1
|
Deora N, Venkatraman K. Potential use of plant-based therapeutics for the management of SARS-COV2 infection in diabetes mellitus – a review. J Herb Med 2024; 47:100923. [DOI: 10.1016/j.hermed.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
He L, Chen Q, Wang L, Pu Y, Huang J, Cheng CK, Luo JY, Kang L, Lin X, Xiang L, Fang L, He B, Xia Y, Lui KO, Pan Y, Liu J, Zhang CL, Huang Y. Activation of Nrf2 inhibits atherosclerosis in ApoE -/- mice through suppressing endothelial cell inflammation and lipid peroxidation. Redox Biol 2024; 74:103229. [PMID: 38870781 PMCID: PMC11247299 DOI: 10.1016/j.redox.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, is critically involved in the regulation of oxidative stress and inflammation. However, the role of endothelial Nrf2 in atherogenesis has yet to be defined. In addition, how endothelial Nrf2 is activated and whether Nrf2 can be targeted for the prevention and treatment of atherosclerosis is not explored. METHODS RNA-sequencing and single-cell RNA sequencing analysis of mouse atherosclerotic aortas were used to identify the differentially expressed genes. In vivo endothelial cell (EC)-specific activation of Nrf2 was achieved by injecting adeno-associated viruses into ApoE-/- mice, while EC-specific knockdown of Nrf2 was generated in Cdh5CreCas9floxed-stopApoE-/- mice. RESULTS Endothelial inflammation appeared as early as on day 3 after feeding of a high cholesterol diet (HCD) in ApoE-/- mice, as reflected by mRNA levels, immunostaining and global mRNA profiling, while the immunosignal of the end-product of lipid peroxidation (LPO), 4-hydroxynonenal (4-HNE), started to increase on day 10. TNF-α, 4-HNE, and erastin (LPO inducer), activated Nrf2 signaling in human ECs by increasing the mRNA and protein expression of Nrf2 target genes. Knockdown of endothelial Nrf2 resulted in augmented endothelial inflammation and LPO, and accelerated atherosclerosis in Cdh5CreCas9floxed-stopApoE-/- mice. By contrast, both EC-specific and pharmacological activation of Nrf2 inhibited endothelial inflammation, LPO, and atherogenesis. CONCLUSIONS Upon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lei He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Juan Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Jiang-Yun Luo
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China
| | - Liang Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yin Xia
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Yong Pan
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China.
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
3
|
Chu Z, Zhu L, Zhou Y, Yang F, Hu Z, Luo Y, Li W, Luo F. Targeting Nrf2 by bioactive peptides alleviate inflammation: expanding the role of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38881345 DOI: 10.1080/10408398.2024.2367570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wen Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
4
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
5
|
Shirvanian K, Vali R, Farkhondeh T, Abderam A, Aschner M, Samarghandian S. Genistein Effects on Various Human Disorders Mediated via Nrf2 Signaling. Curr Mol Med 2024; 24:40-50. [PMID: 36443970 DOI: 10.2174/1566524023666221128162753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Genistein is a flavonoid, mostly found in soybean extract and is widely used for its antioxidant and anti-inflammatory activities. Genistein can interact with estrogen receptors due to its structural similarities to estrogen. It also inhibits protein tyrosine kinases and affects a variety of intracellular signal transductions. Genistein attenuates oxidative stress via diverse cellular mechanisms. However, nuclear factor (erythroidderived 2)-like 2 (Nrf2), the main antioxidant regulator, potentiates genistein's antioxidant effects and reduces cell damage. Nrf2 includes of seven domains and controls the expression of the phase II antioxidant enzymes to decrease oxidative stress. In this review, we address findings related to Nrf2 signaling pathways in the context of genistein's effects on diverse human diseases.
Collapse
Affiliation(s)
- Kasra Shirvanian
- School of Biology, College of science, University of Tehran, Tehran, Iran
| | - Reyhaneh Vali
- Department of Biology, Faculty of Modern Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Abderam
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, New York, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Brüser L, Teichmann E, Hinz B. Effect of Flavonoids on MCP-1 Expression in Human Coronary Artery Endothelial Cells and Impact on MCP-1-Dependent Migration of Human Monocytes. Int J Mol Sci 2023; 24:16047. [PMID: 38003237 PMCID: PMC10671372 DOI: 10.3390/ijms242216047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
The monocyte chemoattractant protein-1 (MCP-1), also known as chemokine (CC motif) ligand 2 (CCL2), is involved in the formation, progression, and destabilization of atheromatous plaques. Flavonoids, found in fruits and vegetables, have been associated with various health-promoting properties, including antioxidant, anti-inflammatory, and cardioprotective effects. In the present study, the flavonoids quercetin, kaempferol, and luteolin, but not cannflavin A, were shown to substantially inhibit interleukin (IL)-1β-induced MCP-1 mRNA and protein expression in human coronary artery endothelial cells (HCAEC). At the functional level, conditioned medium (CM) from IL-1β-stimulated HCAEC caused an increase in the migration of THP-1 monocytes compared with CM from unstimulated HCAEC. However, this induction was suppressed when IL-1β-treated HCAEC were coincubated with quercetin, kaempferol, or luteolin. The functional importance of MCP-1 in IL-1β-induced monocyte migration was supported by experiments showing that neutralization of MCP-1 in the CM of IL-1β-treated HCAEC led to a significant inhibition of migration. In addition, a concentration-dependent induction of monocyte migration in the presence of recombinant MCP-1 was demonstrated. Collectively, the flavonoids quercetin, kaempferol, and luteolin were found to exert potential antiatherogenic effects in HCAEC, challenging further studies with these compounds.
Collapse
Affiliation(s)
| | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (L.B.); (E.T.)
| |
Collapse
|
7
|
Roberts JA, Rainbow RD, Sharma P. Mitigation of Cardiovascular Disease and Toxicity through NRF2 Signalling. Int J Mol Sci 2023; 24:ijms24076723. [PMID: 37047696 PMCID: PMC10094784 DOI: 10.3390/ijms24076723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cardiovascular toxicity and diseases are phenomena that have a vastly detrimental impact on morbidity and mortality. The pathophysiology driving the development of these conditions is multifactorial but commonly includes the perturbance of reactive oxygen species (ROS) signalling, iron homeostasis and mitochondrial bioenergetics. The transcription factor nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2), a master regulator of cytoprotective responses, drives the expression of genes that provide resistance to oxidative, electrophilic and xenobiotic stresses. Recent research has suggested that stimulation of the NRF2 signalling pathway can alleviate cardiotoxicity and hallmarks of cardiovascular disease progression. However, dysregulation of NRF2 dynamic responses can be severely impacted by ageing processes and off-target toxicity from clinical medicines including anthracycline chemotherapeutics, rendering cells of the cardiovascular system susceptible to toxicity and subsequent tissue dysfunction. This review addresses the current understanding of NRF2 mechanisms under homeostatic and cardiovascular pathophysiological conditions within the context of wider implications for this diverse transcription factor.
Collapse
Affiliation(s)
- James A. Roberts
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| |
Collapse
|
8
|
Wu H, Dai R, Wang M, Chen C. Uric acid promotes myocardial infarction injury via activating pyrin domain-containing 3 inflammasome and reactive oxygen species/transient receptor potential melastatin 2/Ca 2+pathway. BMC Cardiovasc Disord 2023; 23:10. [PMID: 36627567 PMCID: PMC9830724 DOI: 10.1186/s12872-023-03040-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cardiomyocytes injury has been considered as a key contributor for myocardial infarction (MI). Uric acid (UA) can induce cardiomyocytes injury, which is closely related to NLRP3 activation and inflammatory factor generation. However, the mechanism how UA modulates cardiomyocytes remains elusive. Western blotting and qRT-PCR were applied for measuring protein and mRNA expression, respectively. ROS production and Ca2+ influx were measured by flow cytometry. Patch clamp technique was used for measuring transient receptor potential melastatin 2 (TRPM2) channel. Ligation of left anterior descending for 2 h was performed to induce MI animal model. The rats were treated by different concentration of uric acid. The artery tissues were stained by HE and collected for measurement of NLRP3 and inflammatory factors. Supplementation of UA significantly promoted apoptosis, and augmented the expression of intercellular adhesion molecule-1, chemoattractant protein-1, vascular cell adhesion molecule-1, and NLRP3 inflammasome. Knockdown of NLRP3 reversed the influence of UA on MI by decreasing collagen deposition, fibrotic area, apoptosis. The expression of NLRP3 inflammasome increased markedly after treatment of UA. UA activated ROS/TRPM2/Ca2+ pathway through targeting NLRP3. UA activated NLRP3 inflammasome and augments inflammatory factor production, which in turn exacerbates cardiomyocytes injury. Knockdown of NLRP3 reversed the influence of UA on apoptosis and cell cycle. UA may promote cardiomyocytes injury through activating NLRP3 inflammasome and ROS/TRPM2 channel/Ca2+ pathway.
