1
|
Lin G, Tang J, Zeng Y, Zhang L, Ouyang W, Tang Y. Association of serum n-3 and n-6 docosapentaenoic acids with cognitive performance in elderly adults: National Health and Nutrition Examination Survey 2011-2014. J Nutr Biochem 2025; 135:109773. [PMID: 39332744 DOI: 10.1016/j.jnutbio.2024.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Limited information exists on the influence of docosapentaenoic acid (DPA) on cognitive function. We investigated the association between serum n-3 and n-6 DPAs and cognitive performance in an elderly population from the National Health and Nutrition Examination Survey, 2011-2014. Restricted cubic spline and logistic regression analyses were utilized. A total of 1,366 older participants were included. Elevated proportions of DPA(n3) in total serum fatty acids were slightly associated with higher DSST scores (OR 0.61, 95% CI (0.38-0.97)), and higher proportions of DPA(n6) in total serum fatty acids were significantly associated with lower scores on different cognitive tests (CERAD (1.64, 1.02-2.65), AFT (2.31, 1.43- 3.75), DSST (3.21, 1.98-5.22) and global cognition (2.85, 1.74-4.66)). After multivariable adjustment, DPA(n3) exhibited no association with cognitive performance, whereas DPA(n6) remained correlated with AFT (1.98, 1.13-3.48), DSST (2.63, 1.43-4.82) and global cognition (2.15, 1.19-3.90). In stratified analyses, higher levels of DPA(n3) were associated with better performance in CERAD among participants aged ≥70, in DSST among those without diabetes and in global cognition among people with lower incomes. Increased DPA(n6) levels were associated with worse performance in AFT and DSST among those aged 60-70 and in all cognitive tests among those with better incomes. In conclusions, elevated levels of serum DPA(n3) may be beneficial for cognitive performance among elderly adults, especially in those over 70 years, with lower incomes and without diabetes. Serum n-6 DPA might be negatively associated with cognitive function, and this association is more pronounced among those who aged 60-70 with higher incomes.
Collapse
Affiliation(s)
- Guoxin Lin
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhang
- Department of Anesthesiology, First People's Hospital of Kunshan, Jiangsu University, Kunshan, Jiansu, China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhong Tang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Chew J, Tan CH, Chew P, Ng KP, Ali N, Lim WS. Cognitive frailty in older adults: examining the impact of frailty criteria on neuropsychological profile, functional outcomes, activity levels, and quality of life. Eur Geriatr Med 2024; 15:1803-1815. [PMID: 39287749 DOI: 10.1007/s41999-024-01040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Cognitive frailty (CF) is the co-existence of cognitive impairment and physical frailty without dementia, conferring greater risks of adverse clinical outcomes compared to either condition alone. However, the impact of physical frailty components on cognitive performance remains unclear. This study aims to evaluate CF by determining the neuropsychological profiles, functional outcomes, activity levels, and quality of life across the Fried Frailty Phenotype (FFP) and its components. METHODS Cross-sectional study involving 120 community-dwelling older adults without dementia, but with subjective cognitive complaints (SCC, defined as AD8 ≥ 1). Participants were stratified into three groups to assess CF: SCC-Robust, SCC-Prefrail, and SCC-Frail, and further categorized by individual FFP components. Cognitive performance was assessed by comparing neuropsychological test battery (NTB) Z-scores between CF and non-CF groups with Cohen's d for effect sizes. We performed linear regression to examine the relationships between both groups with NTB scores, Instrumental Activities of Daily Living (IADL), Frenchay Activities Index (FAI), and quality of life scores. RESULTS NTB scores showed no differences between individuals with CF when classified according to FFP criteria. Individuals with SCC-slow gait speed exhibited reduced processing speed (d = 0.62) and memory (d = 0.61); SCC-fatigue was associated with decreased working memory (d = 0.55). Regression analyses, adjusted for demographic and clinical variables, identified significant associations: slow gait speed with logical memory (- 0.42; 95% CI - 0.79 to - 0.038]) and symbol search (- 0.28; 95% CI - 0.56 to - 0.006]); fatigue with digit span backwards (- 0.66; 95% CI - 1.19 to - 0.14) and color trails 2 (- 0.67; 95% CI, - 1.15 to - 0.20). SCC-slow gait speed and SCC-fatigue were associated with reduced quality of life scores, but not with IADL and FAI scores. CONCLUSION Specific frailty components, notably slow gait speed and fatigue, influence cognitive function and quality of life. Our findings provide greater insights into characterizing CF. Further longitudinal studies are required to determine the cognitive and functional trajectories of CF.
Collapse
Affiliation(s)
- J Chew
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore, Singapore.
