1
|
Lu Q, Yu A, Pu J, Chen D, Zhong Y, Bai D, Yang L. Post-stroke cognitive impairment: exploring molecular mechanisms and omics biomarkers for early identification and intervention. Front Mol Neurosci 2024; 17:1375973. [PMID: 38845616 PMCID: PMC11153683 DOI: 10.3389/fnmol.2024.1375973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a major stroke consequence that has a severe impact on patients' quality of life and survival rate. For this reason, it is especially crucial to identify and intervene early in high-risk groups during the acute phase of stroke. Currently, there are no reliable and efficient techniques for the early diagnosis, appropriate evaluation, or prognostication of PSCI. Instead, plenty of biomarkers in stroke patients have progressively been linked to cognitive impairment in recent years. High-throughput omics techniques that generate large amounts of data and process it to a high quality have been used to screen and identify biomarkers of PSCI in order to investigate the molecular mechanisms of the disease. These techniques include metabolomics, which explores dynamic changes in the organism, gut microbiomics, which studies host-microbe interactions, genomics, which elucidates deeper disease mechanisms, transcriptomics and proteomics, which describe gene expression and regulation. We looked through electronic databases like PubMed, the Cochrane Library, Embase, Web of Science, and common databases for each omics to find biomarkers that might be connected to the pathophysiology of PSCI. As all, we found 34 studies: 14 in the field of metabolomics, 5 in the field of gut microbiomics, 5 in the field of genomics, 4 in the field of transcriptomics, and 7 in the field of proteomics. We discovered that neuroinflammation, oxidative stress, and atherosclerosis may be the primary causes of PSCI development, and that metabolomics may play a role in the molecular mechanisms of PSCI. In this study, we summarized the existing issues across omics technologies and discuss the latest discoveries of PSCI biomarkers in the context of omics, with the goal of investigating the molecular causes of post-stroke cognitive impairment. We also discuss the potential therapeutic utility of omics platforms for PSCI mechanisms, diagnosis, and intervention in order to promote the area's advancement towards precision PSCI treatment.
Collapse
Affiliation(s)
- Qiuyi Lu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Anqi Yu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Dawei Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Yujie Zhong
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Dingqun Bai
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Lining Yang
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| |
Collapse
|
2
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Jiang J, Wang A, Shi H, Jiang S, Li W, Jiang T, Wang L, Zhang X, Sun M, Zhao M, Zou X, Xu J. Clinical and neuroimaging association between neuropsychiatric symptoms and nutritional status across the Alzheimer's disease continuum: a longitudinal cohort study. J Nutr Health Aging 2024; 28:100182. [PMID: 38336502 DOI: 10.1016/j.jnha.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES To investigate the association between neuropsychiatric symptoms (NPS) and nutritional status, and explore their shared regulatory brain regions on the Alzheimer's disease (AD) continuum. DESIGN A longitudinal, observational cohort study. SETTING Data were collected from the Chinese Imaging, Biomarkers, and Lifestyle study between June 1, 2021 and December 31, 2022. PARTICIPANTS Overall, 432 patients on the AD continuum, including amnestic mild cognitive impairment and AD dementia, were assessed at baseline, and only 165 patients completed the (10.37 ± 6.08) months' follow-up. MEASUREMENTS The Mini-Nutritional Assessment (MNA) and Neuropsychiatric Inventory (NPI) were used to evaluate nutritional status and NPS, respectively. The corrected cerebral blood flow (cCBF) measured by pseudo-continuous arterial spin labeling of the dietary nutrition-related brain regions was analyzed. The association between the NPS at baseline and subsequent change in nutritional status and the association between the changes in the severity of NPS and nutritional status were examined using generalized linear mixed models. RESULTS Increased cCBF in the left putamen was associated with malnutrition, general NPS, affective symptoms, and hyperactivity (P < 0.05). The presence of general NPS (β = -1.317, P = 0.003), affective symptoms (β = -1.887, P < 0.001), and appetite/eating disorders (β = -1.714, P < 0.001) at baseline were associated with a decline in the MNA scores during follow-up. The higher scores of general NPI (β = -0.048), affective symptoms (β = -0.181), and appetite/eating disorders (β = -0.416; all P < 0.001) were longitudinally associated with lower MNA scores after adjusting for confounding factors. CONCLUSIONS We found that baseline NPS were predictors of a decline in nutritional status on the AD continuum. The worse the severity of affective symptoms and appetite/eating disorders, the poorer the nutritional status. Furthermore, abnormal perfusion of the putamen may regulate the association between malnutrition and NPS, which suggests their potentially common neural regulatory basis.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Min Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
4
|
Liu J, van Beusekom H, Bu X, Chen G, Henrique Rosado de Castro P, Chen X, Chen X, Clarkson AN, Farr TD, Fu Y, Jia J, Jolkkonen J, Kim WS, Korhonen P, Li S, Liang Y, Liu G, Liu G, Liu Y, Malm T, Mao X, Oliveira JM, Modo MM, Ramos‐Cabrer P, Ruscher K, Song W, Wang J, Wang X, Wang Y, Wu H, Xiong L, Yang Y, Ye K, Yu J, Zhou X, Zille M, Masters CL, Walczak P, Boltze J, Ji X, Wang Y. Preserving cognitive function in patients with Alzheimer's disease: The Alzheimer's disease neuroprotection research initiative (ADNRI). NEUROPROTECTION 2023; 1:84-98. [PMID: 38223913 PMCID: PMC10783281 DOI: 10.1002/nep3.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 01/16/2024]
Abstract