Collapse
Affiliation(s)
- Haiyun Wu
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Ruozhu Dai
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Min Wang
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| | - Chengbo Chen
- grid.412683.a0000 0004 1758 0400Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000 China
| |
Collapse
|
9
|
Ben Ammar R, Mohamed ME, Alfwuaires M, Abdulaziz Alamer S, Bani Ismail M, Veeraraghavan VP, Sekar AK, Ksouri R, Rajendran P. Anti-Inflammatory Activity of Geraniol Isolated from Lemon Grass on Ox-LDL-Stimulated Endothelial Cells by Upregulation of Heme Oxygenase-1 via PI3K/Akt and Nrf-2 Signaling Pathways. Nutrients 2022; 14:4817. [PMID: 36432506 PMCID: PMC9695721 DOI: 10.3390/nu14224817] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Among the world's leading causes of cardiovascular disease, atherosclerosis is a chronic inflammatory disorder that affects the arteries. Both vasodilation and vasoconstriction, low levels of nitric oxide and high levels of reactive oxygen species and pro-inflammatory factors characterize dysfunctional blood vessels. Hypertension, and atherosclerosis, all start with this dysfunction. Geraniol, a compound of acyclic monoterpene alcohol, found in plants such as geranium, lemongrass and rose, is a primary constituent of essential oils. It shows a variety of pharmacological properties. This study aimed to investigate the impact of geraniol on Ox-LDL-induced stress and inflammation in human umbilical vein endothelial cells. In this study, HUVECs were treated with Ox-LDL or geraniol at different dose concentrations. MTT assay, Western blot, ROS generation and DNA fragmentation were used to evaluate geraniol's effects on Ox-LDL-induced HUVECs inflammation. The results show that geraniol pre-incubation ameliorates Ox-LDL-mediated HUVECs cytotoxicity and DNA fragmentation. The geraniol inhibited the production of pro-inflammatory cytokines by Ox-LDL, including TNF-α, IL-6 and IL-1β. In Ox-LDL-stimulated HUVECs, geraniol suppresses the nuclear translocation and activity of NF-ᴋB as well as phosphorylation of IkBα. Moreover, geraniol activated the PI3K/AKT/NRF2 pathway in HUVECs, resulting in an increase in the expression of HO-1. Taking our data together, we can conclude that, in HUVECs, geraniol inhibits Ox-LDL-induced inflammation and oxidative stress by targeting PI3/AKT/NRF2.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Maged Elsayed Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Zagazig, Zagazig 44519, Egypt
| | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sarah Abdulaziz Alamer
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Bani Ismail
- Department of Basic Medical Sciences, School of Medicine, Aqaba Medical Sciences University, Aqaba 11191, Jordan
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Ashok Kumar Sekar
- Centre for Biotechnology, Anna University, Chennai 600025, Tamil Nadu, India
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
10
|
Fakhri S, Moradi SZ, Nouri Z, Cao H, Wang H, Khan H, Xiao J. Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 64:1592-1616. [PMID: 36073725 DOI: 10.1080/10408398.2022.2118226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a group of heterodimeric and transmembrane glycoproteins, integrin receptors are widely expressed in various cell types overall the body. During cardiovascular dysfunction, integrin receptors apply inhibitory effects on the antioxidative pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch like ECH Associated Protein 1 (Keap1)/antioxidant response element (ARE) and interconnected mediators. As such, dysregulation in integrin signaling pathways influences several aspects of cardiovascular diseases (CVDs) such as heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. So, modulation of integrin pathway could trigger the downstream antioxidant pathways toward cardioprotection. Regarding the involvement of multiple aforementioned mediators in the pathogenesis of CVDs, as well as the side effects of conventional drugs, seeking for novel alternative drugs is of great importance. Accordingly, the plant kingdom could pave the road in the treatment of CVDs. Of natural entities, polyphenols are multi-target and accessible phytochemicals with promising potency and low levels of toxicity. The present study aims at providing the cardioprotective roles of integrin receptors and downstream antioxidant pathways in heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. The potential role of polyphenols has been also revealed in targeting the aforementioned dysregulated signaling mediators in those CVDs.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Pinocembrin suppresses oxidized low-density lipoprotein-triggered NLRP3 inflammasome/GSDMD-mediated endothelial cell pyroptosis through an Nrf2-dependent signaling pathway. Sci Rep 2022; 12:13885. [PMID: 35974041 PMCID: PMC9381505 DOI: 10.1038/s41598-022-18297-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Pinocembrin (Pin) has been confirmed to exert anti-inflammatory and antiatherosclerotic effects. Here we have explored whether and how Pin would protect vascular endothelial cells against pyroptosis elicited by the exposure to oxidized low density lipoprotein (oxLDL). Our results showed that Pin preconditioning dose-dependently suppressed oxLDL-stimulated HUVEC injury and pyroptosis, which were manifested by improved cell viability, lower lactate dehydrogenase (LDH) levels and DNA damage as well as decreased expression of pyroptosis-related markers, such as NOD-like receptor pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), pro-Caspase-1, cleaved Caspase-1, N-terminus of Gasdermin D-N (GSDMD-N), pro-interleukins-1β (pro-IL-1β), IL-1β and inflammatory cytokines (IL-18 and IL-1β). All of the effects were similar to those of MCC950 (an NLRP3 inhibitor). As expected, Pin distinctly activated the Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidative signaling pathway assessed through increased expressions of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Furthermore, after transfection with small interfering RNA of Nrf2, the inhibitory effects of Pin on oxLDL-triggered NLRP3 inflammasome/GSDMD-mediated pyroptosis and oxidative stress in HUVECs were weakened. Additionally, Pin up-regulated Nrf2/HO-1 axis and down-regulated NLRP3 inflammasome/GSDMD-mediated pyroptosis signals in Apoe-/- mice fed with high fat diet. These results contribute to the understanding of the anti-pyroptosis mechanisms of Pin and provide a reference for future research on the anti-atherosclerotic effect of Pin.
Collapse
|
12
|
de Oliveira Lopes R, Lima GF, Mendes ABA, Autran LJ, de Assis Pereira NC, Brazão SC, Alexandre-Santos B, Frantz EDC, Scaramello CBV, Brito FCF, Motta NAV. Cilostazol attenuates cardiac oxidative stress and inflammation in hypercholesterolemic rats. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:789-801. [PMID: 35384464 DOI: 10.1007/s00210-022-02233-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Atherosclerosis is a multifactorial chronic disease associated with pro-inflammatory and pro-oxidative cardiovascular states. Cilostazol, a selective phosphodiesterase 3 inhibitor (PDE3), is clinically used in the treatment of intermittent claudication and secondary prevention of cerebral infarction. The aim of this study was to evaluate the cardioprotective effects of cilostazol and the molecular mechanisms involved in hypercholesterolemic rats. Male Wistar rats were divided into four groups: control group (C) and control + cilostazol group (C+CILO), that were fed a standard chow diet, and hypercholesterolemic diet group (HCD) and HCD + cilostazol (HCD+CILO) that were fed a hypercholesterolemic diet. Cilostazol treatment started after 30 days for C+CILO and HCD+CILO groups. Animals were administered cilostazol once a day for 15 days. Subsequently, serum and left ventricles were extracted for evaluation of lipid profile, inflammatory, and oxidative biomarkers. The HCD group displayed increased serum lipid levels, inflammatory cytokines production, and cardiac NF-kB protein expression and decreased cardiac Nrf2-mediated antioxidant activity. Conversely, the cilostazol treatment improved all these cardiac deleterious effects, inhibiting NF-kB activation and subsequently decreasing inflammatory mediators, reestablishing the antioxidant properties through Nrf2-mediated pathway, including increased SOD, GPx, and catalase expression. Taken together, our results indicated that cilostazol protects hypercholesterolemia-induced cardiac damage by molecular mechanisms targeting the crosstalk between Nrf2 induction and NF-kB inhibition in the heart.
