1
|
Xue P, Zhang W, Shen M, Yang J, Chu J, Wang S, Wan M, Zheng J, Qiu Z, Cao X. Proton-activated chloride channel increases endplate porosity and pain in a mouse spine degeneration model. J Clin Invest 2024; 134:e168155. [PMID: 39196784 PMCID: PMC11473161 DOI: 10.1172/jci168155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/20/2024] [Indexed: 08/30/2024] Open
Abstract
Chronic low back pain (LBP) can severely affect daily physical activity. Aberrant osteoclast-mediated resorption leads to porous endplates, which allow the sensory innervation that causes LBP. Here, we report that expression of the proton-activated chloride (PAC) channel was induced during osteoclast differentiation in the porous endplates via a RANKL/NFATc1 signaling pathway. Extracellular acidosis evoked robust PAC currents in osteoclasts. An acidic environment of porous endplates and elevated PAC activation-enhanced osteoclast fusion provoked LBP. Furthermore, we found that genetic knockout of the PAC gene Pacc1 significantly reduced endplate porosity and spinal pain in a mouse LBP model, but it did not affect bone development or homeostasis of bone mass in adult mice. Moreover, both the osteoclast bone-resorptive compartment environment and PAC traffic from the plasma membrane to endosomes to form an intracellular organelle Cl channel had a low pH of approximately 5.0. The low pH environment activated the PAC channel to increase sialyltransferase St3gal1 expression and sialylation of TLR2 in the initiation of osteoclast fusion. Aberrant osteoclast-mediated resorption is also found in most skeletal disorders, including osteoarthritis, ankylosing spondylitis, rheumatoid arthritis, heterotopic ossification, and enthesopathy. Thus, elevated Pacc1 expression and PAC activity could be a potential therapeutic target for the treatment of LBP and osteoclast-associated pain.
Collapse
Affiliation(s)
- Peng Xue
- Center for Musculoskeletal Research, Department of Orthopedic Surgery
| | - Weixin Zhang
- Center for Musculoskeletal Research, Department of Orthopedic Surgery
| | - Mengxi Shen
- Center for Musculoskeletal Research, Department of Orthopedic Surgery
| | | | | | - Shenyu Wang
- Center for Musculoskeletal Research, Department of Orthopedic Surgery
| | - Mei Wan
- Center for Musculoskeletal Research, Department of Orthopedic Surgery
- Department of Biomedical Engineering, and
| | - Junying Zheng
- Center for Musculoskeletal Research, Department of Orthopedic Surgery
| | - Zhaozhu Qiu
- Department of Physiology
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopedic Surgery
- Department of Biomedical Engineering, and
| |
Collapse
|
2
|
Nakashima M, Suzuki A, Hashimoto K, Yamashita M, Fujiwara Y, Miyamoto Y. Vitronectin regulates osteoclastogenesis and bone remodeling in a mouse model of osteoporosis. Anat Cell Biol 2024; 57:305-315. [PMID: 38575559 PMCID: PMC11184428 DOI: 10.5115/acb.23.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Vitronectin (VN) is an extracellular matrix protein with a crucial role in regulating bone remodeling. In this study, we aimed to investigate the effect of VN deficiency in a mouse model of osteoporosis induced by ovariectomy (OVX). The findings revealed that the absence of VN led to an increase in the activity of tartrate-resistant acid phosphatase (TRAP), a marker for osteoclasts, in the plasma of OVX-operated mice. TRAP staining further demonstrated that VN deficiency resulted in a higher number of osteoclasts within the femurs of OVX-operated mice. X-ray micro-computed tomography analysis of the femurs in OVX-operated mice indicated that VN deficiency significantly suppressed the OVX-induced increase of marrow area and total volume of bone. Additionally, we assessed structural model index (SMI) and degree of anisotropy (DA) as indices of osteoporosis. The results showed that VN deficiency effectively attenuated the OVX-induced increase in SMI and DA among OVX-operated mice. In summary, our study demonstrates the vital role of VN in regulating osteoclastogenesis and bone remodeling in the mouse model of osteoporosis.
Collapse
Affiliation(s)
- Mari Nakashima
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Akiko Suzuki
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Kei Hashimoto
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| | - Mayu Yamashita
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yoko Fujiwara
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
3
|
Bishop RT, Miller AK, Froid M, Nerlakanti N, Li T, Frieling JS, Nasr MM, Nyman KJ, Sudalagunta PR, Canevarolo RR, Silva AS, Shain KH, Lynch CC, Basanta D. The bone ecosystem facilitates multiple myeloma relapse and the evolution of heterogeneous drug resistant disease. Nat Commun 2024; 15:2458. [PMID: 38503736 PMCID: PMC10951361 DOI: 10.1038/s41467-024-46594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Multiple myeloma (MM) is an osteolytic malignancy that is incurable due to the emergence of treatment resistant disease. Defining how, when and where myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms cause relapse is challenging with current biological approaches. Here, we report a biology-driven spatiotemporal hybrid agent-based model of the MM-bone microenvironment. Results indicate MM intrinsic mechanisms drive the evolution of treatment resistant disease but that the protective effects of bone microenvironment mediated drug resistance (EMDR) significantly enhances the probability and heterogeneity of resistant clones arising under treatment. Further, the model predicts that targeting of EMDR deepens therapy response by eliminating sensitive clones proximal to stroma and bone, a finding supported by in vivo studies. Altogether, our model allows for the study of MM clonal evolution over time in the bone microenvironment and will be beneficial for optimizing treatment efficacy so as to significantly delay disease relapse.
Collapse
Affiliation(s)
- Ryan T Bishop
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anna K Miller
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Matthew Froid
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Niveditha Nerlakanti
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Tao Li
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy S Frieling
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mostafa M Nasr
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Karl J Nyman
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Praneeth R Sudalagunta
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Rafael R Canevarolo
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ariosto Siqueira Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kenneth H Shain
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Liu H, Wu Q, Liu S, Liu L, He Z, Liu Y, Sun Y, Liu X, Luo E. The role of integrin αvβ3 in biphasic calcium phosphate ceramics mediated M2 Macrophage polarization and the resultant osteoinduction. Biomaterials 2024; 304:122406. [PMID: 38096618 DOI: 10.1016/j.biomaterials.2023.122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Calcium phosphate ceramics-based biomaterials were reported to have good biocompatibility and osteoinductivity and have been widely applied for bone defect repair and regeneration. However, the mechanism of their osteoinductivity is still unclear. In our study, we established an ectopic bone formation in vivo model and an in vitro macrophage cell co-culture system with calcium phosphate ceramics to investigate the effect of biphasic calcium phosphate on osteogenesis via regulating macrophage M1/M2 polarization. Our micro-CT data suggested that biphasic calcium phosphate had significant osteoinductivity, and the fluorescence co-localization detection found increased F4/80+/integrin αvβ3+ macrophages surrounding the biphasic calcium phosphate scaffolds. Besides, our study also revealed that biphasic calcium phosphate promoted M2 polarization of macrophages via upregulating integrin αvβ3 expression compared to tricalcium phosphate, and the increased M2 macrophages could subsequently augment the osteogenic differentiation of MSCs in a TGFβ mediated manner. In conclusion, we demonstrated that macrophages subjected to biphasic calcium phosphate could polarize toward M2 phenotype via triggering integrin αvβ3 and secrete TGFβ to increase the osteogenesis of MSCs, which subsequently enhances bone regeneration.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Qionghui Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration & School of Stomatology & Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Linan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yong Sun
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, PR China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
5
|
Zhang H, Kang Y, Qi X, Wu J, Liu D, Fan A, Huang J, Lin W. Versicotide G suppresses osteoclastogenesis and prevents osteolysis. Bioorg Chem 2022; 129:106114. [PMID: 36087552 DOI: 10.1016/j.bioorg.2022.106114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Excessive formation and function of osteoclasts cause various osteolytic bone diseases. Natural products are a potential source for the discovery of new therapeutic candidates to treat bone destruction diseases. In this study, chemical informatics and bioassay guided examination of the marine-derived Aspergillus versicolor F77 fungus chemically resulted in the isolation of seven cyclopeptides, of which versicotides G-J (1-4) are new cyclohexapeptides. Their structures were identified by spectroscopic data in association with Marfey method and single crystal X-ray diffraction data for configurational assignments. Bioassay revealed that versicotide G (1, VG) is the most active among the analogs to suppress the receptor activator of nuclear factor-KB ligand (RANKL)-induced osteoclastogenesis in bone marrow derived monocytes (BMMs) without affecting BMMs viability. VG also suppressed RANKL-induced actin-ring formation and resorbing function of osteoclast dose-dependently. Mechanistically, VG attenuated RANKL-induced intracellular calcium elevation by inhibiting PLCγ1 phosphorylation and blocking the activation of downstream phosphatase calcineurin. In addition, VG abrogated the expression and translocation of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), leading to the downregulation of the expression of osteoclast-specific genes and the abolishment of the osteoclast formation. In the in vivo test, VG suppressed osteoclast formation and bone loss in Ti-induced calvarial osteolytic mouse model.These findings imply that VG is a promising candidate for the remedy of bone destruction-related diseases.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Ying Kang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xinyi Qi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jingshuai Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China.