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore, Singapore.
| | - C H Tan
- Department of Psychology, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - P Chew
- Department of Psychological Services, Tan Tock Seng Hospital, Singapore, Singapore
| | - K P Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - N Ali
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore, Singapore
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore, Singapore
| | - W S Lim
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore, Singapore
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Lucassen PJ, Korosi A, de Rooij SR, Smit AB, Van Dam AM, Daskalakis NP, Van Kesteren RE, Verheijen MHG, Lesuis SL, Kessels HW, Krugers HJ. How Can Early Stress Influence Later Alzheimer's Disease Risk? Possible Mediators and Underlying Mechanisms. Biol Psychiatry 2024:S0006-3223(24)01757-8. [PMID: 39577793 DOI: 10.1016/j.biopsych.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder to which genetic mutations and risk factors contribute. Evidence is increasing that environmental and lifestyle-related factors, such as exercise, nutrition, education, and exposure to (early-life) stress modify the onset, incidence, and progression of AD. Here, we discuss recent preclinical findings on putative substrates that can explain or contribute to the effects of stress early in life on the risk of developing AD. We focus in particular on stress hormones, neural networks, synapses, mitochondria, nutrient and lipid metabolism, adult neurogenesis, engram cell ensembles, and neuroinflammation. We discuss the idea that stress exposure early in life can alter these processes, either combined or in isolation, thereby reducing the capacity of the brain to resist deleterious consequences of, for example, amyloid-β accumulation, thereby accelerating cognitive decline and progression of Alzheimer-related changes in model systems of the disease. A better understanding of whether experiences early in life also modify trajectories of cognitive decline and pathology in AD and how the substrates discussed translate to humans may help develop novel preventive and/or therapeutic strategies to mitigate the consequences of stressors early in life and increase resilience to developing dementia.
Collapse
Affiliation(s)
- Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anne-Marie Van Dam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Nikolaos P Daskalakis
- Neurogenomics and Translational Bioinformatics Laboratory, McLean Hospital, Harvard University, Boston, Massachusetts
| | - Ronald E Van Kesteren
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Helmut W Kessels
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Christofoletti G, Darling WG. Editorial: Motor interventions: balance and cognition in older individuals. Front Hum Neurosci 2024; 18:1516396. [PMID: 39628944 PMCID: PMC11611872 DOI: 10.3389/fnhum.2024.1516396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Affiliation(s)
- Gustavo Christofoletti
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Warren G. Darling
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
Smeralda CL, Pandit S, Turrini S, Reilly J, Palmisano A, Sprugnoli G, Hampel H, Benussi A, Borroni B, Press D, Rotenberg A, El Fakhri G, Koch G, Rossi S, Santarnecchi E. The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res Rev 2024; 101:102509. [PMID: 39306248 DOI: 10.1016/j.arr.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Parvalbumin-positive (PV+) basket neurons are fast-spiking, non-adapting inhibitory interneurons whose oscillatory activity is essential for regulating cortical excitation/inhibition balance. Their dysfunction results in cortical hyperexcitability and gamma rhythm disruption, which have recently gained substantial traction as contributing factors as well as potential therapeutic targets for the treatment of Alzheimer's Disease (AD). Recent evidence indicates that PV+ cells are also impaired in Frontotemporal Dementia (FTD) and Dementia with Lewy bodies (DLB). However, no attempt has been made to integrate these findings into a coherent pathophysiological framework addressing the contribution of PV+ interneuron dysfunction to the generation of cortical hyperexcitability and gamma rhythm disruption in FTD and DLB. To fill this gap, we epitomized the most recent evidence on PV+ interneuron impairment in AD, FTD, and DLB, focusing on its contribution to the generation of cortical hyperexcitability and gamma oscillatory disruption and their interplay with misfolded protein accumulation, neuronal death, and clinical symptoms' onset. Our work deepens the current understanding concerning the role of PV+ interneuron dysfunction across neurodegenerative dementias, highlighting commonalities and differences among AD, FTD, and DLB, thus paving the way for identifying novel biomarkers and potential therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Carmelo Luca Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Siddhartha Pandit
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, University of Bologna, Italy
| | - Julianne Reilly
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniel Press
- Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Brookline, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Chiappini E, Turrini S, Fiori F, Benassi M, Tessari A, di Pellegrino G, Avenanti A. You Are as Old as the Connectivity You Keep: Distinct Neurophysiological Mechanisms Underlying Age-Related Changes in Hand Dexterity and Strength. Arch Med Res 2024:103031. [PMID: 39567344 DOI: 10.1016/j.arcmed.2024.103031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Aging can lead to a decline in motor control. While age-related motor impairments have been documented, the underlying changes in cortico-cortical interactions remain poorly understood. METHODS We took advantage of the high temporal resolution of dual-site transcranial magnetic stimulation (dsTMS) to investigate how communication between higher-order rostral premotor regions and the primary motor cortex (M1) influences motor control in young and elderly adults. We assessed the dynamics of connectivity from the inferior frontal gyrus (IFG) or pre-supplementary motor area (preSMA) to M1, by testing how conditioning of the IFG/preSMA affected the amplitude of motor evoked potentials (MEPs) induced by M1 stimulation at different temporal intervals. Moreover, we explored how age-related changes in premotor-M1 interactions relate to motor performance. RESULTS Our results show that both young and elderly adults had excitatory IFG-M1 and preSMA-M1 interactions, but the two groups' timing and strength differed. In young adults, IFG-M1 interactions were early and time-specific (8 ms), whereas in older individuals, they were delayed and more prolonged (12-16 ms). PreSMA-M1 interactions emerged early (6 ms) and peaked at 10-12 ms in young individuals but were attenuated in older individuals. Critically, a connectivity profile of the IFG-M1 circuit like that of the young cohort predicted better dexterity in older individuals, while preserved preSMA-M1 interactions predicted greater strength, suggesting that age-related motor decline is associated with specific changes in premotor-motor networks. CONCLUSIONS Preserving youthful motor network connectivity in older individuals is related to maintaining motor performance and providing information for interventions targeting aging effects on behavior.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy; NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, Rome, Italy
| | - Mariagrazia Benassi
- Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Alessia Tessari
- Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe di Pellegrino
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca, Chile.