Collapse
Affiliation(s)
- Rosane de Oliveira Lopes
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil
| | - Gabriel Ferreira Lima
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil
| | - Ana Beatriz Araújo Mendes
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil.,Laboratory of Endocrine Physiology Doris Rosenthal, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lis Jappour Autran
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil
| | - Nikolas Cunha de Assis Pereira
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil
| | - Stephani Correia Brazão
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil
| | - Beatriz Alexandre-Santos
- Laboratory of Exercise Sciences (LACE), Department of Morphology, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences (LACE), Department of Morphology, Fluminense Federal University (UFF), Niteroi, RJ, Brazil
| | - Christianne Brêtas Vieira Scaramello
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil
| | - Fernanda Carla Ferreira Brito
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil.
| | - Nadia Alice Vieira Motta
- Laboratory of Experimental Pharmacology (LAFE), Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University (UFF), Room 204-A, Niteroi, RJ, 24210-130, Brazil
| |
Collapse
|
13
|
Xie HX, Wang YH, Zhang JH, Zhang J, Zhong YN, Ge YX, Cheng ZQ, Jiang CS, Meng N. Design, synthesis and biological evaluation of marine phidianidine-inspired derivatives against oxidized ldl-induced endothelial injury by activating Nrf2 anti-oxidation pathway. Bioorg Chem 2022; 120:105606. [DOI: 10.1016/j.bioorg.2022.105606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
|
14
|
Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 2022; 34:43-63. [PMID: 35024180 PMCID: PMC8655139 DOI: 10.1016/j.jare.2021.06.023] [Citation(s) in RCA: 370] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Recently, Nrf2/HO-1 has received extensive attention as the main regulatory pathway of intracellular defense against oxidative stress and is considered an ideal target for alleviating endothelial cell (EC) injury. Objectives This paper aimed to summarized the natural monomers/extracts that potentially exert protective effects against oxidative stress in ECs. Methods A literature search was carried out regarding our topic with the keywords of “atherosclerosis” or “Nrf2/HO-1” or “vascular endothelial cells” or “oxidative stress” or “Herbal medicine” or “natural products” or “natural extracts” or “natural compounds” or “traditional Chinese medicines” based on classic books of herbal medicine and scientific databases including Pubmed, SciFinder, Scopus, the Web of Science, GoogleScholar, BaiduScholar, and others. Then, we analyzed the possible molecular mechanisms for different types of natural compounds in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. In addition, perspectives for possible future studies are discussed. Results These agents with protective effects against oxidative stress in ECs mainly include phenylpropanoids, flavonoids, terpenoids, and alkaloids. Most of these agents alleviate cell apoptosis in ECs due to oxidative stress, and the mechanisms are related to Nrf2/HO-1 signaling activation. However, despite continued progress in research on various aspects of natural agents exerting protective effects against EC injury by activating Nrf2/HO-1 signaling, the development of new drugs for the treatment of atherosclerosis (AS) and other CVDs based on these agents will require more detailed preclinical and clinical studies. Conclusion Our present paper provides updated information of natural agents with protective activities on ECs against oxidative stress by activating Nrf2/HO-1. We hope this review will provide some directions for the further development of novel candidate drugs from natural agents for the treatment of AS and other CVDs.
Collapse
Key Words
- 7-HMR, (−)-7(S)-hydroxymatairesinol
- ADH, andrographolide
- AGE, advanced glycation end product
- AMP, Athyrium Multidentatum
- APV, aqueous extracts of Prunella Vulgaris
- ARE, antioxidant reaction elements
- AS, atherosclerosis
- ASD-IV, Astragaloside IV
- ASP, Angelica sinensis polysaccharide
- ASTP, Astragalus polysacharin
- Akt, protein kinase B
- Ang, Angiotensin
- ApoE, apolipoprotein E
- Atherosclerosis
- BAECs, bovine artery endothelial cells
- BBR, Berberine
- BITC, benzyl isothiocyanate
- C3G, Cyanidin-3-O-glucoside
- CINM, Cinnamaldehyde
- CNC, Cap'n'collar
- CREB, cAMP-response element binding protein
- CVDs, cardiovascular diseases
- CVRF, cardiovascular risk factors
- DMY, Dihydromyricetin
- ECC, (−)-Epicatechin
- ECs, endothelial cells
- EGCG, epigallocatechin-3-O-gallate
- ERK, extracellular regulated protein kinases
- ET, endothelin
- EXS, Xanthoceras sorbifolia
- FFA, Fatty Acids
- GPx, Glutathione peroxidase
- GSD Rg1, Ginsenoside Rg1
- GTE, Ganoderma tsugae extracts
- Gau A, Glaucocalyxin A
- HAMS, human anthocyanin medicated serum
- HG, high glucose
- HIF-1, Hypoxia-inducible factor 1
- HO-1, heme oxygenase
- HUVECs, human umbilical vein endothelial cells
- HXC, Huoxue capsule
- Hcy, Homocysteine
- Herbal medicine
- ICAM, intercellular adhesion molecule
- IL, interleukin
- KGRE, extracts of KGR
- KRG, Korean red ginseng
- Keap1, kelch-like epichlorohydrin-related proteins
- LWDH, Liuwei-Dihuang pill
- MA, maslinic acid
- MAPKK, mitogen-activated protein kinase kinase
- MAPKs, mitogen-activated protein kinases
- MCGA3, 3-O-caffeoyl-1-methylquinic acid
- MCP-1, monocyte chemotactic protein 1
- MMPs, matrix metalloproteinases
- Molecular mechanism
- NAF, Nepeta Angustifolia
- NF-κB, nuclear factor kappa-B
- NG, naringenin
- NQO1, NAD(P)H: quinone oxidoreductase
- Nrf2, nuclear factor erythroid-2 related factor 2
- Nrf2/HO-1 signaling
- OA, Oleanolic acid
- OMT, Oxymatrine
- OX-LDL, oxidized low density lipoprotein
- Oxidative stress
- PA, Palmitate
- PAA, Pachymic acid
- PAI-1, plasminogen activator Inhibitor-1
- PEITC, phenethyl isocyanate
- PI3K, phosphatidylinositol 3 kinase
- PKC, protein kinase C
- PT, Pterostilbene
- RBPC, phenolic extracts derived from rice bran
- ROS, reactive oxygen species
- SAL, Salidroside
- SFN, sulforaphane
- SMT, Samul-Tang Tang
- SOD, superoxide dismutase
- Sal B, salvianolic acid B
- SchB, Schisandrin B
- TCM, traditional Chinese medicine
- TNF, tumor necrosis factor
- TXA2, Thromboxane A2
- TrxR1, thioredoxin reductase-1
- US, uraemic serum
- VA, Vanillic acid
- VCAM, vascular cell adhesion molecule
- VEC, vascular endothelial cells
- VEI, vascular endothelial injury
- Vascular endothelial cells
- XAG, xanthoangelol
- XXT, Xueshuan Xinmaining Tablet
- Z-Lig, Z-ligustilide
- eNOS, endothelial NO synthase
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
| |
Collapse
|
15
|
Li S, Huang T, Qin L, Yin L. Circ_0068087 Silencing Ameliorates Oxidized Low-Density Lipoprotein-Induced Dysfunction in Vascular Endothelial Cells Depending on miR-186-5p-Mediated Regulation of Roundabout Guidance Receptor 1. Front Cardiovasc Med 2021; 8:650374. [PMID: 34124191 PMCID: PMC8187595 DOI: 10.3389/fcvm.2021.650374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are endogenous non-coding RNAs involved in the progression of atherosclerosis (AS). We investigated the role of circ_0068087 in AS progression and its associated mechanism. Methods: The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA) were performed to analyze the viability, apoptosis, and inflammatory response of HUVECs, respectively. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the Western blot assay were performed to measure the expression of RNA and protein. Cell oxidative stress was analyzed using commercial kits. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify the interaction between microRNA-186-5p (miR-186-5p) and circ_0068087 or roundabout guidance receptor 1 (ROBO1). Results: Oxidized low-density lipoprotein (ox-LDL) exposure upregulated the circ_0068087 level in HUVECs. ox-LDL-induced dysfunction in HUVECs was largely attenuated by the silence of circ_0068087. Circ_0068087 negatively regulated the miR-186-5p level by interacting with it in HUVECs. Circ_0068087 knockdown restrained ox-LDL-induced injury in HUVECs partly by upregulating miR-186-5p. ROBO1 was a downstream target of miR-186-5p in HUVECs. Circ_0068087 positively regulated ROBO1 expression by sponging miR-186-5p in HUVECs. MiR-186-5p overexpression exerted a protective role in ox-LDL-induced HUVECs partly by downregulating ROBO1. Conclusion: Circ_0068087 interference alleviated ox-LDL-induced dysfunction in HUVECs partly by reducing ROBO1 expression via upregulating miR-186-5p.
