1
|
Koch S, Kandimalla P, Padilla E, Kaur S, Kaur R, Nguyen M, Nelson A, Khalsa S, Younossi-Hartenstein A, Hartenstein V. Structural changes shaping the Drosophila ellipsoid body ER-neurons during development and aging. Dev Biol 2024; 516:96-113. [PMID: 39089472 DOI: 10.1016/j.ydbio.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The ellipsoid body (EB) of the insect brain performs pivotal functions in controlling navigation. Input and output of the EB is provided by multiple classes of R-neurons (now referred to as ER-neurons) and columnar neurons which interact with each other in a stereotypical and spatially highly ordered manner. The developmental mechanisms that control the connectivity and topography of EB neurons are largely unknown. One indispensable prerequisite to unravel these mechanisms is to document in detail the sequence of events that shape EB neurons during their development. In this study, we analyzed the development of the Drosophila EB. In addition to globally following the ER-neuron and columnar neuron (sub)classes in the spatial context of their changing environment we performed a single cell analysis using the multi-color flip out (MCFO) system to analyze the developmental trajectory of ER-neurons at different pupal stages, young adults (4d) and aged adults (∼60d). We show that the EB develops as a merger of two distinct elements, a posterior and anterior EB primordium (prEBp and prEBa, respectively. ER-neurons belonging to different subclasses form growth cones and filopodia that associate with the prEBp and prEBa in a pattern that, from early pupal stages onward, foreshadows their mature structure. Filopodia of all ER-subclasses are initially much longer than the dendritic and terminal axonal branches they give rise to, and are pruned back during late pupal stages. Interestingly, extraneous branches, particularly significant in the dendritic domain, are a hallmark of ER-neuron structure in aged brains. Aging is also associated with a decline in synaptic connectivity from columnar neurons, as well as upregulation of presynaptic protein (Brp) in ER-neurons. Our findings advance the EB (and ER-neurons) as a favorable system to visualize and quantify the development and age-related decline of a complex neuronal circuitry.
Collapse
Affiliation(s)
- Sandra Koch
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pratyush Kandimalla
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eddie Padilla
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabrina Kaur
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Rabina Kaur
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - My Nguyen
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Annie Nelson
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Satkartar Khalsa
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Artiushin G, Corver A, Gordus A. A three-dimensional immunofluorescence atlas of the brain of the hackled-orb weaver spider, Uloborus diversus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611298. [PMID: 39314479 PMCID: PMC11418967 DOI: 10.1101/2024.09.05.611298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Spider orb-web building is a captivating, rare example of animal construction, whose neural underpinnings remain undiscovered. An essential step in understanding the basis of this behavior is a foundational mapping of the spider's neuroanatomy, which has thus far been primarily studied using non-web building species. We created a three-dimensional atlas for the hackled orb-weaver, Uloborus diversus, based on immunostaining for the presynaptic component, synapsin, in whole-mounted spider synganglia. Aligned to this volume, we examined the expression patterns of neuronal populations representing many of the classical neurotransmitter and neuromodulators, as well as a subset of neuropeptides - detailing immunoreactivity in an unbiased fashion throughout the synganglion, revealing co-expression in known structures, as well as novel neuropils not evident in prior spider works. This optically-sliced, whole-mount atlas is the first of its kind for spiders, representing a substantive addition to knowledge of brain anatomy and neurotransmitter expression patterns for an orb-weaving species.
Collapse
Affiliation(s)
| | - Abel Corver
- Department of Biology, Lund University, Lund, Sweden
- Johns Hopkins Kavli Neuroscience Discovery Institute
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
3
|
Stentiford R, Knight JC, Nowotny T, Philippides A, Graham P. Estimating orientation in natural scenes: A spiking neural network model of the insect central complex. PLoS Comput Biol 2024; 20:e1011913. [PMID: 39146374 PMCID: PMC11349202 DOI: 10.1371/journal.pcbi.1011913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/27/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
The central complex of insects contains cells, organised as a ring attractor, that encode head direction. The 'bump' of activity in the ring can be updated by idiothetic cues and external sensory information. Plasticity at the synapses between these cells and the ring neurons, that are responsible for bringing sensory information into the central complex, has been proposed to form a mapping between visual cues and the heading estimate which allows for more accurate tracking of the current heading, than if only idiothetic information were used. In Drosophila, ring neurons have well characterised non-linear receptive fields. In this work we produce synthetic versions of these visual receptive fields using a combination of excitatory inputs and mutual inhibition between ring neurons. We use these receptive fields to bring visual information into a spiking neural network model of the insect central complex based on the recently published Drosophila connectome. Previous modelling work has focused on how this circuit functions as a ring attractor using the same type of simple visual cues commonly used experimentally. While we initially test the model on these simple stimuli, we then go on to apply the model to complex natural scenes containing multiple conflicting cues. We show that this simple visual filtering provided by the ring neurons is sufficient to form a mapping between heading and visual features and maintain the heading estimate in the absence of angular velocity input. The network is successful at tracking heading even when presented with videos of natural scenes containing conflicting information from environmental changes and translation of the camera.
Collapse
Affiliation(s)
- Rachael Stentiford
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - James C. Knight
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Thomas Nowotny
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Andrew Philippides
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
4
|
Hamid A, Gattuso H, Caglar AN, Pillai M, Steele T, Gonzalez A, Nagel K, Syed MH. The conserved RNA-binding protein Imp is required for the specification and function of olfactory navigation circuitry in Drosophila. Curr Biol 2024; 34:473-488.e6. [PMID: 38181792 PMCID: PMC10872534 DOI: 10.1016/j.cub.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic programs for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects, which governs many higher-order behaviors and largely derives from a small number of type II neural stem cells (NSCs). Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in type II NSCs, plays a role in specifying essential components of CX olfactory navigation circuitry. We show the following: (1) that multiple components of olfactory navigation circuitry arise from type II NSCs. (2) Manipulating Imp expression in type II NSCs alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body (FB). (3) Imp regulates the specification of Tachykinin-expressing ventral FB input neurons. (4) Imp is required in type II NSCs for establishing proper morphology of the CX neuropil structures. (5) Loss of Imp in type II NSCs abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our findings establish that a temporally expressed gene can regulate the expression of a complex behavior by developmentally regulating the specification of multiple circuit components and provides a first step toward a developmental dissection of the CX and its roles in behavior.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Hannah Gattuso
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Aysu Nora Caglar
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Midhula Pillai
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Theresa Steele
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Alexa Gonzalez
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA
| | - Katherine Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA.
| | - Mubarak Hussain Syed
- Department of Biology, University of New Mexico, 219 Yale Blvd NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
5
|
Raspe S, Kümmerlen K, Harzsch S. Immunolocalization of SIFamide-like neuropeptides in the adult and developing central nervous system of the amphipod Parhyale hawaiensis (Malacostraca, Peracarida, Amphipoda). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 77:101309. [PMID: 37879171 DOI: 10.1016/j.asd.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.
Collapse
Affiliation(s)
- Sophie Raspe
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Katja Kümmerlen
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| |
Collapse
|
6
|
Sehadová H, Podlahová Š, Reppert SM, Sauman I. 3D reconstruction of larval and adult brain neuropils of two giant silk moth species: Hyalophora cecropia and Antheraea pernyi. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104546. [PMID: 37451537 DOI: 10.1016/j.jinsphys.2023.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
We present a detailed analysis of the brain anatomy of two saturniid species, the cecropia silk moth, Hyalophora cecropia, and the Chinese oak silk moth, Antheraea pernyi, including 3D reconstructions of the major brain neuropils in the larva and in male and female adults. The 3D reconstructions, prepared from high-resolution optical sections, showed that the corresponding neuropils of these saturniid species are virtually identical. Similarities between the two species include a pronounced sexual dimorphism in the adults in the form of a male-specific assembly of markedly enlarged glomeruli forming the so-called macroglomerular complex. From the reports published to date, it can be concluded that the neuropil architecture of saturniids resembles that of other nocturnal moths, including the sibling family Sphingidae. In addition, compared with previous anatomical data on diurnal lepidopteran species, significant differences were observed in the two saturniid species, which include the thickness of the Y-tract of the mushroom body, the size of the main neuropils of the optic lobes, and the sexual dimorphisms of the antennal lobes.
