1
|
Ma DF, Zhang S, Xu SY, Huang Z, Tao Y, Chen F, Zhang S, Li D, Chen T, Liu C, Li M, Lu Y. Self-limiting multimerization of α-synuclein on membrane and its implication in Parkinson's diseases. SCIENCE ADVANCES 2024; 10:eado4893. [PMID: 39383232 PMCID: PMC11463274 DOI: 10.1126/sciadv.ado4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
α-Synuclein (α-syn), a crucial molecule in Parkinson's disease (PD), is known for its interaction with lipid membranes, which facilitates vesicle trafficking and modulates its pathological aggregation. Deciphering the complexity of the membrane-binding behavior of α-syn is crucial to understand its functions and the pathology of PD. Here, we used single-molecule imaging to show that α-syn forms multimers on lipid membranes with huge intermultimer distances. The multimers are characterized by self-limiting growth, manifesting in concentration-dependent exchanges of monomers, which are fast at micromolar concentrations and almost stop at nanomolar concentrations. We further uncovered movement patterns of α-syn's occasional trapping on membranes, which may be attributed to sparse lipid packing defects. Mutations such as E46K and E35K may disrupt the limit on the growth, resulting in larger multimers and accelerated amyloid fibril formation. This work emphasizes sophisticated regulation of α-syn multimerization on membranes as a critical underlying factor in the PD pathology.
Collapse
Affiliation(s)
- Dong-Fei Ma
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Yao Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zi Huang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Yuanxiao Tao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiyang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongsheng Chen
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Lu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson's Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. Int J Mol Sci 2024; 25:2009. [PMID: 38396687 PMCID: PMC10888576 DOI: 10.3390/ijms25042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
3
|
Zamanian MY, Ivraghi MS, Gupta R, Prasad KDV, Alsaab HO, Hussien BM, Ahmed H, Ramadan MF, Golmohammadi M, Nikbakht N, Oz T, Kujawska M. miR-221 and Parkinson's disease: A biomarker with therapeutic potential. Eur J Neurosci 2024; 59:283-297. [PMID: 38043936 DOI: 10.1111/ejn.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation and apoptosis. miR-221 promotes neuronal survival against oxidative stress and neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of these studies, (1) miR-221 protects PC12 cells against oxidative stress induced by 6-hydroxydopamine; (2) miR-221 prevents Bax/caspase-3 signalling activation by stopping Bim; (3) miR-221 has moderate predictive power for PD; (4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; and (5) miRNA-221 controls cell viability and apoptosis by manipulating the Akt signalling pathway in PD. This review study suggested that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - K D V Prasad
- Symbiosis Institute of Business Management (SIBM), Hyderabad, India
- Symbiosis International (Deemed University) (SIU), Hyderabad, Telangana, India
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, Islamic University, Najaf, Iraq
| | - Hazem Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
4
|
Lima MMS, Targa ADS, Dos Santos Lima GZ, Cavarsan CF, Torterolo P. Macro and micro-sleep dysfunctions as translational biomarkers for Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:187-209. [PMID: 38341229 DOI: 10.1016/bs.irn.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep disturbances are highly prevalent among patients with Parkinson's disease (PD) and often appear from the early-phase disease or prodromal stages. In this chapter, we will discuss the current evidence addressing the links between sleep dysfunctions in PD, focusing most closely on those data from animal and mathematical/computational models, as well as in human-based studies that explore the electrophysiological and molecular mechanisms by which PD and sleep may be intertwined, whether as predictors or consequences of the disease. It is possible to clearly state that leucine-rich repeat kinase 2 gene (LRRK2) is significantly related to alterations in sleep architecture, particularly affecting rapid eye movement (REM) sleep and non-REM sleep, thus impacting sleep quality. Also, decreases in gamma power, observed after dopaminergic lesions, correlates negatively with the degree of injury, which brings other levels of understanding the impacts of the disease. Besides, abnormal synchronized oscillations among basal ganglia nuclei can be detrimental for information processing considering both motor and sleep-related processes. Altogether, despite clear advances in the field, it is still difficult to definitely establish a comprehensive understanding of causality among all the sleep dysfunctions with the disease itself. Although, certainly, the search for biomarkers is helping in shortening this road towards a better and faster diagnosis, as well as looking for more efficient treatments.
Collapse
Affiliation(s)
- Marcelo M S Lima
- Neurophysiology Laboratory, Department of Physiology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Adriano D S Targa
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Gustavo Z Dos Santos Lima
- Science and Technology School, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Clarissa F Cavarsan
- College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Pablo Torterolo
- Laboratory of Sleep Neurobiology, Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Zheng J, Luo Z, Chiu K, Li Y, Yang J, Zhou Q, So KF, Wan QL. Lycium barbarum glycopetide prolong lifespan and alleviate Parkinson's disease in Caenorhabditis elegans. Front Aging Neurosci 2023; 15:1156265. [PMID: 37469953 PMCID: PMC10353607 DOI: 10.3389/fnagi.2023.1156265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Lycium barbarum glycopeptide (LbGp) is the main bioactive compound extracted from the traditional Chinese medicine. L. barbarum berries and has been proven to have numerous health benefits, including antioxidative, anti-inflammatory, anticancer, and cytoprotective activities. However, the antiaging effect of LbGp remains unknown. Methods The lifespan and body movement of C. elegans were used to evaluate the effect of LbGp on lifespan and health span. The thrashing assay was used to determine the role of LbGp in Parkinson's disease. To investigate the mechanisms of LbGp-induced antiaging effects, we analyzed changes in lifespan, movement, and the expression of longevity-related genes in a series of worm mutants after LbGp treatment. Results We found that LbGp treatment prolonged the lifespan and health span of C. elegans. Mechanistically, we found that LbGp could activate the transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1, as well as the nuclear receptor DAF-12, thereby upregulating longevity-related genes to achieve lifespan extension. In addition, we found that the lifespan extension induced by LbGp partially depends on mitochondrial function. Intriguingly, LbGp also ameliorated neurodegenerative diseases such as Parkinson's disease in a DAF-16-, SKN-1-, and HSF-1-dependent manner. Conclusion Our work suggests that LbGp might be a viable candidate for the treatment and prevention of aging and age-related diseases.
Collapse
Affiliation(s)
- Jingming Zheng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhenhuan Luo
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Kin Chiu
- State Key Lab of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yimin Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jing Yang
- Faculty of Medical Science, The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Qinghua Zhou
- Faculty of Medical Science, The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of Central Nervous System (CNS) Regeneration, Ministry of Education Central Nervous System (CNS) Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Ma L, Li X, Liu C, Yan W, Ma J, Petersen RB, Peng A, Huang K. Modelling Parkinson's Disease in C. elegans: Strengths and Limitations. Curr Pharm Des 2022; 28:3033-3048. [PMID: 36111767 DOI: 10.2174/1381612828666220915103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that affects the motor system and progressively worsens with age. Current treatment options for PD mainly target symptoms, due to our limited understanding of the etiology and pathophysiology of PD. A variety of preclinical models have been developed to study different aspects of the disease. The models have been used to elucidate the pathogenesis and for testing new treatments. These models include cell models, non-mammalian models, rodent models, and non-human primate models. Over the past few decades, Caenorhabditis elegans (C. elegans) has been widely adopted as a model system due to its small size, transparent body, short generation time and life cycle, fully sequenced genome, the tractability of genetic manipulation and suitability for large scale screening for disease modifiers. Here, we review studies using C. elegans as a model for PD and highlight the strengths and limitations of the C. elegans model. Various C. elegans PD models, including neurotoxin-induced models and genetic models, are described in detail. Moreover, met.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China.,Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Ma
- Human Resources Department, Wuhan Mental Health Center, Wuhan, China.,Human Resources Department, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Koss DJ, Erskine D, Porter A, Palmoski P, Menon H, Todd OGJ, Leite M, Attems J, Outeiro TF. Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathol Commun 2022; 10:98. [PMID: 35794636 PMCID: PMC9258129 DOI: 10.1186/s40478-022-01403-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is pathologically defined by the cytoplasmic accumulation of alpha-synuclein (aSyn) within neurons in the brain. Predominately pre-synaptic, aSyn has been reported in various subcellular compartments in experimental models. Indeed, nuclear alpha-synuclein (aSynNuc) is evident in many models, the dysregulation of which is associated with altered DNA integrity, transcription and nuclear homeostasis. However, the presence of aSynNuc in human brain cells remains controversial, yet the determination of human brain aSynNuc and its pathological modification is essential for understanding synucleinopathies. Here, using a multi-disciplinary approach employing immunohistochemistry, immunoblot, and mass-spectrometry (MS), we confirm aSynNuc in post-mortem brain tissue obtained from DLB and control cases. Highly dependent on antigen retrieval methods, in optimal conditions, intra-nuclear pan and phospho-S129 positive aSyn puncta were observed in cortical neurons and non-neuronal cells in fixed brain sections and in isolated nuclear preparations in all cases examined. Furthermore, an increase in nuclear phospho-S129 positive aSyn immunoreactivity was apparent in DLB cases compared to controls, in both neuronal and non-neuronal cell types. Our initial histological investigations identified that aSynNuc is affected by epitope unmasking methods but present under optimal conditions, and this presence was confirmed by isolation of nuclei and a combined approach of immunoblotting and mass spectrometry, where aSynNuc was approximately tenfold less abundant in the nucleus than cytoplasm. Notably, direct comparison of DLB cases to aged controls identified increased pS129 and higher molecular weight species in the nuclei of DLB cases, suggesting putative pathogenic modifications to aSynNuc in DLB. In summary, using multiple approaches we provide several lines of evidence supporting the presence of aSynNuc in autoptic human brain tissue and, notably, that it is subject to putative pathogenic modifications in DLB that may contribute to the disease phenotype.