| |
Collapse
|
6
|
Wu L, Liang J, Li J, Xu Y, Chen J, Su Y, Xian Y, Wei J, Xu J, Zhao J, Liu Q, Yang Y. Onc201 reduces osteoclastogenesis and prevents ovariectomy-induced bone loss via inhibiting RANKL-induced NFATc1 activation and the integrin signaling pathway. Eur J Pharmacol 2022; 923:174908. [PMID: 35405113 DOI: 10.1016/j.ejphar.2022.174908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Osteoporosis is an osteolytic disease with a disrupted balance between the resorption and formation of bone as well as bone microstructure degeneration, leading to bone loss and increased fracture risk, which greatly affects patients' quality of life. Currently, inhibition of osteoclast bone resorption remains the mainstream treatment for osteoporosis. Onc201, a new compound, induces the gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and has an efficient anticancer effect in clinical trials. However, its effects on osteolytic disease and the mechanism of action are unclear. We examined the effect of Onc201 on nuclear factor κB ligand-receptor activator (RANKL)-induced osteoclasts via Cell Counting Kit-8, bone resorption assay, luciferase reporter assay, immunofluorescence staining, calcium ion intensity assay and employed an ovariectomy model to investigate the effect of Onc201 on osteoporosis in the mice. Results showed that Onc201 inhibited the function and formation of osteoclasts induced by RANKL in a manner that was dependent on time and concentration, and did not cause cytotoxicity. Mechanistically, Onc201 inhibited osteoclast-relevant genes and NFATc1 expression, the main transcriptional regulatory factor of the formation of osteoclasts induced by RANKL; meanwhile, downregulating the expressions of the osteoclast cytoskeleton key signal molecules integrin αvβ3, focal adhesion kinase (FAK), c-Src, and spleen-associated tyrosine kinase (SYK). In addition, Onc201 had a protective effect on the mouse model of bone loss caused by ovariectomy-induced estrogen deficiency, which is consistent with the in vitro results. Our findings suggest that the new small-molecular compound Onc201 has the potential to prevent osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
- Liwei Wu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jing Li
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yang Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Junchun Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yansi Xian
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiyong Wei
- Department of Orthopedics, The First People's Hospital of Nanning, Nanning, Guangxi, 530016, People's Republic of China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| | - Yuan Yang
- Department of Orthopedics, Kaiyuan Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, 530028, People's Republic of China; Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
7
|
Wu Y, Teng Y, Zhang C, Pan Y, Zhang Q, Zhu X, Liu N, Su X, Lin J. The ketone body β-hydroxybutyrate alleviates CoCrMo alloy particles induced osteolysis by regulating NLRP3 inflammasome and osteoclast differentiation. J Nanobiotechnology 2022; 20:120. [PMID: 35264201 PMCID: PMC8905851 DOI: 10.1186/s12951-022-01320-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Aseptic Loosening (AL) following periprosthetic osteolysis is the main long-term complication after total joint arthroplasty (TJA). However, there is rare effective treatment except for revision surgery, which is costly and painful to the patients. In recent years, the ketone body β-hydroxybutyrate (BHB) has attracted much attention and has been proved to be beneficial in many chronic diseases. With respect to the studies on the ketone body β-hydroxybutyrate (BHB), its anti-inflammatory ability has been widely investigated. Although the ketone body β-hydroxybutyrate has been applied in many inflammatory diseases and has achieved considerable therapeutic efficacy, its effect on wear particles induced osteolysis is still unknown. Results In this work, we confirmed that the anti-inflammatory action of β-hydroxybutyrate (BHB) could be reappeared in CoCrMo alloy particles induced osteolysis. Mechanistically, the ketone body β-hydroxybutyrate (BHB) deactivated the activation of NLRP3 inflammasome triggered by CoCrMo alloy particles. Of note, this inhibitory action was independent of Gpr109a receptor as well as histone deacetylase (HDAC) suppression. Furthermore, given that butyrate, one kind of short chain fatty acid (SCFA) structurally related to β-hydroxybutyrate (BHB), has been reported to be an inhibitor of osteoclast, thus we also investigate the effect of β-hydroxybutyrate (BHB) on osteoclast, which was contributed to bone resorption. It was found that β-hydroxybutyrate (BHB) did not only affect osteoclast differentiation, but also inhibit its function. Unlike the inflammasome, the effect of β-hydroxybutyrate (BHB) on osteoclast may mainly rely on histone deacetylase (HDAC) suppression. Conclusions In general, our study showed that the alleviation of osteolysis may owe to the effect of β-hydroxybutyrate (BHB) on inflammasome deactivation and osteoclast. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01320-0.
Collapse
Affiliation(s)
- Yanglin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yun Teng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Chenhui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ying Pan
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xu Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Naicheng Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xinlin Su
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
8
|
The Neuropeptide VIP Limits Human Osteoclastogenesis: Clinical Associations with Bone Metabolism Markers in Patients with Early Arthritis. Biomedicines 2021; 9:biomedicines9121880. [PMID: 34944693 PMCID: PMC8698638 DOI: 10.3390/biomedicines9121880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
We aimed to evaluate the direct action of VIP on crucial molecules involved in human osteoclast differentiation and function. We also investigated the relationship between VIP serum levels and bone remodeling mediators in early arthritis patients. The expression of VIP receptors and osteoclast gene markers in monocytes and in vitro differentiated osteoclasts was studied by real-time PCR. NFATc1 activity was measured using a TransAM® kit. Osteoclastogenesis was confirmed by quantification of tartrate-resistant acid phosphatase positive multinucleated cells. OsteoAssay® Surface Multiple Well Plate was used to evaluate bone-resorbing activity. The ring-shaped actin cytoskeleton and the VPAC1 and VPAC2 expression were analyzed by immunofluorescence. We described the presence of VIP receptors in monocytes and mature osteoclasts. Osteoclasts that formed in the presence of VIP showed a decreased expression of osteoclast differentiation gene markers and proteolytic enzymes involved in bone resorption. VIP reduced the resorption activity and decreased both β3 integrin expression and actin ring formation. Elevated serum VIP levels in early arthritis patients were associated with lower BMD loss and higher serum OPG concentration. These results demonstrate that VIP exerts an anti-osteoclastogenic action impairing both differentiation and resorption activity mainly through the negative regulation of NFATc1, evidencing its bone-protective effects in humans.
Collapse
|
9
|
Kim M, Lin J, Huh JE, Park JH, Go M, Lee H, Hwang D, Kim HS, Kim T, Lee D, Lee SY. Tetraspanin 7 regulates osteoclast function through association with the RANK/αvβ3 integrin complex. J Cell Physiol 2021; 237:846-855. [PMID: 34407208 DOI: 10.1002/jcp.30559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
Actin rings are unique structures that facilitate the attachment of osteoclasts to the bone matrix during bone resorption. Previous studies have shown that tetraspanin7 (TSPAN7) plays an important role in the reorganization of the cytoskeleton necessary for the bone-resorbing activity of osteoclasts. However, questions remain as to the mechanisms by which TSPAN7 regulates this cytoskeletal rearrangement. In this study, we investigated the roles of TSPAN7 in osteoclasts by deleting the Tm4sf2 gene in mice, which encodes TSPAN7. The Tm4sf2 global knockout model showed protective effects on pathological bone loss, but no discernible changes in bone phenotypes under physiological conditions. In vitro study revealed that ablation of Tm4sf2 caused significant defects in integrin-mediated actin ring formation, thereby leading to significantly decreased bone resorption. Additionally, we demonstrated an association between TSPAN7 and the receptor activator of nuclear factor-кB/αvβ3 integrin. Overall, our findings suggest that TSPAN7 acts as a novel modulator regulating the bone-resorbing function of osteoclasts.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Life Science, Ewha Womans University, Seoul, South Korea.,Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Jingjing Lin
- Department of Life Science, Ewha Womans University, Seoul, South Korea.,Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Jeong-Eun Huh
- Department of Life Science, Ewha Womans University, Seoul, South Korea.,Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Jin Hee Park
- Department of Life Science, Ewha Womans University, Seoul, South Korea.,Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Miyeon Go
- Department of Life Science, Ewha Womans University, Seoul, South Korea.,Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Donghyun Hwang
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Taesoo Kim
- Department of Life Science, Ewha Womans University, Seoul, South Korea.,Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.,Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
10
|
Starczak Y, Reinke DC, Barratt KR, Russell PK, Clarke MV, Davey RA, Atkins GJ, Anderson PH. Vitamin D receptor expression in mature osteoclasts reduces bone loss due to low dietary calcium intake in male mice. J Steroid Biochem Mol Biol 2021; 210:105857. [PMID: 33647520 DOI: 10.1016/j.jsbmb.2021.105857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
Mature osteoclasts express the vitamin D receptor (VDR) and are able to respond to active vitamin D (1α, 25-dihydroxyvitamin D3; 1,25(OH)2D3) by regulating cell maturation and activity. However, the in vivo consequences of vitamin D signalling directly within functionally mature osteoclasts is only partially understood. To investigate the in vivo role of VDR in mature osteoclasts, conditional deletion of the VDR under control of the cathepsin K promoter (CtskCre/Vdr-/-), was assessed in 6 and 12-week-old mice, either under normal dietary conditions (NormCaP) or when fed a low calcium (0.03 %), low phosphorous (0.08 %) diet (LowCaP). Splenocytes from CtskCre/Vdr-/- mice were co-cultured with MLO-Y4 osteocyte-like cells to assess the effect on osteoclastogenesis. Six-week-old CtskCre/Vdr-/- mice demonstrated a 10 % decrease in vertebral bone volume (p < 0.05), which was associated with increased osteoclast size (p < 0.05) when compared to Vdrfl/fl control mice. Control mice fed a LowCaP diet exhibited extensive trabecular bone loss associated with increased osteoclast surface, number and size (p < 0.0001). Interestingly, CtskCre/Vdr-/- mice fed a LowCaP diet showed exacerbated loss of bone volume fraction (BV/TV%) and trabecular number (Tb.N), by a further 22 % and 21 %, respectively (p < 0.05), suggesting increased osteoclastic bone resorption activity with the loss of VDR in mature osteoclasts under these conditions. Co-culture of CtskCre/Vdr-/- splenocytes with MLO-Y4 cells increased resulting osteoclast numbers 2.5-fold, which were greater in nuclei density and exhibited increased resorption of dentine compared to osteoclasts derived from Vdrfl/fl splenocyte cultures. These data suggest that in addition to RANKL-mediated osteoclastogenesis, intact VDR signalling is required for the direct regulation of the differentiation and activity of osteoclasts in both in vivo and ex vivo settings.
