative Medical Biology, Stockholm, Sweden
| | - Annelie Nordin
- Division of Psychiatry, Department of Clinical Sciences, Umeå University, Umeå, Stockholm, Sweden
| | - Lars Nyberg
- Division of Physiology, Department of Integrative Medical Biology, Stockholm, Sweden ; Division of Diagnostic Radiology, Department of Radiation Sciences, Stockholm, Sweden
| | | | - Rolf Adolfsson
- Division of Psychiatry, Department of Clinical Sciences, Umeå University, Umeå, Stockholm, Sweden
| |
Collapse
|
33
|
Brier MR, Thomas JB, Ances BM. Network dysfunction in Alzheimer's disease: refining the disconnection hypothesis. Brain Connect 2015; 4:299-311. [PMID: 24796856 DOI: 10.1089/brain.2014.0236] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Much effort in recent years has focused on understanding the effects of Alzheimer's disease (AD) on neural function. This effort has resulted in an enormous number of papers describing different facets of the functional derangement seen in AD. A particularly important tool for these investigations has been resting-state functional connectivity. Attempts to comprehensively synthesize resting-state functional connectivity results have focused on the potential utility of functional connectivity as a biomarker for disease risk, disease staging, or prognosis. While these are all appropriate uses of this technique, the purpose of this review is to examine how functional connectivity disruptions inform our understanding of AD pathophysiology. Here, we examine the rationale and methodological considerations behind functional connectivity studies and then provide a critical review of the existing literature. In conclusion, we propose a hypothesis regarding the development and spread of functional connectivity deficits seen in AD.
Collapse
Affiliation(s)
- Matthew R Brier
- 1 Program in Neuroscience, Division of Biological and Biomedical Science, School of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | | | | |
Collapse
|
34
|
Zimmer ER, Parent MJ, Cuello AC, Gauthier S, Rosa-Neto P. MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research. Trends Neurosci 2014; 37:629-41. [PMID: 25151336 DOI: 10.1016/j.tins.2014.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 01/23/2023]
Abstract
Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research.
Collapse
Affiliation(s)
- Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada; Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maxime J Parent
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada.
| |
Collapse
|
35
|
López-Gil X, Amat-Roldan I, Tudela R, Castañé A, Prats-Galino A, Planas AM, Farr TD, Soria G. DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Front Aging Neurosci 2014; 6:167. [PMID: 25100993 PMCID: PMC4107676 DOI: 10.3389/fnagi.2014.00167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm3 isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.
Collapse
Affiliation(s)
- Xavier López-Gil
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | | | - Raúl Tudela
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain ; Group of Biomedical Imaging of the University of Barcelona, CIBER de Bioingenieria, Biomateriales y Nanomedicina Barcelona, Spain
| | - Anna Castañé
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) Barcelona, Spain ; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII Madrid, Spain
| | - Alberto Prats-Galino
- Human Anatomy and Embryology Unit, Laboratory of Surgical NeuroAnatomy, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) Barcelona, Spain
| | - Tracy D Farr
- Department of Experimental Neurology, Center for Stroke Research Berlin Charité, Berlin, Germany
| | - Guadalupe Soria
- Experimental 7T MRI Unit, IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain ; Group of Biomedical Imaging of the University of Barcelona, CIBER de Bioingenieria, Biomateriales y Nanomedicina Barcelona, Spain
| |
Collapse
|
36
|
Saiz-Sanchez D, De la Rosa-Prieto C, Ubeda-Banon I, Martinez-Marcos A. Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer's disease. Brain Struct Funct 2014; 220:2011-25. [PMID: 24748561 DOI: 10.1007/s00429-014-0771-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/02/2014] [Indexed: 12/14/2022]
Abstract
Impaired olfaction has been described as an early symptom of Alzheimer's disease. Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Interestingly, neuropathology begins in the transentorhinal cortex and extends to the neighboring limbic system and basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus and olfactory bulb. The human piriform cortex has been described as a crucial area in odor quality coding; disruption of this region mediates early olfactory deficits in Alzheimer's disease. Most neuropathological investigations have focused on the entorhinal cortex and hippocampus, whereas the piriform cortex has largely been neglected. This work aims to characterize the expression of the neuropathological amyloid-β peptide, tau protein and interneuron population markers (calretinin, parvalbumin and somatostatin) in the piriform cortex of ten Alzheimer-diagnosed (80.4 ± 8.3 years old) and five control (69.6 ± 11.1) cases. Here, we examined the distribution of different interneuronal markers as well as co-localization of interneurons and pathological markers. Results indicated preferential vulnerability of somatostatin- (p = 0.0001 < α = 0.05) and calretinin-positive (p = 0.013 < α = 0.05) cells that colocalized with amyloid-β peptide, while the prevalence of parvalbumin-positive cells was increased (p = 0.045 < α = 0.05) in the Alzheimer's cases. These data may help to reveal the neural basis of olfactory deficits linked to Alzheimer's disease as well as to characterize neuronal populations preferentially vulnerable to neuropathology in regions critically involved in early stages of the disease.