Collapse
|
9
|
Xue J, Zhu Y, Wei L, Huang H, Li G, Huang W, Zhu H, Duan R. Loss of Drosophila NUS1 results in cholesterol accumulation and Parkinson's disease-related neurodegeneration. FASEB J 2022; 36:e22411. [PMID: 35695805 DOI: 10.1096/fj.202200212r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/11/2022]
Abstract
NgBR is the Nogo-B receptor, encoded by NUS1 gene. As NgBR contains a C-terminal domain that is similar to cis-isoprenyltransferase (cis-IPTase), NgBR was speculated to stabilize nascent Niemann-Pick type C 2 (NPC2) to facilitate cholesterol transport out of lysosomes. Mutations in the NUS1 were known as risk factors for Parkinson's disease (PD). In our previous study, it was shown that knockdown of Drosophila NUS1 orthologous gene tango14 causes decreased climbing ability, loss of dopaminergic neurons, and decreased dopamine contents. In this study, tango14 mutant flies were generated with a mutation in the C-terminal enzyme activity region using CRISPR/Cas9. Tango14 mutant showed a reduced lifespan with locomotive defects and cholesterol accumulation in Malpighian tubules and brains, especially in dopaminergic neurons. Multilamellar bodies were found in tango14 mutants using electron microscopy. Neurodegenerative-related brain vacuolization was also detected in tango14 knockdown flies in an age-dependent manner. In addition, tango14 knockdown increased α-synuclein (α-syn) neurotoxicity in α-syn-overexpressing flies, with decreased locomotive activities, dopamine contents, and the numbers of dopaminergic neurons in aging flies. Thus, these observations suggest a role of NUS1, the ortholog of tango14, in PD-related pathogenesis.
Collapse
Affiliation(s)
- Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yingbao Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Liyi Wei
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hongjing Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Guangxu Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hua Zhu
- Department of Clinical Laboratory, Jilin Cancer Hospital, Jilin, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
10
|
Yang NN, Sang SS, Peng T, lu H. SNCA rs3910105 Is Associated With Development of Rapid Eye Movement Sleep Behavior Disorder in Parkinson’s Disease. Front Neurosci 2022; 16:832550. [PMID: 35310107 PMCID: PMC8927062 DOI: 10.3389/fnins.2022.832550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Rapid eye movement (REM) Rapid eye movement sleep behavior disorder (RBD) is a common non-motor symptom of PD. However, the association between the SNCA rs3910105 genotype and RBD in Parkinson’s disease (PD) remains unclear. Methods This study used Parkinson’s Progression Markers Initiative (PPMI) data and included 270 patients with newly diagnosed PD without RBD who were divided into SNCA rs3910105 C carriers (CC+CT; n = 187) and TT carriers (n = 83). They were followed up for 5 years to identify the development of RBD. To investigate the influence of cerebrospinal fluid (CSF) alpha-synuclein (α-syn) and β-amyloid 1–42 (Aβ42) in the association between rs3910105 and RBD, the patients were additionally classified into “high-level” and “low-level” groups using cutoff values for CSF α-syn and Aβ42 levels. Results At baseline, the rs3910105 C allele group had lower CSF α-syn and Aβ42 levels than the TT group. During the 5.0-year follow-up, the rs3910105 C allele group had a higher incidence of RBD than the TT group. In the subgroup analyses, the effect of the rs3910105 C allele was not found in the “low-level” group. However, in the “high-level” group, the rs3910105 C allele independently increased the risk of RBD. Conclusion The SNCA rs3910105 C allele might be a novel genetic risk factor for RBD development in PD, α-syn pathways might have a role in this association and more basic research would be needed to elucidate the mechanism in the future.
Collapse
Affiliation(s)
- Nan-nan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Nan-nan Yang,
| | - Shu-shan Sang
- Department of Otolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Hong lu,
| |
Collapse
|
11
|
Gandelman M, Dansithong W, Kales SC, Paul S, Maag G, Aoyama E, Zakharov A, Rai G, Dexheimer T, Whitehill BM, Sun H, Jadhav A, Simeonov A, Henderson MJ, Huynh DP, Pulst SM, Scoles DR. The AKT modulator A-443654 reduces α-synuclein expression and normalizes ER stress and autophagy. J Biol Chem 2021; 297:101191. [PMID: 34520759 PMCID: PMC8482485 DOI: 10.1016/j.jbc.2021.101191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Accumulation of α-synuclein is a main underlying pathological feature of Parkinson's disease and α-synucleinopathies, for which lowering expression of the α-synuclein gene (SNCA) is a potential therapeutic avenue. Using a cell-based luciferase reporter of SNCA expression we performed a quantitative high-throughput screen of 155,885 compounds and identified A-443654, an inhibitor of the multiple functional kinase AKT, as a potent inhibitor of SNCA. HEK-293 cells with CAG repeat expanded ATXN2 (ATXN2-Q58 cells) have increased levels of α-synuclein. We found that A-443654 normalized levels of both SNCA mRNA and α-synuclein monomers and oligomers in ATXN2-Q58 cells. A-443654 also normalized levels of α-synuclein in fibroblasts and iPSC-derived dopaminergic neurons from a patient carrying a triplication of the SNCA gene. Analysis of autophagy and endoplasmic reticulum stress markers showed that A-443654 successfully prevented α-synuclein toxicity and restored cell function in ATXN2-Q58 cells, normalizing the levels of mTOR, LC3-II, p62, STAU1, BiP, and CHOP. A-443654 also decreased the expression of DCLK1, an inhibitor of α-synuclein lysosomal degradation. Our study identifies A-443654 and AKT inhibition as a potential strategy for reducing SNCA expression and treating Parkinson's disease pathology.
Collapse
Affiliation(s)
- Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | - Stephen C Kales
- Department of Neurology, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Gentrie Maag
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Erika Aoyama
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Alexey Zakharov
- Department of Neurology, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Ganesha Rai
- Department of Neurology, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Brooke M Whitehill
- Department of Neurology, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Hongmao Sun
- Department of Neurology, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Ajit Jadhav
- Department of Neurology, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Anton Simeonov
- Department of Neurology, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Mark J Henderson
- Department of Neurology, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland, USA
| | - Duong P Huynh
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
12
|
Guo Y, Sun Y, Song Z, Zheng W, Xiong W, Yang Y, Yuan L, Deng H. Genetic Analysis and Literature Review of SNCA Variants in Parkinson's Disease. Front Aging Neurosci 2021; 13:648151. [PMID: 34456707 PMCID: PMC8397385 DOI: 10.3389/fnagi.2021.648151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder. Aging, environmental factors, and genetics are considered as risk factors. The alpha-synuclein gene (SNCA), the first pathogenic gene identified in a familial form of PD, was indisputably involved as a heritable component for familial and sporadic PD. In this study, whole-exome sequencing and Sanger sequencing were performed to evaluate the association between the SNCA gene variants and PD. The genetic data of 438 clinically diagnosed patients with PD and 543 matched control populations of the Han Chinese were analyzed. The literature review of SNCA variants for 231 cases reported in 89 articles was extracted from the PubMed and the Movement Disorder Society Genetic mutation database. No potentially causative variant(s) in the SNCA gene, excepting two single-nucleotide nonsynonymous variants c.158C>T (p.A53V, rs542171324) and c.349C>T (p.P117S, rs145138372), were detected. There was no statistically significant difference in the genotypic or allelic frequencies for either variant between the PD group and the control group (all P > 0.05). No copy number variants of the SNCA gene were detected. The results of this study suggest that the variants in the exons of the SNCA gene may have less or no role in the development of PD in the Han Chinese populations. The literature review suggests that psychiatric signs and cognitive decline/dementia were more common among patients with SNCA duplication or triplication (psychiatric signs: χ2 = 7.892, P = 0.005; cognitive decline/dementia: χ2 = 8.991, P = 0.003).