Collapse
Affiliation(s)
- Yolandi Starczak
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, SA, Australia; Centre for Orthopaedic and Trauma Research, Faculty of Health Sciences, The University of Adelaide, SA, Australia
| | - Daniel C Reinke
- Centre for Orthopaedic and Trauma Research, Faculty of Health Sciences, The University of Adelaide, SA, Australia
| | - Kate R Barratt
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, SA, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Michelle V Clarke
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Faculty of Health Sciences, The University of Adelaide, SA, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, SA, Australia.
| |
Collapse
|
11
|
Xiao W, Wei Y, Yang F, Lu X, Liu S, Long Y, Yu Y. Cistanche deserticola polysaccharide inhibits OVX-induced bone loss in mice and RANKL-induced osteoclastogenesis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
12
|
Nishikawa K, Ishii M. Novel method for gain-of-function analyses in primary osteoclasts using a non-viral gene delivery system. J Bone Miner Metab 2021; 39:353-359. [PMID: 33106978 DOI: 10.1007/s00774-020-01161-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Overexpression studies have been commonly used to yield significant advances in cell biology. In vitro osteoclast culturing involves the differentiation of bone marrow-derived monocyte macrophage precursors (BMMs) in medium supplemented with macrophage colony-stimulating factor and receptor activator of nuclear factor-kB ligand (RANKL) into mature osteoclasts. Retroviral vectors are the gold standards for efficient gene delivery into BMMs. While this strategy is effective in BMMs that are in the early stages of differentiation, it is ineffective in RANKL-treated BMMs such as mono- and multinucleated osteoclasts. This study attempted to enhance gene delivery into differentiated BMMs using liposome-mediated RNA transfection. MATERIAL AND METHODS BMMs were transfected with an EYFP overexpression plasmid or EYFP RNA by lipofection, or transduced with a retroviral vector expressing EYFP. EYFP expression was assessed by flow cytometry. RESULTS We performed overexpression analyses using enhanced yellow fluorescent protein (EYFP). Although EYFP expression was observed 24 h after infection of BMMs with a recombinant retrovirus containing EYFP, expression of EYFP was observed within 3 h of transfection with EYFP RNA. Moreover, the efficiency of EYFP RNA for gene delivery into BMMs was comparable to that of retroviral transduction of EYFP. In contrast, while very few BMMs stimulated by RANKL for two days expressed EYFP after retroviral infection, more than half of the cells expressed EYFP after transfection with EYFP RNA. CONCLUSION RNA-mediated gene delivery is quick and easy method for performing gain-of-function analyses in primary osteoclast precursors and mature osteoclasts.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto, 610-0394, Japan.
- Department of Immunology and Cell Biology, Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Delaisse JM, Søe K, Andersen TL, Rojek AM, Marcussen N. The Mechanism Switching the Osteoclast From Short to Long Duration Bone Resorption. Front Cell Dev Biol 2021; 9:644503. [PMID: 33859985 PMCID: PMC8042231 DOI: 10.3389/fcell.2021.644503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
The current models of osteoclastic bone resorption focus on immobile osteoclasts sitting on the bone surface and drilling a pit into the bone matrix. It recently appeared that many osteoclasts also enlarge their pit by moving across the bone surface while resorbing. Drilling a pit thus represents only the start of a resorption event of much larger amplitude. This prolonged resorption activity significantly contributes to pathological bone destruction, but the mechanism whereby the osteoclast engages in this process does not have an answer within the standard bone resorption models. Herein, we review observations that lead to envision how prolonged resorption is possible through simultaneous resorption and migration. According to the standard pit model, the “sealing zone” which surrounds the ruffled border (i.e., the actual resorption apparatus), “anchors” the ruffled border against the bone surface to be resorbed. Herein, we highlight that continuation of resorption demands that the sealing zone “glides” inside the cavity. Thereby, the sealing zone emerges as the structure responsible for orienting and displacing the ruffled border, e.g., directing resorption against the cavity wall. Importantly, sealing zone displacement stringently requires thorough collagen removal from the cavity wall - which renders strong cathepsin K collagenolysis indispensable for engagement of osteoclasts in cavity-enlargement. Furthermore, the sealing zone is associated with generation of new ruffled border at the leading edge, thereby allowing the ruffled border to move ahead. The sealing zone and ruffled border displacements are coordinated with the migration of the cell body, shown to be under control of lamellipodia at the leading edge and of the release of resorption products at the rear. We propose that bone resorption demands more attention to osteoclastic models integrating resorption and migration activities into just one cell phenotype.
Collapse
Affiliation(s)
- Jean-Marie Delaisse
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | | | - Niels Marcussen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Andes FT, Adam S, Hahn M, Aust O, Frey S, Grueneboom A, Nitschke L, Schett G, Steffen U. The human sialic acid-binding immunoglobulin-like lectin Siglec-9 and its murine homolog Siglec-E control osteoclast activity and bone resorption. Bone 2021; 143:115665. [PMID: 33007530 DOI: 10.1016/j.bone.2020.115665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
Regulation of osteoclast differentiation and function is a central element in bone homeostasis. While the role of soluble factors, such as cytokines, hormones and growth factors, in controlling osteoclast differentiation has been intensively characterized, the function of surface receptors is less well understood. Sialic acid-binding immunoglobulin-like lectin (Siglec)-9 and its murine homolog Siglec-E are sialic acid-recognizing inhibitory receptors from the CD33-related Siglec-family and mainly expressed on myeloid cells. We found Siglec-9 and Siglec-E to be expressed at all stages of human and murine osteoclastogenesis, respectively. Siglec-E knockout mice displayed lower bone mass despite unchanged osteoclast numbers and an increased bone formation rate. Ex vivo osteoclast assays using Siglec-E knockout cells or a blocking antibody against human Siglec-9 confirmed the suppressive effect of Siglec-9/Siglec-E on osteoclast function. Although osteoclast numbers were unchanged or even slightly decreased, the blockade/absence of Siglec-9/Siglec-E resulted in an augmented resorption activity of mature osteoclasts. This increased resorption activity was associated with enlarged actin rings. Together, our results suggest Siglec-9/Siglec-E to inhibit osteoclast activation independently from osteoclast differentiation and thereby propose a new mechanism for the control of local bone resorption.
Collapse
Affiliation(s)
- F T Andes
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - S Adam
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - M Hahn
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - O Aust
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - S Frey
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - A Grueneboom
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - L Nitschke
- Department of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - G Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - U Steffen
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
15
|
Borggaard XG, Pirapaharan DC, Delaissé JM, Søe K. Osteoclasts' Ability to Generate Trenches Rather Than Pits Depends on High Levels of Active Cathepsin K and Efficient Clearance of Resorption Products. Int J Mol Sci 2020; 21:ijms21165924. [PMID: 32824687 PMCID: PMC7460581 DOI: 10.3390/ijms21165924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Until recently, it was well-accepted that osteoclasts resorb bone according to the resorption cycle model. This model is based on the assumption that osteoclasts are immobile during bone erosion, allowing the actin ring to be firmly attached and thereby provide an effective seal encircling the resorptive compartment. However, through time-lapse, it was recently documented that osteoclasts making elongated resorption cavities and trenches move across the bone surface while efficiently resorbing bone. However, it was also shown that osteoclasts making rounded cavities and pits indeed resorb bone while they are immobile. Only little is known about what distinguishes these two different resorption modes. This is of both basic and clinical interest because these resorption modes are differently sensitive to drugs and are affected by the gender as well as age of the donor. In the present manuscript we show that: 1. levels of active cathepsin K determine the switch from pit to trench mode; 2. pit and trench mode depend on clathrin-mediated endocytosis; and 3. a mechanism integrating release of resorption products and membrane/integrin recycling is required for prolongation of trench mode. Our study therefore contributes to an improved understanding of the molecular and cellular determinants for the two osteoclastic bone resorption modes.
Collapse
Affiliation(s)
- Xenia G. Borggaard
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, 7100 Vejle, Denmark; (D.C.P.); (J.-M.D.)
- Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence: (X.G.B.); (K.S.); Tel.: +45-65413190 (K.S.)
| | - Dinisha C. Pirapaharan
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, 7100 Vejle, Denmark; (D.C.P.); (J.-M.D.)
- Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| | - Jean-Marie Delaissé
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, 7100 Vejle, Denmark; (D.C.P.); (J.-M.D.)
- Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Kent Søe
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, 7100 Vejle, Denmark; (D.C.P.); (J.-M.D.)
- Department of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Clinical Cell Biology, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence: (X.G.B.); (K.S.); Tel.: +45-65413190 (K.S.)
| |
Collapse
|
16
|
Søe K, Delaisse JM, Borggaard XG. Osteoclast formation at the bone marrow/bone surface interface: Importance of structural elements, matrix, and intercellular communication. Semin Cell Dev Biol 2020; 112:8-15. [PMID: 32563679 DOI: 10.1016/j.semcdb.2020.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Osteoclasts, the multinucleated cells responsible for bone resorption, have an enormous destructive power which demands to be kept under tight control. Accordingly, the identification of molecular signals directing osteoclastogenesis and switching on their resorptive activity have received much attention. Mandatory factors were identified, but a very essential aspect of the control mechanism of osteoclastic resorption, i.e. its spatial control, remains poorly understood. Under physiological conditions, multinucleated osteoclasts are only detected on the bone surface, while their mono-nucleated precursors are only in the bone marrow. How are pre-osteoclasts targeted to the bone surface? How is their progressive differentiation coordinated with their approach to the bone surface sites to be resorbed, which is where they finally fuse? Here we review the information on the bone marrow distribution of differentiating pre-osteoclasts relative to the position of the mandatory factors for their differentiation as well as relative to physical entities that may affect their access to the remodelling sites. This info allows recognizing an "osteoclastogenesis route" through the bone marrow and leading to the coincident fusion/resorption site - but also points to what still remains to be clarified regarding this route and regarding the restriction of fusion at the resorption site. Finally, we discuss the mechanism responsible for the start of resorption and its spatial extension. This review underscores that fully understanding the control of bone resorption requires to consider it in both space and time - which demands taking into account the context of bone tissue.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Xenia Goldberg Borggaard
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
17
|
Zhang Y, Cui Y, Wang L, Han J. Autophagy promotes osteoclast podosome disassembly and cell motility athrough the interaction of kindlin3 with LC3. Cell Signal 2020; 67:109505. [DOI: 10.1016/j.cellsig.2019.109505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
|
18
|
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med 2020; 24:3271-3281. [PMID: 32045092 PMCID: PMC7131929 DOI: 10.1111/jcmm.15052] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas , c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.