Collapse
Affiliation(s)
- Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Tao Huang
- Department of Cardiovascular Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Limin Qin
- Department of Cardiovascular Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Luchang Yin
- Department of Cardiovascular Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Ooi BK, Phang SW, Yong PVC, Chellappan DK, Dua K, Khaw KY, Goh BH, Pusparajah P, Yap WH. In vitro evaluation of the involvement of Nrf2 in maslinic acid-mediated anti-inflammatory effects in atheroma pathogenesis. Life Sci 2021; 278:119658. [PMID: 34048809 DOI: 10.1016/j.lfs.2021.119658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
AIMS Maslinic acid (MA) is a naturally occurring pentacyclic triterpene known to exert cardioprotective effects. This study aims to investigate the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) for MA-mediated anti-inflammatory effects in atheroma pathogenesis in vitro, including evaluation of tumor necrosis factor-alpha (TNF-α)-induced monocyte recruitment, oxidized low-density lipoprotein (oxLDL)-induced scavenger receptors expression, and nuclear factor-kappa B (NF-ĸB) activity in human umbilical vein endothelial cells (HUVECS) and human acute monocytic leukemia cell line (THP-1) macrophages. MATERIALS AND METHODS An in vitro monocyte recruitment model utilizing THP-1 and HUVECs was developed to evaluate TNF-α-induced monocyte adhesion and trans-endothelial migration. To study the role of Nrf2 for MA-mediated anti-inflammatory effects, Nrf2 inhibitor ML385 was used as the pharmacological inhibitor. The expression of Nrf2, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 36 (CD36), and scavenger receptor type A (SR-A) in HUVECs and THP-1 macrophages were investigated using RT-qPCR and Western blotting. The NF-κB activity was determined using NF-κB (p65) Transcription Factor Assay Kit. KEY FINDINGS The results showed opposing effects of MA on Nrf2 expression in HUVECs and THP-1 macrophages. MA suppressed TNF-α-induced Nrf2 expression in HUVECs, but enhanced its expression in THP-1 macrophages. Combined effects of MA and ML385 suppressed MCP-1, VCAM-1, and SR-A expressions. Intriguingly, at the protein level, ML385 selectively inhibited SR-A but enhanced CD36 expression. Meanwhile, ML385 further enhanced MA-mediated inhibition of NF-κB activity in HUVECs. This effect, however, was not observed in THP-1 macrophages. SIGNIFICANCE MA attenuated foam cell formation by suppressing VCAM-1, MCP-1, and SR-A expression, as well as NF-κB activity, possibly through Nrf2 inhibition. The involvement of Nrf2 for MA-mediated anti-inflammatory effects however differs between HUVECs and macrophages. Future investigations are warranted for a detailed evaluation of the contributing roles of Nrf2 in foam cells formation.
Collapse
Affiliation(s)
- Bee Kee Ooi
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Su Wen Phang
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia.
| | - Wei Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
17
|
Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clin Sci (Lond) 2021; 134:1775-1799. [PMID: 32677680 DOI: 10.1042/cs20200446] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.
Collapse
|
18
|
Wang H, Yang G, Zhang Q, Liang X, Liu Y, Gao M, Guo Y, Chen L. Apremilast ameliorates ox-LDL-induced endothelial dysfunction mediated by KLF6. Aging (Albany NY) 2020; 12:19012-19021. [PMID: 33052879 PMCID: PMC7732304 DOI: 10.18632/aging.103665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
Apremilast is a phosphodiesterase 4 (PDE4) inhibitor used in the treatment of psoriasis and several other inflammatory diseases. Interest has been expressed in seeking out therapies that address both psoriasis and atherosclerosis. In the present study, we explored the effects of apremilast in human aortic endothelial cells (HAECs) exposed to oxidized low-density lipoprotein (ox-LDL) to simulate the atherosclerotic microenvironment in vitro. Our findings indicate that apremilast may reduce the expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1), the main ox-LDL scavenging receptor. Apremilast also inhibited the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8), which are deeply involved in the chronic inflammatory response associated with atherosclerosis. Interestingly, we found that apremilast inhibited the attachment of U937 monocytes to HAECs by reducing the expression of the chemokine monocyte chemotactic protein 1 (MCP-1) and the cellular adhesion molecule vascular cell adhesion molecule-1 (VCAM-1). This effect was found to be mediated through the rescue of Krüppel like factor 6 (KLF6) expression, which was reduced in response to ox-LDL via increased phosphorylation of c-Jun N-terminal kinase (JNK). These findings suggest a potential role for apremilast in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Guang Yang
- Department of Nephrology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Zhang
- Department of Endocrinology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China
| | - Xiao Liang
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Liu
- Department of Nephrology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Meng Gao
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yutao Guo
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Chen
- Department of General Practice, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
19
|
Flavonoids in adipose tissue inflammation and atherosclerosis: one arrow, two targets. Clin Sci (Lond) 2020; 134:1403-1432. [PMID: 32556180 DOI: 10.1042/cs20200356] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.
Collapse
|
20
|
Abstract
Soybeans are among the most popular foods worldwide, and intake of soy-containing foods has been associated with many health benefits in part because of it structure similar to estrogen. Epidemiologic studies have demonstrated that soy consumption improves serum profiles of hypercholesterolemic patients. Several studies have also indicated an inverse relationship between the consumption of soy isoflavones and the incidence of cardiovascular diseases (CVD). Soy is a rich dietary source of isoflavones. The main soy isoflavones are daidzein and genistein; equol, another isoflavone and a major intestinal bacterial metabolite of daidzein, is generated by enterobacterial effects. Many isoflavones have antioxidative effects and anti-inflammatory actions, as well as induce nitric oxide production to maintain a healthy endothelium and prevent endothelial cell dysfunction. These effects may limit the development of atherosclerosis and CVD and restore healthy endothelial function in altered endothelia. Although the evidence supporting the benefits of soy isoflavones in CVD prevention continues to increase, the association between soy isoflavones and disease is not fully understood. This review summarized recent progress in identifying the preventive mechanisms of action of dietary soybean isoflavones on vascular endothelial cells. Furthermore, it describes the beneficial roles that these isoflavones may have on endothelial dysfunction-related atherosclerosis.
Collapse
|
21
|
Zou J, Wang G, Li H, Yu X, Tang C. IgM natural antibody T15/E06 in atherosclerosis. Clin Chim Acta 2020; 504:15-22. [DOI: 10.1016/j.cca.2020.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 11/28/2022]
|
22
|
He D, Xu L, Wu Y, Yuan Y, Wang Y, Liu Z, Zhang C, Xie W, Zhang L, Geng Z, Wang H, Wang H, Qu P. Rac3, but not Rac1, promotes ox-LDL induced endothelial dysfunction by downregulating autophagy. J Cell Physiol 2019; 235:1531-1542. [PMID: 31332791 DOI: 10.1002/jcp.29072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
The endothelial dysfunction induced by oxidized low-density lipoprotein (ox-LDL) plays an important role in the pathogenesis of atherosclerosis, which can lead to oxidative stress and inflammation. The role of autophagy in the process of atherosclerosis has drawn increasing attention. The human umbilical vein endothelial cells (HUVECs), whose Ras-related C3 botulinum toxin substrate 1 (Rac1) and Rac3 was knockdown, were used to detect whether the possible molecular mechanisms of Rac1 and Rac3 for anti-inflammatory in endothelial cells was effected by downregulation of autophagy. The HUVECs were incubated with ox-LDL. The inflammatory factors and autophagy proteins were evaluated to ascertain and compare the effect of Rac1 and Rac3 on autophagy. Then, 3-methyladenine (3-MA) as an inhibiter of autophagy was used to detect whether the effect of Rac1 and Rac3 was related to autophagy. ox-LDL-induced cell dysfunction in HUVECs was determined by testing the formation of foam cells, the expression of nuclear factor (NF)-κB and nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 and NF-κB p65 and other inflammatory factors, the release of reactive oxygen species by oxidative stress and the dysfunction of the cytomembrane. And ApoE-/- mice on a high-fat diet were used as an animal model to detect the effect of Rac1 and Rac3 in vivo. The results showed that when Rac1 and Rac3 were decreased in HUVECs, the cell dysfunction caused by ox-LDL was inhibited. If 3-MA was used to inhibit autophagy in Rac1 and Rac3 knockdown cells, the injury induced by ox-LDL on the cells was recovered. These results indicated that the effect of Rac1 and Rac3 was combined with ox-LDL, which was related to inhibition of autophagy. The effect of Rac3 was more significant than that of Rac1.
Collapse
Affiliation(s)
- Dan He
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China.,Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Ling Xu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated Dalian University, Dalian University, Dalian, China
| | - Yuhang Wu
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Yuchan Yuan
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Ying Wang
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhenzhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changlin Zhang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenli Xie
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijiao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhaohong Geng
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongli Wang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongyan Wang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng Qu
- Institute of Heart and Vessel Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China.,Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, Tostes RC. Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Front Pharmacol 2019; 10:382. [PMID: 31031630 PMCID: PMC6473049 DOI: 10.3389/fphar.2019.00382] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Free radicals act as secondary messengers, modulating a number of important biological processes, including gene expression, ion mobilization in transport systems, protein interactions and enzymatic functions, cell growth, cell cycle, redox homeostasis, among others. In the cardiovascular system, the physiological generation of free radicals ensures the integrity and function of cardiomyocytes, endothelial cells, and adjacent smooth muscle cells. In physiological conditions, there is a balance between free radicals generation and the activity of enzymatic and non-enzymatic antioxidant systems. Redox imbalance, caused by increased free radical's production and/or reduced antioxidant defense, plays an important role in the development of cardiovascular diseases, contributing to cardiac hypertrophy and heart failure, endothelial dysfunction, hypertrophy and hypercontractility of vascular smooth muscle. Excessive production of oxidizing agents in detriment of antioxidant defenses in the cardiovascular system has been described in obesity, diabetes mellitus, hypertension, and atherosclerosis. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), a major regulator of antioxidant and cellular protective genes, is primarily activated in response to oxidative stress. Under physiological conditions, Nrf2 is constitutively expressed in the cytoplasm of cells and is usually associated with Keap-1, a repressor protein. This association maintains low levels of free Nrf2. Stressors, such as free radicals, favor the translocation of Nrf2 to the cell nucleus. The accumulation of nuclear Nrf2 allows the binding of this protein to the antioxidant response element of genes that code antioxidant proteins. Although little information on the role of Nrf2 in the cardiovascular system is available, growing evidence indicates that decreased Nrf2 activity contributes to oxidative stress, favoring the pathophysiology of cardiovascular disorders found in obesity, diabetes mellitus, and atherosclerosis. The present mini-review will provide a comprehensive overview of the role of Nrf2 as a contributing factor to cardiovascular risk in metabolic diseases.