| |
Collapse
|
7
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
8
|
Ma C, Gong B, Wu C. Age-induced changes in affective prosody comprehension and its relationship with general cognitive ability and social support utilization among older adults. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024:1-19. [PMID: 39324518 DOI: 10.1080/13825585.2024.2405509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Aging can impact emotional recognition, affecting older adults' mental health and social function. This study examined how aging affects affective prosody comprehension (APC: understanding emotions through speech) across seven emotions (happiness, surprise, sadness, anger, fear, disgust, and neutrality) and its relationship with cognitive function (via the Montreal Cognitive Assessment) and social support (via the Social Support Rating Scale) in 199 cognitively normal older adults. We found that older adults had lower APC accuracy and more errors, often mistaking negative emotions for neutral or positive ones. APC accuracy was significantly associated with social support, and a partial least squares (PLS) cognitive component fully mediated the relationship between the APC component and social support utilization, explaining 61.7% of the total effect. These results suggest that declines in APC during aging are linked to social support utilization through cognitive function, offering insights for interventions to improve social and cognitive health in older adults.
Collapse
Affiliation(s)
- Chifen Ma
- School of Nursing, Peking University, Beijing, China
- College of Health Services and Management, Xuzhou Kindergarten Teachers College, Xuzhou, China
| | - Bingyan Gong
- School of Nursing, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chao Wu
- School of Nursing, Peking University, Beijing, China
| |
Collapse
|
9
|
Feron J, Segaert K, Rahman F, Fosstveit SH, Joyce KE, Gilani A, Lohne-Seiler H, Berntsen S, Mullinger KJ, Lucas SJE. Determinants of cerebral blood flow and arterial transit time in healthy older adults. Aging (Albany NY) 2024; 16:12473-12497. [PMID: 39302230 PMCID: PMC11466485 DOI: 10.18632/aging.206112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Cerebral blood flow (CBF) and arterial transit time (ATT), markers of brain vascular health, worsen with age. The primary aim of this cross-sectional study was to identify modifiable determinants of CBF and ATT in healthy older adults (n = 78, aged 60-81 years). Associations between cardiorespiratory fitness and CBF or ATT were of particular interest because the impact of cardiorespiratory fitness is not clear within existing literature. Secondly, this study assessed whether CBF or ATT relate to cognitive function in older adults. Multiple post-labelling delay pseudo-continuous arterial spin labelling estimated resting CBF and ATT in grey matter. Results from multiple linear regressions found higher BMI was associated with lower global CBF (β = -0.35, P = 0.008) and a longer global ATT (β = 0.30, P = 0.017), global ATT lengthened with increasing age (β = 0.43, P = 0.004), and higher cardiorespiratory fitness was associated with longer ATT in parietal (β = 0.44, P = 0.004) and occipital (β = 0.45, P = 0.003) regions. Global or regional CBF or ATT were not associated with processing speed, working memory, or attention. In conclusion, preventing excessive weight gain may help attenuate age-related declines in brain vascular health. ATT may be more sensitive to age-related decline than CBF, and therefore useful for early detection and management of cerebrovascular impairment. Finally, cardiorespiratory fitness appears to have little effect on CBF but may induce longer ATT in specific regions.