Collapse
Affiliation(s)
- Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiaobin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Liang Yan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
19
|
Chellaiah MA, Moorer MC, Majumdar S, Aljohani H, Morley SC, Yingling V, Stains JP. L-Plastin deficiency produces increased trabecular bone due to attenuation of sealing ring formation and osteoclast dysfunction. Bone Res 2020; 8:3. [PMID: 31993243 PMCID: PMC6976634 DOI: 10.1038/s41413-019-0079-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Bone resorption requires the formation of complex, actin-rich cytoskeletal structures. During the early phase of sealing ring formation by osteoclasts, L-plastin regulates actin-bundling to form the nascent sealing zones (NSZ). Here, we show that L-plastin knockout mice produce osteoclasts that are deficient in the formation of NSZs, are hyporesorptive, and make superficial resorption pits in vitro. Transduction of TAT-fused full-length L-plastin peptide into osteoclasts from L-plastin knockout mice rescued the formation of nascent sealing zones and sealing rings in a time-dependent manner. This response was not observed with mutated full-length L-plastin (Ser-5 and -7 to Ala-5 and -7) peptide. In contrast to the observed defect in the NSZ, L-plastin deficiency did not affect podosome formation or adhesion of osteoclasts in vitro or in vivo. Histomorphometry analyses in 8- and 12-week-old female L-plastin knockout mice demonstrated a decrease in eroded perimeters and an increase in trabecular bone density, without a change in bone formation by osteoblasts. This decrease in eroded perimeters supports that osteoclast function is attenuated in L-plastin knockouts. Micro-CT analyses confirmed a marked increase in trabecular bone mass. In conclusion, female L-plastin knockout mice had increased trabecular bone density due to impaired bone resorption by osteoclasts. L-plastin could be a potential target for therapeutic interventions to treat trabecular bone loss.
Collapse
Affiliation(s)
- Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Megan C. Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD USA
| | - Sharon C. Morley
- Department of Pediatrics, Division of Infectious Diseases, and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Vanessa Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, CA USA
| | - Joseph P. Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
20
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
21
|
Zhou Q, Xie F, Zhou B, Wang J, Wu B, Li L, Kang Y, Dai R, Jiang Y. Differentially expressed proteins identified by TMT proteomics analysis in bone marrow microenvironment of osteoporotic patients. Osteoporos Int 2019; 30:1089-1098. [PMID: 30739146 DOI: 10.1007/s00198-019-04884-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 01/06/2023]
Abstract
UNLABELLED We applied tandem mass tag (TMT)-based proteomics to investigate protein changes in bone marrow microenvironment of osteoporotic patients undergoing spine fusion. Multiple bioinformatics tools were used to identify and analyze 219 differentially expressed proteins. These proteins may be associated with the pathogenesis of osteoporosis. INTRODUCTION Bone marrow microenvironment is indispensable for the maintenance of bone homeostasis. We speculated that alterations of some factors in the microenvironment of osteoporotic subjects might influence the homeostasis. This study aimed to investigate the changes in the expression of protein factors in the bone marrow environment of osteoporosis. METHODS We performed a proteomics analysis in the vertebral body-derived bone marrow supernatant fluid from 8 Chinese patients undergoing posterior lumbar interbody fusion (4 osteoporotic vs. 4 non-osteoporotic) and used micro-CT to analyze the microstructural features of spinous processes from these patients. We further performed western blotting to validate the differential expressions of some proteins. RESULTS There was deteriorated bone microstructure in osteoporotic patients. Based on proteomics analysis, 172 upregulated and 47 downregulated proteins were identified. These proteins had multiple biological functions associated with osteoblast differentiation, lipid metabolism, and cell migration, and formed a complex protein-protein interaction network. We identified five major regulatory mechanisms, splicing, translation, protein degradation, cytoskeletal organization, and lipid metabolism, involved in the pathogenesis of osteoporosis. CONCLUSIONS There are various protein factors, such as DDX5, PSMC2, CSNK1A1, PLIN1, ILK, and TPM4, differentially expressed in the bone marrow microenvironment of osteoporotic patients, providing new ideas for finding therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Q Zhou
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - F Xie
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - B Zhou
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - J Wang
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - B Wu
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - L Li
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Y Kang
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - R Dai
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Y Jiang
- Osteoporosis and Arthritis Lab, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
22
|
Nakano S, Inoue K, Xu C, Deng Z, Syrovatkina V, Vitone G, Zhao L, Huang XY, Zhao B. G-protein Gα 13 functions as a cytoskeletal and mitochondrial regulator to restrain osteoclast function. Sci Rep 2019; 9:4236. [PMID: 30862896 PMCID: PMC6414604 DOI: 10.1038/s41598-019-40974-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Excessive osteoclastic bone erosion disrupts normal bone remodeling and leads to bone loss in many skeletal diseases, including inflammatory arthritis, such as rheumatoid arthritis (RA) and psoriatic arthritis, periodontitis and peri-prosthetic loosening. Functional control of osteoclasts is critical for the maintenance of bone homeostasis. However, the mechanisms that restrain osteoclast resorptive function are not fully understood. In this study, we identify a previously unrecognized role for G-protein Gα13 in inhibition of osteoclast adhesion, fusion and bone resorptive function. Gα13 is highly expressed in mature multinucleated osteoclasts, but not during early differentiation. Deficiency of Gα13 in myeloid osteoclast lineage (Gα13ΔM/ΔM mice) leads to super spread morphology of multinucleated giant osteoclasts with elevated bone resorptive capacity, corroborated with an osteoporotic bone phenotype in the Gα13ΔM/ΔM mice. Mechanistically, Gα13 functions as a brake that restrains the c-Src, Pyk2, RhoA-Rock2 mediated signaling pathways and related gene expressions to control the ability of osteoclasts in fusion, adhesion, actin cytoskeletal remodeling and resorption. Genome wide analysis reveals cytoskeleton related genes that are suppressed by Gα13, identifying Gα13 as a critical cytoskeletal regulator in osteoclasts. We also identify a genome wide regulation of genes responsible for mitochondrial biogenesis and function by Gα13 in osteoclasts. Furthermore, the significant correlation between Gα13 expression levels, TNF activity and RA disease activity in RA patients suggests that the Gα13 mediated mechanisms represent attractive therapeutic targets for diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- Shinichi Nakano
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Cheng Xu
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Zhonghao Deng
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Viktoriya Syrovatkina
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Gregory Vitone
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA.
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
- Graduate Program in Cell & Developmental Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
23
|
Chan CL, Chen JY, Shih MC, Wang CLA, Liou YM. L-caldesmon alters cell spreading and adhesion force in RANKL-induced osteoclasts. J Biomed Sci 2019; 26:12. [PMID: 30678675 PMCID: PMC6345023 DOI: 10.1186/s12929-019-0505-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
Background Osteoclasts (OCs) are motile multinucleated cells derived from differentiation and fusion of hematopoietic progenitors of the monocyte-macrophage lineage that undergo a multistep process called osteoclastogenesis. The biological function of OCs is to resorb bone matrix for controlling bone strength and integrity, which is essential for bone development. The bone resorption function is based on the remodelling of the actin cytoskeleton into an F-actin-rich structure known as the sealing zone for bone anchoring and matrix degradation. Non-muscle caldesmon (l-CaD) is known to participate in the regulation of actin cytoskeletal remodeling, but its function in osteoclastogenesis remains unclear. Methods/results In this study, gain and loss of the l-CaD level in RAW264.7 murine macrophages followed by RANKL induction was used as an experimental approach to examine the involvement of l-CaD in the control of cell fusion into multinucleated OCs in osteoclastogenesis. In comparison with controls, l-CaD overexpression significantly increased TRAP activity, actin ring structure and mineral substrate resorption in RANKL-induced cells. In contrast, gene silencing against l-CaD decreased the potential for RANKL-induced osteoclastogenesis and mineral substrate resorption. In addition, OC precursor cells with l-CaD overexpression and gene silencing followed by RANKL induction caused 13% increase and 24% decrease, respectively, in cell fusion index. To further understand the mechanistic action of l-CaD in the modulation of OC fusion, atomic force microscopy was used to resolve the mechanical changes of cell spreading and adhesion force in RANKL-induced cells with and without l-CaD overexpression or gene silencing. Conclusions l-CaD plays a key role in the regulation of actin cytoskeletal remodeling for the formation of actin ring structure at the cell periphery, which may in turn alter the mechanical property of cell-spreading and cell surface adhesion force, thereby facilitating cell-cell fusion into multinucleated OCs during osteoclastogenesis. Electronic supplementary material The online version of this article (10.1186/s12929-019-0505-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chu-Lung Chan
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Jiann-Yeu Chen
- Research Center for Sustainable Energy and Nanotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Ming-Chih Shih
- Department of Physics, National Chung-Hsing University, Taichung, 40227, Taiwan
| | | | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan. .,The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
24
|
Georgess D, Spuul P, Le Clainche C, Le Nihouannen D, Fremaux I, Dakhli T, Delannoy López DM, Deffieux D, Jurdic P, Quideau S, Génot E. Anti-osteoclastic effects of C-glucosidic ellagitannins mediated by actin perturbation. Eur J Cell Biol 2018; 97:533-545. [PMID: 30287085 DOI: 10.1016/j.ejcb.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Actin subunits assemble into actin filaments whose dynamics and three-dimensional architectures are further regulated by a variety of cellular factors to establish the functional actin cytoskeleton. The C-glucosidic ellagitannin vescalagin and its simpler analogue vescalin, affect both the dynamics and the ultrastructure of the actin cytoskeleton by directly binding to F-actin. Herein, we show that in vitro, the two compounds induce the formation of distinct F-actin networks characterized by different superstructures and dynamics. In living mature osteoclasts, highly specialized bone-degrading cells that constantly remodel their cytoskeleton, vescalagin and vescalin alter actin dynamics at podosomes and compromise the integrity of the podosome belt that forms the bone-degrading apparatus. Both compounds target the bone-resorbing activity at concentrations that preserve osteoclastic maturation and survival and with no detectable impact on the behaviour of bone-forming osteoblastic cells. This anti-osteoclastic activity of vescalagin and vescalin reveals the potential of targeting actin dynamics as a new therapeutic opportunity and, in this case, as a plausible approach for the local treatment of osteoporosis.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon, (ENS-UMR 5242), Université de Lyon, F-69007, Lyon Cedex, France
| | - Pirjo Spuul
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, F-33076, Bordeaux Cedex, France; Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Christophe Le Clainche
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Damien Le Nihouannen
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, F-33076 Bordeaux, France
| | - Isabelle Fremaux
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, F-33076, Bordeaux Cedex, France
| | - Thierry Dakhli
- European Institute of Chemistry and Biology, (UMS 3033/US 001), Université de Bordeaux, 33607 Pessac Cedex, F-33607, France
| | | | - Denis Deffieux
- Institut des Sciences Moléculaires (CNRS-UMR 5255), Université de Bordeaux, Talence Cedex, F-33405, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon, (ENS-UMR 5242), Université de Lyon, F-69007, Lyon Cedex, France
| | - Stéphane Quideau
- Institut des Sciences Moléculaires (CNRS-UMR 5255), Université de Bordeaux, Talence Cedex, F-33405, France.