Collapse
Affiliation(s)
- Yi Guo
- Department of Medical Information, School of Life Sciences, Central South University, Changsha, China
| | - Yan Sun
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
13
|
An H, Lee H, Yang S, Won W, Lee CJ, Nam MH. Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson's Disease. Exp Neurobiol 2021; 30:222-231. [PMID: 34045369 PMCID: PMC8278136 DOI: 10.5607/en21013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. While PD has been attributed to dopaminergic neuronal death in substantia nigra pars compacta (SNpc), accumulating lines of evidence have suggested that reactive astrogliosis is critically involved in PD pathology. These pathological changes are associated with α-synuclein aggregation, which is more prone to be induced by an A53T mutation. Therefore, the overexpression of A53T-mutated α-synuclein (A53T-α-syn) has been utilized as a popular animal model of PD. However, this animal model only shows marginal-to-moderate extents of reactive astrogliosis and astrocytic α-synuclein accumulation, while these phenomena are prominent in human PD brains. Here we show that Adeno-GFAP-GFP virus injection into SNpc causes severe reactive astrogliosis and exacerbates the A53T-α-syn-mediated PD pathology. In particular, we demonstrate that AAV-CMV-A53T-α-syn injection, when combined with Adeno-GFAP-GFP, causes more significant loss of dopaminergic neuronal tyrosine hydroxylase level and gain of astrocytic GFAP and GABA levels. Moreover, the combination of AAV-CMV-A53T-α-syn and Adeno-GFAP-GFP causes an extensive astrocytic α-syn expression, just as in human PD brains. These results are in marked contrast to previous reports that AAV-CMV-A53T-α-syn alone causes α-syn expression mostly in neurons but rarely in astrocytes. Furthermore, the combination causes a severe PD-like motor dysfunction as assessed by rotarod and cylinder tests within three weeks from the virus injection, whereas Adeno-GFAP-GFP alone or AAV-CMV-A53T-α-syn alone does not. Our findings implicate that inducing reactive astrogliosis exacerbates PD-like pathologies and propose the virus combination as an advanced strategy for developing a new animal model of PD.
Collapse
Affiliation(s)
- Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Hyowon Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of KHU-KIST Convergent Science and Technology, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
14
|
α-synuclein pathogenesis in hiPSC models of Parkinson's disease. Neuronal Signal 2021; 5:NS20210021. [PMID: 34239711 PMCID: PMC8222967 DOI: 10.1042/ns20210021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
α-synuclein is an increasingly prominent player in the pathology of a variety of neurodegenerative conditions. Parkinson’s disease (PD) is a neurodegenerative disorder that affects mainly the dopaminergic (DA) neurons in the substantia nigra of the brain. Typical of PD pathology is the finding of protein aggregations termed ‘Lewy bodies’ in the brain regions affected. α-synuclein is implicated in many disease states including dementia with Lewy bodies (DLB) and Alzheimer’s disease. However, PD is the most common synucleinopathy and continues to be a significant focus of PD research in terms of the α-synuclein Lewy body pathology. Mutations in several genes are associated with PD development including SNCA, which encodes α-synuclein. A variety of model systems have been employed to study α-synuclein physiology and pathophysiology in an attempt to relate more closely to PD pathology. These models include cellular and animal system exploring transgenic technologies, viral vector expression and knockdown approaches, and models to study the potential prion protein-like effects of α-synuclein. The current review focuses on human induced pluripotent stem cell (iPSC) models with a specific focus on mutations or multiplications of the SNCA gene. iPSCs are a rapidly evolving technology with huge promise in the study of normal physiology and disease modeling in vitro. The ability to maintain a patient’s genetic background and replicate similar cell phenotypes make iPSCs a powerful tool in the study of neurological diseases. This review focuses on the current knowledge about α-synuclein physiological function as well as its role in PD pathogenesis based on human iPSC models.
Collapse
|
15
|
Du T, Wang L, Liu W, Zhu G, Chen Y, Zhang J. Biomarkers and the Role of α-Synuclein in Parkinson's Disease. Front Aging Neurosci 2021; 13:645996. [PMID: 33833675 PMCID: PMC8021696 DOI: 10.3389/fnagi.2021.645996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the presence of α-synuclein (α-Syn)-rich Lewy bodies (LBs) and the preferential loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta (SNpc). However, the widespread involvement of other central nervous systems (CNS) structures and peripheral tissues is now widely documented. The onset of the molecular and cellular neuropathology of PD likely occurs decades before the onset of the motor symptoms characteristic of PD, so early diagnosis of PD and adequate tracking of disease progression could significantly improve outcomes for patients. Because the clinical diagnosis of PD is challenging, misdiagnosis is common, which highlights the need for disease-specific and early-stage biomarkers. This review article aims to summarize useful biomarkers for the diagnosis of PD, as well as the biomarkers used to monitor disease progression. This review article describes the role of α-Syn in PD and how it could potentially be used as a biomarker for PD. Also, preclinical and clinical investigations encompassing genetics, immunology, fluid and tissue, imaging, as well as neurophysiology biomarkers are discussed. Knowledge of the novel biomarkers for preclinical detection and clinical evaluation will contribute to a deeper understanding of the disease mechanism, which should more effectively guide clinical applications.
Collapse
Affiliation(s)
- Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Le Wang
- Molecular Biology Laboratory for Neuropsychiatric Diseases, Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Weijin Liu
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson’s Disease, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing Municipal Science and Technology Commission, Beijing, China
| |
Collapse
|
16
|
Retrogradely transmitted α-synuclein is taken up by the endophilin-independent endocytosis in the C. elegans neural circuit. Biochem Biophys Res Commun 2021; 552:176-182. [PMID: 33751935 DOI: 10.1016/j.bbrc.2021.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022]
Abstract
α-Synuclein is a major component of Lewy bodies and Lewy neuritis which are hallmarks of Parkinson's disease, and is known to propagate from cell-to-cell in a prion-like manner. However, the exact mechanism of α-synuclein propagation in cells remains unclear. Despite the increasing number of studies and models of α-synuclein propagation, there is no direct evidence demonstrating whether the propagation is trans-synaptic or synaptic connection-independent, what the direction of propagation is, and what the regulators of α-synuclein propagation are. In this study, we generated a Caenorhabditis elegans model that can help monitoring the neuron-to-neuron propagation of α-synuclein using BiFC system. Using this model, we demonstrated that α-synuclein was propagated into neurons in both anterograde and retrograde manners, with retrograde propagation being dominant. Interestingly, we also found that endophilin, which is a protein required for classical clathrin-mediated endocytic machinery, was not involved in this retrograde propagation. Furthermore, we demonstrated that α-synuclein inhibits neuronal activity through voltage-gated calcium channels. Our findings suggest a possible mechanism for α-synuclein propagation via synapses through a novel uptake pathway.
Collapse
|
17
|
Gu H, Yang X, Mao X, Xu E, Qi C, Wang H, Brahmachari S, York B, Sriparna M, Li A, Chang M, Patel P, Dawson VL, Dawson TM. Lymphocyte Activation Gene 3 (Lag3) Contributes to α-Synucleinopathy in α-Synuclein Transgenic Mice. Front Cell Neurosci 2021; 15:656426. [PMID: 33776654 PMCID: PMC7987675 DOI: 10.3389/fncel.2021.656426] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
Aggregation of misfolded α-synuclein (α-syn) is the major component of Lewy bodies and neurites in Parkinson's disease (PD) and related α-synucleinopathies. Some α-syn mutations (e.g., A53T) in familial PD recapitulate the α-syn pathology in transgenic mice, which supports the importance of pathologic α-syn in driving the pathogenesis of α-synucleinopathies. Lymphocyte activation gene 3 (Lag3) is a receptor of α-syn fibrils facilitating pathologic α-syn spread; however, the role of Lag3 in mediating the pathogenesis in α-syn transgenic mice is not clear. Here, we report that depletion of Lag3 in human α-syn A53T transgenic (hA53T) mice significantly reduces the level of detergent-insoluble α-syn aggregates and phosphorylated ser129 α-syn, and inhibits activation of microglia and astrocytes. The absence of Lag3 significantly delays disease progression and reduces the behavioral deficits in hA53T transgenic mice leading to prolonged survival. Taken together, these results show that Lag3 contributes to the pathogenesis in the α-syn A53T transgenic mouse model.
Collapse
Affiliation(s)
- Hao Gu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiuli Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Enquan Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chen Qi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Haibo Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bethany York
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Manjari Sriparna
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amanda Li
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pavan Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Li M, Hu K, Lin D, Wang Z, Xu M, Huang J, Chen Z, Zhang Y, Yin L, You R, Li CH, Guan YQ. Synthesis of Double Interfering Biodegradable Nano-MgO Micelle Composites and Their Effect on Parkinson's Disease. ACS Biomater Sci Eng 2021; 7:1216-1229. [PMID: 33560819 DOI: 10.1021/acsbiomaterials.0c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although gene therapy targeting the α-synuclein gene (SNCA) has achieved outstanding results in the treatment of Parkinson's disease (PD), the lack of a suitable gene delivery system and inadequate therapeutic effects remains a tremendous obstacle for RNAi therapy. Here, a degradable nano-MgO micelle composite (MgO(pDNA)-INS-Plu-mRNA-NGF) with double interference (mediated by RNAi and α-synuclein (α-syn)-targeted mRNA) was constructed. Binding mRNA treatment significantly increased the inhibitory effect compared to the reduction of α-syn expression by RNAi alone. Moreover, the cell experiments demonstrated that the viability of the PD cell model can be significantly improved by nano-MgO micelle composite treatment. More importantly, the composite has the ability to penetrate the blood brain barrier and deliver genes and mRNA to neurons through endocytosis mediated by the nerve growth factor and its receptors, thus significantly downregulating the expression of α-syn in the PD mice model without causing damage to other major organs. Overall, this work provides a novel insight into the design of biomaterials for gene therapy for PD.