Collapse
Affiliation(s)
- Jack Feron
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Foyzul Rahman
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
- College of Psychology, Birmingham City University, Birmingham, UK
| | - Sindre H. Fosstveit
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Kelsey E. Joyce
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Ahmed Gilani
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Hilde Lohne-Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Sveinung Berntsen
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Karen J Mullinger
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Beydoun MA, Tate R, Georgescu MF, Gamaldo AA, Maino Vieytes CA, Beydoun HA, Noren Hooten N, Evans MK, Zonderman AB. Poor sleep quality, dementia status and their association with all-cause mortality among older US adults. Aging (Albany NY) 2024; 16:12138-12167. [PMID: 39237306 PMCID: PMC11424588 DOI: 10.18632/aging.206102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Evidence points to associations between sleep quality, dementia, and mortality. We examined whether poor sleep quality mediated or moderated the association between dementia and mortality risk among older US adults and vice versa, and whether these associations differed by sex and by race. METHODS The study investigated bi-directional associations between sleep quality, dementia and mortality in older US adults using data from the Health and Retirement Study (N = 6,991, mean age = 78.1y, follow-up: 2006-2020, number of deaths = 4,938). It tested interactions and mediating effects, using Cox proportional hazards models and four-way decomposition models. RESULTS Poor sleep quality was associated with increased mortality risk, particularly among male and White older adults. However, the association was reversed in the fully adjusted model, with a 7% decrease in risk per tertile. Probable dementia was associated with a two-fold increase in mortality risk, with a stronger association found among White adults. The association was markedly attenuated in the fully adjusted models. Sleep quality-stratified models showed a stronger positive association between dementia and mortality among individuals with better sleep quality. Both mediation and interaction were involved in explaining the total effects under study, though statistically significant total effects were mainly composed of controlled direct effects. CONCLUSIONS Poor sleep quality is directly related to mortality risk before lifestyle and health-related factors are adjusted. Dementia is linked to mortality risk, especially in individuals with better sleep quality, males, and White older adults. Future research should explore the underlying mechanisms.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Rio Tate
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Michael F. Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Alyssa A. Gamaldo
- Department of Psychology, Clemson University, Clemson, SC 29634, USA
| | - Christian A. Maino Vieytes
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Hind A. Beydoun
- Department of Veterans Affairs, VA National Center on Homelessness Among Veterans, Washington, DC 20420, USA
- Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Zeng Y, Cao S, Tang J, Lin G. Effects of saturated and monounsaturated fatty acids on cognitive impairment: evidence from Mendelian randomization study. Eur J Clin Nutr 2024; 78:585-590. [PMID: 38632331 DOI: 10.1038/s41430-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Prior observational studies have suggested correlations between saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) with cognitive function. However, causal relationships remains unclear. METHODS We assessed the causal impact of two SFAs (palmitic acid [PA] and stearic acid [SA]) and two MUFAs (oleic acid [OA] and palmitoleic acid [POA]) on cognitive function-related traits, and dementia-related traits by univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) analyses. RESULTS UVMR indicated β of 0.060 (P = 4.05E-06) for cognitive performance score and 0.066 (P = 4.21E-04) for fluid intelligence per standard deviation (SD) increase in OA level. MVMR indicated: (i) β of -0.608 (P = 8.37E-05) for fluid intelligence score per SD increase in POA; (ii) β of 0.074 (P = 0.018) for fluid intelligence score per SD increase in OA; (iii) β of 0.029 (P = 0.033) for number of incorrect matches in round per SD increase in PA; and (iv) β of 0.039 (P = 0.032) for number of incorrect matches in round per SD increase in SA. In addition, a secondary MVMR analysis after excluding the effect of polyunsaturated fatty acids suggested that: (i) β of -0.043 (P = 1.97E-02) for cognitive performance score per SD increase in PA and (ii) β of -0.079 (P = 1.79E-03) for cognitive performance score per SD increase in SA. CONCLUSIONS Overall, UVMR and MVMR suggest that OA may be beneficial for cognitive function, while POA, PA, and SA may have detrimental effects on cognitive function.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Si Cao
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410205, Hunan, China
| | - Juan Tang
- Department of Nephrology, The Third Xiangya Hospital, The Critical Kidney Disease Research Center, Central South University, Changsha, 410013, China.
| | - Guoxin Lin
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Nicola L, Loo SJQ, Lyon G, Turknett J, Wood TR. Does resistance training in older adults lead to structural brain changes associated with a lower risk of Alzheimer's dementia? A narrative review. Ageing Res Rev 2024; 98:102356. [PMID: 38823487 DOI: 10.1016/j.arr.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Dementia, particularly Alzheimer's Disease (AD), has links to several modifiable risk factors, especially physical inactivity. When considering the relationship between physcial activity and dementia risk, cognitive benefits are generally attributed to aerobic exercise, with resistance exercise (RE) receiving less attention. This review aims to address this gap by evaluating the impact of RE on brain structures and cognitive deficits associated with AD. Drawing insights from randomized controlled trials (RCTs) utilizing structural neuroimaging, the specific influence of RE on AD-affected brain structures and their correlation with cognitive function are discussed. Preliminary findings suggest that RE induces structural brain changes in older adults that could reduce the risk of AD or mitigate AD progression. Importantly, the impacts of RE appear to follow a dose-response effect, reversing pathological structural changes and improving associated cognitive functions if performed at least twice per week for at least six months, with greatest effects in those already experiencing some element of cognitive decline. While more research is eagerly awaited, this review contributes insights into the potential benefits of RE for cognitive health in the context of AD-related changes in brain structure and function.