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, F-33076, Bordeaux Cedex, France.
| |
Collapse
|
25
|
Chellaiah MA, Ma T, Majumdar S. L-plastin phosphorylation regulates the early phase of sealing ring formation by actin bundling process in mouse osteoclasts. Exp Cell Res 2018; 372:73-82. [PMID: 30244178 DOI: 10.1016/j.yexcr.2018.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
The process of sealing ring formation requires major actin filament reorganization. We previously demonstrated that an actin-bundling protein L-plastin has a role in the cross-linking of actin filaments into tight bundles and forms actin aggregates (denoted as nascent sealing zones). These nascent sealing zones mature into fully functional sealing rings. We have shown here that TNF-alpha signaling regulates the phosphorylation of serine-5 and -7 in L-plastin which increases the actin bundling capacity of L-plastin and hence the formation of nascent sealing zones in mouse osteoclasts. Using the TAT-mediated transduction method, we confirmed the role of L-plastin in nascent sealing zones formation at the early phase of the sealing ring assembly. Transduction of TAT-fused full-length L-plastin peptide significantly increases the number of nascent sealing zones and therefore sealing rings. But, transduction of amino-terminal L-plastin peptides consisting of the serine-5 and -7 reduces the formation of both nascent sealing zones and sealing rings. Therefore, bone resorption in vitro was reduced considerably. The decrease was associated with the selective inhibition of cellular L-plastin phosphorylation by the transduced peptides. Neither the formation of podosomes nor the migration was affected in these osteoclasts. Phosphorylation of L- plastin on serine 5 and -7 residues increases the F-actin bundling capacity. The significance of our studies stands on laying the groundwork for a better understanding of L-plastin as a potential regulator at the early phase of sealing ring formation and could be a new therapeutic target to treat bone loss.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences Dental School, University of Maryland, Baltimore, Maryland.
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences Dental School, University of Maryland, Baltimore, Maryland
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic Sciences Dental School, University of Maryland, Baltimore, Maryland
| |
Collapse
|
26
|
Amirhosseini M, Andersson G, Aspenberg P, Fahlgren A. Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening. Bone Rep 2017; 7:17-25. [PMID: 28795083 PMCID: PMC5544474 DOI: 10.1016/j.bonr.2017.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 01/30/2023] Open
Abstract
Wear debris particles released from prosthetic bearing surfaces and mechanical instability of implants are two main causes of periprosthetic osteolysis. While particle-induced loosening has been studied extensively, mechanisms through which mechanical factors lead to implant loosening have been less investigated. This study compares the transcriptional profiles associated with osteolysis in a rat model for aseptic loosening, induced by either mechanical instability or titanium particles. Rats were exposed to mechanical instability or titanium particles. After 15 min, 3, 48 or 120 h from start of the stimulation, gene expression changes in periprosthetic bone tissue was determined by microarray analysis. Microarray data were analyzed by PANTHER Gene List Analysis tool and Ingenuity Pathway Analysis (IPA). Both types of osteolytic stimulation led to gene regulation in comparison to unstimulated controls after 3, 48 or 120 h. However, when mechanical instability was compared to titanium particles, no gene showed a statistically significant difference (fold change ≥ ± 1.5 and adjusted p-value ≤ 0.05) at any time point. There was a remarkable similarity in numbers and functional classification of regulated genes. Pathway analysis showed several inflammatory pathways activated by both stimuli, including Acute Phase Response signaling, IL-6 signaling and Oncostatin M signaling. Quantitative PCR confirmed the changes in expression of key genes involved in osteolysis observed by global transcriptomics. Inflammatory mediators including interleukin (IL)-6, IL-1β, chemokine (C-C motif) ligand (CCL)2, prostaglandin-endoperoxide synthase (Ptgs)2 and leukemia inhibitory factor (LIF) showed strong upregulation, as assessed by both microarray and qPCR. By investigating genome-wide expression changes we show that, despite the different nature of mechanical implant instability and titanium particles, osteolysis seems to be induced through similar biological and signaling pathways in this rat model for aseptic loosening. Pathways associated to the innate inflammatory response appear to be a major driver for osteolysis. Our findings implicate early restriction of inflammation to be critical to prevent or mitigate osteolysis and aseptic loosening of orthopedic implants.
Collapse
Affiliation(s)
- Mehdi Amirhosseini
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Corresponding author.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Per Aspenberg
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Anna Fahlgren
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
27
|
Li X, Ye JX, Xu MH, Zhao MD, Yuan FL. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway. Osteoporos Int 2017; 28:2221-2231. [PMID: 28462470 DOI: 10.1007/s00198-017-4017-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/22/2017] [Indexed: 01/13/2023]
Abstract
UNLABELLED Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca2+-dependent integrin/Pyk2/Src signaling pathway. INTRODUCTION Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. METHODS In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. RESULTS Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. CONCLUSION Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.
Collapse
Affiliation(s)
- X Li
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - J-X Ye
- Department of Orthopaedics, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - M-H Xu
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China
| | - M-D Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - F-L Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
28
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
29
|
Søe K, Delaissé JM. Time-lapse reveals that osteoclasts can move across the bone surface while resorbing. J Cell Sci 2017; 130:2026-2035. [PMID: 28473470 PMCID: PMC5482982 DOI: 10.1242/jcs.202036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022] Open
Abstract
Bone erosion both demands that the osteoclast resorbs bone matrix and moves over the bone surface. It is widely accepted that these two activities alternate, because they are considered mutually exclusive since resorption is believed to involve an immobilizing seal to the bone surface. However, clear real-time observations are still lacking. Herein, we used specific markers and time-lapse to monitor live the spatiotemporal generation of resorption events by osteoclasts cultured on bone slices. In accordance with the current view, we found alternating episodes of resorption and migration resulting in the formation of clusters of round pits. However, very importantly, we also demonstrate that more than half of the osteoclasts moved laterally, displacing their extracellular bone-resorbing compartment over the bone surface without disassembling and reconstructing it, thereby generating long trenches. Compared to pit events, trench events show properties enabling higher aggressiveness: long duration (days), high erosion speed (two times faster) and long-distance erosion (several 100 µm). Simultaneous resorption and migration reflect a unique situation where epithelial/secretory and mesenchymal/migratory characteristics are integrated into just one cell phenotype, and deserves attention in future research. Summary: Bone erosion requires that osteoclasts both resorb and migrate. According to common belief, these activities are mutually exclusive and alternate. Paradoxically, we show here simultaneous resorption and migration.
Collapse
Affiliation(s)
- Kent Søe
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| | - Jean-Marie Delaissé
- Department of Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
30
|
Yang Z, Kim S, Mahajan S, Zamani A, Faccio R. Phospholipase Cγ1 (PLCγ1) Controls Osteoclast Numbers via Colony-stimulating Factor 1 (CSF-1)-dependent Diacylglycerol/β-Catenin/CyclinD1 Pathway. J Biol Chem 2016; 292:1178-1186. [PMID: 27941021 DOI: 10.1074/jbc.m116.764928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/09/2016] [Indexed: 01/22/2023] Open
Abstract
Phospholipases Cγ (PLCγ) 1 and 2 are a class of highly homologous enzymes modulating a variety of cellular pathways through production of inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Our previous studies demonstrated the importance of PLCγ2 in osteoclast (OC) differentiation by modulating inositol 1,4,5-trisphosphate-mediated calcium oscillations and the up-regulation of the transcription factor NFATc1. Surprisingly, despite being expressed throughout osteoclastogenesis, PLCγ1 did not compensate for PLCγ2 deficiency. Because both isoforms are activated during osteoclastogenesis, it is plausible that PLCγ1 modulates OC development independently of PLCγ2. Here, we utilized PLCγ1-specific shRNAs to delete PLCγ1 in OC precursors derived from wild type (WT) mice. Differently from PLCγ2, we found that PLCγ1 shRNA significantly suppresses OC differentiation by limiting colony-stimulating factor 1 (CSF-1)-dependent proliferation and β-catenin/cyclinD1 levels. Confirming the specificity toward CSF-1 signaling, PLCγ1 is recruited to the CSF-1 receptor following exposure to the cytokine. To understand how PLCγ1 controls cell proliferation, we turned to its downstream effector, DAG. By utilizing cells lacking the DAG kinase ζ, which have increased DAG levels, we demonstrate that DAG modulates CSF-1-dependent proliferation and β-catenin/cyclinD1 levels in OC precursors. Most importantly, the proliferation and osteoclastogenesis defects observed in the absence of PLCγ1 are normalized in PLCγ1/DAG kinase ζ double null cells. Taken together, our study shows that PLCγ1 controls OC numbers via a CSF-1-dependent DAG/β-catenin/cyclinD1 pathway.
Collapse
Affiliation(s)
- Zhengfeng Yang
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Seokho Kim
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sahil Mahajan
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ali Zamani
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Roberta Faccio
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
31
|
Zalli D, Neff L, Nagano K, Shin NY, Witke W, Gori F, Baron R. The Actin-Binding Protein Cofilin and Its Interaction With Cortactin Are Required for Podosome Patterning in Osteoclasts and Bone Resorption In Vivo and In Vitro. J Bone Miner Res 2016; 31:1701-12. [PMID: 27064822 PMCID: PMC5070801 DOI: 10.1002/jbmr.2851] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 11/08/2022]
Abstract
The adhesion of osteoclasts (OCs) to bone and bone resorption require the assembly of specific F-actin adhesion structures, the podosomes, and their dense packing into a sealing zone. The OC-specific formation of the sealing zone requires the interaction of microtubule (MT) + ends with podosomes. Here, we deleted cofilin, a cortactin (CTTN)- and actin-binding protein highly expressed in OCs, to determine if it acts downstream of the MT-CTTN axis to regulate actin polymerization in podosomes. Conditional deletion of cofilin in OCs in mice, driven by the cathepsin K promoter (Ctsk-Cre), impaired bone resorption in vivo, increasing bone density. In vitro, OCs were not able to organize podosomes into peripheral belts. The MT network was disorganized, MT stability was decreased, and cell migration impaired. Active cofilin stabilizes MTs and allows podosome belt formation, whereas MT disruption deactivates cofilin via phosphorylation. Cofilin interacts with CTTN in podosomes and phosphorylation of either protein disrupts this interaction, which is critical for belt stabilization and for the maintenance of MT dynamic instability. Accordingly, active cofilin was required to rescue the OC cytoskeletal phenotype in vitro. These findings suggest that the patterning of podosomes into a sealing zone involves the dynamic interaction between cofilin, CTTN, and the MTs + ends. This interaction is critical for the functional organization of OCs and for bone resorption. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Detina Zalli
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Lynn Neff
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kenichi Nagano
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nah Young Shin
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Walter Witke
- Institut für Genetik, Universität Bonn, Bonn, Germany
| | - Francesca Gori
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
32
|
Yuan FL, Xu MH, Li X, Xinlong H, Fang W, Dong J. The Roles of Acidosis in Osteoclast Biology. Front Physiol 2016; 7:222. [PMID: 27445831 PMCID: PMC4919343 DOI: 10.3389/fphys.2016.00222] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
The adverse effect of acidosis on the skeletal system has been recognized for almost a century. Although the underlying mechanism has not been fully elucidated, it appears that acidosis acts as a general stimulator of osteoclasts derived from bone marrow precursors cells and enhances osteoclastic resorption. Prior work suggests that acidosis plays a significant role in osteoclasts formation and activation via up-regulating various genes responsible for its adhesion, migration, survival and bone matrix degradation. Understanding the role of acidosis in osteoclast biology may lead to development of novel therapeutic approaches for the treatment of diseases related to low bone mass. In this review, we aim to discuss the recent investigations into the effects of acidosis in osteoclast biology and the acid-sensing molecular mechanism.