Collapse
Affiliation(s)
- Hana Sehadová
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| | - Šárka Podlahová
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Ivo Sauman
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
7
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
8
|
Hamid A, Gutierrez A, Munroe J, Syed MH. The Drivers of Diversity: Integrated genetic and hormonal cues regulate neural diversity. Semin Cell Dev Biol 2023; 142:23-35. [PMID: 35915026 DOI: 10.1016/j.semcdb.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Proper functioning of the nervous system relies not only on the generation of a vast repertoire of distinct neural cell types but also on the precise neural circuitry within them. How the generation of highly diverse neural populations is regulated during development remains a topic of interest. Landmark studies in Drosophila have identified the genetic and temporal cues regulating neural diversity and thus have provided valuable insights into our understanding of temporal patterning of the central nervous system. The development of the Drosophila central complex, which is mostly derived from type II neural stem cell (NSC) lineages, showcases how a small pool of NSCs can give rise to vast and distinct progeny. Similar to the human outer subventricular zone (OSVZ) neural progenitors, type II NSCs generate intermediate neural progenitors (INPs) to expand and diversify lineages that populate higher brain centers. Each type II NSC has a distinct spatial identity and timely regulated expression of many transcription factors and mRNA binding proteins. Additionally, INPs derived from them show differential expression of genes depending on their birth order. Together type II NSCs and INPs display a combinatorial temporal patterning that expands neural diversity of the central brain lineages. We cover advances in current understanding of type II NSC temporal patterning and discuss similarities and differences in temporal patterning mechanisms of various NSCs with a focus on how cell-intrinsic and extrinsic hormonal cues regulate temporal transitions in NSCs during larval development. Cell extrinsic ligands activate conserved signaling pathways and extrinsic hormonal cues act as a temporal switch that regulate temporal progression of the NSCs. We conclude by elaborating on how a progenitor's temporal code regulates the fate specification and identity of distinct neural types. At the end, we also discuss open questions in linking developmental cues to neural identity, circuits, and underlying behaviors in the adult fly.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Andrew Gutierrez
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Jordan Munroe
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
9
|
Hamid A, Gattuso H, Caglar AN, Pillai M, Steele T, Gonzalez A, Nagel K, Syed MH. The RNA-binding protein, Imp specifies olfactory navigation circuitry and behavior in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542522. [PMID: 37398350 PMCID: PMC10312496 DOI: 10.1101/2023.05.26.542522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic prograssms for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects that governs many higher order behaviors and largely derives from a small number of Type II neural stem cells. Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in Type II neural stem cells, specifies components of CX olfactory navigation circuitry. We show: (1) that multiple components of olfactory navigation circuitry arise from Type II neural stem cells and manipulating Imp expression in Type II neural stem cells alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body. (2) Imp regulates the specification of Tachykinin expressing ventral fan-shaped body input neurons. (3) Imp in Type II neural stem cells alters the morphology of the CX neuropil structures. (4) Loss of Imp in Type II neural stem cells abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our work establishes that a single temporally expressed gene can regulate the expression of a complex behavior through the developmental specification of multiple circuit components and provides a first step towards a developmental dissection of the CX and its roles in behavior.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hannah Gattuso
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Aysu Nora Caglar
- Current address: Biochemistry & Molecular Biology, 915 Camino De Salud NE, Albuquerque, NM 87132, USA
| | - Midhula Pillai
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Theresa Steele
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Alexa Gonzalez
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| | - Katherine Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY 10016, USA
| | - Mubarak Hussain Syed
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Schoenemann B, Clarkson ENK. The median eyes of trilobites. Sci Rep 2023; 13:3917. [PMID: 36890176 PMCID: PMC9995485 DOI: 10.1038/s41598-023-31089-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Arthropods typically possess two types of eyes-compound eyes, and the ocellar, so called 'median eyes'. Only trilobites, an important group of arthropods during the Palaeozoic, seem not to possess median eyes. While compound eyes are in focus of many investigations, median eyes are not as well considered. Here we give an overview of the occurence of median eyes in the arthropod realm and their phylogenetic relationship to other ocellar eye-systems among invertebrates. We discuss median eyes as represented in the fossil record e.g. in arthropods of the Cambrian fauna, and document median eyes in trilobites the first time. We make clear that ocellar systems, homologue to median eyes and possibly their predecessors are the primordial visual system, and that the compound eyes evolved later. Furthermore, the original number of median eyes is two, as retained in chelicerates. Four, probably the consequence of a gene-dublication, can be found for example in basal crustaceans, three is a derived number by fusion of the central median eyes and characterises Mandibulata. Median eyes are present in larval trilobites, but lying below a probably thin, translucent cuticle, as described here, which explains why they have hitherto escaped detection. So this article gives a review about the complexity of representation and evolution of median eyes among arthropods, and fills the gap of missing median eyes in trilobites. Thus now the number of median eyes represented in an arthropod is an important tool to find its position in the phylogenetic tree.
Collapse
Affiliation(s)
- Brigitte Schoenemann
- Department of Biology, Institute of Zoology (Neurobiology, Animal Physiology), University of Cologne, 50674, Cologne, Germany.
| | - Euan N K Clarkson
- Grant Institute, School of Geosciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, UK
| |
Collapse
|
11
|
Multimodal Information Processing and Associative Learning in the Insect Brain. INSECTS 2022; 13:insects13040332. [PMID: 35447774 PMCID: PMC9033018 DOI: 10.3390/insects13040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Insect behaviors are a great indicator of evolution and provide useful information about the complexity of organisms. The realistic sensory scene of an environment is complex and replete with multisensory inputs, making the study of sensory integration that leads to behavior highly relevant. We summarize the recent findings on multimodal sensory integration and the behaviors that originate from them in our review. Abstract The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects. In light of recent advancements in the scientific investigation of insect behavior, it is not only important to study sensory modalities individually, but also as a combination of multimodal inputs. This is of particular significance, as a combinatorial approach to study sensory behaviors mimics the real-time environment of an insect with a wide spectrum of information available to it. As a fascinating field that is recently gaining new insight, multimodal integration in insects serves as a fundamental basis to understand complex insect behaviors including, but not limited to navigation, foraging, learning, and memory. In this review, we have summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings.
