1
|
Chang JR, Yao ZF, Hsieh S, Nordling TEM. Age Prediction Using Resting-State Functional MRI. Neuroinformatics 2024; 22:119-134. [PMID: 38341830 DOI: 10.1007/s12021-024-09653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
The increasing lifespan and large individual differences in cognitive capability highlight the importance of comprehending the aging process of the brain. Contrary to visible signs of bodily ageing, like greying of hair and loss of muscle mass, the internal changes that occur within our brains remain less apparent until they impair function. Brain age, distinct from chronological age, reflects our brain's health status and may deviate from our actual chronological age. Notably, brain age has been associated with mortality and depression. The brain is plastic and can compensate even for severe structural damage by rewiring. Functional characterization offers insights that structural cannot provide. Contrary to the multitude of studies relying on structural magnetic resonance imaging (MRI), we utilize resting-state functional MRI (rsfMRI). We also address the issue of inclusion of subjects with abnormal brain ageing through outlier removal. In this study, we employ the Least Absolute Shrinkage and Selection Operator (LASSO) to identify the 39 most predictive correlations derived from the rsfMRI data. The data is from a cohort of 176 healthy right-handed volunteers, aged 18-78 years (95/81 male/female, mean age 48, SD 17) collected at the Mind Research Imaging Center at the National Cheng Kung University. We establish a normal reference model by excluding 68 outliers, which achieves a leave-one-out mean absolute error of 2.48 years. By asking which additional features that are needed to predict the chronological age of the outliers with a smaller error, we identify correlations predictive of abnormal aging. These are associated with the Default Mode Network (DMN). Our normal reference model has the lowest prediction error among published models evaluated on adult subjects of almost all ages and is thus a candidate for screening for abnormal brain aging that has not yet manifested in cognitive decline. This study advances our ability to predict brain aging and provides insights into potential biomarkers for assessing brain age, suggesting that the role of DMN in brain aging should be studied further.
Collapse
Affiliation(s)
- Jose Ramon Chang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Kinesiology, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Institute of Allied Health Sciences, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. NATURE AGING 2023; 3:1486-1499. [PMID: 38102202 DOI: 10.1038/s43587-023-00527-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.
Collapse
Affiliation(s)
- Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Casper E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: Can it be regulated by SIRT6? Life Sci 2023; 330:122007. [PMID: 37544377 DOI: 10.1016/j.lfs.2023.122007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Oxidative stress and inflammation are major mechanisms responsible for the progression of CAD. Nuclear transcription factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox status. Nrf2 upregulation increases the expression of antioxidant genes, decreases the expression of Nuclear factor-kappa B (NF-kB), and increases free radical metabolism. Activated NF-kB increases the production of inflammatory cytokines causing endothelial dysfunction. The two pathways of Nrf2 and NF-kB can regulate the expression of each other. Foremost, the Nrf2 pathway can decrease the level of active NF-κB by increasing the level of antioxidants and cytoprotective enzymes. Furthermore, the Nrf2 pathway prevents IκB-α degradation, an inhibitor of NF-kB, and thus inhibits NF-κB mediated transcription. Also, NF-kB transcription inhibits Nrf2 activation by reducing the antioxidant response element (ARE) transcription. Sirtuin 6 (SIRT6) is a member of the Sirtuins family that was found to protect against cardiovascular diseases. SIRT6 can suppress the production of Reactive oxygen species (ROS) through deacetylation of NRF2 which results in NRF2 activation. Furthermore, SIRT6 can inhibit the inflammatory process through the downregulation of NF-kB transcription. Therefore, targeting sirtuins could be a therapeutic strategy to treat CAD. This review describes the potential role of SIRT6 in regulating the crosstalk between NRF2 and NF-kB signaling pathways in CAD.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
An evaluation of aging measures: from biomarkers to clocks. Biogerontology 2022; 24:303-328. [PMID: 36418661 DOI: 10.1007/s10522-022-09997-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
With the increasing number of aged population and growing burden of healthy aging demands, a rational standard for evaluation aging is in urgent need. The advancement of medical testing technology and the prospering of artificial intelligence make it possible to evaluate the biological status of aging from a more comprehensive view. In this review, we introduced common aging biomarkers and concluded several famous aging clocks. Aging biomarkers reflect changes in the organism at a molecular or cellular level over time while aging clocks tend to be more of a generalization of the overall state of the organism. We expect to construct a framework for aging evaluation measurement from both micro and macro perspectives. Especially, population-specific aging clocks and multi-omics aging clocks may better fit the demands to evaluate aging in a comprehensive and multidimensional manner and make a detailed classification to represent different aging rates at tissue/organ levels. This framework will promisingly provide a crucial basis for disease diagnosis and intervention assessment in geroscience.
Collapse
|
5
|
Ho TJ, Goswami D, Kuo WW, Kuo CH, Yen SC, Lin PY, Lin SZ, Hsieh DJY, Shibu MA, Huang CY. Artemisia argyi exhibits anti-aging effects through decreasing the senescence in aging stem cells. Aging (Albany NY) 2022; 14:6187-6201. [PMID: 35951373 PMCID: PMC9417221 DOI: 10.18632/aging.204210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Aging is accompanied by functional loss of many cellular pathways, creating an increased risk of many age-related complications (ARC). Aging causes stem cell exhaustion with a concomitant increase in cellular dysfunction. Recently, interest in senotherapeutics has been growing rapidly to promote healthy aging and as an intervention for ARCs. This research focused on screening the senomorphic properties of Artemisia argyi, as an emerging strategy for longevity, and prevention or treatment of ARCs. In this study, we aimed to find the clinical efficacy of daily consumption of Artemisia argyi water extract (AAW) on aging. In vitro 0.1μM Doxorubicin induced senescent human adipose derived mesenchymal stem cells was treated with different concentrations of AAW to show its anti-aging effect. 15 months old SHR rats (n=6) were treated with 7.9 mg/ml AAW for 4 weeks and anti-aging effect was evaluated. In vitro study showed the protective effect of AAW in telomere shortening and helps in maintaining a balance in the expression of anti-aging protein Klotho and TERT. AAW effectively reduced mitochondrial superoxide and also provided a protective shield against senescence markers like over-expression of p21 and formation of double strand breaks, which is known to cause premature aging. Moreover, animal studies indicated that AAW promoted the expression of Klotho in naturally aging rats. In addition, AAW successfully restored the decline cardiac function and improved the grip strength and memory of aging rat. These findings showed that therapeutic targeting of senescent stem cells by AAW restored stem cell homeostasis and improves overall health.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Debakshee Goswami
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei 111, Taiwan
| | - Shih Cheng Yen
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
6
|
Sikder S, Arunkumar G, Melters DP, Dalal Y. Breaking the aging epigenetic barrier. Front Cell Dev Biol 2022; 10:943519. [PMID: 35966762 PMCID: PMC9366916 DOI: 10.3389/fcell.2022.943519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is an inexorable event occurring universally for all organisms characterized by the progressive loss of cell function. However, less is known about the key events occurring inside the nucleus in the process of aging. The advent of chromosome capture techniques and extensive modern sequencing technologies have illuminated a rather dynamic structure of chromatin inside the nucleus. As cells advance along their life cycle, chromatin condensation states alter which leads to a different epigenetic landscape, correlated with modified gene expression. The exact factors mediating these changes in the chromatin structure and function remain elusive in the context of aging cells. The accumulation of DNA damage, reactive oxygen species and loss of genomic integrity as cells cease to divide can contribute to a tumor stimulating environment. In this review, we focus on genomic and epigenomic changes occurring in an aged cell which can contribute to age-related tumor formation.