Collapse
Affiliation(s)
- Mingchao Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kaikai Hu
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Danmin Lin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhen Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Mingze Xu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jinpeng Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Zhan Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yi Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Liang Yin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
19
|
Brahmachari S, Lee S, Kim S, Yuan C, Karuppagounder SS, Ge P, Shi R, Kim EJ, Liu A, Kim D, Quintin S, Jiang H, Kumar M, Yun SP, Kam TI, Mao X, Lee Y, Swing DA, Tessarollo L, Ko HS, Dawson VL, Dawson TM. Parkin interacting substrate zinc finger protein 746 is a pathological mediator in Parkinson's disease. Brain 2020; 142:2380-2401. [PMID: 31237944 DOI: 10.1093/brain/awz172] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein misfolding and aggregation plays a major role in the pathogenesis of Parkinson's disease. Although loss of function mutations in the ubiquitin ligase, parkin, cause autosomal recessive Parkinson's disease, there is evidence that parkin is inactivated in sporadic Parkinson's disease. Whether parkin inactivation is a driver of neurodegeneration in sporadic Parkinson's disease or a mere spectator is unknown. Here we show that parkin in inactivated through c-Abelson kinase phosphorylation of parkin in three α-synuclein-induced models of neurodegeneration. This results in the accumulation of parkin interacting substrate protein (zinc finger protein 746) and aminoacyl tRNA synthetase complex interacting multifunctional protein 2 with increased parkin interacting substrate protein levels playing a critical role in α-synuclein-induced neurodegeneration, since knockout of parkin interacting substrate protein attenuates the degenerative process. Thus, accumulation of parkin interacting substrate protein links parkin inactivation and α-synuclein in a common pathogenic neurodegenerative pathway relevant to both sporadic and familial forms Parkinson's disease. Thus, suppression of parkin interacting substrate protein could be a potential therapeutic strategy to halt the progression of Parkinson's disease and related α-synucleinopathies.
Collapse
Affiliation(s)
- Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Changqing Yuan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Rosa Shi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Esther J Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Alex Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Stephan Quintin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haisong Jiang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Seung Pil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Yunjong Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Deborah A Swing
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Keo A, Mahfouz A, Ingrassia AMT, Meneboo JP, Villenet C, Mutez E, Comptdaer T, Lelieveldt BPF, Figeac M, Chartier-Harlin MC, van de Berg WDJ, van Hilten JJ, Reinders MJT. Transcriptomic signatures of brain regional vulnerability to Parkinson's disease. Commun Biol 2020; 3:101. [PMID: 32139796 PMCID: PMC7058608 DOI: 10.1038/s42003-020-0804-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/28/2020] [Indexed: 01/11/2023] Open
Abstract
The molecular mechanisms underlying caudal-to-rostral progression of Lewy body pathology in Parkinson's disease remain poorly understood. Here, we identified transcriptomic signatures across brain regions involved in Braak Lewy body stages in non-neurological adults from the Allen Human Brain Atlas. Among the genes that are indicative of regional vulnerability, we found known genetic risk factors for Parkinson's disease: SCARB2, ELOVL7, SH3GL2, SNCA, BAP1, and ZNF184. Results were confirmed in two datasets of non-neurological subjects, while in two datasets of Parkinson's disease patients we found altered expression patterns. Co-expression analysis across vulnerable regions identified a module enriched for genes associated with dopamine synthesis and microglia, and another module related to the immune system, blood-oxygen transport, and endothelial cells. Both were highly expressed in regions involved in the preclinical stages of the disease. Finally, alterations in genes underlying these region-specific functions may contribute to the selective regional vulnerability in Parkinson's disease brains.
Collapse
Affiliation(s)
- Arlin Keo
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ahmed Mahfouz
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Angela M T Ingrassia
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Jean-Pascal Meneboo
- University Lille, Plate-forme de génomique fonctionnelle et Structurale, F-59000, Lille, France
- University lille. Bilille, F-59000, Lille, France
| | - Celine Villenet
- University Lille, Plate-forme de génomique fonctionnelle et Structurale, F-59000, Lille, France
| | - Eugénie Mutez
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
- Inserm, UMR-S 1172, Early Stages of Parkinson's Disease, F-59000, Lille, France
- University Lille, Service de Neurologie et Pathologie du mouvement, centre expert Parkinson, F-59000, Lille, France
| | - Thomas Comptdaer
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
- Inserm, UMR-S 1172, Early Stages of Parkinson's Disease, F-59000, Lille, France
| | - Boudewijn P F Lelieveldt
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Figeac
- University Lille, Plate-forme de génomique fonctionnelle et Structurale, F-59000, Lille, France
- University lille. Bilille, F-59000, Lille, France
| | - Marie-Christine Chartier-Harlin
- University Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France.
- Inserm, UMR-S 1172, Early Stages of Parkinson's Disease, F-59000, Lille, France.
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands.
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
21
|
Deng H, Fan K, Jankovic J. The Role of TMEM230 Gene in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2019; 8:469-477. [PMID: 30175983 PMCID: PMC6218139 DOI: 10.3233/jpd-181421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease whose pathogenesis remains unknown. TMEM230 gene, encoding a transmembrane protein in secretory and recycling vesicle, has been recently identified as a novel disease-causing gene of autosomal dominant PD with Lewy pathology and typical clinical symptoms. Although its mutation and variants seem to be rare in PD patients, functional studies have indicated that TMEM230 protein probably plays an important role in secretory and recycling pathway and may be involved in Lewy pathological mechanism. Here we summarize current genetic and functional reports about TMEM230 and focus on its relation with PD.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kuan Fan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
MicroRNAs: Game Changers in the Regulation of α-Synuclein in Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:1743183. [PMID: 31191899 PMCID: PMC6525811 DOI: 10.1155/2019/1743183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/24/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Its neuropathological hallmarks include neuronal loss in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies containing aggregates of α-synuclein (α-syn). An imbalance between the rates of α-syn synthesis, aggregation, and clearance can result in abnormal α-syn levels and contribute to the pathogenesis of PD. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs (∼22 nucleotides) that have recently emerged as key posttranscriptional regulators of gene expression. In this review, we summarize the functions of miRNAs that directly target α-syn. We also review miRNAs that indirectly impact α-syn levels or toxicity through different pathways, including those involved in the clearance of α-syn and neuroinflammation.
Collapse
|
23
|
Wang Z, Gao G, Duan C, Yang H. Progress of immunotherapy of anti-α-synuclein in Parkinson's disease. Biomed Pharmacother 2019; 115:108843. [PMID: 31055236 DOI: 10.1016/j.biopha.2019.108843] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases are characterized by progressive loss of neurons and abnormal protein accumulation, including amyloid (A)β and tau in Alzheimer's disease and Lewy bodies and α-synuclein (α-syn) in Parkinson's disease (PD). Recent evidence suggests that adaptive immunity plays an important role in PD, and that anti-α-syn antibodies can be used as therapy in neurodegenerative diseases; monoclonal antibodies were shown to inhibit α-syn propagation and aggregation in PD models and patients. In this review, we summarize the different pathological states of α-syn, including gene mutations, truncation, phosphorylation, and the high molecular weight form, and describe the specific antibodies that recognize the α-syn monomer or oligomer, some of which have been tested in clinic trials. We also discuss future research directions and potential targets in PD therapy.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Chunli Duan
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
24
|
Li X, Dong C, Hoffmann M, Garen CR, Cortez LM, Petersen NO, Woodside MT. Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Sci Rep 2019; 9:1734. [PMID: 30741954 PMCID: PMC6370846 DOI: 10.1038/s41598-018-37584-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein is a protein that aggregates as amyloid fibrils in the brains of patients with Parkinson's disease and dementia with Lewy bodies. Small oligomers of α-synuclein are neurotoxic and are thought to be closely associated with disease. Whereas α-synuclein fibrillization and fibril morphologies have been studied extensively with various methods, the earliest stages of aggregation and the properties of oligomeric intermediates are less well understood because few methods are able to detect and characterize early-stage aggregates. We used fluorescence spectroscopy to investigate the early stages of aggregation by studying pairwise interactions between α-synuclein monomers, as well as between engineered tandem oligomers of various sizes (dimers, tetramers, and octamers). The hydrodynamic radii of these engineered α-synuclein species were first determined by fluorescence correlation spectroscopy and dynamic light scattering. The rate of pairwise aggregation between different species was then monitored using dual-color fluorescence cross-correlation spectroscopy, measuring the extent of association between species labelled with different dyes at various time points during the early aggregation process. The aggregation rate and extent increased with tandem oligomer size. Self-association of the tandem oligomers was found to be the preferred pathway to form larger aggregates: interactions between oligomers occurred faster and to a greater extent than interactions between oligomers and monomers, indicating that the oligomers were not as efficient in seeding further aggregation by addition of monomers. These results suggest that oligomer-oligomer interactions may play an important role in driving aggregation during its early stages.