Collapse
Affiliation(s)
| | | | | | | | - Thomas R Wood
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Institute for Human and Machine Cognition, Pensacola, FL, USA.
| |
Collapse
|
13
|
Cui X, Zheng X, Lu Y. Prediction Model for Cognitive Impairment among Disabled Older Adults: A Development and Validation Study. Healthcare (Basel) 2024; 12:1028. [PMID: 38786438 PMCID: PMC11121056 DOI: 10.3390/healthcare12101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Disabled older adults exhibited a higher risk for cognitive impairment. Early identification is crucial in alleviating the disease burden. This study aims to develop and validate a prediction model for identifying cognitive impairment among disabled older adults. A total of 2138, 501, and 746 participants were included in the development set and two external validation sets. Logistic regression, support vector machine, random forest, and XGBoost were introduced to develop the prediction model. A nomogram was further established to demonstrate the prediction model directly and vividly. Logistic regression exhibited better predictive performance on the test set with an area under the curve of 0.875. It maintained a high level of precision (0.808), specification (0.788), sensitivity (0.770), and F1-score (0.788) compared with the machine learning models. We further simplified and established a nomogram based on the logistic regression, comprising five variables: age, daily living activities, instrumental activity of daily living, hearing impairment, and visual impairment. The areas under the curve of the nomogram were 0.871, 0.825, and 0.863 in the internal and two external validation sets, respectively. This nomogram effectively identifies the risk of cognitive impairment in disabled older adults.
Collapse
Affiliation(s)
| | | | - Yun Lu
- School of International Pharmaceutical Business, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China; (X.C.); (X.Z.)
| |
Collapse
|
14
|
Andreatta Maduro P, Guimarães MP, de Sousa Rodrigues M, Pereira Rolim Coimbra Pinto AP, da Mota Junior AA, Lima Rocha AS, Matoso JMD, Bavaresco Gambassi B, Schwingel PA. Comparing the Efficacy of Two Cognitive Screening Tools in Identifying Gray and White Matter Brain Damage among Older Adults. J Aging Res 2024; 2024:5527225. [PMID: 38690079 PMCID: PMC11060871 DOI: 10.1155/2024/5527225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Background Ageing is associated with structural changes in brain regions and functional decline in cognitive domains. Noninvasive tools for identifying structural damage in the brains of older adults are relevant for early treatment. Aims This study aims to evaluate and compare the accuracy of the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA©) in identifying gray and white matter brain damage in older individuals with varying degrees of cognitive impairment. Methods Ninety older adults (62 women) with an average age of 69 ± 7 years were enrolled and categorized as having no cognitive impairment (NCI), mild cognitive impairment (MCI), or moderate cognitive impairment (MoCI). Magnetic resonance imaging (MRI) was utilized to assess the number, volume, and distribution of brain damage. The Fazekas and Scheltens scales were applied to the brain MRIs, and inferential statistics were employed to compare variables among the groups. Results Cognitive impairment was observed in 56.7% of the participants (95% confidence interval (CI): 46.4-66.4%), with thirty-six older adults (40%) classified as MCI and 15 (17%) as MoCI. Cognitive impairment and medial temporal lobe (MTL) atrophy were found to be associated (p=0.001), exhibiting higher mean volume scales of the MTL atrophied area in the MoCI group (p < 0.001). The MMSE accurately revealed MTL atrophy based on the Scheltens (p < 0.05) and Fazekas (p < 0.05) scales. At the same time, the MoCA accurately identified periventricular white matter (PWM) abnormalities according to the Fazekas scale (p < 0.05). Conclusions The MMSE and MoCA screening tools effectively identified gray and white matter brain damage in older adults with varying degrees of cognitive impairment. Lower MMSE scores are associated with MTL atrophy and lesions, and lower MoCA scores are related to PWM lesions. The concurrent use of MMSE and MoCA is recommended for assessing structural changes in distinct brain regions.