Collapse
Affiliation(s)
| | | | | | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| |
Collapse
|
7
|
Rotstein A, Kodesh A, Goldberg Y, Reichenberg A, Levine SZ. Serum folate deficiency and the risks of dementia and all-cause mortality: a national study of old age. EVIDENCE-BASED MENTAL HEALTH 2022; 25:63-68. [PMID: 35292483 PMCID: PMC10231620 DOI: 10.1136/ebmental-2021-300309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND The association between serum folate deficiency and the risk of dementia in old age is unclear, perhaps owing to small sample sizes, the competing risk of mortality or reverse causation. OBJECTIVE To examine the associations between serum folate deficiency and the risks of incident dementia and all-cause mortality in a large national sample of older adults. METHODS A prospective cohort aged 60-75 years (n=27 188) without pre-existing dementia for at least 10 years, was tested for serum concentrations of folate and followed up for dementia or all-cause mortality. Serum folate deficiency was classified as present (<4.4 ng/mL), otherwise absent. HRs and 95% CIs from competing risks Cox models were fitted to quantify the associations between serum folate deficiency and the risks of dementia and all-cause mortality. To examine reverse causation, the analysis was stratified by duration of follow-up. FINDINGS The presence compared with the absence of serum folate deficiency was associated with higher risks of dementia (HR=1.68; 95% CI 1.32 to 2.13; p<0.001) and all-cause mortality (HR=2.98; 95% CI 2.52 to 3.52; p<0.001). Evidence for reverse causation were moderate for dementia and mild for all-cause mortality. CONCLUSIONS Serum concentrations of folate may function as a biomarker used to identify those at risk of dementia and mortality; however, reverse causation is likely. Further research is needed to examine the role of serum folate deficiency in dementia aetiology. CLINICAL IMPLICATIONS Serum folate deficiency in older adults requires monitoring and treatment for preventative measures and/or as part of implemented therapeutic strategies.
Collapse
Affiliation(s)
- Anat Rotstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arad Kodesh
- Department of Community Mental Health, University of Haifa, Haifa, Israel
- Department of Mental Health, Meuhedet Health Services, Tel Aviv, Israel
| | - Yair Goldberg
- The Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen Z Levine
- Department of Community Mental Health, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
9
|
Budhathoki S, Graham C, Sethu P, Kannappan R. Engineered Aging Cardiac Tissue Chip Model for Studying Cardiovascular Disease. Cells Tissues Organs 2022; 211:348-359. [PMID: 34365455 PMCID: PMC8818062 DOI: 10.1159/000516954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Due to the rapidly growing number of older people worldwide and the concomitant increase in cardiovascular complications, there is an urgent need for age-related cardiac disease modeling and drug screening platforms. In the present study, we developed a cardiac tissue chip model that incorporates hemodynamic loading and mimics essential aspects of the infarcted aging heart. We induced cellular senescence in H9c2 myoblasts using low-dose doxorubicin treatment. These senescent cells were then used to engineer cardiac tissue fibers, which were subjected to hemodynamic stresses associated with pressure-volume changes in the heart. Myocardial ischemia was modeled in the engineered cardiac tissue via hypoxic treatment. Our results clearly show that acute low-dose doxorubicin treatment-induced senescence, as evidenced by morphological and molecular markers, including enlarged and flattened nuclei, DNA damage response foci, and increased expression of cell cycle inhibitor p16INK4a, p53, and ROS. Under normal hemodynamic load, the engineered cardiac tissues demonstrated cell alignment and retained cardiac cell characteristics. Our senescent cardiac tissue model of hypoxia-induced myocardial infarction recapitulated the pathological disease hallmarks such as increased cell death and upregulated expression of ANP and BNP. In conclusion, the described methodology provides a novel approach to generate stress-induced aging cardiac cell phenotypes and engineer cardiac tissue chip models to study the cardiovascular disease pathologies associated with aging.
Collapse
Affiliation(s)
- Sachin Budhathoki
- Division of Cardiovascular Disease, Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caleb Graham
- Division of Cardiovascular Disease, Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ramaswamy Kannappan
- Division of Cardiovascular Disease, Departments of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Gladyshev VN, Kritchevsky SB, Clarke SG, Cuervo AM, Fiehn O, de Magalhães JP, Mau T, Maes M, Moritz R, Niedernhofer LJ, Van Schaftingen E, Tranah GJ, Walsh K, Yura Y, Zhang B, Cummings SR. Molecular Damage in Aging. NATURE AGING 2021; 1:1096-1106. [PMID: 36846190 PMCID: PMC9957516 DOI: 10.1038/s43587-021-00150-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
Cellular metabolism generates molecular damage affecting all levels of biological organization. Accumulation of this damage over time is thought to play a central role in the aging process, but damage manifests in diverse molecular forms complicating its assessment. Insufficient attention has been paid to date to the role of molecular damage in aging-related phenotypes, particularly in humans, in part because of the difficulty in measuring its various forms. Recently, omics approaches have been developed that begin to address this challenge, because they are able to assess a sizeable proportion of age-related damage at the level of small molecules, proteins, RNA, DNA, organelles and cells. This review describes the concept of molecular damage in aging and discusses its diverse aspects from theoretical models to experimental approaches. Measurement of multiple types of damage enables studies of the role of damage in human aging outcomes and lays a foundation for testing interventions to reduce the burden of molecular damage, opening new approaches to slowing aging and reducing its consequences.
Collapse
Affiliation(s)
- Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| | - Michal Maes
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Robert Moritz
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Emile Van Schaftingen
- De Duve Institute, Université catholique de Louvain, Bruxelles, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Bruxelles, Belgium
| | - Gregory J. Tranah
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Shahgaldi S, Kahmini FR. A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. Life Sci 2021; 282:119803. [PMID: 34237310 DOI: 10.1016/j.lfs.2021.119803] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
Sirtuins are Class III protein deacetylases with seven conserved isoforms. In general, Sirtuins are highly activated under cellular stress conditions in which NAD+ levels are increased. Nevertheless, regulation of Sirtuins extends far beyond the influences of cellular NAD+/NADH ratio and a rapidly expanding body of evidence currently suggests that their expression and catalytic activity are highly kept under control at multiple levels by various factors and processes. Owing to their intrinsic ability to enzymatically target various intracellular proteins, Sirtuins are prominently involved in the regulation of fundamental biological processes including inflammation, metabolism, redox homeostasis, DNA repair and cell proliferation and senescence. In fact, Sirtuins are well established to regulate and reprogram different redox and metabolic pathways under both pathological and physiological conditions. Therefore, alterations in Sirtuin levels can be a pivotal intermediary step in the pathogenesis of several disorders. This review first highlights the mechanisms involved in the regulation of Sirtuins and further summarizes the current findings on the major functions of Sirtuins in cellular redox homeostasis and bioenergetics (glucose and lipid metabolism).