Collapse
Affiliation(s)
- Rafael M da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Núbia S Lobato
- Special Academic Unit of Health Sciences, Federal University of Goiás, Jataí, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Isobavachalcone attenuates Sephadex-induced lung injury via activation of A20 and NRF2/HO-1 in rats. Eur J Pharmacol 2019; 848:49-54. [DOI: 10.1016/j.ejphar.2019.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
|
25
|
Chen X, Lin J, Hu T, Ren Z, Li L, Hameed I, Zhang X, Men C, Guo Y, Xu D, Zhan Y. Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation. J Cell Physiol 2018; 234:10990-11000. [PMID: 30536538 PMCID: PMC6590151 DOI: 10.1002/jcp.27910] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022]
Abstract
Oxidized low‐density lipoprotein (Ox‐LDL)‐induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin‐3 (Gal‐3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal‐3 in ox‐LDL‐mediated endothelial injury remains unclear. This study explores the effects of Gal‐3 on ox‐LDL‐induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal‐3, integrin β1, and GTP‐RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non‐AS control group. CCK8 assay and flow cytometry analysis showed that Gal‐3 significantly decreased cell viability and promoted apoptosis in ox‐LDL‐treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP‐RhoA, p‐JNK, p‐p65, p‐IKKα, and p‐IKKβ induced by ox‐LDL was further enhanced by treatment with Gal‐3. Pretreatment with Gal‐3 increased expression of inflammatory factors (interleukin [IL]‐6, IL‐8, and IL‐1β), chemokines(CXCL‐1 and CCL‐2) and adhesion molecules (VCAM‐1 and ICAM‐1). Furthermore, the promotional effects of Gal‐3 on NF‐κB activation and inflammatory factors in ox‐LDL‐treated HUVECs were reversed by the treatments with integrinβ1‐siRNA or the JNK inhibitor. We also found that integrinβ1‐siRNA decreased the protein expression of GTP‐RhoA and p‐JNK, while RhoA inhibitor partially reduced the upregulated expression of p‐JNK induced by Gal‐3. In conclusion, our finding suggests that Gal‐3 exacerbates ox‐LDL‐mediated endothelial injury by inducing inflammation via integrin β1‐RhoA‐JNK signaling activation.
Collapse
Affiliation(s)
- Xiumei Chen
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Lin
- Department of Urology and Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Hu
- Department of Cancer Research, The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- Department of Urology and Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Linnan Li
- Department of Cancer Research, Academy of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Irbaz Hameed
- Department of Cardiothoracic Surgery, New York Presbyterian Hospital Weill cornell Medicine, New York, New York
| | - Xiaoyu Zhang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Men
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiyang Zhan
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Si J, Meng R, Gao P, Hui F, Li Y, Liu X, Yang B. Linagliptin protects rat carotid artery from balloon injury and activates the NRF2 antioxidant pathway. Exp Anim 2018; 68:81-90. [PMID: 30369549 PMCID: PMC6389508 DOI: 10.1538/expanim.18-0089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is main treatment for acute coronary syndrome
(ACS). However, restenosis caused by PCI-induced injury influences the outcome of
patients. Linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, has been reported to
ameliorate intimal hyperplasia post vascular injury. The underlying mechanisms by which
linagliptin protects against balloon injury are unclear and require to be explored.
Herein, Wistar rats with carotid artery balloon injury were given 1, 2 or 3 mg/kg/day
linagliprin for 6 weeks. We found that linagliptin attenuated vascular injury-mediated
neointima formation in rats without affecting body weight and blood glucose levels. ELISA
results indicated that linagliptin significantly reduced overproduction of cytokines
including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 post balloon
injury. By detecting the level of malondialdehyde (MDA) and the activities of superoxide
dismutase (SOD) and glutathione peroxidase (GSH-Px), we found that linagliptin prevented
balloon injury-induced oxidative stress. Additionally, linagliptin decreased the level of
Kelch ECH-associating protein 1 (KEAP1) compared with injury group. Results of Western
blots and electrophoretic mobility shift assay (EMSA) demonstrated that linagliptin
augmented nuclear accumulation of nuclear factor-E2-related factor 2 (NRF2) and its
binding ability to target genes in rats with balloon injury. Moreover, heme oxygenase-1
(HO-1) and NAD (P) H quinine oxidoreductase 1 (NQO1), two downstream targets of NRF2, were
further up-regulated after linagliptin treatment compared with injury group. In
conclusion, our data suggest that linagliptin protects carotid artery from balloon
injury-induced neointima formation and activates the NRF2 antioxidant pathway.
Collapse
Affiliation(s)
- Jiyuan Si
- Department of Internal Medicine, Jining First People's Hospital, 6 Jiankang Road, Jining, Shandong 272011, People's Republic of China
| | - Ranran Meng
- Department of Vascular Surgery, Jining First People's Hospital, 6 Jiankang Road, Jining, Shandong 272011, People's Republic of China
| | - Peng Gao
- Department of Vascular Surgery, Jining First People's Hospital, 6 Jiankang Road, Jining, Shandong 272011, People's Republic of China
| | - Feifei Hui
- Department of Vascular Surgery, Jining First People's Hospital, 6 Jiankang Road, Jining, Shandong 272011, People's Republic of China
| | - Yu Li
- Department of Vascular Surgery, Jining First People's Hospital, 6 Jiankang Road, Jining, Shandong 272011, People's Republic of China
| | - Xianhu Liu
- Department of Vascular Surgery, Jining First People's Hospital, 6 Jiankang Road, Jining, Shandong 272011, People's Republic of China
| | - Bin Yang
- Department of Vascular Surgery, Jining First People's Hospital, 6 Jiankang Road, Jining, Shandong 272011, People's Republic of China
| |
Collapse
|
27
|
Kim YJ, Kim HJ, Ok HM, Jeong HY, Lee WJ, Weaver C, Kwon O. Effect and interactions of Pueraria-Rehmannia and aerobic exercise on metabolic inflexibility and insulin resistance in ovariectomized rats fed with a high-fat diet. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
28
|
Li W, Zhi W, Zhao J, Yao Q, Liu F, Niu X. Cinnamaldehyde protects VSMCs against ox-LDL-induced proliferation and migration through S arrest and inhibition of p38, JNK/MAPKs and NF-κB. Vascul Pharmacol 2018; 108:57-66. [PMID: 29777873 DOI: 10.1016/j.vph.2018.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Cinnamaldehyde (Cin), as a traditional flavor constituent isolated from the bark of Cinnamonum cassia Presl, has been commonly used for - digestive, cardiovascular and immune system diseases. The pathology of vascular smooth muscle cells (VSMCs) accelerated the progression of atherosclerosis. In our study, we found that cinnamaldehyde significantly suppressed ox-LDL-induced VSMCs proliferation, migration and inflammatory cytokine overproduction, as well as foam cell formation in VSMCs and macrophages. Moreover, cinnamaldehyde inhibited the phosphorylation of p38, JNK and p65 NF-κB and increased heme oxygenase-1 (HO-1) activity. In addition, cinnamaldehyde reduced monocyte chemotactic protein-1 (MCP-1), matrix metalloproteinase-2 (MMP-2) and lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) expression. Furthermore, cinnamaldehyde arrested cell cycle in S phase. Thus, results indicated that cinnamaldehyde antagonized the ox-LDL-induced VSMCs proliferation, migration, inflammation and foam cell formation through regulation of HO-1, MMP-2, LOX-1 and blockage of cell cycle, and - suppression of p38, JNK/MAPK and NF-κB signaling pathways.