Collapse
|
12
|
Lacalli T. An evolutionary perspective on chordate brain organization and function: insights from amphioxus, and the problem of sentience. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200520. [PMID: 34957845 PMCID: PMC8710876 DOI: 10.1098/rstb.2020.0520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The similarities between amphioxus and vertebrate brains, in their regional subdivision, cell types and circuitry, make the former a useful benchmark for understanding the evolutionary innovations that shaped the latter. Locomotory control systems were already well developed in basal chordates, with the ventral neuropile of the dien-mesencephalon serving to set levels of activity and initiate locomotory actions. A chief deficit in amphioxus is the absence of complex vertebrate-type sense organs. Hence, much of vertebrate story is one of progressive improvement both to these and to sensory experience more broadly. This has two aspects: (i) anatomical and neurocircuitry innovations in the organs of special sense and the brain centres that process and store their output, and (ii) the emergence of primary consciousness, i.e. sentience. With respect to the latter, a bottom up, evolutionary perspective has a different focus from a top down human-centric one. At issue: the obstacles to the emergence of sentience in the first instance, the sequence of addition of new contents to evolving consciousness, and the homology relationship between them. A further question, and a subject for future investigation, is how subjective experience is optimized for each sensory modality. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Thurston Lacalli
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8 W-3N5
| |
Collapse
|
13
|
Brenneis G. The visual pathway in sea spiders (Pycnogonida) displays a simple serial layout with similarities to the median eye pathway in horseshoe crabs. BMC Biol 2022; 20:27. [PMID: 35086529 PMCID: PMC8796508 DOI: 10.1186/s12915-021-01212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Phylogenomic studies over the past two decades have consolidated the major branches of the arthropod tree of life. However, especially within the Chelicerata (spiders, scorpions, and kin), interrelationships of the constituent taxa remain controversial. While sea spiders (Pycnogonida) are firmly established as sister group of all other extant representatives (Euchelicerata), euchelicerate phylogeny itself is still contested. One key issue concerns the marine horseshoe crabs (Xiphosura), which recent studies recover either as sister group of terrestrial Arachnida or nested within the latter, with significant impact on postulated terrestrialization scenarios and long-standing paradigms of ancestral chelicerate traits. In potential support of a nested placement, previous neuroanatomical studies highlighted similarities in the visual pathway of xiphosurans and some arachnopulmonates (scorpions, whip scorpions, whip spiders). However, contradictory descriptions of the pycnogonid visual system hamper outgroup comparison and thus character polarization. RESULTS To advance the understanding of the pycnogonid brain and its sense organs with the aim of elucidating chelicerate visual system evolution, a wide range of families were studied using a combination of micro-computed X-ray tomography, histology, dye tracing, and immunolabeling of tubulin, the neuropil marker synapsin, and several neuroactive substances (including histamine, serotonin, tyrosine hydroxylase, and orcokinin). Contrary to previous descriptions, the visual system displays a serial layout with only one first-order visual neuropil connected to a bilayered arcuate body by catecholaminergic interneurons. Fluorescent dye tracing reveals a previously reported second visual neuropil as the target of axons from the lateral sense organ instead of the eyes. CONCLUSIONS Ground pattern reconstruction reveals remarkable neuroanatomical stasis in the pycnogonid visual system since the Ordovician or even earlier. Its conserved layout exhibits similarities to the median eye pathway in euchelicerates, especially in xiphosurans, with which pycnogonids share two median eye pairs that differentiate consecutively during development and target one visual neuropil upstream of the arcuate body. Given multiple losses of median and/or lateral eyes in chelicerates, and the tightly linked reduction of visual processing centers, interconnections between median and lateral visual neuropils in xiphosurans and arachnopulmonates are critically discussed, representing a plausible ancestral condition of taxa that have retained both eye types.
Collapse
Affiliation(s)
- Georg Brenneis
- Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Soldmannstraße 23, 17489, Greifswald, Germany.
| |
Collapse
|
14
|
Martin C, Jahn H, Klein M, Hammel JU, Stevenson PA, Homberg U, Mayer G. The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biol 2022; 20:26. [PMID: 35073910 PMCID: PMC9136957 DOI: 10.1186/s12915-021-01196-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| | - Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Mercedes Klein
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behaviour, Institute of Biology, University of Leipzig, 04103, Leipzig, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| |
Collapse
|
15
|
Sun X, Yue S, Mangan M. How the insect central complex could coordinate multimodal navigation. eLife 2021; 10:e73077. [PMID: 34882094 PMCID: PMC8741217 DOI: 10.7554/elife.73077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours, but their applicability across sensory and task domains remains untested. Here, we assess the capacity of our previous model (Sun et al. 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference, providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.
Collapse
Affiliation(s)
- Xuelong Sun
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Michael Mangan
- Sheffield Robotics, Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
16
|
Tomita J, Ban G, Kato YS, Kume K. Protocerebral Bridge Neurons That Regulate Sleep in Drosophila melanogaster. Front Neurosci 2021; 15:647117. [PMID: 34720844 PMCID: PMC8554056 DOI: 10.3389/fnins.2021.647117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
The central complex is one of the major brain regions that control sleep in Drosophila. However, the circuitry details of sleep regulation have not been elucidated yet. Here, we show a novel sleep-regulating neuronal circuit in the protocerebral bridge (PB) of the central complex. Activation of the PB interneurons labeled by the R59E08-Gal4 and the PB columnar neurons with R52B10-Gal4 promoted sleep and wakefulness, respectively. A targeted GFP reconstitution across synaptic partners (t-GRASP) analysis demonstrated synaptic contact between these two groups of sleep-regulating PB neurons. Furthermore, we found that activation of a pair of dopaminergic (DA) neurons projecting to the PB (T1 DA neurons) decreased sleep. The wake-promoting T1 DA neurons and the sleep-promoting PB interneurons formed close associations. Dopamine 2-like receptor (Dop2R) knockdown in the sleep-promoting PB interneurons increased sleep. These results indicated that the neuronal circuit in the PB, regulated by dopamine signaling, mediates sleep-wakefulness.
Collapse
Affiliation(s)
- Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Gosuke Ban
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki S Kato
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
17
|
Harzsch S, Krieger J. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101100. [PMID: 34488068 DOI: 10.1016/j.asd.2021.101100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
According to all latest phylogenetic analyses, the taxon Pancrustacea embraces the crustaceans in the traditional sense and the hexapods. Members of the Pancrustacea for a long time have been known to display distinct similarities in the architecture of their brains. Here, we review recent progress and open questions concerning structural and functional communalities of selected higher integrative neuropils in the lateral protocerebrum of pancrustaceans, the mushroom bodies and hemiellipsoid bodies. We also discuss the projection neuron pathway which provides a distinct input channel to both mushroom and hemiellipsoid bodies from the primary chemosensory centers in the deutocerebrum. Neuronal characters are mapped on a current pancrustacean phylogeny in order to extract those characters that are part of the pancrustacean ground pattern. Furthermore, we summarize recent insights into the evolutionary transformation of mushroom body morphology across the Pancrustacea.
Collapse
Affiliation(s)
- S Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - J Krieger
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
18
|
Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 2021; 10:e66039. [PMID: 34696823 PMCID: PMC9477501 DOI: 10.7554/elife.66039] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hannah Haberkern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel Turner-Evans
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
19
|
Lan T, Zhao Y, Zhao F, He Y, Martinez P, Strausfeld NJ. Leanchoiliidae reveals the ancestral organization of the stem euarthropod brain. Curr Biol 2021; 31:4397-4404.e2. [PMID: 34416180 DOI: 10.1016/j.cub.2021.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Fossils provide insights into how organs may have diversified over geological time.1 However, diversification already accomplished early in evolution can obscure ancestral events leading to it. For example, already by the mid-Cambrian period, euarthropods had condensed brains typifying modern mandibulate lineages.2 However, the demonstration that extant euarthropods and chordates share orthologous developmental control genes defining the segmental fore-, mid-, and hindbrain suggests that those character states were present even before the onset of the Cambrian.3 Fossilized nervous systems of stem Euarthropoda might, therefore, be expected to reveal ancestral segmental organization, from which divergent arrangements emerged. Here, we demonstrate unsurpassed preservation of cerebral tissue in Kaili leanchoiliids revealing near-identical arrangements of bilaterally symmetric ganglia identified as the proto-, deuto-, and tritocerebra disposed behind an asegmental frontal domain, the prosocerebrum, from which paired nerves extend to labral ganglia flanking the stomodeum. This organization corresponds to labral connections hallmarking extant euarthropod clades4 and to predicted transformations of presegmental ganglia serving raptorial preocular appendages of Radiodonta.5 Trace nervous system in the gilled lobopodian Kerygmachela kierkegaardi6 suggests an even deeper prosocerebral ancestry. An asegmental prosocerebrum resolves its location relative to the midline asegmental sclerite of the radiodontan head, which persists in stem Euarthropoda.7 Here, data from two Kaili Leanchoilia, with additional reference to Alalcomenaeus,8,9 demonstrate that Cambrian stem Euarthropoda confirm genomic and developmental studies10-15 claiming that the most frontal domain of the euarthropod brain is a unique evolutionary module distinct from, and ancestral to, the fore-, mid-, and hindbrain.
Collapse
Affiliation(s)
- Tian Lan
- Guizhou Research Center for Palaeobiology, Guizhou University, Guiyang, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, The College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, Guizhou, China.
| | - Yuanlong Zhao
- Guizhou Research Center for Palaeobiology, Guizhou University, Guiyang, Guizhou, China
| | - Fangchen Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - You He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Pedro Martinez
- Departament de Genetica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain; Institut Català de Recerca i Estudis Avancats (ICREA), Passeig de Lluís Companys, Barcelona 08010, Spain
| | | |
Collapse
|
20
|
Grob R, Heinig N, Grübel K, Rössler W, Fleischmann PN. Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants. J Comp Neurol 2021; 529:3882-3892. [PMID: 34313343 DOI: 10.1002/cne.25221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022]
Abstract
Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation.