Collapse
Affiliation(s)
- Xi Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Chunhua Dong
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Marion Hoffmann
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leonardo M Cortez
- Division of Neurology, Department of Medicine, Centre for Prions and Protein Folding Diseases, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
25
|
Lasbleiz C, Mestre-Francés N, Devau G, Luquin MR, Tenenbaum L, Kremer EJ, Verdier JM. Combining Gene Transfer and Nonhuman Primates to Better Understand and Treat Parkinson's Disease. Front Mol Neurosci 2019; 12:10. [PMID: 30804750 PMCID: PMC6378268 DOI: 10.3389/fnmol.2019.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/14/2019] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive CNS disorder that is primarily associated with impaired movement. PD develops over decades and is linked to the gradual loss of dopamine delivery to the striatum, via the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). While the administration of L-dopa and deep brain stimulation are potent therapies, their costs, side effects and gradual loss of efficacy underlines the need to develop other approaches. Unfortunately, the lack of pertinent animal models that reproduce DA neuron loss and behavior deficits—in a timeline that mimics PD progression—has hindered the identification of alternative therapies. A complementary approach to transgenic animals is the use of nonhuman primates (NHPs) combined with the overexpression of disease-related genes using viral vectors. This approach may induce phenotypes that are not influenced by developmental compensation mechanisms, and that take into account the personality of animals. In this review article, we discuss the combination of gene transfer and NHPs to develop “genetic” models of PD that are suitable for testing therapeutic approaches.
Collapse
Affiliation(s)
- Christelle Lasbleiz
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Nadine Mestre-Francés
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Gina Devau
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | | | - Liliane Tenenbaum
- Laboratory of Molecular Neurotherapies and NeuroModulation, Clinical Neuroscience Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jean-Michel Verdier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| |
Collapse
|
26
|
Zhang K, Tang Y, Meng L, Zhu L, Zhou X, Zhao Y, Yan X, Tang B, Guo J. The Effects of SNCA rs894278 on Resting-State Brain Activity in Parkinson's Disease. Front Neurosci 2019; 13:47. [PMID: 30778284 PMCID: PMC6369188 DOI: 10.3389/fnins.2019.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is not well established. The rs894278 polymorphism of SNCA has been associated with PD. We performed this study to investigate the relationship between rs894278 and PD status on resting-state brain activity, by analyzing the amplitude of low-frequency fluctuation (ALFF). A total of 81 PD patients and 64 healthy controls were recruited. Disease severity and PD stage were evaluated in PD patients using the unified Parkinson's disease rating scale (UPDRS) and the Hoehn and Yahr (HY) scale, while the cognitive function of all participants was assessed using the mini-mental state examination (MMSE). All participants were genotyped for the rs894278 SNP and underwent a resting state functional magnetic resonance imaging scan. We found that the ALFF values of PD patients in the lingual gyrus and left caudate were lower than those of HCs; and the ALFF values for the right fusiform of participants with G allele were lower than those of participants without G allele. And we further revealed higher ALFF values in bilateral fusiform in rs894278-G carriers than in rs894278-G non-carriers in the PD group and lower ALFF values in bilateral fusiform in rs894278-G carriers than in rs894278-G non-carriers in the HC group. Our findings show that rs894278 and PD status interactively affect the brain activity of PD patients and HCs, and changes in the brain connectomes may play a key role in the pathogenesis of PD. Thus, our work sheds light on the mechanism underlying PD pathogenesis.
Collapse
Affiliation(s)
- Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,School of Information Science and Engineering, Central South University, Changsha, China
| | - Li Meng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing China.,Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
27
|
Genetic Impact on Clinical Features in Parkinson's Disease: A Study on SNCA-rs11931074. PARKINSONS DISEASE 2018; 2018:2754541. [PMID: 30631417 PMCID: PMC6304873 DOI: 10.1155/2018/2754541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/22/2018] [Accepted: 11/19/2018] [Indexed: 02/01/2023]
Abstract
SNCA-rs11931074 had been demonstrated to be strongly correlated with PD risk. However, there was lack of comprehensive analysis of SNCA-rs11931074-related clinical features which may help explain clinical heterogeneity of PD. In our study, we performed association analyses on the relationship between SNCA-rs11931074 and motor symptoms, nonmotor symptoms, and comorbidities in PD. 611 rs11931074 carriers and 113 rs11931074 noncarriers were enrolled. In the clinical phenotype analyses, the Unified Parkinson's Disease Rating Scale part II (UPDRS II) and part III (UPDRS III) scores of rs11931074 carriers were lower than those of noncarriers (SC: −0.083, p=0.035; SC: −0.140, p ≤ 0.001). The Charlson Comorbidity Index (CCI) score of carriers was lower than that of noncarriers (SC: −0.097, p=0.009). No significant statistical differences were found between the variant and other clinical features such as motor complications and nonmotor symptoms. The SNCA-rs11931074 carriers may present with more benign clinical profiles than noncarriers with less severe motor symptoms and comorbidity burden.
Collapse
|
28
|
Varrone A, Pellecchia MT. SPECT Molecular Imaging in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:225-260. [PMID: 30409254 DOI: 10.1016/bs.irn.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine transporter (DAT) imaging with single-photon emission computed tomography (SPECT) is a diagnostic tool to study the integrity of the dopaminergic system in patients with parkinsonism and uncertain diagnosis. DAT SPECT enables to detect the presence of nigrostriatal deficit even in the early or pre-symptomatic stages of the disease and to quantify the DAT loss with the progression of nigrostriatal degeneration. For these reasons, DAT SPECT has been also used as a tool to study genetic conditions that are associated with parkinsonism in order to examine the degree and patterns of dopaminergic deficits that are present in at risk subjects and in affected patients carrying the mutations. Studies included subjects with sporadic mutations of common genes associated with Parkinson's disease (PD) and families with both affected patients and asymptomatic carriers. For obvious reasons, the majority of the studies have included a limited number of subjects. Therefore, because of the heterogeneity and the size of the cohorts examined, in many cases the findings can be merely descriptive and general conclusions on the patterns of dopaminergic deficit in different genetic conditions need to take into account some exceptions.
Collapse
Affiliation(s)
- Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Salerno, Italy
| |
Collapse
|
29
|
Zhang Y, Shu L, Sun Q, Pan H, Guo J, Tang B. A Comprehensive Analysis of the Association Between SNCA Polymorphisms and the Risk of Parkinson's Disease. Front Mol Neurosci 2018; 11:391. [PMID: 30410434 PMCID: PMC6209653 DOI: 10.3389/fnmol.2018.00391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Various studies have reported associations between synuclein alpha (SNCA) polymorphisms and Parkinson's disease (PD) risk. However, the results are inconsistent. We conducted a comprehensive meta-analysis of the associations between SNCA single-nucleotide polymorphisms (SNPs) and PD risk in overall populations and subpopulations by ethnicity. Methods: Standard meta-analysis was conducted according to our protocol with a cutoff point of p < 0.05. To find the most relevant SNCA SNPs, we used a cutoff point of p < 1 × 10−5 in an analysis based on the allele model. In the subgroup analysis by ethnicity, we divided the overall populations into five ethnic groups. We conducted further analysis on the most relevant SNPs using dominant and recessive models to identify the contributions of heterozygotes and homozygotes regarding each SNP. Results: In our comprehensive meta-analysis, 24,075 cases and 22,877 controls from 36 articles were included. We included 16 variants in the meta-analysis and found 12 statistically significant variants with p < 0.05. After narrowing down the variants using the p < 1 × 10−5 cutoff, in overall populations, seven SNPs increased the risk of PD (rs2736990, rs356220, rs356165, rs181489, rs356219, rs11931074, and rs2737029, with odds ratios [ORs] of 1.22–1.38) and one SNP decreased the risk (rs356186, with an OR of 0.77). In the East Asian group, rs2736990 and rs11931074 increased the risk (with ORs of 1.22–1.34). In the European group, five SNPs increased the risk (rs356219, rs181489, rs2737029, rs356165, and rs11931074, with ORs of 1.26–1.37) while one SNP decreased the risk (rs356186, with an OR of 0.77). The heterozygotes and homozygotes contributed differently depending on the variant. Conclusions: In summary, we found eight SNCA SNPs associated with PD risk, which had obvious differences between ethnicities. Seven SNPs increased the risk of PD and one SNP decreased the risk in the overall populations. In the East Asian group, rs2736990 and rs11931074 increased the risk. In the European group, rs356219, rs181489, rs2737029, rs356165, and rs11931074 increased the risk while rs356186 decreased the risk. Variants with the highest ORs and allele frequencies in our analysis should be given priority when carrying out genetic screening.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
30
|
Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. Outside in: Unraveling the Role of Neuroinflammation in the Progression of Parkinson's Disease. Front Neurol 2018; 9:860. [PMID: 30459700 PMCID: PMC6232883 DOI: 10.3389/fneur.2018.00860] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is one of the most important processes involved in the pathogenesis of Parkinson's disease (PD). The current concept of neuroinflammation comprises an inflammation process, which occurs in the central nervous system due to molecules released from brain-resident and/or blood-derived immune cells. Furthermore, the evidence of the contribution of systemic delivered molecules to the disease pathogenesis, such as the gut microbiota composition, has been increasing during the last years. Under physiological conditions, microglia and astrocytes support the well-being and well-function of the brain through diverse functions, including neurotrophic factor secretion in both intact and injured brain. On the other hand, genes that cause PD are expressed in astrocytes and microglia, shifting their neuroprotective role to a pathogenic one, contributing to disease onset and progression. In addition, growth factors are a subset of molecules that promote cellular survival, differentiation and maturation, which are critical signaling factors promoting the communication between cells, including neurons and blood-derived immune cells. We summarize the potential targeting of astrocytes and microglia and the systemic contribution of the gut microbiota in neuroinflammation process archived in PD.