The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-β (Aβ) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aβ antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aβ and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aβ from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Heleen van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Xian‐Le Bu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Gong Chen
- Guangdong‐HongKong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouGuangdongChina
| | | | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology, Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Institute of NeuroscienceFujian Medical UniversityFuzhouFujianChina
| | - Xiaowei Chen
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New ZealandUniversity of OtagoDunedinNew Zealand
| | - Tracy D. Farr
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Yuhong Fu
- Brain and Mind Centre & School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Woojin Scott Kim
- Brain and Mind Centre & School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Guang‐Hui Liu
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yu‐Hui Liu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
- ICVS/3B's—PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Mike M. Modo
- Department of Bioengineering, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Radiology, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Pedro Ramos‐Cabrer
- Magnetic Resonance Imaging LaboratoryCIC BiomaGUNE Research Center, Basque Research and Technology Alliance (BRTA)Donostia‐San SebastianSpain
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical SciencesLund UniversityLundSweden
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Medical UniversityZhejiangChina
| | - Jun Wang
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Xuanyue Wang
- School of Optometry and Vision ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic, Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National, Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Haitao Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yi Yang
- Department of NeurologyThe First Hospital of Jilin University, Chang ChunJilinChina
| | - Keqiang Ye
- Faculty of Life and Health SciencesBrain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced TechnologyShenzhenChina
| | - Jin‐Tai Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin‐Fu Zhou
- Division of Health Sciences, School of Pharmacy and Medical Sciences and Sansom InstituteUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Suzhou Auzone BiotechSuzhouJiangsuChina
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and ToxicologyUniversity of ViennaViennaAustria
| | - Colin L. Masters
- The Florey InstituteThe University of Melbourne, ParkvilleVictoriaAustralia
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | | | - Xunming Ji
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yan‐Jiang Wang
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
5
|
Lorenzo-Mora AM, Lozano-Estevan MDC, Ghazi Y, González-Rodríguez LG. [Alzheimer's disease. Current evidence on the preventive role of nutrition]. NUTR HOSP 2023; 40:41-45. [PMID: 37929898 DOI: 10.20960/nh.04954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction Introduction: in the last decades, a significant increase in the incidence of Alzheimer's disease (AD) has been observed. Currently, there are no effective pharmacological treatments available, which makes preventive measures particularly important. Objective: to analyze the available scientific evidence on nutritional and dietary factors and their association with AD prevention. Methods: a review of nutritional and dietary factors related to the prevention of AD was conducted. Results: several dietary components have been positively associated with AD prevention, including intake of complex carbohydrates, fiber, omega-3, plant-based proteins, vitamins (folates, choline, vitamin D, C, B6 and B9), zinc, some bioactive compounds such as flavonols and probiotics. Following the Mediterranean, Dietary Approaches to Stop Hypertension (DASH) y Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets has been associated with a lower risk of developing the disease. Conclusion: nutrition may have a protective role against AD, although further studies are needed in this regard.
Collapse
Affiliation(s)
- Ana María Lorenzo-Mora
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid
| | | | - Yalda Ghazi
- Departamento de Nutrición y Ciencia de los Alimentos. Facultad de Farmacia. Universidad Complutense de Madrid
| | | |
Collapse
|
6
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Seike T, Chen CH, Mochly-Rosen D. Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease. Front Aging Neurosci 2023; 15:1223977. [PMID: 37693648 PMCID: PMC10483235 DOI: 10.3389/fnagi.2023.1223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an enzyme found in the mitochondrial matrix that plays a central role in alcohol and aldehyde metabolism. A common ALDH2 polymorphism in East Asians descent (called ALDH2*2 or E504K missense variant, SNP ID: rs671), present in approximately 8% of the world's population, has been associated with a variety of diseases. Recent meta-analyses support the relationship between this ALDH2 polymorphism and Alzheimer's disease (AD). And AD-like pathology observed in ALDH2-/- null mice and ALDH2*2 overexpressing transgenic mice indicate that ALDH2 deficiency plays an important role in the pathogenesis of AD. Recently, the worldwide increase in alcohol consumption has drawn attention to the relationship between heavy alcohol consumption and AD. Of potential clinical significance, chronic administration of alcohol in ALDH2*2/*2 knock-in mice exacerbates the pathogenesis of AD-like symptoms. Therefore, ALDH2 polymorphism and alcohol consumption likely play an important role in the onset and progression of AD. Here, we review the data on the relationship between ALDH2 polymorphism, alcohol, and AD, and summarize what is currently known about the role of the common ALDH2 inactivating mutation, ALDH2*2, and alcohol in the onset and progression of AD.