Collapse
Affiliation(s)
- Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med 2021; 164:187-205. [PMID: 33450379 DOI: 10.1016/j.freeradbiomed.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria are the powerhouses of the cell. They produce a significant amount of the energy we need to grow, survive and reproduce. The same system that generates energy in the form of ATP also produces Reactive Oxygen Species (ROS). Mitochondrial Reactive Oxygen Species (mtROS) were considered for many years toxic by-products of metabolism, responsible for ageing and many degenerative diseases. Today, we know that mtROS are essential redox messengers required to determine cell fate and maintain cellular homeostasis. Most mtROS are produced by respiratory complex I (CI) and complex III (CIII). How and when CI and CIII produce ROS is determined by the redox state of the Coenzyme Q (CoQ) pool and the proton motive force (pmf) generated during respiration. During ageing, there is an accumulation of defective mitochondria that generate high levels of mtROS. This causes oxidative stress and disrupts redox signalling. Here, we review how mtROS are generated in young and old mitochondria and how CI and CIII derived ROS control physiological and pathological processes. Finally, we discuss why damaged mitochondria amass during ageing as well as methods to preserve mitochondrial redox signalling with age.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", 80131, Napoli, Italy
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| |
Collapse
|
13
|
Alicka M, Kornicka-Garbowska K, Kucharczyk K, Kępska M, Rӧcken M, Marycz K. Age-dependent impairment of adipose-derived stem cells isolated from horses. Stem Cell Res Ther 2020; 11:4. [PMID: 31900232 PMCID: PMC6942290 DOI: 10.1186/s13287-019-1512-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Progressive loss of cell functionality caused by an age-related impairment in cell metabolism concerns not only mature specialized cells but also its progenitors, which significantly reduces their regenerative potential. Adipose-derived stem cells (ASCs) are most commonly used in veterinary medicine as an alternative treatment option in ligaments and cartilage injuries, especially in case of high-value sport horses. Therefore, the main aim of this study was to identify the molecular alternations in ASCs derived from three age-matched horse groups: young (< 5), middle-aged (5-15), and old (> 15 years old). METHODS ASCs were isolated from three age-matched horse groups using an enzymatic method. Molecular changes were assessed using qRT-PCR, ELISA and western blot methods, flow cytometry-based system, and confocal and scanning electron microscopy. RESULTS Our findings showed that ASCs derived from the middle-aged and old groups exhibited a typical senescence phenotype, such as increased percentage of G1/G0-arrested cells, binucleation, enhanced β-galactosidase activity, and accumulation of γH2AX foci, as well as a reduction in cell proliferation. Moreover, aged ASCs were characterized by increased gene expression of pro-inflammatory cytokines and miRNAs (interleukin 8 (IL-8), IL-1β, tumor necrosis factor α (TNF-α), miR-203b-5p, and miR-16-5p), as well as apoptosis markers (p21, p53, caspase-3, caspase-9). In addition, our study revealed that the protein level of mitofusin 1 (MFN1) markedly decreased with increasing age. Aged ASCs also displayed a reduction in mRNA levels of genes involved in stem cell homeostasis and homing, like TET-3, TET-3 (TET family), and C-X-C chemokine receptor type 4 (CXCR4), as well as protein expression of DNA methyltransferase (DNMT1) and octamer transcription factor 3/4 (Oct 3/4). Furthermore, we observed a higher splicing ratio of XBP1 (X-box binding protein 1) mRNA, indicating elevated inositol-requiring enzyme 1 (IRE-1) activity and, consequently, increased endoplasmic reticulum (ER) stress. We also observed reduced levels of glucose transporter 4 (GLUT-4) and insulin receptor (INSR) which indicated impaired insulin sensitivity. CONCLUSIONS Obtained data suggest that ASCs derived from horses older than 5 years old exhibited several molecular alternations which markedly limit their regenerative capacity. The results provide valuable information that allows for a better understanding of the molecular events occurring in ASCs in the course of aging and may help to identify new potential drug targets to restore their regenerative potential.
Collapse
Affiliation(s)
- Michalina Alicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Katarzyna Kornicka-Garbowska
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Martyna Kępska
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Michael Rӧcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig University, 35392, Giessen, Germany
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
14
|
Hopf NB, Danuser B, Bolognesi C, Wild P. Age related micronuclei frequency ranges in buccal and nasal cells in a healthy population. ENVIRONMENTAL RESEARCH 2020; 180:108824. [PMID: 31634720 DOI: 10.1016/j.envres.2019.108824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Micronuclei (MNs) are extranuclear DNA-containing bodies and determining MN frequencies is a measure of genomic instability. An age-related increase in MN frequencies in lymphocytes has been quantified, but this effect has not yet been measured in nasal and buccal cells. METHODS We determined the effect of age on the MN frequency distributions in buccal and nasal cells among a sample of a general adult population in Switzerland. To maximize the power to detect an effect of age in our population study, we recruited preferentially younger and older working age adults. We harvested buccal and nasal cells from 32 young (19-36 year) and 33 working age (47-71 years) participants. The collected cells were washed, centrifuged, and stained (Feulgen) before microscopic manual counting in 2000 cells. Based on these results, we developed an age-dependent background MN frequency chart to help interpret an individual's MN frequency score as an early signal for the effect of genotoxic exposure. RESULTS MN frequencies were respectively 0.53‰ and 0.47‰ for buccal and nasal among the younger and 0.87‰ and 1.03‰ in the older working age group. This corresponded to a multiplicative slope of 14% and 20% per 10 years of age for buccal and nasal cells, respectively. CONCLUSION Based on our study results, we are able to propose an approach for interpreting an individual's MN screening results.
Collapse
Affiliation(s)
- Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), Formerly IST, Institute for Work and Health, University of Lausanne, Lausanne, Epalinges, Switzerland.
| | - Brigitta Danuser
- Center for Primary Care and Public Health (Unisanté), Formerly IST, Institute for Work and Health, University of Lausanne, Lausanne, Epalinges, Switzerland.
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit Ospedale Policlinico San Martino, Genoa, Italy.