Collapse
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| | - Niklas Heinig
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| | - Pauline N Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Grob R, el Jundi B, Fleischmann PN. Towards a common terminology for arthropod spatial orientation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1905075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Basil el Jundi
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
22
|
The Evolutionary History of Brains for Numbers. Trends Cogn Sci 2021; 25:608-621. [PMID: 33926813 DOI: 10.1016/j.tics.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Humans and other animals share a number sense', an intuitive understanding of countable quantities. Having evolved independent from one another for hundreds of millions of years, the brains of these diverse species, including monkeys, crows, zebrafishes, bees, and squids, differ radically. However, in all vertebrates investigated, the pallium of the telencephalon has been implicated in number processing. This suggests that properties of the telencephalon make it ideally suited to host number representations that evolved by convergent evolution as a result of common selection pressures. In addition, promising candidate regions in the brains of invertebrates, such as insects, spiders, and cephalopods, can be identified, opening the possibility of even deeper commonalities for number sense.
Collapse
|
23
|
Naniwa K, Aonuma H. Descending and Ascending Signals That Maintain Rhythmic Walking Pattern in Crickets. Front Robot AI 2021; 8:625094. [PMID: 33855051 PMCID: PMC8039156 DOI: 10.3389/frobt.2021.625094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 12/04/2022] Open
Abstract
The cricket is one of the model animals used to investigate the neuronal mechanisms underlying adaptive locomotion. An intact cricket walks mostly with a tripod gait, similar to other insects. The motor control center of the leg movements is located in the thoracic ganglia. In this study, we investigated the walking gait patterns of the crickets whose ventral nerve cords were surgically cut to gain an understanding of how the descending signals from the head ganglia and ascending signals from the abdominal nervous system into the thoracic ganglia mediate the initiation and coordination of the walking gait pattern. Crickets whose paired connectives between the brain and subesophageal ganglion (SEG) (circumesophageal connectives) were cut exhibited a tripod gait pattern. However, when one side of the circumesophageal connectives was cut, the crickets continued to turn in the opposite direction to the connective cut. Crickets whose paired connectives between the SEG and prothoracic ganglion were cut did not walk, whereas the crickets exhibited an ordinal tripod gait pattern when one side of the connectives was intact. Crickets whose paired connectives between the metathoracic ganglion and abdominal ganglia were cut initiated walking, although the gait was not a coordinated tripod pattern, whereas the crickets exhibited a tripod gait when one side of the connectives was intact. These results suggest that the brain plays an inhibitory role in initiating leg movements and that both the descending signals from the head ganglia and the ascending signals from the abdominal nervous system are important in initiating and coordinating insect walking gait patterns.
Collapse
Affiliation(s)
- Keisuke Naniwa
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Kobayashi N, Okada R, Sakura M. Orientation to polarized light in tethered flying honeybees. J Exp Biol 2020; 223:jeb228254. [PMID: 33106299 DOI: 10.1242/jeb.228254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
Many insects exploit the partial plane polarization of skylight for visual compass orientation and/or navigation. In the present study, using a tethering system, we investigated how flying bees respond to polarized light stimuli. The behavioral responses of honeybees (Apis mellifera) to a zenithal polarized light stimulus were observed using a tethered animal in a flight simulator. Flight direction of the bee was recorded by monitoring the horizontal movement of its abdomen, which was strongly anti-correlated with its torque. When the e-vector orientation of the polarized light was rotated clockwise or counterclockwise, the bee responded with periodic right-and-left abdominal movements; however, the bee did not show any clear periodic movement under the static e-vector or depolarized stimulus. The steering frequency of the bee was well coordinated with the e-vector rotation frequency of the stimulus, indicating that the flying bee oriented itself to a certain e-vector orientation, i.e. exhibited polarotaxis. The percentage of bees exhibiting clear polarotaxis was much smaller under the fast stimulus (3.6 deg s-1) compared with that under a slow stimulus (0.9 or 1.8 deg s-1). Bees did not demonstrate any polarotactic behavior after the dorsal rim area of the eyes, which mediates insect polarization vision in general, was bilaterally covered with black paint. Preferred e-vector orientations under the clockwise stimulus varied among individuals and distributed throughout -90 to 90 deg. Some bees showed similar preferred e-vector orientations for clockwise and counterclockwise stimuli whereas others did not. Our results strongly suggest that flying honeybees utilize the e-vector information from the skylight to deduce their heading orientation for navigation.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryuichi Okada
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Midori Sakura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
25
|
Auletta A, Rue MCP, Harley CM, Mesce KA. Tyrosine hydroxylase immunolabeling reveals the distribution of catecholaminergic neurons in the central nervous systems of the spiders Hogna lenta (Araneae: Lycosidae) and Phidippus regius (Araneae: Salticidae). J Comp Neurol 2020; 528:211-230. [PMID: 31343075 DOI: 10.1002/cne.24748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/12/2022]
Abstract
With over 48,000 species currently described, spiders (Arthropoda: Chelicerata: Araneae) comprise one of the most diverse groups of animals on our planet, and exhibit an equally wide array of fascinating behaviors. Studies of central nervous systems (CNSs) in spiders, however, are relatively sparse, and no reports have yet characterized catecholaminergic (dopamine [DA]- or norepinephrine-synthesizing) neurons in any spider species. Because these neuromodulators are especially important for sensory and motor processing across animal taxa, we embarked on a study to identify catecholaminergic neurons in the CNS of the wolf spider Hogna lenta (Lycosidae) and the jumping spider Phidippus regius (Salticidae). These neurons were most effectively labeled with an antiserum raised against tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. We found extensive catecholamine-rich neuronal fibers in the first- and second-order optic neuropils of the supraesophageal mass (brain), as well as in the arcuate body, a region of the brain thought to receive visual input and which may be involved in higher order sensorimotor integration. This structure likely shares evolutionary origins with the DA-enriched central complex of the Mandibulata. In the subesophageal mass, we detected an extensive filigree of TH-immunoreactive (TH-ir) arborizations in the appendage neuromeres, as well as three prominent plurisegmental fiber tracts. A vast abundance of TH-ir somata were located in the opisthosomal neuromeres, the largest of which appeared to project to the brain and decorate the appendage neuromeres. Our study underscores the important roles that the catecholamines likely play in modulating spider vision, higher order sensorimotor processing, and motor patterning.
Collapse
Affiliation(s)
- Anthony Auletta
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Mara C P Rue
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Cynthia M Harley
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Karen A Mesce
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota.,Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
26
|
Pickard SC, Quinn RD, Szczecinski NS. A dynamical model exploring sensory integration in the insect central complex substructures. BIOINSPIRATION & BIOMIMETICS 2020; 15:026003. [PMID: 31726442 DOI: 10.1088/1748-3190/ab57b6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is imperative that an animal has the ability to contextually integrate received sensory information to formulate appropriate behavioral responses. Determining a body heading based on a multitude of ego-motion cues and visual landmarks is an example of such a task that requires this context dependent integration. The work presented here simulates a sensory integrator in the insect brain called the central complex (CX). Based on the architecture of the CX, we assembled a dynamical neural simulation of two structures called the protocerebral bridge (PB) and the ellipsoid body (EB). Using non-spiking neuronal dynamics, our simulation was able to recreate in vivo neuronal behavior such as correlating body rotation direction and speed to activity bumps within the EB as well as updating the believed heading with quick secondary system updates. With this model, we performed sensitivity analysis of certain neuronal parameters as a possible means to control multi-system gains during sensory integration. We found that modulation of synapses in the memory network and EB inhibition are two possible mechanisms in which a sensory system could affect the memory stability and gain of another input, respectively. This model serves as an exploration in network design for integrating simultaneous idiothetic and allothetic cues in the task of body tracking and determining contextually dependent behavioral outputs.