Collapse
Affiliation(s)
- Paulina Troncoso-Escudero
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Alejandra Parra
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Melissa Nassif
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Rene L Vidal
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,Neurounion Biomedical Foundation, Santiago, Chile
| |
Collapse
|
31
|
Antipova V, Wree A, Holzmann C, Mann T, Palomero-Gallagher N, Zilles K, Schmitt O, Hawlitschka A. Unilateral Botulinum Neurotoxin-A Injection into the Striatum of C57BL/6 Mice Leads to a Different Motor Behavior Compared with Rats. Toxins (Basel) 2018; 10:E295. [PMID: 30018211 PMCID: PMC6070800 DOI: 10.3390/toxins10070295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/26/2022] Open
Abstract
Different morphological changes in the caudate-putamen (CPu) of naïve rats and mice were observed after intrastriatal botulinum neurotoxin-A (BoNT-A) injection. For this purpose we here studied various motor behaviors in mice (n = 46) longitudinally up to 9 months after intrastriatal BoNT-A administration as previously reported for rats, and compared both outcomes. Apomorphine- and amphetamine-induced rotational behavior, spontaneous motor behavior, as well as lateralized neglect were studied in mice after the injection of single doses of BoNT-A into the right CPu, comparing them with sham-injected animals. Unilateral intrastriatal injection of BoNT-A in mice induced significantly increased contralateral apomorphine-induced rotations for 1 to 3 months, as well as significantly increased contralateral amphetamine-induced rotations 1 to 9 months after injection. In rats (n = 28), unilateral BoNT-A injection also induced significantly increased contralateral apomorphine-induced rotations 3 months after injection, but did not provoke amphetamine-induced rotations at all. Lateralized sensorimotor integration, forelimb preference, and forelimb stepping were significantly impaired on the left side. The differences in motor behaviors between rats and mice may be caused by different BoNT-A effects on cholinergic and catecholaminergic fibers in rat and mouse striata, interspecies differences in striatal receptor densities, and different connectomes of the basal ganglia.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, Harrachgasse 21/1, A-8010 Graz, Austria.
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Ernst-Heydemann-Strasse 8, D-18057 Rostock, Germany.
| | - Teresa Mann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, D-52062 Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, D-52062 Aachen, Germany.
- JARA-Translational Brain Medicine, D-52062 Aachen, Germany.
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| | - Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057 Rostock, Germany.
| |
Collapse
|
32
|
Liu M, Qin L, Wang L, Tan J, Zhang H, Tang J, Shen X, Tan L, Wang C. α‑synuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulum‑Golgi compartment. Mol Med Rep 2018; 18:322-332. [PMID: 29749529 PMCID: PMC6059687 DOI: 10.3892/mmr.2018.9002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Although previous work has demonstrated that the overexpression of wild-type or mutant α-synuclein (α-syn) can induce cell death via a number of different mechanisms, including oxidative stress, dysfunction of the ubiquitin-proteasome degradation system, mitochondrial damage and endoplasmic reticulum (ER) stress, research interest has primarily focused on neurons. However, there is accumulating evidence that suggests that astrocytes may be involved in the earliest changes, as well as the progression of Parkinson's disease (PD), though the role of α-syn in astrocytes has not been widely studied. In the present study, it was revealed that the mutant α-syn (A53T and A30P) in astrocytes triggered ER stress via the protein kinase RNA-like ER kinase/eukaryotic translation initiation factor 2α signaling pathway. Astrocyte apoptosis was induced through a CCAAT-enhancer-binding protein homologous protein-mediated pathway. In addition, Golgi fragmentation was observed in the process. On the other hand, it was also demonstrated, in a primary neuronal-astroglial co-culture system, that the overexpression of α-syn significantly decreased the levels of glia-derived neurotrophic factor (GDNF) and partly inhibited neurite outgrowth. Although direct evidence is currently lacking, it was proposed that dysfunction of the ER-Golgi compartment in astrocytes overexpressing α-syn may lead to a decline of GDNF levels, which in turn would suppress neurite outgrowth. Taken together, the results of the present study offer further insights into the pathogenesis of PD from the perspective of astrocytes, which may provide novel strategies for the diagnosis and treatment of PD in the future.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lili Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jieqiong Tan
- State Key Laboratory of Medical Genetics, Changsha, Hunan 410013, P.R. China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiangmin Shen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liming Tan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
33
|
Hawlitschka A, Wree A. Experimental Intrastriatal Applications of Botulinum Neurotoxin-A: A Review. Int J Mol Sci 2018; 19:ijms19051392. [PMID: 29735936 PMCID: PMC5983629 DOI: 10.3390/ijms19051392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most frequent neurodegenerative disorders. Its main pathophysiological characteristic is the loss of dopaminergic neurons in the substantia nigra pars compacta followed by a lack of striatal dopaminergic input and a consequent disinhibition of tonically active cholinergic interneurons. The resulting striatal hypercholinism causes major motor symptoms in PD. Anticholinergic pharmacotherapies have antiparkinsonian effects on motor symptoms, but, due to systemic actions, also numerous severe side effects occur on a regular basis. To circumvent these side effects, a local anticholinergic therapy acting exclusively in the striatum would be reasonable. Botulinum neurotoxin-A (BoNT-A) is synthesized by Clostridium botulinum and blocks the release of acetylcholine from the presynaptic bouton. For several decades, BoNT-A has been used successfully for medical and cosmetic purposes to induce controlled paralyses of single muscles. Our group and others investigated the experimental treatment of striatal hypercholinism by the direct injection of BoNT-A into the striatum of rats and mice as well as of hemiparkinsonian animal models. This review gives an overview of the most important results of the experimental intrastriatal BoNT-A application, with a focus on hemiparkinsonian rats.
Collapse
Affiliation(s)
- Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| |
Collapse
|
34
|
Wang P, Guo Y, Song C, Liu Y, Deng H. PINK1 p.K520RfsX3 mutation identified in a Chinese family with early-onset Parkinson's disease. Neurosci Lett 2018; 676:98-102. [PMID: 29655942 DOI: 10.1016/j.neulet.2018.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) features selective loss of dopaminergic neurons of the substantia nigra pars compacta accompanied by the accumulation and aggregation of alpha-synuclein in Lewy bodies. PTEN induced putative kinase 1 gene (PINK1) mutations are the second most common genetic cause of autosomal recessive early-onset Parkinson's disease (EOPD). A single nucleotide deletion in PINK1 exon 8 (c.1557delG) was identified in a consanguineous Chinese family with EOPD. The homozygous deletion was co-segregated with disease in the family and resulted in a frameshift after codon 520 with a premature termination at codon 522 (p.K520RfsX3). These findings have significant implications on genetic counseling for the family and may be helpful in considering potential pathogenesis-targeted and disease-modifying strategies which should further improve patient quality of life.
Collapse
Affiliation(s)
- Peng Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China; Information Security and Big Data Research Institute, Central South University, Changsha, China
| | - Chengyuan Song
- Department of Neurology, The Qilu Hospital, Shandong University, Jinan, China
| | - Yiming Liu
- Department of Neurology, The Qilu Hospital, Shandong University, Jinan, China.
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
35
|
Piper DA, Sastre D, Schüle B. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Front Neurosci 2018; 12:199. [PMID: 29686602 PMCID: PMC5900030 DOI: 10.3389/fnins.2018.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (non A4 component of amyloid precursor, SNCA, NM_000345.3) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.
Collapse
Affiliation(s)
- Desiree A Piper
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Danuta Sastre
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| |
Collapse
|
36
|
The genetics of Parkinson disease. Ageing Res Rev 2018; 42:72-85. [PMID: 29288112 DOI: 10.1016/j.arr.2017.12.007] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
About 15% of patients with Parkinson disease (PD) have family history and 5-10% have a monogenic form of the disease with Mendelian inheritance. To date, at least 23 loci and 19 disease-causing genes for parkinsonism have been found, but many more genetic risk loci and variants for sporadic PD phenotype have been identified in various association studies. Investigating the mutated protein products has uncovered potential pathogenic pathways that provide insights into mechanisms of neurodegeneration in familial and sporadic PD. To commemorate the 200th anniversary of Parkinson's publication of An Essay on the Shaking Palsy, we provide a comprehensive and critical overview of the current clinical, neuropathological, and genetic understanding of genetic forms of PD. We also discuss advances in screening for genetic PD-related risk factors and how they impact genetic counseling and contribute to the development of potential disease-modifying therapies.