Collapse
Affiliation(s)
- Paula Andreatta Maduro
- Post-Graduation Program in Health Sciences (PPGCS), University of Pernambuco (UPE), Recife, PE 50100-130, Brazil
- Human Performance Research Laboratory (LAPEDH), UPE, Petrolina, PE 56328-900, Brazil
- University Hospital of the Federal University of Vale do São Francisco (HU-UNIVASF), Brazilian Hospital Services Company (EBSERH), Petrolina, PE 56304-205, Brazil
| | | | - Mateus de Sousa Rodrigues
- Human Performance Research Laboratory (LAPEDH), UPE, Petrolina, PE 56328-900, Brazil
- University Hospital of the Federal University of Vale do São Francisco (HU-UNIVASF), Brazilian Hospital Services Company (EBSERH), Petrolina, PE 56304-205, Brazil
| | - Ana Paula Pereira Rolim Coimbra Pinto
- University Hospital of the Federal University of Vale do São Francisco (HU-UNIVASF), Brazilian Hospital Services Company (EBSERH), Petrolina, PE 56304-205, Brazil
| | - Américo Alves da Mota Junior
- Human Performance Research Laboratory (LAPEDH), UPE, Petrolina, PE 56328-900, Brazil
- University Hospital of the Federal University of Vale do São Francisco (HU-UNIVASF), Brazilian Hospital Services Company (EBSERH), Petrolina, PE 56304-205, Brazil
| | - Alaine Souza Lima Rocha
- Post-Graduation Program in Health Sciences (PPGCS), University of Pernambuco (UPE), Recife, PE 50100-130, Brazil
- Human Performance Research Laboratory (LAPEDH), UPE, Petrolina, PE 56328-900, Brazil
- Department of Physical Therapy, Federal University of Ceará (UFC), Fortaleza, CE 60430-450, Brazil
| | - Juliana Magalhães Duarte Matoso
- Human Performance Research Laboratory (LAPEDH), UPE, Petrolina, PE 56328-900, Brazil
- Department of Clinical Medicine, Pedro Ernesto University Hospital, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ 20551-030, Brazil
| | - Bruno Bavaresco Gambassi
- Human Performance Research Laboratory (LAPEDH), UPE, Petrolina, PE 56328-900, Brazil
- Post-Graduation Program in Management of Health Programs and Services (PPGGPSS), CEUMA University (UNICEUMA), São Luís, MA 65075-120, Brazil
| | - Paulo Adriano Schwingel
- Post-Graduation Program in Health Sciences (PPGCS), University of Pernambuco (UPE), Recife, PE 50100-130, Brazil
- Human Performance Research Laboratory (LAPEDH), UPE, Petrolina, PE 56328-900, Brazil
| |
Collapse
|
15
|
Lv XH, Lu Q, Deng K, Yang JL, Yang L. Prevalence and Characteristics of Covert/Minimal Hepatic Encephalopathy in Patients With Liver Cirrhosis: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2024; 119:690-699. [PMID: 37856206 DOI: 10.14309/ajg.0000000000002563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Covert/minimal hepatic encephalopathy (C/MHE) is the mildest form of hepatic encephalopathy (HE), but it is closely related to the quality of life and prognosis of patients with cirrhosis. Currently, the epidemiological data of C/MHE have not been well described. METHODS We searched the PubMed, Embase, and Cochrane Library databases for relevant articles. We performed a random-effects meta-analysis of proportions to estimate the pooled prevalence of C/MHE in patients with cirrhosis. We also examined potential risk factors for C/MHE by comparing characteristics of patients with and without C/MHE. RESULTS Finally, a total of 101 studies were included. The prevalence of C/MHE was 40.9% (95% confidence interval, 38.3%-43.5%) among patients with cirrhosis worldwide. The pooled C/MHE prevalence was 39.9% (95% confidence interval 36.7%-43.1%) based on studies using the psychometric HE score as a diagnostic tool. Meta-regression models showed that geographic region, sample size, mean age, sex ratio, and Child-Pugh classification were influencing factors for the heterogeneity of C/MHE prevalence. The presence of C/MHE was found to be associated with various factors including age, level of education, alcoholic etiology, Child-Pugh classification, MELD score, history of overt HE, presence of other complications, and laboratory tests related to impaired liver function. DISCUSSION This study reports detailed data on the prevalence of C/MHE as well as clinical features associated with C/MHE, suggesting that C/MHE is one of the most common complications of liver cirrhosis.