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), Formerly IST, Institute for Work and Health, University of Lausanne, Lausanne, Epalinges, Switzerland; INRS, French Institute for Research and Safety, Vandoeuvre, France.
| |
Collapse
|
15
|
Vaiserman A, Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics. Ageing Res Rev 2019; 55:100957. [PMID: 31473332 DOI: 10.1016/j.arr.2019.100957] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
Traditionally, genetics and lifestyle are considered as main determinants of aging-associated pathological conditions. Accumulating evidence, however, suggests that risk of many age-related diseases is not only determined by genetic and adult lifestyle factors but also by factors acting during early development. Type 2 diabetes (T2D), an age-related disease generally manifested after the age of 40, is among such disorders. Since several age-related conditions, such as pro-inflammatory states, are characteristic of both T2D and aging, this disease is conceptualized by many authors as a kind of premature or accelerated aging. There is substantial evidence that intrauterine growth restriction (IUGR), induced by poor or unbalanced nutrient intake, exposure to xenobiotics, maternal substance abuse etc., may impair fetal development, thereby causing the fetal adipose tissue and pancreatic beta cell dysfunction. Consequently, persisting adaptive changes may occur in the glucose-insulin metabolism, including reduced capacity for insulin secretion and insulin resistance. These changes can lead to an improved ability to store fat, thus predisposing to T2D development in later life. The modulation of epigenetic regulation of gene expression likely plays a central role in linking the adverse environmental conditions early in life to the risk of T2D in adulthood. In animal models of IUGR, long-term persistent changes in both DNA methylation and expression of genes implicated in metabolic processes have been repeatedly reported. Findings from human studies confirming the role of epigenetic mechanisms in linking early-life adverse experiences to the risk for T2D in adult life are scarce compared to data from animal studies, mainly because of limited access to suitable biological samples. It is, however, convincing evidence that these mechanisms may also operate in human beings. In this review, theoretical models and research findings evidencing the role of developmental epigenetic variation in the pathogenesis of T2D are summarized and discussed.
Collapse
Affiliation(s)
| | - Oleh Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
16
|
|
17
|
Abstract
Aging is the result of two overlapping processes, "intrinsic" and "extrinsic." Intrinsic structural changes occur as a consequence of physiologic aging and are genetically determined; extrinsic relates to exposure to harmful events and habits, like smoking, bad diet, alcohol consumption, lack of sleep, stress, sun exposure, environmental pollution, etc. Aging may be decelerated by improving bad habits or treating signs of aging with various esthetic methods, food supplements, and antioxidants. It is believed that we cannot stop aging entirely due to the intrinsic part, which leads to irreversible cell damage, as well as tissue and organ damage due to their limited ability to regenerate. Stem cells and their ability to exhibit telomerase activity, to self-renew, and to differentiate into all three embryonic tissues challenges aging as a process, which is not inevitable and can even possibly be reversed. Stem cells can promote regeneration of aged tissues and organs by replacing apoptotic and necrotic cells with healthy ones. In addition, they can have antiinflammatory and antiapoptotic properties by paracrine-secreting growth factors and cytokines on the site of administration. Autologous adipose-derived stem cells are the most promising because they can be easily harvested in huge numbers with minimally invasive liposuction and, as such, represent a powerful tool in anti-aging and regenerative medicine. In this contribution, the author discusses their properties and application in clinical practice.
Collapse
|
18
|
Prenatal Malnutrition-Induced Epigenetic Dysregulation as a Risk Factor for Type 2 Diabetes. Int J Genomics 2019; 2019:3821409. [PMID: 30944826 PMCID: PMC6421750 DOI: 10.1155/2019/3821409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/06/2019] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes (T2D) is commonly regarded as a disease originating from lifestyle-related factors and typically occurring after the age of 40. There is, however, consistent experimental and epidemiological data evidencing that the risk for developing T2D may largely depend on conditions early in life. In particular, intrauterine growth restriction (IUGR) induced by poor or unbalanced nutrient intake can impair fetal growth and also cause fetal adipose tissue and pancreatic β-cell dysfunction. On account of these processes, persisting adaptive changes can occur in the glucose-insulin metabolism. These changes can include reduced ability for insulin secretion and insulin resistance, and they may result in an improved capacity to store fat, thereby predisposing to the development of T2D and obesity in adulthood. Accumulating research findings indicate that epigenetic regulation of gene expression plays a critical role in linking prenatal malnutrition to the risk of later-life metabolic disorders including T2D. In animal models of IUGR, changes in both DNA methylation and expression levels of key metabolic genes were repeatedly found which persisted until adulthood. The causal link between epigenetic disturbances during development and the risk for T2D was also confirmed in several human studies. In this review, the conceptual models and empirical data are summarized and discussed regarding the contribution of epigenetic mechanisms in developmental nutritional programming of T2D.
Collapse
|
19
|
Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 2019; 54:61-83. [PMID: 30822165 PMCID: PMC6424622 DOI: 10.1080/10409238.2019.1570075] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
The aging process results in significant epigenetic changes at all levels of chromatin and DNA organization. These include reduced global heterochromatin, nucleosome remodeling and loss, changes in histone marks, global DNA hypomethylation with CpG island hypermethylation, and the relocalization of chromatin modifying factors. Exactly how and why these changes occur is not fully understood, but evidence that these epigenetic changes affect longevity and may cause aging, is growing. Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.
Collapse
Affiliation(s)
- Alice E. Kane
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - David A. Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
20
|
Cicchetti E, Duroure L, Le Borgne E, Laville R. Upregulation of Skin-Aging Biomarkers in Aged NHDF Cells by a Sucrose Ester Extract from the Agroindustrial Waste of Physalis peruviana Calyces. JOURNAL OF NATURAL PRODUCTS 2018; 81:1946-1955. [PMID: 30136843 DOI: 10.1021/acs.jnatprod.7b01069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As part of a search for new sustainable plant sources of valuable compounds, the EtOAc extract of the discarded calyces of Physalis peruviana fruit was selected for its significant antiaging activity. Eight new sucrose esters (SEs), named peruvioses F-M (1-8), along with three known SEs, peruvioses A (9), peruviose B (10), and nicandrose D (11), were isolated. Their structures were elucidated by comprehensive analyses of their NMR and MS data. A global fragmentation pattern of these SEs was established from their MS data. The SE extract (SEE) at a concentration of 0.5 mg L-1 upregulated multiple skin-aging biomarkers, namely, collagen I, elastin, and fibrillin-1, in aged normal human dermal fibroblast cells. A 36% increase in collagen I was observed. The elastin and fibrillin-1 contents were fully recovered, and an increase of at least 10% in the production of elastin was observed.