Collapse
MESH Headings
- Acrolein/analogs & derivatives
- Acrolein/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Female
- Foam Cells/drug effects
- Foam Cells/metabolism
- Heme Oxygenase (Decyclizing)/metabolism
- JNK Mitogen-Activated Protein Kinases/metabolism
- Lipoproteins, LDL/toxicity
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Rats, Sprague-Dawley
- S Phase Cell Cycle Checkpoints/drug effects
- Scavenger Receptors, Class E/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transcription Factor RelA/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wenbing Zhi
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jinmeng Zhao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qing Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
29
|
Li M, van Esch BCAM, Henricks PAJ, Garssen J, Folkerts G. Time and Concentration Dependent Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Induced Endothelial Activation. Front Pharmacol 2018; 9:233. [PMID: 29615908 PMCID: PMC5867315 DOI: 10.3389/fphar.2018.00233] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
Background and Aim: Endothelial activation is characterized by excessive production of cytokines and chemokines as well as adhesion molecules expression which is involved in the development of atherosclerosis. The aim of our study is to investigate the effects of short chain fatty acids (SCFA) on lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNFα)-induced endothelial activation. Methods and Results: Human umbilical vein endothelial cells (HUVEC) were pre-treated with acetate (10 mM), butyrate (0.1 mM) or propionate (0.3 mM) for 1, 16, or 24 h and then stimulated with LPS (1 or 10 μg/ml) or TNFα (100 pg/ml or 1 ng/ml) for 6, 12, or 24 h. Cytokines in the supernatant were measured by ELISA. HUVEC were pre-treated with acetate (10 mM), butyrate (5 mM) or propionate (10 mM) for 24 h and then stimulated with LPS (1 μg/ml) or TNFα (1 ng/ml) for 8 h. The expression of the adhesion molecules intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was detected by flow cytometry. The human blood mononuclear cell adhesive level to HUVEC monolayer was measured. LPS and TNFα induced a significant increase in the release of interleukin-6 (IL-6) and IL-8. Acetate, butyrate and propionate reduced IL-6 and IL-8 levels and the magnitude was dependent on the incubation times. LPS or TNFα increased ICAM-1 and VCAM-1 expression. Pre-incubation with acetate had no effect. In contrast, butyrate and propionate decreased VCAM-1 expression in TNFα stimulated cells but showed no effects on ICAM-1 expression. Butyrate significantly inhibited the adhesion of mononuclear cells to an endothelial monolayer and propionate was less effective. Conclusion: SCFA, including acetate, butyrate and propionate, influenced LPS- or TNFα-induced endothelial activation by inhibiting the production of IL-6 and IL-8, and reducing the expression of VCAM-1 and subsequent cell adhesion. Results were dependent on the concentrations and pre-incubation time of each SCFA and stimulation time of LPS or TNFα.
Collapse
Affiliation(s)
- Meng Li
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Immunology, Nutricia Research, Utrecht, Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Immunology, Nutricia Research, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
30
|
Li HL, Jin JM, Yang C, Wang P, Huang F, Wu H, Zhang BB, Shi HL, Wu XJ. Isoastragaloside I suppresses LPS-induced tight junction disruption and monocyte adhesion on bEnd.3 cells via an activating Nrf2 antioxidant defense system. RSC Adv 2018. [DOI: 10.1039/c7ra10246a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ISOI rescued TJs disruption from ROS induced by LPS in bEnd.3 cells. ISOI ameliorated inflammatory response and decreased monocyte adhesion onto bEnd.3 cells induced with LPS. ISOI protected BBB integrity through activating Nrf2 antioxidant pathway.
Collapse
Affiliation(s)
- Hong-Li Li
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Jin-Mei Jin
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
31
|
Qi J, Zheng JB, Ai WT, Yao XW, Liang L, Cheng G, Shou XL, Sun CF. Felodipine inhibits ox-LDL-induced reactive oxygen species production and inflammation in human umbilical vein endothelial cells. Mol Med Rep 2017; 16:4871-4878. [PMID: 28791379 DOI: 10.3892/mmr.2017.7181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 05/25/2017] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress and inflammation are involved in the pathogenesis of atherosclerosis. Calcium channel blockers (CCBs) inhibit the development of atherosclerosis, although the underlying molecular basis has not been completely elucidated. The present study was designed to investigate the effects of felodipine, a CCB, on inflammation and oxidative stress in human umbilical vein endothelial cells (HUVECs) and to examine the underlying mechanisms of action. Oxidized low‑density lipoprotein (ox‑LDL) was used to induce an inflammatory response in HUVECs. The effects of felodipine were investigated by measuring the content of nitric oxide (NO) and reactive oxygen species (ROS), the mRNA and protein levels of intercellular adhesion molecule 1 (ICAM‑1) and vascular cell adhesion protein 1 (VCAM‑1), and the mRNA levels of endothelial NO synthase (eNOS) and inducible NO synthase (iNOS), in addition to the adhesion ability of U937 cells to HUVECs. ROS and NO levels were significantly increased in HUVECs following 24‑h treatment with 25 mg/l ox‑LDL (P<0.01). The increase in ROS was reversed by treatment with felodipine. In addition, NO levels were increased following treatment with 1 µmol/l felodipine (P<0.05). The mRNA expression of ICAM‑1, VCAM‑1, eNOS and iNOS was increased (P<0.05). Administration of 0.1 µM felodipine significantly decreased the expression of ICAM‑1, VCAM‑1, and iNOS (P<0.05). The number of U937 cells adhered to ox‑LDL‑treated HUVECs was significantly increased compared with control, which was reversed by felodipine (0.1 µM). In conclusion, felodipine was demonstrated to inhibit oxidative stress and inflammatory responses, suggesting that it may be used to treat atherosclerosis.
Collapse
Affiliation(s)
- Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jian-Bao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wen-Ting Ai
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Wei Yao
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Lei Liang
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Gong Cheng
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xi-Ling Shou
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chao-Feng Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
32
|
Zhang H, Zhao Z, Pang X, Yang J, Yu H, Zhang Y, Zhou H, Zhao J. MiR-34a/sirtuin-1/foxo3a is involved in genistein protecting against ox-LDL-induced oxidative damage in HUVECs. Toxicol Lett 2017; 277:115-122. [DOI: 10.1016/j.toxlet.2017.07.216] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/31/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022]
|
33
|
Shi J, Deng H, Zhang M. Curcumin pretreatment protects against PM2.5‑induced oxidized low‑density lipoprotein‑mediated oxidative stress and inflammation in human microvascular endothelial cells. Mol Med Rep 2017; 16:2588-2594. [PMID: 28713935 PMCID: PMC5547950 DOI: 10.3892/mmr.2017.6935] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/27/2017] [Indexed: 02/02/2023] Open
Abstract
A previous study demonstrated that particulate matter (≤2.5 µm in diameter; PM2.5) may promote atherosclerosis. However, the underlying mechanisms of PM2.5 in human microvascular endothelial cells (HMEC-1) remain to be elucidated. It has been reported that inflammation and oxidative stress can be reduced by curcumin, and in the present study, the aim was to investigate the protective effects of curcumin on PM2.5-induced oxidative stress and inflammatory response in HMEC-1. HMEC-1 were stimulated with curcumin and PM2.5. The HMEC-1 viability and apoptosis were detected by MTT and annexin V-fluorescein isothiocyanate/propidium iodide assays. The levels of oxidized low-density lipoprotein (oxLDL), tumor necrosis factor (TNF)-α and interleukin (IL)-8 were detected by ELISA. The intracellular reactive oxygen species formation in HMEC-1 was detected using flow cytometry and 2′,7′-dichlorofluorescin diacetate. Nuclear factor (NF)-κB, caspase 3 activity and adhesion molecule expression were also investigated. The results suggested that curcumin reduced PM2.5 (300 µg/ml)-induced cell apoptosis and intracellular caspase 3 activity in HMEC-1. ELISA analysis demonstrated that curcumin reduced PM2.5-induced oxLDL, TNF-α and IL-8 levels. Curcumin induced NF-κB, cell adhesion molecule 1 and vascular cell adhesion protein 1 expression. Thus, curcumin treatment may reduce PM2.5-induced oxidative stress and inflammation in HMEC-1. In summary, it was indicated that the effects of PM2.5 are associated with oxLDL via the NF-κB signaling pathway, thereby inducing PM2.5 mediated oxidative and inflammatory responses. The results also suggested that curcumin may be able to reduce the oxidative and inflammatory effects of PM2.5 in HMEC-1.
Collapse
Affiliation(s)
- Jun Shi
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Ministry of Education, Shanghai 200092, P.R. China
| | - Huiping Deng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Ministry of Education, Shanghai 200092, P.R. China
| | - Min Zhang
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
34
|
Genistein Protects Against Ox-LDL-Induced Inflammation Through MicroRNA-155/SOCS1-Mediated Repression of NF-ĸB Signaling Pathway in HUVECs. Inflammation 2017; 40:1450-1459. [DOI: 10.1007/s10753-017-0588-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Li W, Zhi W, Liu F, He Z, Wang X, Niu X. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro. Exp Cell Res 2017; 353:26-34. [PMID: 28274716 DOI: 10.1016/j.yexcr.2017.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Wenbing Zhi
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiuei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
36
|
Guo J, Liang W, Li J, Long J. Knockdown of FSTL1 inhibits oxLDL-induced inflammation responses through the TLR4/MyD88/NF-κB and MAPK pathway. Biochem Biophys Res Commun 2016; 478:1528-33. [DOI: 10.1016/j.bbrc.2016.08.138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
|
37
|
HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4847874. [PMID: 27190988 PMCID: PMC4852127 DOI: 10.1155/2016/4847874] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/30/2023]
Abstract
Objectives. Elevated plasma homocysteine (Hcy) could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27), a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs) and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO) level, increase of endothelin-1 (ET-1), intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.