Collapse
Affiliation(s)
- Xiu-He Lv
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qing Lu
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jin-Lin Yang
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Jardim NYV, Bento-Torres NVO, Tomás AM, da Costa VO, Bento-Torres J, Picanço-Diniz CW. Unexpected cognitive similarities between older adults and young people: Scores variability and cognitive performances. Arch Gerontol Geriatr 2024; 117:105206. [PMID: 37742393 DOI: 10.1016/j.archger.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Increased interindividual variability in cognitive performance during aging has been proposed as an indicator of cognitive reserve. OBJECTIVE To determine if interindividual variability performance in episodic memory (PAL), working memory (SWM), reaction time (RTI), and sustained attention (RVP) could differentiate clusters of differential cognitive performance in healthy young and older adults and search for cognitive tests that most contribute to these differential performances. METHODS We employed hierarchical cluster and canonical discriminant function analyses of cognitive scores using the Cambridge Neuropsychological Test Automated Battery (CANTAB) to identify cognitive variability in older and young adults using the coefficient of variability of cognitive performances between and within groups. We also analyzed potential influences of age, education, and physical activity. RESULTS Cluster analysis distinguished groups with differential cognitive performance and correlation analysis revealed coefficient of variability and cognitive performance associations. The greater the coefficient of variability the poorer was cognitive performance in RTI but not in PAL and SWM. Older adults showed diverse trajectories of cognitive decline, and better education or higher percentage of physically active individuals exhibited better cognitive performance in both older and young adults. CONCLUSION PAL and SWM are the most sensitive tests to investigate the wide age range encompassing older and young adults. In older adults' intragroup analysis PAL showed greater discriminatory capacity, indicating its potential for clinical applications late in life. Our data underscore the importance of studying variability as a tool for early detection of subtle cognitive declines and for interpreting results that deviate from normality.
Collapse
Affiliation(s)
- Naina Yuki Vieira Jardim
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil; Graduate Program in Human Movement Sciences, Federal University of Pará, Belém, 66075-110, Brazil.
| | - Alessandra Mendonça Tomás
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil
| | - Victor Oliveira da Costa
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil
| | - João Bento-Torres
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil; Graduate Program in Human Movement Sciences, Federal University of Pará, Belém, 66075-110, Brazil
| | - Cristovam Wanderley Picanço-Diniz
- Neurodegeneration and Infection Research Laboratory, Institute of Biological Science, João de Barros Barreto University Hospital, Federal University of Pará, Belém, 66073 005, Brazil
| |
Collapse
|
17
|
O'Shea DM, Camacho S, Ezzeddine R, Besser L, Tolea MI, Wang L, Galvin C, Gibbs G, Galvin JE. The Mediating Role of Cortical Atrophy on the Relationship between the Resilience Index and Cognitive Function: Findings from the Healthy Brain Initiative. J Alzheimers Dis 2024; 98:1017-1027. [PMID: 38489189 DOI: 10.3233/jad-231346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background Lifestyle factors are linked to differences in brain aging and risk for Alzheimer's disease, underscored by concepts like 'cognitive reserve' and 'brain maintenance'. The Resilience Index (RI), a composite of 6 factors (cognitive reserve, physical and cognitive activities, social engagement, diet, and mindfulness) provides such a holistic measure. Objective This study aims to examine the association of RI scores with cognitive function and assess the mediating role of cortical atrophy. Methods Baseline data from 113 participants (aged 45+, 68% female) from the Healthy Brain Initiative were included. Life course resilience was estimated with the RI, cognitive performance with Cognivue®, and brain health using a machine learning derived Cortical Atrophy Score (CAS). Mediation analysis probed the relationship between RI, cognitive outcomes, and cortical atrophy. Results In age and sex adjusted models, the RI was significantly associated with CAS (β= -0.25, p = 0.006) and Cognivue® scores (β= 0.32, p < 0.001). The RI-Cognivue® association was partially mediated by CAS (β= 0.07; 95% CI [0.02, 0.14]). Conclusions Findings revealed that the collective effect of early and late-life lifestyle resilience factors on cognition are partially explained by their association with less brain atrophy. These findings underscore the value of comprehensive lifestyle assessments in understanding the risk and progression of cognitive decline and Alzheimer's disease in an aging population.
Collapse
Affiliation(s)
- Deirdre M O'Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - Simone Camacho
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - Reem Ezzeddine
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - Lilah Besser
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - Magdalena I Tolea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - Lily Wang
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Conor Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - Gregory Gibbs
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
18
|
Culberson JW, Kopel J, Sehar U, Reddy PH. Urgent needs of caregiving in ageing populations with Alzheimer's disease and other chronic conditions: Support our loved ones. Ageing Res Rev 2023; 90:102001. [PMID: 37414157 PMCID: PMC10756323 DOI: 10.1016/j.arr.2023.102001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The ageing process begins at birth. It is a life-long process, and its exact origins are still unknown. Several hypotheses attempt to describe the normal ageing process, including hormonal imbalance, formation of reactive oxygen species, DNA methylation & DNA damage accumulation, loss of proteostasis, epigenetic alterations, mitochondrial dysfunction, senescence, inflammation, and stem cell depletion. With increased lifespan in elderly individuals, the prevalence of age-related diseases including, cancer, diabetes, obesity, hypertension, Alzheimer's, Alzheimer's disease and related dementias, Parkinson's, and other mental illnesses are increased. These increased age-related illnesses, put tremendous pressure & burden on caregivers, family members, and friends who are living with patients with age-related diseases. As medical needs evolve, the caregiver is expected to experience an increase in duties and challenges, which may result in stress on themselves, and impact their own family life. In the current article, we assess the biological mechanisms of ageing and its effect on body systems, exploring lifestyle and ageing, with a specific focus on age-related disorders. We also discussed the history of caregiving and specific challenges faced by caregivers in the presence of multiple comorbidities. We also assessed innovative approaches to funding caregiving, and efforts to improve the medical system to better organize chronic care efforts, while improving the skill and efficiency of both informal and formal caregivers. We also discussed the role of caregiving in end-of-life care. Our critical analysis strongly suggests that there is an urgent need for caregiving in aged populations and support from local, state, and federal agencies.