Collapse
Affiliation(s)
- Esméralda Cicchetti
- Cosmo International Ingredients , 855 Avenue Maurice Donat , 06250 Mougins , France
| | - Leslie Duroure
- Cosmo International Ingredients , 855 Avenue Maurice Donat , 06250 Mougins , France
| | - Erell Le Borgne
- Cosmo International Ingredients , 855 Avenue Maurice Donat , 06250 Mougins , France
| | - Rémi Laville
- Cosmo International Ingredients , 855 Avenue Maurice Donat , 06250 Mougins , France
| |
Collapse
|
21
|
Sebastian R, Oberdoerffer P. Transcription-associated events affecting genomic integrity. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160288. [PMID: 28847825 PMCID: PMC5577466 DOI: 10.1098/rstb.2016.0288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/25/2022] Open
Abstract
Accurate maintenance of genomic as well as epigenomic integrity is critical for proper cell and organ function. Continuous exposure to DNA damage is, thus, often associated with malignant transformation and degenerative diseases. A significant, chronic threat to genome integrity lies in the process of transcription, which can result in the formation of potentially harmful RNA : DNA hybrid structures (R-loops) and has been linked to DNA damage accumulation as well as dynamic chromatin reorganization. In sharp contrast, recent evidence suggests that active transcription, the resulting transcripts as well as R-loop formation can play multi-faceted roles in maintaining and restoring genome integrity. Here, we will discuss the emerging contributions of transcription as both a source of DNA damage and a mediator of DNA repair. We propose that both aspects have significant implications for genome maintenance, and will speculate on possible long-term consequences for the epigenetic integrity of transcribing cells.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Robin Sebastian
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, Room B907, Bethesda, MD 20892, USA
| | - Philipp Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, Room B907, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Schuyler RP, Merkel A, Raineri E, Altucci L, Vellenga E, Martens JHA, Pourfarzad F, Kuijpers TW, Burden F, Farrow S, Downes K, Ouwehand WH, Clarke L, Datta A, Lowy E, Flicek P, Frontini M, Stunnenberg HG, Martín-Subero JI, Gut I, Heath S. Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems. Cell Rep 2016; 17:2101-2111. [PMID: 27851971 PMCID: PMC5889099 DOI: 10.1016/j.celrep.2016.10.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses.
Collapse
Affiliation(s)
- Ronald P Schuyler
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Angelika Merkel
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Emanuele Raineri
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Lucia Altucci
- Dipartimento di Biochimica Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, Napoli 80138, Italy
| | - Edo Vellenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Farzin Pourfarzad
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frances Burden
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Samantha Farrow
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0QQ Cambridge, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH Cambridge, UK
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Avik Datta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0QQ Cambridge, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - José I Martín-Subero
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Simon Heath
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.
| |
Collapse
|
23
|
Affiliation(s)
- Monica Bucci
- Center for Youth Wellness, 3450 3rd Street, Building 2, Suite 201, San Francisco, CA 94124, USA
| | - Sara Silvério Marques
- Center for Youth Wellness, 3450 3rd Street, Building 2, Suite 201, San Francisco, CA 94124, USA.
| | - Debora Oh
- Center for Youth Wellness, 3450 3rd Street, Building 2, Suite 201, San Francisco, CA 94124, USA
| | - Nadine Burke Harris
- Center for Youth Wellness, 3450 3rd Street, Building 2, Suite 201, San Francisco, CA 94124, USA
| |
Collapse
|
24
|
Matjusaitis M, Chin G, Sarnoski EA, Stolzing A. Biomarkers to identify and isolate senescent cells. Ageing Res Rev 2016; 29:1-12. [PMID: 27212009 DOI: 10.1016/j.arr.2016.05.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Aging is the main risk factor for many degenerative diseases and declining health. Senescent cells are part of the underlying mechanism for time-dependent tissue dysfunction. These cells can negatively affect neighbouring cells through an altered secretory phenotype: the senescence-associated secretory phenotype (SASP). The SASP induces senescence in healthy cells, promotes tumour formation and progression, and contributes to other age-related diseases such as atherosclerosis, immune-senescence and neurodegeneration. Removal of senescent cells was recently demonstrated to delay age-related degeneration and extend lifespan. To better understand cell aging and to reap the benefits of senescent cell removal, it is necessary to have a reliable biomarker to identify these cells. Following an introduction to cellular senescence, we discuss several classes of biomarkers in the context of their utility in identifying and/or removing senescent cells from tissues. Although senescence can be induced by a variety of stimuli, senescent cells share some characteristics that enable their identification both in vitro and in vivo. Nevertheless, it may prove difficult to identify a single biomarker capable of distinguishing senescence in all cell types. Therefore, this will not be a comprehensive review of all senescence biomarkers but rather an outlook on technologies and markers that are most suitable to identify and isolate senescent cells.
Collapse
Affiliation(s)
- Mantas Matjusaitis
- Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, England, UK
| | - Greg Chin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ethan Anders Sarnoski
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Alexandra Stolzing
- Institute IZBI, University of Leipzig, Leipzig, Germany; Loughborough University, Loughborough, England, UK.
| |
Collapse
|
25
|
DNA Damage Response in Hematopoietic Stem Cell Ageing. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:147-154. [PMID: 27221660 PMCID: PMC4936660 DOI: 10.1016/j.gpb.2016.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/20/2016] [Accepted: 04/24/2016] [Indexed: 12/30/2022]
Abstract
Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.
Collapse
|
26
|
Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:1-19. [PMID: 26596544 DOI: 10.1016/j.mrrev.2015.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX is the level of γH2AX above baseline, measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually persist for days to months). This review summarizes the concept of persistent γH2AX in the context of exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and accelerated aging disorders. Summary of the current literature demonstrates the following (i) γH2AX persistence is a common phenomenon that occurs in humans and animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX response, thus enabling the potential for monitoring cancer patients' response to chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and (v) increased endogenous γH2AX levels may be associated with diseases of accelerated aging. In summary, measurement of persistent γH2AX could potentially be used as a marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia 5064, Australia
| | - Maxime François
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
27
|
Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M. Parkinson's disease as a result of aging. Aging Cell 2015; 14:293-308. [PMID: 25677794 PMCID: PMC4406659 DOI: 10.1111/acel.12312] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 12/15/2022] Open
Abstract
It is generally considered that Parkinson's disease is induced by specific agents that degenerate a clearly defined population of dopaminergic neurons. Data commented in this review suggest that this assumption is not as clear as is often thought and that aging may be critical for Parkinson's disease. Neurons degenerating in Parkinson's disease also degenerate in normal aging, and the different agents involved in the etiology of this illness are also involved in aging. Senescence is a wider phenomenon affecting cells all over the body, whereas Parkinson's disease seems to be restricted to certain brain centers and cell populations. However, reviewed data suggest that Parkinson's disease may be a local expression of aging on cell populations which, by their characteristics (high number of synaptic terminals and mitochondria, unmyelinated axons, etc.), are highly vulnerable to the agents promoting aging. The development of new knowledge about Parkinson's disease could be accelerated if the research on aging and Parkinson's disease were planned together, and the perspective provided by gerontology gains relevance in this field.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Clara Rodriguez-Sabate