Collapse
Affiliation(s)
- S C Pickard
- Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
27
|
Frase T, Richter S. The brain and the corresponding sense organs in calanoid copepods - Evidence of vestiges of compound eyes. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 54:100902. [PMID: 31991325 DOI: 10.1016/j.asd.2019.100902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Copepoda is one of the crustacean taxa with still unresolved phylogenetic relationships within Tetraconata. Recent phylogenomic studies place them close to Malacostraca and Cirripedia. Little is known about the morphological details of the copepod nervous system, and the available data are sometimes contradictory. We investigated several representatives of the subgroup Calanoida using immunohistochemical labeling against alpha-tubulin and various neuroactive substances, combining this with confocal laser scanning analysis and 3D reconstruction. Our results show that the studied copepods exhibit only a single anterior protocerebral neuropil which is connected to the nerves of two protocerebral sense organs: the frontal filament organ and a photoreceptor known as the Gicklhorn's organ. We suggest, on the basis of its position and the innervation it provides, that Gicklhorn's organ is homologous to the compound eye in arthropods. With regard to the frontal filament organ, we reveal detailed innervation to the lateral protocerebrum and the appearance of spherical bodies that stain intensely against alpha tubulin. A potential homology of these bodies to the onion bodies in malacostacan crustaceans and in Mystacocarida is suggested. The nauplius eye in all the examined calanoids shows the same basic pattern of innervation with the middle cup sending its neurites into the median nerve, while the axons of the lateral cups proceed into both the median and the lateral nerves. The early development of the axonal scaffold of the nauplius eye neuropil from the proximal parts of the nauplius eye nerves follows the same pattern as in other crustaceans. In our view, this specific innervation pattern is a further feature supporting the homology of the nauplius eye in crustaceans.
Collapse
Affiliation(s)
- Thomas Frase
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055, Rostock, Germany.
| | - Stefan Richter
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, 18055, Rostock, Germany
| |
Collapse
|
28
|
Shih CT, Lin YJ, Wang CT, Wang TY, Chen CC, Su TS, Lo CC, Chiang AS. Diverse Community Structures in the Neuronal-Level Connectome of the Drosophila Brain. Neuroinformatics 2019; 18:267-281. [PMID: 31797265 DOI: 10.1007/s12021-019-09443-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Drosophila melanogaster is one of the most important model animals in neurobiology owing to its manageable brain size, complex behaviour, and extensive genetic tools. However, without a comprehensive map of the brain-wide neural network, our ability to investigate brain functions at the systems level is seriously limited. In this study, we constructed a neuron-to-neuron network of the Drosophila brain based on the 28,573 fluorescence images of single neurons in the newly released FlyCircuit v1.2 (http://www.flycircuit.tw) database. By performing modularity and centrality analyses, we identified eight communities (right olfaction, left olfaction, olfactory core, auditory, motor, pre-motor, left vision, and right vision) in the brain-wide network. Further investigation on information exchange and structural stability revealed that the communities of different functions dominated different types of centralities, suggesting a correlation between functions and network structures. Except for the two olfaction and the motor communities, the network is characterized by overall small-worldness. A rich club (RC) structure was also found in this network, and most of the innermost RC members innervated the central complex, indicating its role in information integration. We further identified numerous loops with length smaller than seven neurons. The observation suggested unique characteristics in the information processing inside the fruit fly brain.
Collapse
Affiliation(s)
- Chi-Tin Shih
- Department of Applied Physics, Tunghai University, Taichung, Taiwan.
- National Center for High-performance Computing, Hsinchu, Taiwan.
| | - Yen-Jen Lin
- National Center for High-performance Computing, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-Te Wang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Yuan Wang
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chen Chen
- Department of Applied Physics, Tunghai University, Taichung, Taiwan
| | - Ta-Shun Su
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Chuang Lo
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan.
- Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Wittfoth C, Harzsch S, Wolff C, Sombke A. The "amphi"-brains of amphipods: new insights from the neuroanatomy of Parhyale hawaiensis (Dana, 1853). Front Zool 2019; 16:30. [PMID: 31372174 PMCID: PMC6660712 DOI: 10.1186/s12983-019-0330-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Over the last years, the amphipod crustacean Parhyale hawaiensis has developed into an attractive marine animal model for evolutionary developmental studies that offers several advantages over existing experimental organisms. It is easy to rear in laboratory conditions with embryos available year-round and amenable to numerous kinds of embryological and functional genetic manipulations. However, beyond these developmental and genetic analyses, research on the architecture of its nervous system is fragmentary. In order to provide a first neuroanatomical atlas of the brain, we investigated P. hawaiensis using immunohistochemical labelings combined with laser-scanning microscopy, X-ray microcomputed tomography, histological sectioning and 3D reconstructions. RESULTS As in most amphipod crustaceans, the brain is dorsally bent out of the body axis with downward oriented lateral hemispheres of the protocerebrum. It comprises almost all prominent neuropils that are part of the suggested ground pattern of malacostracan crustaceans (except the lobula plate and projection neuron tract neuropil). Beyond a general uniformity of these neuropils, the brain of P. hawaiensis is characterized by an elaborated central complex and a modified lamina (first order visual neuropil), which displays a chambered appearance. In the light of a recent analysis on photoreceptor projections in P. hawaiensis, the observed architecture of the lamina corresponds to specialized photoreceptor terminals. Furthermore, in contrast to previous descriptions of amphipod brains, we suggest the presence of a poorly differentiated hemiellipsoid body and an inner chiasm and critically discuss these aspects. CONCLUSIONS Despite a general uniformity of amphipod brains, there is also a certain degree of variability in architecture and size of different neuropils, reflecting various ecologies and life styles of different species. In contrast to other amphipods, the brain of P. hawaiensis does not display any striking modifications or bias towards processing one particular sensory modality. Thus, we conclude that this brain represents a common type of an amphipod brain. Considering various established protocols for analyzing and manipulating P. hawaiensis, this organism is a suitable model to gain deeper understanding of brain anatomy e.g. by using connectome approaches, and this study can serve as first solid basis for following studies.
Collapse
Affiliation(s)
- Christin Wittfoth
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Carsten Wolff
- Department of Biology, Comparative Zoology, Humboldt University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andy Sombke
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
30
|
Honkanen A, Adden A, da Silva Freitas J, Heinze S. The insect central complex and the neural basis of navigational strategies. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb188854. [PMID: 30728235 DOI: 10.1242/jeb.188854] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oriented behaviour is present in almost all animals, indicating that it is an ancient feature that has emerged from animal brains hundreds of millions of years ago. Although many complex navigation strategies have been described, each strategy can be broken down into a series of elementary navigational decisions. In each moment in time, an animal has to compare its current heading with its desired direction and compensate for any mismatch by producing a steering response either to the right or to the left. Different from reflex-driven movements, target-directed navigation is not only initiated in response to sensory input, but also takes into account previous experience and motivational state. Once a series of elementary decisions are chained together to form one of many coherent navigation strategies, the animal can pursue a navigational target, e.g. a food source, a nest entrance or a constant flight direction during migrations. Insects show a great variety of complex navigation behaviours and, owing to their small brains, the pursuit of the neural circuits controlling navigation has made substantial progress over the last years. A brain region as ancient as insects themselves, called the central complex, has emerged as the likely navigation centre of the brain. Research across many species has shown that the central complex contains the circuitry that might comprise the neural substrate of elementary navigational decisions. Although this region is also involved in a wide range of other functions, we hypothesize in this Review that its role in mediating the animal's next move during target-directed behaviour is its ancestral function, around which other functions have been layered over the course of evolution.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
31
|
Lehmann T, Melzer RR. Also looking like Limulus? - retinula axons and visual neuropils of Amblypygi (whip spiders). Front Zool 2018; 15:52. [PMID: 30574172 PMCID: PMC6299927 DOI: 10.1186/s12983-018-0293-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Only a few studies have examined the visual systems of Amblypygi (whip spiders) until now. To get new insights suitable for phylogenetic analysis we studied the axonal trajectories and neuropil architecture of the visual systems of several whip spider species (Heterophrynus elaphus, Damon medius, Phrynus pseudoparvulus, and P. marginemaculatus) with different neuroanatomical techniques. The R-cell axon terminals were identified with Cobalt fills. To describe the morphology of the visual neuropils and of the protocerebrum generally we used Wigglesworth stains and μCT. RESULTS The visual system of whip spiders comprises one pair of median and three pairs of lateral eyes. The R-cells of both eye types terminate each in a first and a second visual neuropil. Furthermore, a few R-cell fibres from the median eyes leave the second median eye visual neuropil and terminate in the second lateral eye neuropil. This means R-cell terminals from the lateral eyes and the median eyes overlap. Additionally, the arcuate body and the mushroom bodies are described. CONCLUSIONS A detailed comparison of our findings with previously studied chelicerate visual systems (i.e., Xiphosura, Scorpiones, Pseudoscorpiones, Opiliones, and Araneae) seem to support the idea of close evolutionary relationships between Xiphosura, Scorpiones, and Amblypygi.