Collapse
Affiliation(s)
- Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University Wuxi, China
| | - Ming-Hui Xu
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University Wuxi, China
| | - Xia Li
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University Wuxi, China
| | - He Xinlong
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University Wuxi, China
| | - Wei Fang
- Department of Neurosurgery, Wuxi Ninth People's Hospital Affiliated to Soochow University Liangxi Road Wuxi, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
33
|
Shashkova EV, Trivedi J, Cline-Smith AB, Ferris C, Buchwald ZS, Gibbs J, Novack D, Aurora R. Osteoclast-Primed Foxp3+ CD8 T Cells Induce T-bet, Eomesodermin, and IFN-γ To Regulate Bone Resorption. THE JOURNAL OF IMMUNOLOGY 2016; 197:726-35. [PMID: 27324129 DOI: 10.4049/jimmunol.1600253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/24/2016] [Indexed: 11/19/2022]
Abstract
Osteoimmunology arose from the recognition that cytokines produced by lymphocytes can affect bone homeostasis. We have previously shown that osteoclasts, cells that resorb bone, act as APCs. Cross-presentation of Ags by osteoclasts leads to expression of CD25 and Foxp3, markers of regulatory T cells in the CD8 T cells. Octeoclast-induced Foxp3(+) CD25(+) regulatory CD8 T cells (OC-iTcREG) suppress priming of CD4 and CD8 T cells by dendritic cells. OC-iTcREG also limit bone resorption by osteoclasts, forming a negative feedback loop. In this study, we show that OC-iTcREG express concurrently T-bet and Eomesodermin (Eomes) and IFN-γ. Pharmacological inhibition of IκK blocked IFN-γ, T-bet, and Eomes production by TcREG Furthermore, we show, using chromatin immunoprecipitation, NF-κB enrichment in the T-bet and Eomes promoters. We demonstrate that IFN-γ produced by TcREG is required for suppression of osteoclastogenesis and for degradation of TNFR-associated factor 6 in osteoclast precursors. The latter prevents signaling by receptor activator of NF-κB ligand needed for osteoclastogenesis. Knockout of IFN-γ rendered TcREG inefficient in preventing actin ring formation in osteoclasts, a process required for bone resorption. TcREG generated in vivo using IFN-γ(-/-) T cells had impaired ability to protect mice from bone resorption and bone loss in response to high-dose receptor activator of NF-κB ligand. The results of this study demonstrate a novel link between NF-κB signaling and induction of IFN-γ in TcREG and establish an important role for IFN-γ in TcREG-mediated protection from bone loss.
Collapse
Affiliation(s)
- Elena V Shashkova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | - Jahnavi Trivedi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | - Anna B Cline-Smith
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | - Chloe Ferris
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | - Zachary S Buchwald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| | - Jesse Gibbs
- Division of Bone and Mineral Disease, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Deborah Novack
- Division of Bone and Mineral Disease, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104; and
| |
Collapse
|
34
|
Li Z, Li C, Zhou Y, Chen W, Luo G, Zhang Z, Wang H, Zhang Y, Xu D, Sheng P. Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. Am J Physiol Endocrinol Metab 2016; 310:E355-66. [PMID: 26670486 DOI: 10.1152/ajpendo.00309.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/14/2015] [Indexed: 01/22/2023]
Abstract
Advanced glycation end products (AGEs) disturb bone remodeling during aging, and this process is accelerated in diabetes. However, their role in modulation of osteoclast-induced bone resorption is controversial, with some studies indicating that AGEs enhance bone resorption and others showing the opposite effect. We determined whether AGEs present at different stages of osteoclast differentiation affect bone resorption differently. Based on increased levels of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK), we identified day 4 of induction as the dividing time of cell fusion stage and mature stage in RAW264.7 cell-derived osteoclast-like cells (OCLs). AGE-modified BSA (50-400 μg/ml) or control BSA (100 μg/ml) was then added at the beginning of each stage. Results showed that the presence of AGEs at the cell fusion stage reduced pit numbers, resorption area, and CTSK expression. Moreover, expression of receptor activator of nuclear factor-κB (RANK) as well as the number of TRAP-positive cells, nuclei per OCL, actin rings, and podosomes also decreased. However, the presence of AGEs at the mature stage enlarged the resorption area markedly and increased pit numbers slightly. Intriguingly, only the number of nuclei per OCL and podosomes increased. These data indicate that AGEs biphasically modulate bone resorption activity of OCLs in a differentiation stage-dependent manner. AGEs at the cell fusion stage reduce bone resorption dramatically, mainly via suppression of RANK expression in osteoclast precursors, whereas AGEs at the mature stage enhance bone resorption slightly, most likely by increasing the number of podosomes in mature OCLs.
Collapse
Affiliation(s)
- Ziqing Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuhuan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| | - Guotian Luo
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| | - Haixing Wang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| | - Yangchun Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| | - Dongliang Xu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| |
Collapse
|
35
|
Zhao H, Liu X, Zou H, Dai N, Yao L, Zhang X, Gao Q, Liu W, Gu J, Yuan Y, Bian J, Liu Z. Osteoprotegerin disrupts peripheral adhesive structures of osteoclasts by modulating Pyk2 and Src activities. Cell Adh Migr 2016; 10:299-309. [PMID: 26743491 DOI: 10.1080/19336918.2015.1129480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoprotegerin has previously been shown to modulate bone mass by blocking osteoclast maturation and function. The detailed mechanisms of osteoprotegerin-induced disassembly of podosomes, disruption of adhesive structures and modulation of adhesion-related proteins in osteoclasts, however, are not well characterized. In this study, tartrate-resistant acidic phosphatase staining demonstrated that osteoprotegerin inhibited differentiation of osteoclasts. The use of scanning electron microscopy, real-time cell monitoring and confocal microscopy indicated that osteoclasts responded in a time and dose-dependent manner to osteoprotegerin treatments with retraction of peripheral adhesive structures and detachment from the extracellular substrate. Combined imaging and Western blot studies showed that osteoprotegerin induced dephosphorylation of Tyr 402 in Pyk2 and decreased its labeling in peripheral adhesion regions. osteoprotegerin induced increased intracellular labeling of Tyr 402 in Pyk2, Tyr 416 in Src, increased dephosphorylation of Tyr 527 in Src, and increased Pyk2/Src association in the central region of osteoclasts. This evidence suggests that Src may function as an adaptor protein that competes for Pyk2 and relocates it from the peripheral adhesive zone to the central region of osteoclasts in response to osteoprotegerin treatment. Osteoprotegerin may induce podosome reassembly and peripheral adhesive structure detachment by modulating phosphorylation of Pyk2 and Src and their intracellular distribution in osteoclasts.
Collapse
Affiliation(s)
- Hongyan Zhao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xuezhong Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Hui Zou
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Nannan Dai
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Lulian Yao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Xiao Zhang
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Qian Gao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Wei Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianhong Gu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Yan Yuan
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Jianchun Bian
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| | - Zongping Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important, Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , P.R. China
| |
Collapse
|
36
|
Zhou Y, Deng HW, Shen H. Circulating monocytes: an appropriate model for bone-related study. Osteoporos Int 2015; 26:2561-72. [PMID: 26194495 DOI: 10.1007/s00198-015-3250-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Peripheral blood monocytes (PBMs) are an important source of precursors of osteoclasts, the bone-resorbing cells and the cytokines produced by PBMs that have profound effects on osteoclast differentiation, activation, and apoptosis. So PBMs represent a highly valuable and unique working cell model for bone-related study. Finding an appropriate working cell model for clinical and (epi-)genomic studies of human skeletal disorders is a challenge. Peripheral blood monocytes (PBMs) can give rise to osteoclasts, the bone-resorbing cells. Particularly, PBMs provide the sole source of osteoclast precursors for adult peripheral skeleton where the bone marrow is normally hematopoietically inactive. PBMs can secrete potent pro- and anti-inflammatory cytokines, which are important for osteoclast differentiation, activation, and apoptosis. Reduced production of PBM cytokines represents a major mechanism for the inhibitory effects of sex hormones on osteoclastogenesis and bone resorption. Abnormalities in PBMs have been linked to various skeletal disorders/traits, strongly supporting for the biological relevance of PBMs with bone metabolism and disorders. Here, we briefly review the origin and further differentiation of PBMs. In particular, we discuss the close relationship between PBMs and osteoclasts, and highlight the utility of PBMs in study the pathophysiological mechanisms underlying various skeletal disorders.
Collapse
Affiliation(s)
- Y Zhou
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA
| | - H-W Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA
| | - H Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, LA, 70112, USA.
| |
Collapse
|
37
|
Fusco S, Panzetta V, Embrione V, Netti PA. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions. Acta Biomater 2015; 23:63-71. [PMID: 26004223 DOI: 10.1016/j.actbio.2015.05.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/28/2015] [Accepted: 05/10/2015] [Indexed: 12/31/2022]
Abstract
Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions.