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)La Laguna, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La LagunaLa Laguna, Spain
| | - Magdalena Sabate
- Rehabilitation Service, Department of Pharmacology and Physical Medicine, Faculty of Medicine, University of La LagunaLa Laguna, Spain
| |
Collapse
|
28
|
Armstrong L, Al-Aama J, Stojkovic M, Lako M. Concise Review: The Epigenetic Contribution to Stem Cell Ageing: Can We Rejuvenate Our Older Cells? Stem Cells 2014; 32:2291-8. [DOI: 10.1002/stem.1720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life; Central Parkway Newcastle upon Tyne United Kingdom
| | - Jumana Al-Aama
- Princess Al Jawhara Center of Excellence in Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Miodrag Stojkovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences; University of Kragujevac; Kragujevac Serbia
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life; Central Parkway Newcastle upon Tyne United Kingdom
| |
Collapse
|
29
|
Jiang N, Du G, Tobias E, Wood JG, Whitaker R, Neretti N, Helfand SL. Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging. Aging (Albany NY) 2014; 5:813-24. [PMID: 24243774 PMCID: PMC3868724 DOI: 10.18632/aging.100614] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During aging, changes in chromatin state that alter gene transcription have been postulated to result in expression of genes that are normally silenced, leading to deleterious age-related effects on cellular physiology. Despite the prevalence of this hypothesis, it is primarily in yeast that loss of gene silencing with age has been well documented. We use a novel position effect variegation (PEV) reporter in Drosophila melanogaster to show that age-related loss of repressive heterochromatin is associated with loss of gene silencing in metazoans and is affected by Sir2, as it is in yeast. The life span-extending intervention, calorie restriction (CR), delays the age-related loss of gene silencing, indicating that loss of gene silencing is a component of normal aging. Diet switch experiments show that such flies undergo a rapid change in their level of gene silencing, demonstrating the epigenetic plasticity of chromatin during aging and highlighting the potential role of diet and metabolism in chromatin maintenance, Thus, diet and related interventions may be of therapeutic importance for age-related diseases, such as cancer.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Mendelsohn AR, Larrick JW. Rejuvenation of adult stem cells: is age-associated dysfunction epigenetic? Rejuvenation Res 2014; 16:152-7. [PMID: 23488583 DOI: 10.1089/rej.2013.1424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The dysfunctional changes of aging are generally believed to be irreversible due to the accumulation of molecular and cellular damage within an organism's somatic cells and tissues. However, the importance of potentially reversible cell signaling and epigenetic changes in causing dysfunction has not been thoroughly investigated. Striking evidence that increased oxidative stress associated with hematopoietic stem cells (HSCs) from aging mice causes dysfunction has been reported. Forced expression of SIRT3, which activates the reactive oxygen species (ROS) scavenger superoxide dismutase 2 (SOD2) by de-acetylation to reduce oxidative stress, functionally rejuvenates mouse HSCs. These data, combined with numerous other reports, suggest that ROS act as a signal transducer to play a critical regulatory role in HSCs and at least in some other stem cells. It is likely that ectopic expression of SIRT3 restores homeostasis in gene expression networks sensitive to oxidative stress. This result was surprising because age-associated damage from impaired DNA repair had been thought to be irreversible in old HSCs. The effect of up-regulated SIRT3 in HSCs is one of first examples in which intrinsic cellular aging, not apparently associated with changes in the micro-environment, was reversed. However, the stability of rejuvenation in the absence of continued supplemental SIRT3 expression was not investigated. These data are consistent with a hypothesis that potentially reversible processes, such as aberrant signaling and epigenetic drift, are relevant to cellular aging. If true, rejuvenation of at least some aged cells may be simpler than generally appreciated.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California 94089, USA.
| | | |
Collapse
|
31
|
Pallis AG, Hatse S, Brouwers B, Pawelec G, Falandry C, Wedding U, Lago LD, Repetto L, Ring A, Wildiers H. Evaluating the physiological reserves of older patients with cancer: the value of potential biomarkers of aging? J Geriatr Oncol 2013; 5:204-18. [PMID: 24495695 DOI: 10.1016/j.jgo.2013.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 09/05/2013] [Indexed: 12/19/2022]
Abstract
Aging of an individual entails a progressive decline of functional reserves and loss of homeostasis that eventually lead to mortality. This process is highly individualized and is influenced by multiple genetic, epigenetic and environmental factors. This individualization and the diversity of factors influencing aging result in a significant heterogeneity among people with the same chronological age, representing a major challenge in daily oncology practice. Thus, many factors other than mere chronological age will contribute to treatment tolerance and outcome in the older patients with cancer. Clinical/comprehensive geriatric assessment can provide information on the general health status of individuals, but is far from perfect as a prognostic/predictive tool for individual patients. On the other hand, aging can also be assessed in terms of biological changes in certain tissues like the blood compartment which result from adaptive alterations due to past history of exposures, as well as intrinsic aging processes. There are major signs of 'aging' in lymphocytes (e.g. lymphocyte subset distribution, telomere length, p16INK4A expression), and also in (inflammatory) cytokine expression and gene expression patterns. These result from a combination of the above two processes, overlaying genetic predispositions which contribute significantly to the aging phenotype. These potential "aging biomarkers" might provide additional prognostic/predictive information supplementing clinical evaluation. The purpose of the current paper is to describe the most relevant potential "aging biomarkers" (markers that indicate the biological functional age of patients) which focus on the biological background, the (limited) available clinical data, and technical challenges. Despite their great potential interest, there is a need for much more (validated) clinical data before these biomarkers could be used in a routine clinical setting. This manuscript tries to provide a guideline on how these markers can be integrated in future research aimed at providing such data.
Collapse
Affiliation(s)
- Athanasios G Pallis
- European Organization for Research and Treatment of Cancer Elderly Task Force, Brussels, Belgium.
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Barbara Brouwers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Graham Pawelec
- Center for Medical Research, ZMF, University of Tübingen Medical School, Waldhörnlestr. 22, D-72072 Tübingen, Germany
| | - Claire Falandry
- Geriatrics Unit, Lyon Sud University Hospital, Pierre-Benite, France; Laboratoire de Biologie Moléculaire de la Cellule, Lyon Sud Medicine Faculty, Lyon University, Lyon, France
| | - Ulrich Wedding
- Jena University Hospital, Department of Internal Medicine, Erlanger Allee 101, 07747 Jena, Germany
| | - Lissandra Dal Lago
- Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles, Belgium
| | - Lazzaro Repetto
- Dipartimento Oncologia, Ospedale di Sanremo, Via G Borea, 56, 18038 Sanremo, Italy
| | | | - Hans Wildiers
- European Organization for Research and Treatment of Cancer Elderly Task Force, Brussels, Belgium; Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
32
|
Boyd-Kirkup JD, Green CD, Wu G, Wang D, Han JDJ. Epigenomics and the regulation of aging. Epigenomics 2013; 5:205-27. [PMID: 23566097 DOI: 10.2217/epi.13.5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is tempting to assume that a gradual accumulation of damage 'causes' an organism to age, but other biological processes present during the lifespan, whether 'programmed' or 'hijacked', could control the type and speed of aging. Theories of aging have classically focused on changes at the genomic level; however, individuals with similar genetic backgrounds can age very differently. Epigenetic modifications include DNA methylation, histone modifications and ncRNA. Environmental cues may be 'remembered' during lifespan through changes to the epigenome that affect the rate of aging. Changes to the epigenomic landscape are now known to associate with aging, but so far causal links to longevity are only beginning to be revealed. Nevertheless, it is becoming apparent that there is significant reciprocal regulation occurring between the epigenomic levels. Future work utilizing new technologies and techniques should build a clearer picture of the link between epigenomic changes and aging.