Collapse
|
37
|
Yener Ilce B, Cagin U, Yilmazer A. Cellular reprogramming: A new way to understand aging mechanisms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7. [PMID: 29350802 DOI: 10.1002/wdev.308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Increased life expectancy, due to the rise in life quality and the decline in mortality rates, is leading to a society in which the population aged 60 and over is growing more rapidly than the entire population. Although various models and model organisms have been employed to investigate the mechanism of aging, induced pluripotent stem cells (iPSCs) are useful candidates to study human aging and age-related human diseases. This work discusses how iPSCs can be used as an alternative to the model organisms such as yeast, Caenorhabditis elegans, Drosophila melanogaster, or the mouse. The main focus is the reprogramming technology of somatic cells which is thought to provide an important perspective for rejuvenation strategies. The effects and relationships between aging and cell reprogramming are discussed, and studies related to aging and cell reprogramming are critically reviewed. We believe that for future studies, different parameters and detailed quantitative experiments should be performed in order to clearly understand the effect of aging on human cell reprogramming with respect to programming efficiency and differentiation capacity. This way, new insights will be provided to prevent or even reverse the aging process. WIREs Dev Biol 2018, 7:e308. doi: 10.1002/wdev.308 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
| | | | - Acelya Yilmazer
- Biomedical Engineering Department, Engineering Faculty, Ankara University, Ankara, Turkey.,Stem Cell Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
38
|
Flynn JD, McGlinchey RP, Walker RL, Lee JC. Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy. J Biol Chem 2018; 293:767-776. [PMID: 29191831 PMCID: PMC5777252 DOI: 10.1074/jbc.m117.812388] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is associated with the formation of α-synuclein amyloid fibrils. Elucidating the role of these β-sheet-rich fibrils in disease progression is crucial; however, collecting detailed structural information on amyloids is inherently difficult because of their insoluble, non-crystalline, and polymorphic nature. Here, we show that Raman spectroscopy is a facile technique for characterizing structural features of α-synuclein fibrils. Combining Raman spectroscopy with aggregation kinetics and transmission electron microscopy, we examined the effects of pH and ionic strength as well as four PD-related mutations (A30P, E46K, G51D, and A53T) on α-synuclein fibrils. Raman spectral differences were observed in the amide-I, amide-III, and fingerprint regions, indicating that secondary structure and tertiary contacts are influenced by pH and to a lesser extent by NaCl. Faster aggregation times appear to facilitate unique fibril structure as determined by the highly reproducible amide-I band widths, linking aggregation propensity and fibril polymorphism. Importantly, Raman spectroscopy revealed molecular-level perturbations of fibril conformation by the PD-related mutations that are not apparent through transmission electron microscopy or limited proteolysis. The amide-III band was found to be particularly sensitive, with G51D exhibiting the most distinctive features, followed by A53T and E46K. Relating to a cellular environment, our data would suggest that fibril polymorphs can be formed in different cellular compartments and potentially result in distinct phenotypes. Our work sets a foundation toward future cellular Raman studies of amyloids.
Collapse
Affiliation(s)
- Jessica D Flynn
- From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ryan P McGlinchey
- From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert L Walker
- From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer C Lee
- From the Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
39
|
Apfeld J, Fontana W. Age-Dependence and Aging-Dependence: Neuronal Loss and Lifespan in a C. elegans Model of Parkinson's Disease. BIOLOGY 2017; 7:biology7010001. [PMID: 29295479 PMCID: PMC5872027 DOI: 10.3390/biology7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
It is often assumed, but not established, that the major neurodegenerative diseases, such as Parkinson's disease, are not just age-dependent (their incidence changes with time) but actually aging-dependent (their incidence is coupled to the process that determines lifespan). To determine a dependence on the aging process requires the joint probability distribution of disease onset and lifespan. For human Parkinson's disease, such a joint distribution is not available, because the disease cuts lifespan short. To acquire a joint distribution, we resorted to an established C. elegans model of Parkinson's disease in which the loss of dopaminergic neurons is not fatal. We find that lifespan is not correlated with the loss of individual neurons. Therefore, neuronal loss is age-dependent and aging-independent. We also find that a lifespan-extending intervention into insulin/IGF1 signaling accelerates the loss of specific dopaminergic neurons, while leaving death and neuronal loss times uncorrelated. This suggests that distinct and compartmentalized instances of the same genetically encoded insulin/IGF1 signaling machinery act independently to control neurodegeneration and lifespan in C. elegans. Although the human context might well be different, our study calls attention to the need to maintain a rigorous distinction between age-dependence and aging-dependence.
Collapse
Affiliation(s)
- Javier Apfeld
- Biology Department, Northeastern University, Boston, MA 02115, USA.
| | - Walter Fontana
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Hawlitschka A, Holzmann C, Witt S, Spiewok J, Neumann AM, Schmitt O, Wree A, Antipova V. Intrastriatally injected botulinum neurotoxin-A differently effects cholinergic and dopaminergic fibers in C57BL/6 mice. Brain Res 2017; 1676:46-56. [DOI: 10.1016/j.brainres.2017.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/10/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022]
|
41
|
Ottolini D, Calí T, Szabò I, Brini M. Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biol Chem 2017; 398:77-100. [DOI: 10.1515/hsz-2016-0201] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
Abstract
Alpha-synuclein (α-syn) is an abundant neuronal protein whose physiological function, even if still not completely understood, has been consistently related to synaptic function and vesicle trafficking. A group of disorders known as synucleinopathies, among which Parkinson’s disease (PD), is deeply associated with the misfolding and aggregation of α-syn, which can give rise to proteinaceous inclusion known as Lewy bodies (LB). Proteostasis stress is a relevant aspect in these diseases and, currently, the presence of oligomeric α-syn species rather than insoluble aggregated forms, appeared to be associated with cytotoxicity. Many observations suggest that α-syn is responsible for neurodegeneration by interfering with multiple signaling pathways. α-syn protein can directly form plasma membrane channels or modify with their activity, thus altering membrane permeability to ions, abnormally associate with mitochondria and cause mitochondrial dysfunction (i.e. mitochondrial depolarization, Ca2+ dys-homeostasis, cytochrome c release) and interfere with autophagy regulation. The picture is further complicated by the fact that single point mutations, duplications and triplication in α-syn gene are linked to autosomal dominant forms of PD. In this review we discuss the multi-faced aspect of α-syn biology and address the main hypothesis at the basis of its involvement in neuronal degeneration.
Collapse
|
42
|
Rey NL, George S, Brundin P. Review: Spreading the word: precise animal models and validated methods are vital when evaluating prion-like behaviour of alpha-synuclein. Neuropathol Appl Neurobiol 2016; 42:51-76. [PMID: 26666838 DOI: 10.1111/nan.12299] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023]
Abstract
Synucleinopathies are characterized by abnormal proteinaceous aggregates, mainly composed of fibrillar α-synuclein (α-syn). It is now believed that α-syn can form small aggregates in a restricted number of cells, that propagate to neighbouring cells and seed aggregation of endogenous α-syn, in a 'prion-like manner'. This process could underlie the stereotypical progression of Lewy bodies described by Braak and colleagues across different stages of Parkinson's disease (PD). This prion-like behaviour of α-syn has been recently investigated in animal models of PD or multiple system atrophy (MSA). These models investigate the cell-to-cell transfer of α-syn seeds, or the induction and spreading of α-syn pathology in transgenic or wild-type rodent brain. In this review, we first outline the involvement of α-syn in Lewy body diseases and MSA, and discuss how 'prion-like' mechanisms can contribute to disease. Thereon, we debate the relevance of animal models used to study prion-like propagation. Finally, we review current main histological methods used to assess α-syn pathology both in animal models and in human samples and their relevance to the disease. Specifically, we discuss using α-syn phosphorylated at serine 129 as a marker of pathology, and the novel methods available that allow for more sensitive detection of early pathology, which has relevance for modelling synucleinopathies.