Collapse
|
38
|
Georgess D, Machuca-Gayet I, Blangy A, Jurdic P. Podosome organization drives osteoclast-mediated bone resorption. Cell Adh Migr 2015; 8:191-204. [PMID: 24714644 DOI: 10.4161/cam.27840] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts are the cells responsible for physiological bone resorption. A specific organization of their most prominent cytoskeletal structures, podosomes, is crucial for the degradation of mineralized bone matrix. Each podosome is constituted of an F-actin-enriched central core surrounded by a loose F-actin network, called the podosome cloud. In addition to intrinsic actin dynamics, podosomes are defined by their adhesion to the extracellular matrix, mainly via core-linking CD44 and cloud-linking integrins. These properties allow podosomes to collectively evolve into different patterns implicated in migration and bone resorption. Indeed, to resorb bone, osteoclasts polarize, actively secrete protons, and proteases into the resorption pit where these molecules are confined by a podosome-containing sealing zone. Here, we review recent advancements on podosome structure and regulatory pathways in osteoclasts. We also discuss the distinct functions of different podosome patterns during the lifespan of a single osteoclast.
Collapse
Affiliation(s)
- Dan Georgess
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Irma Machuca-Gayet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| | - Anne Blangy
- Centre de Recherche de Biochimie Macromoléculaire; CNRS UMR 5237; Montpellier University; Montpellier, France
| | - Pierre Jurdic
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Ecole Normale Supérieure de Lyon; Lyon, France
| |
Collapse
|
39
|
Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption. PLoS One 2015; 10:e0132513. [PMID: 26168340 PMCID: PMC4500499 DOI: 10.1371/journal.pone.0132513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
Aim The cysteine protease cathepsin K (CatK), abundantly expressed in osteoclasts, is responsible for the degradation of bone matrix proteins, including collagen type 1. Thus, CatK is an attractive target for new anti-resorptive osteoporosis therapies, but the wider effects of CatK inhibitors on bone cells also need to be evaluated to assess their effects on bone. Therefore, we selected, among a series of synthetized isothiosemicarbazides, two molecules which are highly selective CatK inhibitors (CKIs) to test their effects on osteoblasts and osteoclasts. Research Design and Methods Cell viability upon treatment of CKIs were was assayed on human osteoblast-like Saos-2, mouse monocyte cell line RAW 264.7 and mature mouse osteoclasts differentiated from bone marrow. Osteoblast-induced mineralization in Saos-2 cells and in mouse primary osteoblasts from calvaria, with or without CKIs,; were was monitored by Alizarin Red staining and alkaline phosphatase activity, while osteoclast-induced bone resorption was performed on bovine slices. Results Treatments with two CKIs, CKI-8 and CKI-13 in human osteoblast-like Saos-2, murine RAW 264.7 macrophages stimulated with RANKL and mouse osteoclasts differentiated from bone marrow stimulated with RANKL and MCSF were found not to be toxic at doses of up to 100 nM. As probed by Alizarin Red staining, CKI-8 did not inhibit osteoblast-induced mineralization in mouse primary osteoblasts as well as in osteoblast-like Saos-2 cells. However, CKI-13 led to a reduction in mineralization of around 40% at 10–100 nM concentrations in osteoblast-like Saos-2 cells while it did not in primary cells. After a 48-hour incubation, both CKI-8 and CKI-13 decreased bone resorption on bovine bone slices. CKI-13 was more efficient than the commercial inhibitor E-64 in inhibiting bone resorption induced by osteoclasts on bovine bone slices. Both CKI-8 and CKI-13 created smaller bone resorption pits on bovine bone slices, suggesting that the mobility of osteoclasts was slowed down by the addition of CKI-8 and CKI-13. Conclusion CKI-8 and CKI-13 screened here show promise as antiresorptive osteoporosis therapeutics but some off target effects on osteoblasts were found with CKI-13.
Collapse
|
40
|
Osteoprotegerin exposure at different stages of osteoclastogenesis differentially affects osteoclast formation and function. Cytotechnology 2015; 68:1325-35. [PMID: 26044733 DOI: 10.1007/s10616-015-9892-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/23/2015] [Indexed: 10/23/2022] Open
Abstract
This study aimed to investigate the effects of osteoprotegerin (OPG), a decoy receptor for receptor activator for nuclear factor κB ligand (RANKL), during the various stages of osteoclast differentiation, and additionally investigate its effects on osteoclast adhesion and activity. RAW264.7 murine monocytic cells were incubated with macrophage colony-stimulating factor and RANKL for 1, 3, 5, or 7 days, followed by an additional 24-h incubation in the presence or absence of OPG (80 ng/mL). We examined osteoclast differentiation and adhesion capacity using the tartrate-resistant acid phosphatase (TRAP) assay and immunofluorescence microscopy, and additionally examined cell growth in real time using the xCELLigence system. Furthermore, the expression levels of TRAP, RANK, integrin β3, matrix metalloproteinase 9, cathepsin K, carbonic anhydrase II, and vesicular-type H(+)-ATPase A1 were examined using western blotting. OPG exposure on day 1 enhanced the osteoclast growth curve as well as adhesion, and increased RANK and integrin β3 expression. In contrast, exposure to OPG at later time points (days 3-7) inhibited osteoclast differentiation, adhesion structure formation, and protease expression. In conclusion, the biological effects of OPG exposure at the various stages of osteoclast differentiation were varied, and included the enhanced adhesion and survival of preosteoclasts, the block of differentiation from the early to the terminal stages of osteoclastogenesis, and suppression of mature osteoclast activation following OPG exposure during the terminal differentiation stage, suggesting that the effects of OPG exposure differ based on the stage of differentiation.
Collapse
|
41
|
Inhibition of osteoclast activation by phloretin through disturbing αvβ3 integrin-c-Src pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:680145. [PMID: 25834823 PMCID: PMC4365379 DOI: 10.1155/2015/680145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/31/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
Abstract
This study was to explore the sequential signaling of disorganization of the actin cytoskeletal architecture by phloretin. RAW 264.7 macrophages were incubated with 1–20 μM phloretin for 5 days in the presence of RANKL. C57BL/6 mice were ovariectomized (OVX) and orally treated with 10 mg/kg phloretin once a day for 8 weeks. Phloretin allayed RANKL stimulated formation of actin podosomes with the concomitant retardation of the vinculin activation. Oral administration of phloretin suppressed the induction of femoral gelsolin and vinculin in OVX mice. The RANK-RANKL interaction resulted in the αvβ3 integrin induction, which was demoted by phloretin. The RANKL induction of actin rings and vacuolar-type H+-ATPase entailed Pyk2 phosphorylation and c-Src and c-Cbl induction, all of which were blunted by phloretin. Similar inhibition was also observed in phloretin-exposed OVX mouse femoral bone tissues with decreased trabecular collagen formation. Phloretin suppressed the paxillin induction in RANKL-activated osteoclasts and in OVX epiphyseal bone tissues. Also, phloretin attenuated the Syk phosphorylation and phospholipase Cγ induction by RANKL in osteoclasts. These results suggest that phloretin was an inhibitor of actin podosomes and sealing zone, disrupting αvβ3 integrin-c-Src-Pyk2/Syk signaling pathway for the regulation of actin cytoskeletal organization in osteoclasts.
Collapse
|
42
|
Fowler TW, Kamalakar A, Akel NS, Kurten RC, Suva LJ, Gaddy D. Activin A inhibits RANKL-mediated osteoclast formation, movement and function in murine bone marrow macrophage cultures. J Cell Sci 2015; 128:683-94. [PMID: 25609708 PMCID: PMC4327386 DOI: 10.1242/jcs.157834] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 12/12/2014] [Indexed: 12/26/2022] Open
Abstract
The process of osteoclastic bone resorption is complex and regulated at multiple levels. The role of osteoclast (OCL) fusion and motility in bone resorption are unclear, with the movement of OCL on bone largely unexplored. RANKL (also known as TNFSF11) is a potent stimulator of murine osteoclastogenesis, and activin A (ActA) enhances that stimulation in whole bone marrow. ActA treatment does not induce osteoclastogenesis in stroma-free murine bone marrow macrophage cultures (BMM), but rather inhibits RANKL-induced osteoclastogenesis. We hypothesized that ActA and RANKL differentially regulate osteoclastogenesis by modulating OCL precursors and mature OCL migration. Time-lapse video microscopy measured ActA and RANKL effects on BMM and OCL motility and function. ActA completely inhibited RANKL-stimulated OCL motility, differentiation and bone resorption, through a mechanism mediated by ActA-dependent changes in SMAD2, AKT1 and inhibitor of nuclear factor κB (IκB) signaling. The potent and dominant inhibitory effect of ActA was associated with decreased OCL lifespan because ActA significantly increased activated caspase-3 in mature OCL and OCL precursors. Collectively, these data demonstrate a dual action for ActA on murine OCLs.
Collapse
Affiliation(s)
- Tristan W Fowler
- Departments of Physiology & Biophysics, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA
| | - Archana Kamalakar
- Departments of Physiology & Biophysics, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA
| | - Nisreen S Akel
- Departments of Physiology & Biophysics, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA
| | - Richard C Kurten
- Departments of Physiology & Biophysics, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA
| | - Larry J Suva
- Departments of Physiology & Biophysics, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA
| | - Dana Gaddy
- Departments of Physiology & Biophysics, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR 72205 USA
| |
Collapse
|
43
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
44
|
Gruber R. Molecular and cellular basis of bone resorption. Wien Med Wochenschr 2014; 165:48-53. [PMID: 25223736 DOI: 10.1007/s10354-014-0310-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Osteoclast research has an exciting history and a challenging future. More than 3 decades ago, it became evident that bone-resorbing osteoclasts are of hematopoietic origin and are ultimately linked to the "basic multicellular unit," where they team up with the other cell types, including bone-forming osteoblasts. Since 2 decades, we have learned about the signaling pathways controlling genes relevant for osteoclastogenesis and bone resorption. It took another decade until the hypothesized "osteoclast differentiation" factor was discovered and was translated into an approved pharmacologic strategy. Here, the focus is on another molecular target, cathepsin K, a cysteine protease being released by the osteoclast into the resorption compartment. Genetic deletion and pharmacological blocking of cathepsin K reduces bone resorption but with ongoing bone formation. This observation not only holds great promise to become a new pharmacologic strategy, but it also provides new insights into the coordinated work of cells in the "basic multicellular unit" and thus, bridges the history and future of osteoclast research. This article is a short primer on osteoclast biology for readers of the special issue on odanacatib, a cathepsin K inhibitor.