Collapse
Affiliation(s)
- Jerome D Boyd-Kirkup
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | | | | | | | |
Collapse
|
33
|
Makpol S, Yeoh TW, Ruslam FAC, Arifin KT, Yusof YAM. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:210. [PMID: 23948056 PMCID: PMC3847057 DOI: 10.1186/1472-6882-13-210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 08/13/2013] [Indexed: 02/14/2023]
Abstract
Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs.
Collapse
|
34
|
Beauharnois JM, Bolívar BE, Welch JT. Sirtuin 6: a review of biological effects and potential therapeutic properties. MOLECULAR BIOSYSTEMS 2013; 9:1789-806. [DOI: 10.1039/c3mb00001j] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Orta T, Günebakan S. The effect of aging on micronuclei frequency and proliferation in human peripheral blood lymphocytes. INDIAN JOURNAL OF HUMAN GENETICS 2012; 18:95-100. [PMID: 22754230 PMCID: PMC3385189 DOI: 10.4103/0971-6866.96671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION: Increase in the instability of cellular genome with an increasing age is the result of an accumulation of cellular damage and mutations. This instability which might be observed as chromosome damage or chromosome losses can be measured by the micronucleus technique. AIM: The aim of this study was to investigate the effect of aging and oxidative stress induced by non-toxic levels of H2O2 on micronuclei induction and their relationship to cell proliferation in human peripheral blood lymphocytes. MATERIALS AND METHODS: Healthy volunteers with different ages were choosen. Spontaneous and H2O2 induced micronuclei frequencies were measured in peripheral blood lymphocytes of 30 volunteers by the micronucleus method. RESULTS: Spontaneous micronuclei frequencies increased first then started to decrease after 50 years of age. This biphasic response was significantly higher than micronucleus (MN) frequencies induced by H2O2 (P < 0.05), which followed the similar shape of response to increasing ages with lower frequencies. Proliferative capacity of cells either treated with H2O2 or not did not differ with an increasing age giving similar responses. CONCLUSION: These results indicate biphasic character of chromosome damage; first increase and decrease after 50 years with an increasing age. But this change pattern was not correlated with the steady state of proliferation capacity of cells through an increasing age. Decreases in H2O2-induced MN frequencies compared to spontaneous MN frequencies may be inducing an apoptosis by H2O2 treatment leading to underscoring damaged cells.
Collapse
Affiliation(s)
- Tuncay Orta
- Department of Biology, Istanbul University, Vezneciler, Istanbul, Turkey
| | | |
Collapse
|
36
|
Gladyshev VN. On the cause of aging and control of lifespan: heterogeneity leads to inevitable damage accumulation, causing aging; control of damage composition and rate of accumulation define lifespan. Bioessays 2012; 34:925-9. [PMID: 22915358 DOI: 10.1002/bies.201200092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
What the causes of aging are and which factors define lifespan are key questions in the understanding of aging. Here, it is argued that cellular life involves (i) inevitable accumulation of damage resulting from imperfectness and heterogeneity of every cellular process, and (ii) dilution of damage when cells divide. While severe damage is cleared by protective systems, milder damage can only be diluted. This is due to the high cost of accuracy, the greater number of damage forms compared to protective systems, and the constraints on cellular life inherited from the prokaryotic world. This strategy also applies to cancer cells, which are particularly dependent on damage dilution. Imposing restriction on cell division necessarily leads to aging. Interventions that extend lifespan act through metabolic reprogramming, thereby changing both damage composition and the rate of damage accumulation. Thus, heterogeneity leading to myriad mild damage forms represents the cause of aging, whereas the processes that affect the damage landscape and damage accumulation are lifespan regulators.
Collapse
Affiliation(s)
- Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Burgess RC, Misteli T, Oberdoerffer P. DNA damage, chromatin, and transcription: the trinity of aging. Curr Opin Cell Biol 2012; 24:724-30. [PMID: 22902297 DOI: 10.1016/j.ceb.2012.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/25/2012] [Indexed: 01/01/2023]
Abstract
Aging brings about numerous cellular defects. Amongst the most prominent are elevated levels of persistent DNA damage, changes to chromatin structure and epigenetic modifications, and alterations of global transcription programs. These are not independent events and recent work begins to shed light on the intricate interplay between these aging-related defects.
Collapse
|
38
|
Burstein MT, Kyryakov P, Beach A, Richard VR, Koupaki O, Gomez-Perez A, Leonov A, Levy S, Noohi F, Titorenko VI. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan. Cell Cycle 2012; 11:3443-62. [PMID: 22894934 DOI: 10.4161/cc.21754] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our studies revealed that LCA (lithocholic bile acid) extends yeast chronological lifespan if added to growth medium at the time of cell inoculation. We also demonstrated that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization that they developed before entering a quiescent state and, thus, that chronological aging in yeast is likely to be the final step of a developmental program progressing through at least one checkpoint prior to entry into quiescence. Here, we investigate how LCA influences longevity and several longevity-defining cellular processes in chronologically aging yeast if added to growth medium at different periods of the lifespan. We found that LCA can extend longevity of yeast under CR (caloric restriction) conditions only if added at either of two lifespan periods. One of them includes logarithmic and diauxic growth phases, whereas the other period exists in early stationary phase. Our findings suggest a mechanism linking the ability of LCA to increase the lifespan of CR yeast only if added at either of the two periods to its differential effects on various longevity-defining processes. In this mechanism, LCA controls these processes at three checkpoints that exist in logarithmic/diauxic, post-diauxic and early stationary phases. We therefore hypothesize that a biomolecular longevity network progresses through a series of checkpoints, at each of which (1) genetic, dietary and pharmacological anti-aging interventions modulate a distinct set of longevity-defining processes comprising the network; and (2) checkpoint-specific master regulators monitor and govern the functional states of these processes.
Collapse
|
39
|
Teplyuk NM. Near-to-perfect homeostasis: examples of universal aging rule which germline evades. J Cell Biochem 2012; 113:388-96. [PMID: 21928349 DOI: 10.1002/jcb.23366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging is considered to be a progressive decline in an organism's functioning over time and is almost universal throughout the living world. Currently, many different aging mechanisms have been reported at all levels of biological organization, with a variety of biochemical, metabolic, and genetic pathways involved. Some of these mechanisms are common across species, and others work different, but each of them is constitutive. This review describes the common characteristics of the aging processes, which are consistent changes over time that involve either the accumulation or depletion of particular system components. These accumulations and depletions may result from imperfect homeostasis, which is the incomplete compensation of a particular biological process with another process evolved to compensate it. In accordance with disposable-soma theory, this imperfection in homeostasis may originate as a function of cell differentiation as early as in yeasts. It may result either from antagonistic pleiotropy mechanisms, or be simply negligible as a subject of natural selection if an adverse effect of the accumulation phenotypically manifests in organism's post-reproductive age. If this phenomenon holds true for many different functions it would lead to the occurrence of a wide variety of aging mechanisms, some of which are common among species, while others unique, because aging is the inherent property of most biological processes that have not yet evolved to be perfectly in balance. Examples of imperfect homeostasis mechanisms of aging, the ways in which germ line escapes from them, and the possibilities of anti-aging treatment are discussed in this review.