Collapse
Affiliation(s)
- N L Rey
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - S George
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - P Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, Michigan, USA
| |
Collapse
|
43
|
Kimura K, Inoue KI, Kuroiwa Y, Tanaka F, Takada M. Propagated but Topologically Distributed Forebrain Neurons Expressing Alpha-Synuclein in Aged Macaques. PLoS One 2016; 11:e0166861. [PMID: 27861638 PMCID: PMC5115821 DOI: 10.1371/journal.pone.0166861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
In neurodegenerative disorders, such as Parkinson's disease (PD), alpha-synuclein (α-syn) accumulates to induce cell death and/or form a cytoplasmic inclusion called Lewy body (LB). This α-syn-related pathology is termed synucleinopathy. It remains unclear how α-syn accumulation expands during the progress of synucleinopathy in the human brain. In our study, we investigated the patterns of distribution and propagation of forebrain neurons expressing α-syn in aged macaques. It was found that the occurrence of α-syn-positive neurons proceeded topologically based on the midbrain dopamine pathways arising from the substantia nigra and the ventral tegmental area where they were primarily observed. In the nigrostriatal or mesolimbic dopamine pathway, the age-dependent increase in α-syn-positive neurons was evident in the striatum or the nucleus accumbens, respectively. Concerning the nigrostriatal pathway, a mediolateral or rostrocaudal gradient was seen in the substantia nigra or the striatum, respectively, and a compensatory increase in dopamine transporter occurred in the striatum regardless of the decreased dopamine level. In the mesocortical dopamine pathway, α-syn-positive neurons appeared in the prefrontal and then motor areas of the frontal lobe. Given that neither LB formation nor clinical phenotype manifestation was detected in any of the monkeys examined in the present study, aged macaques may be useful as a potential presymptomatic model for PD and LB-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katsuo Kimura
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yoshiyuki Kuroiwa
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Neurology and Stroke Center, University Hospital Mizonokuchi, School of Medicine, Teikyo University, Kawasaki, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
- * E-mail:
| |
Collapse
|
44
|
Massey AR, Beckham JD. Alpha-Synuclein, a Novel Viral Restriction Factor Hiding in Plain Sight. DNA Cell Biol 2016; 35:643-645. [PMID: 27631132 DOI: 10.1089/dna.2016.3488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alpha-synuclein (α-syn) is a highly conserved protein encoded by the SNCA gene and is expressed uniquely in neurons of both the central and peripheral nervous systems (CNS and PNS). α-Syn is known to cause sporadic and familial forms of Parkinson's disease (PD). However, the role for neuronal expression of α-syn in the first place remains unknown. We review and discuss recently published work that suggests a novel role for α-syn expression in neurons as a restriction factor that inhibits virus transmission from the PNS to the CNS. The potential new role for α-syn expression as a virus inhibitor may provide new approaches to understand the pathogenesis of PD and provide novel approaches to prevent and treat this common neurodegenerative disease.
Collapse
Affiliation(s)
- Aaron R Massey
- 1 Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado
| | - J David Beckham
- 1 Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado.,2 Department of Neurology, University of Colorado School of Medicine , Aurora, Colorado.,3 Department of Immunology and Microbiology, University of Colorado Graduate School , Aurora, Colorado
| |
Collapse
|
45
|
Brahmachari S, Ge P, Lee SH, Kim D, Karuppagounder SS, Kumar M, Mao X, Shin JH, Lee Y, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Ko HS. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J Clin Invest 2016; 126:2970-88. [PMID: 27348587 PMCID: PMC4966315 DOI: 10.1172/jci85456] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein-induced neuropathology. In mice expressing a human α-synucleinopathy-associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein-induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies.
Collapse
Affiliation(s)
- Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Su Hyun Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, USA
| | - Senthilkumar S. Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Joo Ho Shin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Yunjong Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | | | - Juan C. Troncoso
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Division of Neuropathology
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
- Department of Physiology
- Solomon H. Snyder Department of Neuroscience, and
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
- Solomon H. Snyder Department of Neuroscience, and
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, and
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, USA
| |
Collapse
|
46
|
Tagliafierro L, Chiba-Falek O. Up-regulation of SNCA gene expression: implications to synucleinopathies. Neurogenetics 2016; 17:145-57. [PMID: 26948950 DOI: 10.1007/s10048-016-0478-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed by aggregates of alpha-synuclein protein. Accumulating evidence, including genome wide association studies, has implicated alpha-synuclein (SNCA) gene in the etiology of synucleinopathies. However, the precise variants within SNCA gene that contribute to the sporadic forms of Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and other synucleinopathies and their molecular mechanisms of action remain elusive. It has been suggested that SNCA expression levels are critical for the development of these diseases. Here, we review several model systems that have been developed to advance the understanding of the role of SNCA expression levels in the etiology of synucleinopathies. We also describe different molecular mechanisms that regulate SNCA gene expression and discuss possible strategies for SNCA down-regulation as means for therapeutic approaches. Finally, we highlight some examples that underscore the relationships between the genetic association findings and the regulatory mechanisms of SNCA expression, which suggest that genetic variability in SNCA locus is directly responsible, at least in part, to the changes in gene expression and explain the reported associations of SNCA with synucleinopathies. Future studies utilizing induced pluripotent stem cells (iPSCs)-derived neuronal lines and genome editing by CRISPR/Cas9, will allow us to validate, characterize, and manipulate the effects of particular cis-genetic variants on SNCA expression. Moreover, this model system will enable us to compare different neuronal and glial lineages involved in synucleinopathies representing an attractive strategy to elucidate-common and specific-SNCA-genetic variants, regulatory mechanisms, and vulnerable expression levels underlying synucleinopathy spectrum disorders. This forthcoming knowledge will support the development of precision medicine for synucleinopathies.
Collapse
Affiliation(s)
- L Tagliafierro
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - O Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
47
|
Dermentzaki G, Paschalidis N, Politis PK, Stefanis L. Complex Effects of the ZSCAN21 Transcription Factor on Transcriptional Regulation of α-Synuclein in Primary Neuronal Cultures and in Vivo. J Biol Chem 2016; 291:8756-72. [PMID: 26907683 DOI: 10.1074/jbc.m115.704973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein, a presynaptic neuronal protein encoded by the SNCA gene, is strongly implicated in Parkinson disease (PD). PD pathogenesis is linked to increased SNCA levels; however, the transcriptional elements that control SNCA expression are still elusive. Previous experiments in PC12 cells demonstrated that the transcription factor zinc finger and SCAN domain containing 21 (ZSCAN21) plays an important regulatory role in SNCA transcription. Currently, we characterized the role of ZSCAN21 in SNCA transcription in primary neuronal cultures and in vivo We found that ZSCAN21 is developmentally expressed in neurons in different rat brain regions. We confirmed its binding in the intron 1 region of SNCA in rat cortical cultures. Lentivirus-mediated silencing of ZSCAN21 increased significantly SNCA promoter activity, mRNA, and protein levels in such cultures. In contrast, ZSCAN21 silencing reduced SNCA in neurosphere cultures. Interestingly, ZSCAN21 overexpression in cortical neurons led to robust mRNA but negligible protein expression, suggesting that ZSCAN21 protein levels are tightly regulated post-transcriptionally and/or post-translationally in primary neurons. Efficient adeno-associated virus-mediated knockdown of ZSCAN21 in the postnatal and adult hippocampus, an area linked with non-motor PD symptoms, revealed no significant alterations in SNCA levels. Overall, our study demonstrates that ZSCAN21 is involved in the transcriptional regulation of SNCA in primary neuronal cultures, but the direction of the effect is variable, likely depending on neuronal maturation. However, the unaltered SNCA levels observed following ZSCAN21 down-regulation in the rat brain, possibly due to compensatory mechanisms, imply that ZSCAN21 is not a master regulator of SNCA in vivo.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Nikolaos Paschalidis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Panagiotis K Politis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Leonidas Stefanis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and the Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Hospital Attikon, Athens 12462, Greece,
| |
Collapse
|
48
|
Yuan L, Song Z, Deng X, Xiong W, Yang Z, Deng H. Association of the MTHFR rs1801131 and rs1801133 variants in sporadic Parkinson's disease patients. Neurosci Lett 2016; 616:26-31. [PMID: 26806866 DOI: 10.1016/j.neulet.2016.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a common age-dependent neurodegenerative movement disorder related to multiple factors, and genetic factors play an important role in the pathogenesis of PD. Variants in the methylenetetrahydrofolate reductase gene (MTHFR), a gene encoding a folate-dependent enzyme that is involved in homocysteine metabolism, have been reported to be associated with PD. To explore the role of the MTHFR gene in the development of PD in Chinese Han population, we analyzed two MTHFR variants (rs1801131 and rs1801133) in a patient cohort consisting of 512 patients with PD from mainland China and a control cohort consisting of 512 age, gender and ethnicity matched normal subjects. Statistically significant differences in genotypic and allelic frequencies were detected in the MTHFR variant rs1801133 (P=0.022 and 0.007, respectively; odds ratio=0.780, 95% confidence interval=0.651-0.934). In addition, the A-T haplotype of rs1801131-rs1801133 showed a protective role against PD development (P=0.007, odds ratio=0.779, 95% confidence interval=0.650-0.933). Our results suggested that the T allele of rs1801133 variant and A-T haplotype of rs1801131-rs1801133 in the MTHFR gene may decrease the risk of developing PD in Chinese Han population from mainland China.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhijian Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
49
|
The analysis of association between SNCA, HUSEYO and CSMD1 gene variants and Parkinson’s disease in Iranian population. Neurol Sci 2016; 37:731-6. [DOI: 10.1007/s10072-015-2420-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022]
|
50
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|