Collapse
Affiliation(s)
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Murai T, Matsuda S. Metabolic Reprogramming toward Aerobic Glycolysis and the Gut Microbiota Involved in the Brain Amyloid Pathology. BIOLOGY 2023; 12:1081. [PMID: 37626967 PMCID: PMC10452252 DOI: 10.3390/biology12081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by the formation of senile plaques consisting of fibrillated amyloid-β (Aβ), dystrophic neurites, and the neurofibrillary tangles of tau. The oligomers/fibrillar Aβ damages the neurons or initiates an intracellular signaling cascade for neuronal cell death leading to Aβ toxicity. The Aβ is a 4 kDa molecular weight peptide originating from the C-terminal region of the amyloid precursor protein via proteolytic cleavage. Apart from the typical AD hallmarks, certain deficits in metabolic alterations have been identified. This study describes the emerging features of AD from the aspect of metabolic reprogramming in the main pathway of carbohydrate metabolism in the human brain. Particularly, the neurons in patients with AD favor glycolysis despite a normal mitochondrial function indicating a Warburg-like effect. In addition, certain dietary patterns are well known for their properties in preventing AD. Among those, a ketogenic diet may substantially improve the symptoms of AD. An effective therapeutic method for the treatment, mitigation, and prevention of AD has not yet been established. Therefore, the researchers pursue the development and establishment of novel therapies effective in suppressing AD symptoms and the elucidation of their underlying protective mechanisms against neurodegeneration aiming for AD therapy in the near future.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan;
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
9
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
10
|
Huang J, Huang N, Mao Q, Shi J, Qiu Y. Natural bioactive compounds in Alzheimer's disease: From the perspective of type 3 diabetes mellitus. Front Aging Neurosci 2023; 15:1130253. [PMID: 37009462 PMCID: PMC10062602 DOI: 10.3389/fnagi.2023.1130253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
There is a close relationship between Alzheimer's disease (AD) and diabetes mellitus (DM), and the link between the two is often referred to as type 3 diabetes mellitus (T3DM). Many natural bioactive compounds have shown the potential to treat AD and diabetes. We mainly review the polyphenols represented by resveratrol (RES) and proanthocyanidins (PCs) and alkaloids represented by berberine (BBR) and Dendrobium nobile Lindl. alkaloids (DNLA) from the perspective of T3DM to review the neuroprotective effects and molecular mechanisms of natural compounds in AD.
Collapse
Affiliation(s)
- Juan Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Qianhua Mao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Jingshan Shi
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yu Qiu
| |
Collapse
|
11
|
Impact of Nut Consumption on Cognition across the Lifespan. Nutrients 2023; 15:nu15041000. [PMID: 36839359 PMCID: PMC9965316 DOI: 10.3390/nu15041000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Cognitive health is a life-long concern affected by modifiable risk factors, including lifestyle choices, such as dietary intake, with serious implications for quality of life, morbidity, and mortality worldwide. In addition, nuts are a nutrient-dense food that contain a number of potentially neuroprotective components, including monounsaturated and polyunsaturated fatty acids, fiber, B-vitamins, non-sodium minerals, and highly bioactive polyphenols. However, increased nut consumption relates to a lower cardiovascular risk and a lower burden of cardiovascular risk factors that are shared with neurodegenerative disorders, which is why nuts have been hypothesized to be beneficial for brain health. The present narrative review discusses up-to-date epidemiological, clinical trial, and mechanistic evidence of the effect of exposure to nuts on cognitive performance. While limited and inconclusive, available evidence suggests a possible role for nuts in the maintenance of cognitive health and prevention of cognitive decline in individuals across the lifespan, particularly in older adults and those at higher risk. Walnuts, as a rich source of the plant-based polyunsaturated omega-3 fatty acid alpha-linolenic acid, are the nut type most promising for cognitive health. Given the limited definitive evidence available to date, especially regarding cognitive health biomarkers and hard outcomes, future studies are needed to better elucidate the impact of nuts on the maintenance of cognitive health, as well as the prevention and management of cognitive decline and dementia, including Alzheimer disease.
Collapse
|