Collapse
Affiliation(s)
- Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
40
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
41
|
Shi L, Oberdoerffer P. Chromatin dynamics in DNA double-strand break repair. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:811-9. [PMID: 22285574 DOI: 10.1016/j.bbagrm.2012.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/28/2011] [Accepted: 01/05/2012] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks (DSBs) occur in the context of a highly organized chromatin environment and are, thus, a significant threat to the epigenomic integrity of eukaryotic cells. Changes in break-proximal chromatin structure are thought to be a prerequisite for efficient DNA repair and may help protect the structural integrity of the nucleus. Unlike most bona fide DNA repair factors, chromatin influences the repair process at several levels: the existing chromatin context at the site of damage directly affects the access and kinetics of the repair machinery; DSB induced chromatin modifications influence the choice of repair factors, thereby modulating repair outcome; lastly, DNA damage can have a significant impact on chromatin beyond the site of damage. We will discuss recent findings that highlight both the complexity and importance of dynamic and tightly orchestrated chromatin reorganization to ensure efficient DSB repair and nuclear integrity. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Lei Shi
- Mouse Cancer Genetics Program, NCI- Frederick, NIH, Frederick, MD 21702, USA
| | | |
Collapse
|
42
|
Galle J, Hoffmann M, Krinner A. Mesenchymal Stem Cell Heterogeneity and Ageing In Vitro: A Model Approach. COMPUTATIONAL MODELING IN TISSUE ENGINEERING 2012. [DOI: 10.1007/8415_2012_116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Mungenast AE, Tsai LH. Addressing the complex etiology of Alzheimer’s disease: the role of p25/Cdk5. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by the progressive loss of forebrain neurons and the deterioration of learning and memory. Therapies for AD have primarily focused upon either the inhibition of amyloid synthesis or its deposition in the brain, but clinical testing to date has not yet found an effective amelioration of cognitive symptoms. Synaptic loss closely correlates with the degree of dementia in AD patients. However, mouse AD models that target the amyloid-β pathway generally do not exhibit a profound loss of synapses, despite extensive synaptic dysfunction. The increased generation of p25, an activator of the cyclin-dependent kinase 5 (Cdk5) has been found in both human patients and mouse models of neurodegeneration. The current work reviews our knowledge, to date, on the role of p25/Cdk5 in Alzheimer’s disease, with a focus upon the interaction of amyloid-β and p25/Cdk5 in synaptic dysfunction and neuronal loss.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
44
|
Bernal GM, Peterson DA. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells. Aging Cell 2011; 10:466-82. [PMID: 21385309 DOI: 10.1111/j.1474-9726.2011.00694.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis.
Collapse
Affiliation(s)
- Giovanna M Bernal
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL 60647, USA
| | | |
Collapse
|
45
|
Abstract
Sirtuin 1 (SIRT1), the mammalian ortholog of yeast Sir2, is a highly conserved NAD(+)-dependent protein deacetylase that has emerged as a key metabolic sensor that directly links environmental nutrient signals to animal metabolic homeostasis. SIRT1 is known to be involved in gluconeogenesis in the liver, fat mobilization in white adipose tissue, and insulin secretion in the pancreas. Recent studies have shown SIRT1 to regulate fatty acid oxidation in the liver, sense nutrient availability in the hypothalamus, influence obesity-induced inflammation in macrophages, and modulate the activity of the circadian clock in metabolic tissues. The activity of SIRT1 also appears to be under the control of AMPK and adiponectin. This review focuses on the involvement of SIRT1 in regulating metabolic diseases associated with obesity. It includes brief overviews of sirtuin signaling, with emphasis on SIRT1's role in the liver, macrophage, brain, and adipose tissue as it relates to obesity.
Collapse
Affiliation(s)
- Thaddeus T Schug
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, NC 27709, USA
| | | |
Collapse
|
46
|
Abstract
Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed "immune senescence," manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551-1585.
Collapse
Affiliation(s)
- Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA
| | | |
Collapse
|
47
|
Findeisen HM, Pearson KJ, Gizard F, Zhao Y, Qing H, Jones KL, Cohn D, Heywood EB, de Cabo R, Bruemmer D. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS One 2011; 6:e18532. [PMID: 21533223 PMCID: PMC3077372 DOI: 10.1371/journal.pone.0018532] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/11/2011] [Indexed: 12/30/2022] Open
Abstract
Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G1→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.
Collapse
Affiliation(s)
- Hannes M. Findeisen
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Kevin J. Pearson
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Florence Gizard
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Yue Zhao
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Hua Qing
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Karrie L. Jones
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Dianne Cohn
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Elizabeth B. Heywood
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Dennis Bruemmer
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
48
|
Abstract
Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required.
Collapse
|
49
|
Goldberg AA, Richard VR, Kyryakov P, Bourque SD, Beach A, Burstein MT, Glebov A, Koupaki O, Boukh-Viner T, Gregg C, Juneau M, English AM, Thomas DY, Titorenko VI. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging (Albany NY) 2010; 2:393-414. [PMID: 20622262 PMCID: PMC2933888 DOI: 10.18632/aging.100168] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In
chronologically aging yeast, longevity can be extended by administering a
caloric restriction (CR) diet or some small molecules. These life-extending
interventions target the adaptable target of rapamycin (TOR) and
cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the
stringent control of calorie availability. We designed a chemical genetic
screen for small molecules that increase the chronological life span of
yeast under CR by targeting lipid metabolism and modulating housekeeping
longevity pathways that regulate longevity irrespective of the number of
available calories. Our screen identifies lithocholic acid (LCA) as one of
such molecules. We reveal two mechanisms underlying
the life-extending effect of LCA in chronologically aging yeast. One
mechanism operates in a calorie availability-independent fashion and
involves the LCA-governed modulation of housekeeping longevity assurance
pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways.
The other mechanism extends yeast longevity under non-CR conditions and
consists in LCA-driven unmasking of the previously unknown anti-aging
potential of PKA. We provide evidence that LCA modulates housekeeping
longevity assurance pathways by suppressing lipid-induced necrosis,
attenuating mitochondrial fragmentation, altering oxidation-reduction
processes in mitochondria, enhancing resistance to oxidative and thermal
stresses, suppressing mitochondria-controlled apoptosis, and enhancing
stability of nuclear and mitochondrial DNA.
Collapse
|
50
|
Abstract
Changes in chromatin structure are a conserved hallmark of ageing, and the mechanism driving these changes, as well as their functional significance, are heavily investigated. Loss of core histones is now observed in aged cells and may contribute to this phenomenon. Histone loss is coupled to cell division and seems to be triggered by telomeric DNA damage.
Collapse
|