Collapse
Affiliation(s)
- Tobias Lehmann
- Bavarian State Collection of Zoology – SNSB, Münchhausenstraße 21, 81247 Munich, Germany
- Ludwig-Maximilians-Universität München, Department Biologie II, Großhaderner Straße 2, 82152, Planegg-Martinsried, Germany
| | - Roland R. Melzer
- Bavarian State Collection of Zoology – SNSB, Münchhausenstraße 21, 81247 Munich, Germany
- Ludwig-Maximilians-Universität München, Department Biologie II, Großhaderner Straße 2, 82152, Planegg-Martinsried, Germany
- GeoBioCenter LMU, Richard -Wagner-Str. 10, 80333 Munich, Germany
| |
Collapse
|
32
|
El Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. J Comp Neurol 2018; 526:2612-2630. [PMID: 30136721 DOI: 10.1002/cne.24520] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Despite their tiny brains, insects show impressive abilities when navigating over short distances during path integration or during migration over thousands of kilometers across entire continents. Celestial compass cues often play an important role as references during navigation. In contrast to many other insects, South African dung beetles rely exclusively on celestial cues for visual reference during orientation. After finding a dung pile, these animals cut off a piece of dung from the pat, shape it into a ball and roll it away along a straight path until a suitable place for underground consumption is found. To maintain a constant bearing, a brain region in the beetle's brain, called the central complex, is crucially involved in the processing of skylight cues, similar to what has already been shown for path-integrating and migrating insects. In this study, we characterized the neuroanatomy of the sky-compass network and the central complex in the dung beetle brain in detail. Using tracer injections, combined with imaging and 3D modeling, we describe the anatomy of the possible sky-compass network in the central brain. We used a quantitative approach to study the central-complex network and found that several types of neuron exhibit a highly organized connectivity pattern. The architecture of the sky-compass network and central complex is similar to that described in insects that perform path integration or are migratory. This suggests that, despite their different orientation behaviors, this neural circuitry for compass orientation is highly conserved among the insects.
Collapse
Affiliation(s)
- Basil El Jundi
- Biocenter, Zoology II, Emmy Noether Animal Navigation Group, University of Würzburg, Germany
| | - Eric J Warrant
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Marie Dacke
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Wolff T, Rubin GM. Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog. J Comp Neurol 2018; 526:2585-2611. [PMID: 30084503 PMCID: PMC6283239 DOI: 10.1002/cne.24512] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
The central complex, a set of neuropils in the center of the insect brain, plays a crucial role in spatial aspects of sensory integration and motor control. Stereotyped neurons interconnect these neuropils with one another and with accessory structures. We screened over 5,000 Drosophila melanogaster GAL4 lines for expression in two neuropils, the noduli (NO) of the central complex and the asymmetrical body (AB), and used multicolor stochastic labeling to analyze the morphology, polarity, and organization of individual cells in a subset of the GAL4 lines that showed expression in these neuropils. We identified nine NO and three AB cell types and describe them here. The morphology of the NO neurons suggests that they receive input primarily in the lateral accessory lobe and send output to each of the six paired noduli. We demonstrate that the AB is a bilateral structure which exhibits asymmetry in size between the left and right bodies. We show that the AB neurons directly connect the AB to the central complex and accessory neuropils, that they target both the left and right ABs, and that one cell type preferentially innervates the right AB. We propose that the AB be considered a central complex neuropil in Drosophila. Finally, we present highly restricted GAL4 lines for most identified protocerebral bridge, NO, and AB cell types. These lines, generated using the split-GAL4 method, will facilitate anatomical studies, behavioral assays, and physiological experiments.
Collapse
Affiliation(s)
- Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| |
Collapse
|
34
|
Homberg U, Humberg TH, Seyfarth J, Bode K, Pérez MQ. GABA immunostaining in the central complex of dicondylian insects. J Comp Neurol 2018; 526:2301-2318. [DOI: 10.1002/cne.24497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Uwe Homberg
- Faculty of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB; Philipps-Universität Marburg; Marburg Germany
| | - Tim-Henning Humberg
- Faculty of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB; Philipps-Universität Marburg; Marburg Germany
| | - Jutta Seyfarth
- Faculty of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB; Philipps-Universität Marburg; Marburg Germany
| | - Katharina Bode
- Faculty of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB; Philipps-Universität Marburg; Marburg Germany
| | - Manuel Quintero Pérez
- Faculty of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB; Philipps-Universität Marburg; Marburg Germany
| |
Collapse
|
35
|
Shigeno S, Andrews PLR, Ponte G, Fiorito G. Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison With Vertebrates. Front Physiol 2018; 9:952. [PMID: 30079030 PMCID: PMC6062618 DOI: 10.3389/fphys.2018.00952] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Cephalopod and vertebrate neural-systems are often highlighted as a traditional example of convergent evolution. Their large brains, relative to body size, and complexity of sensory-motor systems and behavioral repertoires offer opportunities for comparative analysis. Despite various attempts, questions on how cephalopod 'brains' evolved and to what extent it is possible to identify a vertebrate-equivalence, assuming it exists, remain unanswered. Here, we summarize recent molecular, anatomical and developmental data to explore certain features in the neural organization of cephalopods and vertebrates to investigate to what extent an evolutionary convergence is likely. Furthermore, and based on whole body and brain axes as defined in early-stage embryos using the expression patterns of homeodomain-containing transcription factors and axonal tractography, we describe a critical analysis of cephalopod neural systems showing similarities to the cerebral cortex, thalamus, basal ganglia, midbrain, cerebellum, hypothalamus, brain stem, and spinal cord of vertebrates. Our overall aim is to promote and facilitate further, hypothesis-driven, studies of cephalopod neural systems evolution.
Collapse
Affiliation(s)
- Shuichi Shigeno
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- Division of Biomedical Sciences, St. George’s University of London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
36
|
Green J, Maimon G. Building a heading signal from anatomically defined neuron types in the Drosophila central complex. Curr Opin Neurobiol 2018; 52:156-164. [PMID: 30029143 DOI: 10.1016/j.conb.2018.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
A network of a few hundred neurons in the Drosophila central complex carries an estimate of the fly's heading in the world, akin to the mammalian head-direction system. Here we describe how anatomically defined neuronal classes in this network are poised to implement specific sub-processes for building and updating this population-level heading signal. The computations we describe in the fly central complex strongly resemble those posited to exist in the mammalian brain, in computational models for building head-direction signals. By linking circuit anatomy to navigational physiology, the Drosophila central complex should provide a detailed example of how a heading signal is built.