Collapse
Affiliation(s)
- John W Culberson
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
19
|
Giménez-Llort L. Editorial: The crosstalk of different mechanisms in cognitive impairment associated with aging, Alzheimer's disease, and related dementias. Front Aging Neurosci 2023; 15:1258893. [PMID: 37662549 PMCID: PMC10471964 DOI: 10.3389/fnagi.2023.1258893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Tortora F, Hadipour AL, Battaglia S, Falzone A, Avenanti A, Vicario CM. The Role of Serotonin in Fear Learning and Memory: A Systematic Review of Human Studies. Brain Sci 2023; 13:1197. [PMID: 37626553 PMCID: PMC10452575 DOI: 10.3390/brainsci13081197] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fear is characterized by distinct behavioral and physiological responses that are essential for the survival of the human species. Fear conditioning (FC) serves as a valuable model for studying the acquisition, extinction, and expression of fear. The serotonin (5-hydroxytryptamine, 5-HT) system is known to play a significant role in emotional and motivational aspects of human behavior, including fear learning and expression. Accumulating evidence from both animal and human studies suggests that brain regions involved in FC, such as the amygdala, hippocampus, and prefrontal cortex, possess a high density of 5-HT receptors, implicating the crucial involvement of serotonin in aversive learning. Additionally, studies exploring serotonin gene polymorphisms have indicated their potential influence on FC. Therefore, the objective of this work was to review the existing evidence linking 5-HT with fear learning and memory in humans. Through a comprehensive screening of the PubMed and Web of Science databases, 29 relevant studies were included in the final review. These studies investigated the relationship between serotonin and fear learning using drug manipulations or by studying 5-HT-related gene polymorphisms. The results suggest that elevated levels of 5-HT enhance aversive learning, indicating that the modulation of serotonin 5-HT2A receptors regulates the expression of fear responses in humans. Understanding the role of this neurochemical messenger in associative aversive learning can provide insights into psychiatric disorders such as anxiety and post-traumatic stress disorder (PTSD), among others.
Collapse
Affiliation(s)
- Francesco Tortora
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Abed L. Hadipour
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
| | - Alessandra Falzone
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca 3460000, Chile
| | - Carmelo M. Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| |
Collapse
|
21
|
Turrini S, Bevacqua N, Cataneo A, Chiappini E, Fiori F, Battaglia S, Romei V, Avenanti A. Neurophysiological Markers of Premotor-Motor Network Plasticity Predict Motor Performance in Young and Older Adults. Biomedicines 2023; 11:biomedicines11051464. [PMID: 37239135 DOI: 10.3390/biomedicines11051464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Aging is commonly associated with a decline in motor control and neural plasticity. Tuning cortico-cortical interactions between premotor and motor areas is essential for controlling fine manual movements. However, whether plasticity in premotor-motor circuits predicts hand motor abilities in young and elderly humans remains unclear. Here, we administered transcranial magnetic stimulation (TMS) over the ventral premotor cortex (PMv) and primary motor cortex (M1) using the cortico-cortical paired-associative stimulation (ccPAS) protocol to manipulate the strength of PMv-to-M1 connectivity in 14 young and 14 elderly healthy adults. We assessed changes in motor-evoked potentials (MEPs) during ccPAS as an index of PMv-M1 network plasticity. We tested whether the magnitude of MEP changes might predict interindividual differences in performance in two motor tasks that rely on premotor-motor circuits, i.e., the nine-hole pegboard test and a choice reaction task. Results show lower motor performance and decreased PMv-M1 network plasticity in elderly adults. Critically, the slope of MEP changes during ccPAS accurately predicted performance at the two tasks across age groups, with larger slopes (i.e., MEP increase) predicting better motor performance at baseline in both young and elderly participants. These findings suggest that physiological indices of PMv-M1 plasticity could provide a neurophysiological marker of fine motor control across age-groups.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Naomi Bevacqua
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
| | - Antonio Cataneo
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Institut für Klinische und Gesundheitspsychologie, Universität Wien, 1010 Vienna, Austria
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, 00128 Rome, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca 346000, Chile
| |
Collapse
|