Collapse
Affiliation(s)
- Reinhard Gruber
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland,
| |
Collapse
|
45
|
Wu L, Luthringer BJ, Feyerabend F, Schilling AF, Willumeit R. Effects of extracellular magnesium on the differentiation and function of human osteoclasts. Acta Biomater 2014; 10:2843-54. [PMID: 24531013 DOI: 10.1016/j.actbio.2014.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Magnesium-based implants have been shown to influence the surrounding bone structure. In an attempt to partially reveal the cellular mechanisms involved in the remodelling of magnesium-based implants, the influence of increased extracellular magnesium content on human osteoclasts was studied. Peripheral blood mononuclear cells were driven towards an osteoclastogenesis pathway via stimulation with receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor for 28 days. Concomitantly, the cultures were exposed to variable magnesium concentrations (from either magnesium chloride or magnesium extracts). Osteoclast proliferation and differentiation were evaluated based on cell metabolic activity, total protein content, tartrate-resistant acid phosphatase activity, cathepsin K and calcitonin receptor immunocytochemistry, and cellular ability to form resorption pits. While magnesium chloride first enhanced and then opposed cell proliferation and differentiation in a concentration-dependent manner (peaking between 10 and 15mM magnesium chloride), magnesium extracts (with lower magnesium contents) appeared to decrease cell metabolic activity (≈50% decrease at day 28) while increasing osteoclast activity at a lower concentration (twofold higher). Together, the results indicated that (i) variations in the in vitro extracellular magnesium concentration affect osteoclast metabolism and (ii) magnesium extracts should be used preferentially in vitro to more closely mimic the in vivo environment.
Collapse
|
46
|
Xing J, Humphrey MB. Editorial: lipid kinases and bone homeostasis: lessons learned from phosphoinositide 3-kinase isoform-specific knockouts. Arthritis Rheumatol 2014; 66:1984-6. [PMID: 24719389 DOI: 10.1002/art.38661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/03/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Junjie Xing
- University of Oklahoma Health Sciences Center, Oklahoma City
| | | |
Collapse
|
47
|
Franceschetti T, Kessler CB, Lee SK, Delany AM. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem 2013; 288:33347-60. [PMID: 24085298 DOI: 10.1074/jbc.m113.484568] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoclast differentiation is regulated by transcriptional, post-transcriptional, and post-translational mechanisms. MicroRNAs are fundamental post-transcriptional regulators of gene expression. The function of the miR-29 (a/b/c) family in cells of the osteoclast lineage is not well understood. In primary cultures of mouse bone marrow-derived macrophages, inhibition of miR-29a, -29b, or -29c diminished formation of TRAP (tartrate-resistant acid phosphatase-positive) multinucleated osteoclasts, and the osteoclasts were smaller. Quantitative RT-PCR showed that all miR-29 family members increased during osteoclast differentiation, in concert with mRNAs for the osteoclast markers Trap (Acp5) and cathepsin K. Similar regulation was observed in the monocytic cell line RAW264.7. In stably transduced RAW264.7 cell lines expressing an inducible miR-29 competitive inhibitor (sponge construct), miR-29 knockdown impaired osteoclastic commitment and migration of pre-osteoclasts. However, miR-29 knockdown did not affect cell viability, actin ring formation, or apoptosis in mature osteoclasts. To better understand how miR-29 regulates osteoclast function, we validated miR-29 target genes using Luciferase 3'-UTR reporter assays and specific miR-29 inhibitors. We demonstrated that miR-29 negatively regulates RNAs critical for cytoskeletal organization, including Cdc42 (cell division control protein 42) and Srgap2 (SLIT-ROBO Rho GTPase-activating protein 2). Moreover, miR-29 targets RNAs associated with the macrophage lineage: Gpr85 (G protein-coupled receptor 85), Nfia (nuclear factor I/A), and Cd93. In addition, Calcr (calcitonin receptor), which regulates osteoclast survival and resorption, is a novel miR-29 target. Thus, miR-29 is a positive regulator of osteoclast formation and targets RNAs important for cytoskeletal organization, commitment, and osteoclast function. We hypothesize that miR-29 controls the tempo and amplitude of osteoclast differentiation.
Collapse
|
48
|
Vascular calcifying progenitor cells possess bidirectional differentiation potentials. PLoS Biol 2013; 11:e1001534. [PMID: 23585735 PMCID: PMC3621676 DOI: 10.1371/journal.pbio.1001534] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/28/2013] [Indexed: 01/06/2023] Open
Abstract
Calcifying progenitor cells in blood vessels have the potential to differentiate into cells that either promote calcium accumulation or reverse accumulation, and treatment with PPAR? can shift the direction of this differentiation. Vascular calcification is an advanced feature of atherosclerosis for which no effective therapy is available. To investigate the modulation or reversal of calcification, we identified calcifying progenitor cells and investigated their calcifying/decalcifying potentials. Cells from the aortas of mice were sorted into four groups using Sca-1 and PDGFRα markers. Sca-1+ (Sca-1+/PDGFRα+ and Sca-1+/PDGFRα−) progenitor cells exhibited greater osteoblastic differentiation potentials than Sca-1− (Sca-1−/PDGFRα+ and Sca-1−/PDGFRα−) progenitor cells. Among Sca-1+ progenitor populations, Sca-1+/PDGFRα− cells possessed bidirectional differentiation potentials towards both osteoblastic and osteoclastic lineages, whereas Sca-1+/PDGFRα+ cells differentiated into an osteoblastic lineage unidirectionally. When treated with a peroxisome proliferator activated receptor γ (PPARγ) agonist, Sca-1+/PDGFRα− cells preferentially differentiated into osteoclast-like cells. Sca-1+ progenitor cells in the artery originated from the bone marrow (BM) and could be clonally expanded. Vessel-resident BM-derived Sca-1+ calcifying progenitor cells displayed nonhematopoietic, mesenchymal characteristics. To evaluate the modulation of in vivo calcification, we established models of ectopic and atherosclerotic calcification. Computed tomography indicated that Sca-1+ progenitor cells increased the volume and calcium scores of ectopic calcification. However, Sca-1+/PDGFRα− cells treated with a PPARγ agonist decreased bone formation 2-fold compared with untreated cells. Systemic infusion of Sca-1+/PDGFRα− cells into Apoe−/− mice increased the severity of calcified atherosclerotic plaques. However, Sca-1+/PDGFRα− cells in which PPARγ was activated displayed markedly decreased plaque severity. Immunofluorescent staining indicated that Sca-1+/PDGFRα− cells mainly expressed osteocalcin; however, activation of PPARγ triggered receptor activator for nuclear factor-κB (RANK) expression, indicating their bidirectional fate in vivo. These findings suggest that a subtype of BM-derived and vessel-resident progenitor cells offer a therapeutic target for the prevention of vascular calcification and that PPARγ activation may be an option to reverse calcification. Atherosclerosis involves hardening of the arteries and can lead to heart disease. Calcium accumulation in blood vessels contributes to this process, and this process is regulated by cells that promote calcium accumulation (osteoblasts) and cells that reverse the accumulation (osteoclasts). In this study, we show that vascular calcifying progenitor cells in the blood vessel have the potential to become either osteoblasts or osteoclasts, and that a drug can push these cells towards becoming osteoclasts instead of osteoblasts. Progenitor cells that express both Sca-1 and PDGFRα cell surface proteins were more committed to differentiate into osteoblasts, while cells that only expressed Sca-1 could differentiate into osteoblasts or osteoclasts in a bidirectional manner. Moreover, treatment with a PPARγ agonist could shift the direction of differentiation of Sca-1+/PDGFRα− progenitor cells toward osteoclast-like cells, whereas it cannot influence the fates of Sca-1+/PDGFRα+ progenitors. These results offer new therapeutic targets for reversing calcium accumulation in blood vessels.
Collapse
|
49
|
Touaitahuata H, Planus E, Albiges-Rizo C, Blangy A, Pawlak G. Podosomes are dispensable for osteoclast differentiation and migration. Eur J Cell Biol 2013; 92:139-49. [DOI: 10.1016/j.ejcb.2013.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 01/27/2023] Open
|
50
|
Long CL, Berry WL, Zhao Y, Sun XH, Humphrey MB. E proteins regulate osteoclast maturation and survival. J Bone Miner Res 2012; 27:2476-89. [PMID: 22807064 PMCID: PMC3495082 DOI: 10.1002/jbmr.1707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 06/14/2012] [Accepted: 06/27/2012] [Indexed: 11/08/2022]
Abstract
Osteoclasts are bone-specific polykaryons derived from myeloid precursors under the stimulation of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). E proteins are basic helix-loop-helix (bHLH) transcription factors that modulate lymphoid versus myeloid cell fate decisions. To study the role of E proteins in osteoclasts, myeloid-specific E protein gain-of-function transgenic mice were generated. These mice have high bone mass due to decreased osteoclast numbers and increased osteoclast apoptosis leading to overall reductions in resorptive capacity. The molecular mechanism of decreased osteoclast numbers and resorption is in part a result of elevated expression of CD38, a regulator of intracellular calcium pools with known antiosteoclastogenic properties, which increases sensitivity to apoptosis. In vivo, exogenous RANKL stimulation can overcome this inhibition to drive osteoclastogenesis and bone loss. In vitro-derived ET2 osteoclasts are more spread and more numerous with increases in RANK, triggering receptor expressed on myeloid cells 2 (TREM2), and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) compared to wild type. However, their resorptive capacity does not increase accordingly. Thus, E proteins participate in osteoclast maturation and survival in homeostatic bone remodeling.
Collapse
Affiliation(s)
- Courtney L. Long
- Microbiology and Immunology, Graduate College, University of Oklahoma Health Science Center, Oklahoma City, OK
| | - William L. Berry
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK
| | - Ying Zhao
- Immunobiology and Cancer, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xiao-Hong Sun
- Immunobiology and Cancer, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Mary Beth Humphrey
- Microbiology and Immunology, Graduate College, University of Oklahoma Health Science Center, Oklahoma City, OK
- Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK
- Veteran Affairs Medical Center, Oklahoma City, OK
| |
Collapse
|