Collapse
Affiliation(s)
- Jonathan Green
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States; Laboratory of Integrative Brain Function, The Rockefeller University, 1230 York Ave., Mailbox #294, New York, NY 10065, United States.
| | - Gaby Maimon
- Laboratory of Integrative Brain Function, The Rockefeller University, 1230 York Ave., Mailbox #294, New York, NY 10065, United States.
| |
Collapse
|
37
|
Napiórkowska T, Kobak J. The allometry of the arcuate body in the postembryonic development of the giant house spider Eratigena atrica. INVERTEBRATE NEUROSCIENCE : IN 2018; 18:3. [PMID: 29525854 PMCID: PMC5845603 DOI: 10.1007/s10158-018-0208-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/23/2018] [Indexed: 11/23/2022]
Abstract
The brain of arachnids contains a special neuropil area called the arcuate body (AB), whose function has been widely discussed. Its growth and proportion in the brain volume during postembryogenesis have been investigated only in several spider species. Our allometric study is aimed at determining to what extent the development of the AB in Eratigena atrica, a spider with unique biology and behaviour, is similar to the development of this body in other species. We put forward a hypothesis of allometric growth of this body in relation to the volume of the central nervous system (CNS) and its neuropil as well as in relation to the volume of the brain and its neuropil. The analysis of paraffin embedded, H + E stained histological preparations confirmed our hypothesis. The AB developed more slowly than the CNS and the neuropil of both the brain and the CNS. In contrast, it exhibited positive allometry in relation to the volume of the brain. This body increased more than nine times within the postembryonic development. Its proportion in the brain volume varied; the lowest was recorded in larvae and nymphs I; then, it increased in nymphs VI and decreased to 2.93% in nymphs X. We conclude that in Eratigena atrica, the AB develops differently that in orb-weaver and wandering spiders. There is no universal model of the AB development, although in adult spiders, regardless of their behaviour, the proportion of this area in the brain volume is similar.
Collapse
Affiliation(s)
- Teresa Napiórkowska
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Jarosław Kobak
- Department of Invertebrate Zoology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
38
|
Lehmann T, Melzer RR. A tiny visual system — retinula axons and visual neuropils of Neobisium carcinoides (Hermann, 1804) (Chelicerata, Arachnida, Pseudoscorpiones). ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol 2017; 161:23-60. [PMID: 29197652 DOI: 10.1016/j.pneurobio.2017.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Malacostracan crustaceans display a large diversity of sizes, morphs and life styles. However, only a few representatives of decapod taxa have served as models for analyzing crustacean olfaction, such as crayfish and spiny lobsters. Crustaceans bear multiple parallel chemosensory pathways represented by different populations of unimodal chemosensory and bimodal chemo- and mechanosensory sensilla on the mouthparts, the walking limbs and primarily on their two pairs of antennae. Here, we focus on the olfactory pathway associated with the unimodal chemosensory sensilla on the first antennal pair, the aesthetascs. We explore the diverse arrangement of these sensilla across malacostracan taxa and point out evolutionary transformations which occurred in the central olfactory pathway. We discuss the evolution of chemoreceptor proteins, comparative aspects of active chemoreception and the temporal resolution of crustacean olfactory system. Viewing the evolution of crustacean brains in light of energetic constraints can help us understand their functional morphology and suggests that in various crustacean lineages, the brains were simplified convergently because of metabolic limitations. Comparing the wiring of afferents, interneurons and output neurons within the olfactory glomeruli suggests a deep homology of insect and crustacean olfactory systems. However, both taxa followed distinct lineages during the evolutionary elaboration of their olfactory systems. A comparison with insects suggests their olfactory systems ö especially that of the vinegar fly ö to be superb examples for "economy of design". Such a comparison also inspires new thoughts about olfactory coding and the functioning of malacostracan olfactory systems in general.
Collapse
|
40
|
Heinze S. Unraveling the neural basis of insect navigation. CURRENT OPINION IN INSECT SCIENCE 2017; 24:58-67. [PMID: 29208224 PMCID: PMC6186168 DOI: 10.1016/j.cois.2017.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 05/09/2023]
Abstract
One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons.
Collapse
Affiliation(s)
- Stanley Heinze
- Lund University, Department of Biology, Lund Vision Group, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
41
|
Steinhoff POM, Liedtke J, Sombke A, Schneider JM, Uhl G. Early environmental conditions affect the volume of higher-order brain centers in a jumping spider. J Zool (1987) 2017. [DOI: 10.1111/jzo.12512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- P. O. M. Steinhoff
- General and Systematic Zoology; Zoological Institute and Museum; University of Greifswald; Greifswald Germany
| | - J. Liedtke
- Biocenter Grindel; Zoological Institute; University of Hamburg; Hamburg Germany
| | - A. Sombke
- Cytology and Evolutionary Biology; Zoological Institute and Museum; University of Greifswald; Greifswald Germany
| | - J. M. Schneider
- Biocenter Grindel; Zoological Institute; University of Hamburg; Hamburg Germany
| | - G. Uhl
- General and Systematic Zoology; Zoological Institute and Museum; University of Greifswald; Greifswald Germany
| |
Collapse
|
42
|
de Vries L, Pfeiffer K, Trebels B, Adden AK, Green K, Warrant E, Heinze S. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Front Behav Neurosci 2017; 11:158. [PMID: 28928641 PMCID: PMC5591330 DOI: 10.3389/fnbeh.2017.00158] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation-differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth.
Collapse
Affiliation(s)
- Liv de Vries
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Keram Pfeiffer
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Björn Trebels
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Andrea K Adden
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Ken Green
- New South Wales National Parks and Wildlife ServiceJindabyne, NSW, Australia
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| |
Collapse
|
43
|
Szczecinski NS, Getsy AP, Martin JP, Ritzmann RE, Quinn RD. Mantisbot is a robotic model of visually guided motion in the praying mantis. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:736-751. [PMID: 28302586 DOI: 10.1016/j.asd.2017.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 02/24/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Insects use highly distributed nervous systems to process exteroception from head sensors, compare that information with state-based goals, and direct posture or locomotion toward those goals. To study how descending commands from brain centers produce coordinated, goal-directed motion in distributed nervous systems, we have constructed a conductance-based neural system for our robot MantisBot, a 29 degree-of-freedom, 13.3:1 scale praying mantis robot. Using the literature on mantis prey tracking and insect locomotion, we designed a hierarchical, distributed neural controller that establishes the goal, coordinates different joints, and executes prey-tracking motion. In our controller, brain networks perceive the location of prey and predict its future location, store this location in memory, and formulate descending commands for ballistic saccades like those seen in the animal. The descending commands are simple, indicating only 1) whether the robot should walk or stand still, and 2) the intended direction of motion. Each joint's controller uses the descending commands differently to alter sensory-motor interactions, changing the sensory pathways that coordinate the joints' central pattern generators into one cohesive motion. Experiments with one leg of MantisBot show that visual input produces simple descending commands that alter walking kinematics, change the walking direction in a predictable manner, enact reflex reversals when necessary, and can control both static posture and locomotion with the same network.
Collapse
Affiliation(s)
- Nicholas S Szczecinski
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, USA.
| | - Andrew P Getsy
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, USA
| | | | - Roy E Ritzmann
- Case Western Reserve University, Department of Biology, USA
| | - Roger D Quinn
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, USA
| |
Collapse
|
44
|
Su TS, Lee WJ, Huang YC, Wang CT, Lo CC. Coupled symmetric and asymmetric circuits underlying spatial orientation in fruit flies. Nat Commun 2017; 8:139. [PMID: 28747622 PMCID: PMC5529380 DOI: 10.1038/s41467-017-00191-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
Maintaining spatial orientation when carrying out goal-directed movements requires an animal to perform angular path integration. Such functionality has been recently demonstrated in the ellipsoid body (EB) of fruit flies, though the precise circuitry and underlying mechanisms remain unclear. We analyze recently published cellular-level connectomic data and identify the unique characteristics of the EB circuitry, which features coupled symmetric and asymmetric rings. By constructing a spiking neural circuit model based on the connectome, we reveal that the symmetric ring initiates a feedback circuit that sustains persistent neural activity to encode information regarding spatial orientation, while the asymmetric rings are capable of integrating the angular path when the body rotates in the dark. The present model reproduces several key features of EB activity and makes experimentally testable predictions, providing new insight into how spatial orientation is maintained and tracked at the cellular level. Ellipsoid body (EB) neurons in the fruit fly represent the animal heading through a bump-like activity dynamics. Here the authors report a connectome-driven spiking neural circuit model of the EB and the protocerebral bridge (PB) that can maintain and update an activity bump related to the spatial orientation.