Collapse
|
38
|
Zhang HP, Zhao JH, Yu HX, Guo DX. Genistein ameliorated endothelial nitric oxidase synthase uncoupling by stimulating sirtuin-1 pathway in ox-LDL-injured HUVECs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:118-124. [PMID: 26829290 DOI: 10.1016/j.etap.2016.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Endothelial nitric oxidase synthase (eNOS) uncoupling plays a causal role in endothelial dysfunction in atherosclerosis. Genistein consumption has been associated with the prevention of atherosclerosis. However, the effect of genistein on eNOS uncoupling has not been reported. A model of oxidized low-density lipoprotein (ox-LDL)-induced injury on human umbilical vein endothelial cells (HUVECs) was established to evaluate the effect of genistein on eNOS uncoupling. We investigated the effect of genistein on NADPH oxidase-dependent superoxide production, NOX4 expression, BH4 synthesis and oxidation, the expression of GTP cyclohydrolase 1 (GCH1) and dihydrofolate reductase (DHFR). The results showed that genistein decreased superoxide production and NOX4 expression, enhanced the ratio of BH4/BH2, augmented the expressions of GCH1 and DHFR. Accompanied with genistein ameliorating eNOS uncoupling, genistein elevated the expression of sirtuin-1; furthermore, the effects of genistein on eNOS uncoupling were blunted with sirtuin-1 siRNA. The present study indicated that genistein ameliorated eNOS uncoupling was concerned with sirtuin-1 pathway in ox-LDL-injured HUVECs.
Collapse
Affiliation(s)
- Hua-ping Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Jia-hui Zhao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Hai-xia Yu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Dong-xing Guo
- Department of Pharmacology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
39
|
Mimura J, Itoh K. Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic Biol Med 2015; 88:221-232. [PMID: 26117321 DOI: 10.1016/j.freeradbiomed.2015.06.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 01/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular arterial walls. A number of studies have revealed the biological and genetic bases of atherosclerosis, and over 100 genes influence atherosclerosis development. Nrf2 plays an important role in oxidative stress response and drug metabolism, but the Nrf2 signaling pathway is closely associated with atherosclerosis development. During atherosclerosis progression, Nrf2 signaling modulates many physiological and pathophysiological processes, such as lipid homeostasis regulation, foam cell formation, macrophage polarization, redox regulation and inflammation. Interestingly, Nrf2 exhibits both pro- and anti-atherogenic effects in experimental animal models. These observations make the Nrf2 pathway a promising target to prevent atherosclerosis.
Collapse
Affiliation(s)
- Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
40
|
Jiang Q, Wang D, Han Y, Han Z, Zhong W, Wang C. Modulation of oxidized-LDL receptor-1 (LOX1) contributes to the antiatherosclerosis effect of oleanolic acid. Int J Biochem Cell Biol 2015; 69:142-52. [PMID: 26510581 DOI: 10.1016/j.biocel.2015.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Oleanolic acid (OA) is a bioactive pentacyclic triterpenoid. The current work studied the effects and possible mechanisms of OA in atherosclerosis. Quails (Coturnix coturnix) were treated with high fat diet with or without OA. Atherosclerosis was assessed by examining lipid profile, antioxidant status and histology in serum and aorta. Human umbilical vein endothelial cells (HUVECs) were exposed to 200μg/mL ox-LDL for 24h, then cell viability was assessed with MTT assay; reactive oxygen species (ROS) was assessed with DCFDA staining. Expression levels of LOX-1, NADPH oxidase subunits, nrf2 and ho-1 were measured with real time PCR and western blotting. Furthermore, LOX-1 was silenced with lentivirus and the expression levels assessment was repeated. OA treatment improved the lipid profile and antioxidant status in quails fed with high fat diet. Histology showed decreased atherosclerosis in OA treated animals. Ox-LDL exposure decreased viability and induced ROS generation in HUVECs, and this progression was alleviated by OA pretreatment. Moreover, elevated expression of LOX-1, NADPH oxidase subunits, nrf2 and ho-1 were observed in ox-LDL exposed HUVECs. OA pretreatment prevented ox-LDL induced increase of LOX-1 and NADPH oxidase subunits expression, while further increased nrf2 and ho-1 expression. Silencing of LOX-1 abolished ox-LDL induced effects in cell viability, ROS generation and gene expression. OA could alleviate high fat diet induced atherosclerosis in quail and ox-LDL induced cytotoxicity in HUVECs; the potential mechanism involves modulation of LOX-1 activity, including inhibition of expression of NADPH oxidase subunits and increase of the expression of nrf2 and ho-1.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Pharmacology, Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Daoyan Wang
- Department of Pharmacology, Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Yantao Han
- Department of Pharmacology, Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Zhiwu Han
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| | - Weizhen Zhong
- Department of Pharmacology, Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Chunbo Wang
- Department of Pharmacology, Qingdao University Medical College, 308 Ningxia Road, Qingdao 266071, Shandong, China.
| |
Collapse
|
41
|
Chen H, Xie K, Han H, Li Y, Liu L, Yang T, Yu Y. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int Immunopharmacol 2015; 28:643-54. [DOI: 10.1016/j.intimp.2015.07.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/27/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
|
42
|
Zrelli H, Kusunoki M, Miyazaki H. Role of Hydroxytyrosol-dependent Regulation of HO-1 Expression in Promoting Wound Healing of Vascular Endothelial Cells via Nrf2 De Novo Synthesis and Stabilization. Phytother Res 2015; 29:1011-8. [PMID: 25870947 DOI: 10.1002/ptr.5339] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 02/04/2023]
Abstract
Hydroxytyrosol (HT), an olive plant (Olea europaea L.) polyphenol, has proven atheroprotective effects. We previously demonstrated that heme oxygenase-1 (HO-1) is involved in the HT dependent prevention of dysfunction induced by oxidative stress in vascular endothelial cells (VECs). Here, we further investigated the signaling pathway of HT-dependent HO-1 expression in VECs. HT dose- and time-dependently increased HO-1 mRNA and protein levels through the PI3K/Akt and ERK1/2 pathways. Cycloheximide and actinomycin D inhibited both increases, suggesting that HT-triggered HO-1 induction is transcriptionally regulated and that de novo protein synthesis is necessary for this HT effect. HT stimulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2). This Nrf2 accumulation was blocked by actinomycin D and cycloheximide whereas HT in combination with the 26S proteasome inhibitor MG132 enhanced the accumulation. HT also extended the half-life of Nrf2 proteins by decelerating its turnover. Moreover, HO-1 inhibitor, ZnppIX and CO scavenger, hemoglobin impaired HT-dependent wound healing while CORM-2, a CO generator, accelerated wound closure. Together, these data demonstrate that HT upregulates HO-1 expression by stimulating the nuclear accumulation and stabilization of Nrf2, leading to the wound repair of VECs crucial in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Houda Zrelli
- Faculty of Life and Environment Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Miki Kusunoki
- Faculty of Life and Environment Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Hitoshi Miyazaki
- Faculty of Life and Environment Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
43
|
Dias MMDS, Martino HSD, Noratto G, Roque-Andrade A, Stringheta PC, Talcott S, Ramos AM, Mertens-Talcott SU. Anti-inflammatory activity of polyphenolics from açai (Euterpe oleracea Martius) in intestinal myofibroblasts CCD-18Co cells. Food Funct 2015; 6:3249-56. [DOI: 10.1039/c5fo00278h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This is the first time that the anti-inflammatory activities of açai polyphenols relevant to intestinal inflammation were demonstrated in colon fibroblasts cells.
Collapse
Affiliation(s)
| | | | - Giuliana Noratto
- Department of Nutrition and Food Science
- Texas A&M University
- College Station
- USA
- Department of Food Science
| | | | | | - Stephen Talcott
- Department of Nutrition and Food Science
- Texas A&M University
- College Station
- USA
| | - Afonso Mota Ramos
- Department of Food Technology
- Federal University of Viçosa
- Viçosa
- Brazil
| | | |
Collapse
|
44
|
Toro-Funes N, Morales-Gutiérrez FJ, Veciana-Nogués MT, Vidal-Carou MC, Spencer JPE, Rodriguez-Mateos A. The intracellular metabolism of isoflavones in endothelial cells. Food Funct 2014; 6:98-108. [PMID: 25410768 DOI: 10.1039/c4fo00772g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Data from epidemiological and human intervention studies have highlighted potential cardiovascular benefits of soy isoflavone-containing foods. In humans, genistein and daidzein are extensively metabolized after absorption into glucuronides and sulfate metabolites. However, limited data exist on isoflavone cellular metabolism, in particular in endothelial cells. We investigated the uptake and cellular metabolism of genistein, daidzein and its major in vivo microbial metabolite, equol, in human endothelial (HUVEC), liver (HepG2) and intestinal epithelial cells (Caco-2 monolayer). Our results indicate that genistein and daidzein are taken up by endothelial cells, and metabolized into methoxy-genistein-glucuronides, methoxy-genistein-sulfates and methoxy-daidzein-glucuronides. In contrast, equol was taken up but not metabolized. In HepG2 and Caco-2 cells, glucuronide and sulfate conjugates of genistein and daidzein and a sulfate conjugate of equol were formed. Our findings suggest that endothelial cell metabolism needs to be taken into account when investigating the cardioprotective mechanisms of action of isoflavones.