Collapse
Affiliation(s)
- Daniel Saiz-Sanchez
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avda. de Moledores s/n, 13071, Ciudad Real, Spain
| | | | | | | |
Collapse
|
37
|
Liu B, Tang Y, Shen Y, Cen L, Han M. Cerebrospinal fluid τ protein in differential diagnosis of Alzheimer's disease and vascular dementia in Chinese population: a meta-analysis. Am J Alzheimers Dis Other Demen 2014; 29:116-22. [PMID: 24164930 PMCID: PMC10852876 DOI: 10.1177/1533317513507374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND To assess whether biomarker τ protein could differentiate between Alzheimer's disease (AD) and vascular dementia (VaD). METHODS We conducted a comprehensive search to identify studies on τ protein, patients with AD, and patients with VaD. Cerebrospinal fluid (CSF) τ protein levels were compared to discriminate among patients with AD, healthy controls, and patients with VaD by a meta-analysis. RESULTS Patients with AD exhibit significantly higher CSF τ protein levels than healthy controls or patients with VaD in the Chinese population. CONCLUSION Our findings suggested that CSF τ protein levels were found to be significantly associated with AD in the Chinese population. Measurement of τ protein could help in attenuating the strict distinction between AD and VaD.
Collapse
Affiliation(s)
- Bo Liu
- The Cadre Ward in Department of Neurology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yulan Tang
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuefei Shen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Luan Cen
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Min Han
- The Cadre Ward in Department of Neurology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
38
|
Zhang L, Dong S, Zhao G, Ma Y. 7.0T nuclear magnetic resonance evaluation of the amyloid beta (1-40) animal model of Alzheimer's disease: comparison of cytology verification. Neural Regen Res 2014; 9:430-5. [PMID: 25206831 PMCID: PMC4146198 DOI: 10.4103/1673-5374.128255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 11/30/2022] Open
Abstract
3.0T magnetic resonance spectroscopic imaging is a commonly used method in the research of brain function in Alzheimer's disease. However, the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.
Collapse
Affiliation(s)
- Lei Zhang
- MR Neuroradiology Room, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Shuai Dong
- Department of Neurology, Sixth People's Hospital of Jinan, Jinan, Shandong Province, China
| | - Guixiang Zhao
- Department of Rehabilitation Medicine, Sixth People's Hospital of Jinan, Jinan, Shandong Province, China
| | - Yu Ma
- Tsinghua University Yuquan Hospital, Beijing, China
| |
Collapse
|
39
|
Datta A, Qian J, Chong R, Kalaria RN, Francis P, Lai MKP, Chen CP, Sze SK. Novel pathophysiological markers are revealed by iTRAQ-based quantitative clinical proteomics approach in vascular dementia. J Proteomics 2014; 99:54-67. [PMID: 24448401 PMCID: PMC4024194 DOI: 10.1016/j.jprot.2014.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Vascular dementia (VaD) is a leading cause of dementia in the elderly together with Alzheimer's disease with limited treatment options. Poor understanding of the pathophysiology underlying VaD is hindering the development of new therapies. Hence, to unravel its underlying molecular pathology, an iTRAQ-2D-LC-MS/MS strategy was used for quantitative analysis of pooled lysates from Brodmann area 21 of pathologically confirmed cases of VaD and matched non-neurological controls. A total of 144 differentially expressed proteins out of 2281 confidently identified proteins (false discovery rate=0.3%) were shortlisted for bioinformatics analysis. Western blot analysis of selected proteins using samples from individual patients (n=10 per group) showed statistically significant increases in the abundance of SOD1 and NCAM and reduced ATP5A in VaD. This suggested a state of hypometabolism and vascular insufficiency along with an inflammatory condition during VaD. Elevation of SOD1 and increasing trend for iron-storage proteins (FTL, FTH1) may be indicative of an oxidative imbalance that is accompanied by an aberrant iron metabolism. The synaptic proteins did not exhibit a generalized decrease in abundance (e.g. syntaxin) in the VaD subjects. This reported proteome offers a reference data set for future basic or translational studies on VaD. BIOLOGICAL SIGNIFICANCE Our study is the first quantitative clinical proteomic study where iTRAQ-2D-LC-MS/MS strategy has been used to identify the differential proteome in the VaD cortex by comparing VaD and matched control subjects. We generate testable hypothesis about the involvement of various proteins in the vascular and parenchymal events during the evolution of VaD that finally leads to malfunction and demise of brain cells. This study also establishes quantitative proteomics as a complementary approach and viable alternative to existing neurochemical, electron microscopic and neuroimaging techniques that are traditionally being used to understand the molecular pathology of VaD. Our study could inspire fellow researchers to initiate similar retrospective studies targeting various ethnicities, age-groups or sub-types of VaD using brain samples available from brain banks across the world. Meta-analysis of these studies in the future may be able to shortlist candidate proteins or pathways for rationale exploration of therapeutic targets or biomarkers for VaD.
Collapse
Affiliation(s)
- Arnab Datta
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingru Qian
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raj N Kalaria
- Institute for Ageing Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Paul Francis
- Wolfson Centre for Age-related Diseases, King's College London, London, UK
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore.
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
40
|
Abstract
Ageing increases the risks of dementia and there are an estimated 667,000 people in England living with dementia. Less than half have a formal diagnosis. Community nurses are now being asked to screen older people for dementia under the Commissioning for Quality and Innovation framework. This article provides a brief explanation of common screening tools and explains the community nurse's role in identifying people who may have undiagnosed dementia.
Collapse
|
41
|
Affiliation(s)
- Clara Ibáñez
- Laboratory of Foodomics; CIAL (CSIC); Madrid; Spain
| | | | | |
Collapse
|