Collapse
Affiliation(s)
- Ta-Shun Su
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wan-Ju Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chi Huang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Te Wang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
45
|
Ramm T, Scholtz G. No sight, no smell? - Brain anatomy of two amphipod crustaceans with different lifestyles. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:537-551. [PMID: 28344111 DOI: 10.1016/j.asd.2017.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
The brain anatomy of Niphargus puteanus and Orchestia cavimana, two amphipod species with different lifestyles, has been studied using a variety of recent techniques. The general aspects of the brain anatomy of both species correspond to those of other malacostracans. However, both species lack hemiellipsoid bodies. Furthermore, related to their lifestyle certain differences have been observed. The aquatic subterranean species N. puteanus lacks eye structures, the optic nerve, and the two outer optic neuropils lamina and medulla. Only partial remains of the lobula have been detected. In contrast to this, the central complex in the protocerebrum and the olfactory glomeruli in the deutocerebrum are well differentiated. The terrestrial species Orchestia cavimana shows a reduced first antenna, the absence of olfactory neuropils in the deutocerebrum, and a reduction of the olfactory globular tract. The characteristics in defining the hemiellipsoid bodies are critically discussed. Contradictions about presence or absence of this neuropil are due to different conceptualizations. A comparison with other crustaceans that live in dark environments reveal similar patterns of optic system reduction, but to different degrees following a centripetal pattern. Retaining the olfactory system seems a general problem of terrestrialization in crustaceans with the notable exception of terrestrial hermit crabs.
Collapse
Affiliation(s)
- Till Ramm
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany.
| |
Collapse
|
46
|
Martin C, Gross V, Hering L, Tepper B, Jahn H, de Sena Oliveira I, Stevenson PA, Mayer G. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:565-590. [DOI: 10.1007/s00359-017-1186-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
47
|
Carvell GE, Jackson RR, Cross FR. Ontogenetic shift in plant-related cognitive specialization by a mosquito-eating predator. Behav Processes 2017; 138:105-122. [PMID: 28245979 PMCID: PMC5407888 DOI: 10.1016/j.beproc.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 11/29/2022]
Abstract
Evarcha culicivora, an East African salticid spider, is a mosquito specialist and it is also a plant specialist, with juveniles visiting plants primarily for acquiring nectar meals and adults visiting plants primarily as mating sites. The hypothesis we consider here is that there are ontogenetic shifts in cognition-related responses by E. culicivora to plant odour. Our experiments pertain to cross-modality priming effects in three specific contexts: executing behaviour that we call the 'visual inspection of plants' (Experiment 1), adopting selective visual attention to specific visual targets (Experiment 2) and becoming prepared to respond rapidly to specific visual targets (Experiment 3). Our findings appear not to be a consequence of salient odours in general elevating E. culicivora's motivation to respond to salient visual stimuli. Instead, effects were specific to particular odours paired with particular visual targets, with the salient volatile plant compounds being caryophyllene and humulene. We found evidence that prey odour primes juveniles and adults to respond to seeing specifically prey, mate odour primes adults to respond to seeing specifically mates and plant odour primes juveniles to respond to seeing specifically flowers. However, plant odour appears to prime adults to respond to seeing specifically a mate associated with a plant.
Collapse
Affiliation(s)
- Georgina E Carvell
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya
| | - Fiona R Cross
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya.
| |
Collapse
|
48
|
Balvantray Bhavsar M, Stumpner A, Heinrich R. Brain regions for sound processing and song release in a small grasshopper. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:15-24. [PMID: 28285921 DOI: 10.1016/j.jinsphys.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
We investigated brain regions - mostly neuropils - that process auditory information relevant for the initiation of response songs of female grasshoppers Chorthippus biguttulus during bidirectional intraspecific acoustic communication. Male-female acoustic duets in the species Ch. biguttulus require the perception of sounds, their recognition as a species- and gender-specific signal and the initiation of commands that activate thoracic pattern generating circuits to drive the sound-producing stridulatory movements of the hind legs. To study sensory-to-motor processing during acoustic communication we used multielectrodes that allowed simultaneous recordings of acoustically stimulated electrical activity from several ascending auditory interneurons or local brain neurons and subsequent electrical stimulation of the recording site. Auditory activity was detected in the lateral protocerebrum (where most of the described ascending auditory interneurons terminate), in the superior medial protocerebrum and in the central complex, that has previously been implicated in the control of sound production. Neural responses to behaviorally attractive sound stimuli showed no or only poor correlation with behavioral responses. Current injections into the lateral protocerebrum, the central complex and the deuto-/tritocerebrum (close to the cerebro-cervical fascicles), but not into the superior medial protocerebrum, elicited species-typical stridulation with high success rate. Latencies and numbers of phrases produced by electrical stimulation were different between these brain regions. Our results indicate three brain regions (likely neuropils) where auditory activity can be detected with two of these regions being potentially involved in song initiation.
Collapse
Affiliation(s)
- Mit Balvantray Bhavsar
- University of Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Cellular Neurobiology, Julia Lermontowa-Weg 3, D-37077 Göttingen, Germany.
| | - Andreas Stumpner
- University of Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Cellular Neurobiology, Julia Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Ralf Heinrich
- University of Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Cellular Neurobiology, Julia Lermontowa-Weg 3, D-37077 Göttingen, Germany
| |
Collapse
|
49
|
Minocha S, Boll W, Noll M. Crucial roles of Pox neuro in the developing ellipsoid body and antennal lobes of the Drosophila brain. PLoS One 2017; 12:e0176002. [PMID: 28441464 PMCID: PMC5404782 DOI: 10.1371/journal.pone.0176002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/04/2017] [Indexed: 01/18/2023] Open
Abstract
The paired box gene Pox neuro (Poxn) is expressed in two bilaterally symmetric neuronal clusters of the developing adult Drosophila brain, a protocerebral dorsal cluster (DC) and a deutocerebral ventral cluster (VC). We show that all cells that express Poxn in the developing brain are postmitotic neurons. During embryogenesis, the DC and VC consist of only 20 and 12 neurons that express Poxn, designated embryonic Poxn-neurons. The number of Poxn-neurons increases only during the third larval instar, when the DC and VC increase dramatically to about 242 and 109 Poxn-neurons, respectively, virtually all of which survive to the adult stage, while no new Poxn-neurons are added during metamorphosis. Although the vast majority of Poxn-neurons express Poxn only during third instar, about half of them are born by the end of embryogenesis, as demonstrated by the absence of BrdU incorporation during larval stages. At late third instar, embryonic Poxn-neurons, which begin to express Poxn during embryogenesis, can be easily distinguished from embryonic-born and larval-born Poxn-neurons, which begin to express Poxn only during third instar, (i) by the absence of Pros, (ii) their overt differentiation of axons and neurites, and (iii) the strikingly larger diameter of their cell bodies still apparent in the adult brain. The embryonic Poxn-neurons are primary neurons that lay out the pioneering tracts for the secondary Poxn-neurons, which differentiate projections and axons that follow those of the primary neurons during metamorphosis. The DC and the VC participate only in two neuropils of the adult brain. The DC forms most, if not all, of the neurons that connect the bulb (lateral triangle) with the ellipsoid body, a prominent neuropil of the central complex, while the VC forms most of the ventral projection neurons of the antennal lobe, which connect it ipsilaterally to the lateral horn, bypassing the mushroom bodies. In addition, Poxn-neurons of the VC are ventral local interneurons of the antennal lobe. In the absence of Poxn protein in the developing brain, embryonic Poxn-neurons stall their projections and cannot find their proper target neuropils, the bulb and ellipsoid body in the case of the DC, or the antennal lobe and lateral horn in the case of the VC, whereby the absence of the ellipsoid body neuropil is particularly striking. Poxn is thus crucial for pathfinding both in the DC and VC. Additional implications of our results are discussed.
Collapse
Affiliation(s)
- Shilpi Minocha
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Werner Boll
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Markus Noll
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
50
|
Sensory system plasticity in a visually specialized, nocturnal spider. Sci Rep 2017; 7:46627. [PMID: 28429798 PMCID: PMC5399460 DOI: 10.1038/srep46627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
The interplay between an animal’s environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.
Collapse
|