Collapse
Affiliation(s)
- Natalia Toro-Funes
- Department of Nutrition and Food Science-XaRTA, Faculty of Pharmacy, Campus de l'Alimentació Torribera, University of Barcelona, Avda. Prat de la Riba 171, 08921-Santa Coloma de Gramenet, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Venditti CC, Smith GN. Involvement of the Heme Oxygenase System in the Development of Preeclampsia and as a Possible Therapeutic Target. WOMENS HEALTH 2014; 10:623-43. [DOI: 10.2217/whe.14.54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The enzyme heme oxygenase (HO) is an important regulatory molecule present in most nucleated mammalian cells which functions to break down the pro-oxidant molecule heme into three products, carbon monoxide (CO), biliverdin and free iron. The HO system has been associated with many physiologic functions, including vascular tone, regulation of inflammation and apoptosis, angiogenesis and antioxidant capabilities. Deficiencies in HO are associated with several pregnancy disorders, including preeclampsia. With no present cure, this disorder continues to affect 5–7% of all pregnancies worldwide, leading to maternal and fetal morbidity and mortality. Researchers continue to strive for therapeutic potentials and this review will outline the possible use of the HO/CO system as a target treatment/prevention of preeclampsia in the future.
Collapse
Affiliation(s)
- Carolina C Venditti
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Canada
| | - Graeme N Smith
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Canada
- Department of Obstetrics & Gynecology, Queen's University, Kingston General Hospital, 76 Stuart Street, Kingston K7L 2V7, Canada
| |
Collapse
|
46
|
He Q, Lin X, Wang F, Xu J, Ren Z, Chen W, Xing X. Associations of a polymorphism in the intercellular adhesion molecule-1 (ICAM1) gene and ICAM1 serum levels with migraine in a Chinese Han population. J Neurol Sci 2014; 345:148-53. [DOI: 10.1016/j.jns.2014.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/09/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
|
47
|
Kinoshita S, Noda K, Tagawa Y, Inafuku S, Dong Y, Fukuhara J, Dong Z, Ando R, Kanda A, Ishida S. Genistein attenuates choroidal neovascularization. J Nutr Biochem 2014; 25:1177-1182. [PMID: 25113565 DOI: 10.1016/j.jnutbio.2014.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/18/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022]
Abstract
Genistein is a dietary-derived flavonoid abundantly present in soybeans and known to possess various biological effects including anti-inflammation and anti-angiogenic activity. To investigate the effects of genistein on intraocular neovascularization, we used an animal model of laser-induced choroidal neovascularization (CNV). Male C57BL/6J mice were treated in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. CNV was induced by laser photocoagulation. The animals were fed a mixture diet containing 0.5% genistein or a control diet ad libitum for 7 days before laser photocoagulation and the treatment was continued until the end of the study. Seven days after laser injury, the size of CNV lesions was quantified. Retinal pigment epithelium (RPE)-choroid complex was also harvested 1 or 3 days after laser injury and the level of monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-1, and matrix metalloproteinase (MMP)-9 were measured by enzyme-linked immunosorbent assay. Expression levels of Ets-1 and F4/80 were examined by real-time PCR. A significant decrease in CNV size was observed in animals treated with genistein (15441.9±1511.8 μm(2)) compared to control mice (21074.0±1940.7μm(2), P<.05). Genistein significantly reduced the protein level of MCP-1, ICAM-1, and MMP-9 in the RPE-choroid complex (P<.05). In addition, genistein suppressed the expression levels of Ets-1 and F4/80 (P<.05). The current data indicate the anti-angiogenic property of genistein during CNV formation.
Collapse
Affiliation(s)
- Satoshi Kinoshita
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Yoshiaki Tagawa
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saori Inafuku
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoko Dong
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junichi Fukuhara
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Zhenyu Dong
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ryo Ando
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science; Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
48
|
Liu ZM, Ho SC, Chen YM, Ho S, To K, Tomlinson B, Woo J. Whole soy, but not purified daidzein, had a favorable effect on improvement of cardiovascular risks: a 6-month randomized, double-blind, and placebo-controlled trial in equol-producing postmenopausal women. Mol Nutr Food Res 2014; 58:709-17. [PMID: 24273218 DOI: 10.1002/mnfr.201300499] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 01/06/2023]
Abstract
SCOPE Equol is produced by the intestinal bacteria from isoflavone daidzein. Studies have reported the health benefits of soy can only present or more pronounced in equol producers. This 6-month randomized controlled trial examined the effect of whole soy (soy flour) and purified daidzein on cardiovascular biomarkers and carotid intima-media thickness (CIMT) in prehypertensive postmenopausal women who were equol producers. METHODS AND RESULTS Two hundred seventy eligible women were randomized to either one of the three treatments: 40 g soy flour (whole soy group), 40 g low-fat milk powder + 63 mg daidzein (daidzein group), or 40 g low-fat milk powder (placebo group) daily each for 6 months. Fasting venous samples were obtained at baseline and end of trial for testing glucose, lipids, high sensitivity C-reactive protein (hs-CRP), and free fatty acid. Changes in common CIMT were also assessed. Serum LDL-C decreased by 7.95% (95% CI: -15.09∼-0.81%) and 6.32% (95% CI: -13.45∼0.08%), and serum hs-CRP decreased by 0.164 (95% CI: -0.309∼-0.019) and 0.054 (95% CI: -0.199∼0.012) in the whole soy group compared with daidzein and milk placebo groups, respectively. No significant change in CIMT was found. CONCLUSION Whole soy, but not purified daidzein, had a beneficial effect on reduction of LDL-C and hs-CRP among prehypertensive equol-producing postmenopausal women.
Collapse
Affiliation(s)
- Zhao-Min Liu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Jiang JX, Zhang SJ, Liu YN, Lin XX, Sun YH, Shen HJ, Yan XF, Xie QM. EETs alleviate ox-LDL-induced inflammation by inhibiting LOX-1 receptor expression in rat pulmonary arterial endothelial cells. Eur J Pharmacol 2014; 727:43-51. [PMID: 24486707 DOI: 10.1016/j.ejphar.2014.01.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/17/2022]
Abstract
Oxidized low-density lipoprotein (Ox-LDL) is associated with atherosclerotic events through the modulation of arachidonic acid (AA) metabolism and activation of inflammatory signaling. Cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) mitigate inflammation through nuclear factor-κB (NF-κB). In this study, we explored the effects and mechanisms of exogenous EETs on the ox-LDL-induced inflammation of pulmonary artery endothelial cells (PAECs), which were cultured from rat pulmonary arteries. We determined that pre-treatment with 11,12-EET or 14,15-EET attenuated the ox-LDL-induced expression and release of intercellular adhesion molecule-1 (ICAM-1), E-selectin, and monocyte chemoattractant protein-1 (MCP-1) in a concentration-dependent manner. In addition, the ox-LDL-induced expression of CYP2J4 was upregulated by 11,12-EET and 14,15-EET (1μM). Furthermore, the endothelial receptor of lectin-like oxidized low-density lipoprotein (LOX-1) was downregulated in PAECs treated with EETs. The inflammatory responses evoked by ox-LDL (100μg/mL) were blocked by pharmacological inhibitors of Erk1/2 mitogen-activated protein kinase (MAPK) (U0126), p38 MAPK (SB203580), and NF-κB (PDTC). In addition, we confirmed that 11,12-EET suppresses phosphorylation of p38, degradation of IκBα, and activation of NF-κB (p65), whereas 14,15-EET can significantly suppress the phosphorylation of p38 and Erk1/2. Our results indicate that EETs exert beneficial effects on ox-LDL-induced inflammation primarily through the inhibition of LOX-1 receptor upregulation, MAPK phosphorylation, and NF-κB activation and through the upregulation of CYP2J4 expression. This study helps focus the current understanding of the contribution of EETs to the regulation of the inflammation of pulmonary vascular endothelial cells. Furthermore, the therapeutic potential of targeting the EET pathway in pulmonary vascular disease will be highlighted.
Collapse
Affiliation(s)
- Jun-xia Jiang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shui-juan Zhang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ya-nan Liu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xi-xi Lin
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yan-hong Sun
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui-juan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiao-feng Yan
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Qiang-min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou 310058, China; Laboratory Animal Center of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
50
|
Ox-LDL promotes migration and adhesion of bone marrow-derived mesenchymal stem cells via regulation of MCP-1 expression. Mediators Inflamm 2013; 2013:691023. [PMID: 23956504 PMCID: PMC3730161 DOI: 10.1155/2013/691023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/28/2013] [Indexed: 02/02/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (bmMSCs) are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL) can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression.
Collapse
|