1
|
Kato T, Fukao K, Ohara T, Naya N, Tokuyama R, Muto S, Fukasawa H, Itai A, Matsumura KI. Design, Synthesis, and Anti-Inflammatory Evaluation of a Novel PPARδ Agonist with a 4-(1-Pyrrolidinyl)piperidine Structure. J Med Chem 2023; 66:11428-11446. [PMID: 37552807 DOI: 10.1021/acs.jmedchem.3c00932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) is considered to be a pharmaceutical target to treat metabolic diseases including atherosclerosis, but there is no PPARδ agonist available for clinical use. We have previously reported the discovery of piperidinyl/piperazinyl benzothiazole derivatives as a new series of PPARδ agonists using docking-based virtual screening methods. In the present study, we found that introduction of a pyrrolidine group into the 4-position of their central piperidine rings enhances hPPARδ activity and subtype selectivity. This led to the discovery of 21 having strong PPARδ agonist activity (EC50 = 3.6 nM) with excellent ADME properties. Furthermore, 21 significantly suppressed atherosclerosis progression by 50-60% with reduction of the serum level of MCP-1 in LDLr-KO mice.
Collapse
Affiliation(s)
- Terukazu Kato
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Keita Fukao
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Takafumi Ohara
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Noriyuki Naya
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Ryukou Tokuyama
- Institute of Medicinal Molecular Design, Inc., Tokyo 113-0033, Japan
| | - Susumu Muto
- Institute of Medicinal Molecular Design, Inc., Tokyo 113-0033, Japan
| | - Hiroshi Fukasawa
- Institute of Medicinal Molecular Design, Inc., Tokyo 113-0033, Japan
| | - Akiko Itai
- Institute of Medicinal Molecular Design, Inc., Tokyo 113-0033, Japan
| | - Ken-Ichi Matsumura
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
2
|
Lien CF, Lin CS, Shyue SK, Hsieh PS, Chen SJ, Lin YT, Chien S, Tsai MC. Peroxisome proliferator-activated receptor δ improves the features of atherosclerotic plaque vulnerability by regulating smooth muscle cell phenotypic switching. Br J Pharmacol 2023; 180:2085-2101. [PMID: 36942453 DOI: 10.1111/bph.16074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular smooth muscle cells (SMCs) undergo phenotypic switching during sustained inflammation, contributing to an unfavourable atherosclerotic plaque phenotype. PPARδ plays an important role in regulating SMC functions; however, its role in atherosclerotic plaque vulnerability remains unclear. Here, we explored the pathological roles of PPARδ in atherosclerotic plaque vulnerability in severe atherosclerosis and elucidated the underlying mechanisms. EXPERIMENTAL APPROACH Plasma levels of PPARδ were measured in patients with acute coronary syndrome (ACS) and stable angina (SA). SMC contractile and synthetic phenotypic markers, endoplasmic reticulum (ER) stress, and features of atherosclerotic plaque vulnerability were analysed for the brachiocephalic artery of apolipoprotein E-knockout (ApoE-/- ) mice, fed a high-cholesterol diet (HCD) and treated with or without the PPARδ agonist GW501516. In vitro, the role of PPARδ was elucidated using human aortic SMCs (HASMCs). KEY RESULTS Patients with ACS had significantly lower plasma PPARδ levels than those with SA. GW501516 reduced atherosclerotic plaque vulnerability, a synthetic SMC phenotype, ER stress markers, and NLRP3 inflammasome expression in HCD-fed ApoE-/- mice. ER stress suppressed PPARδ expression in HASMCs. PPARδ activation inhibited ER stress-induced synthetic phenotype development, ER stress-NLRP3 inflammasome axis activation and matrix metalloproteinase 2 (MMP2) expression in HASMCs. PPARδ inhibited NFκB signalling and alleviated ER stress-induced SMC phenotypic switching. CONCLUSIONS AND IMPLICATIONS Low plasma PPARδ levels may be associated with atherosclerotic plaque vulnerability. Our findings provide new insights into the mechanisms underlying the protective effect of PPARδ on SMC phenotypic switching and improvement the features of atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Chih-Feng Lien
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Song-Kun Shyue
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Tan Lin
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Shu Chien
- Department of Bioengineering and Medicine, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Senn L, Costa AM, Avallone R, Socała K, Wlaź P, Biagini G. Is the peroxisome proliferator-activated receptor gamma a putative target for epilepsy treatment? Current evidence and future perspectives. Pharmacol Ther 2023; 241:108316. [PMID: 36436690 DOI: 10.1016/j.pharmthera.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.
Collapse
Affiliation(s)
- Lara Senn
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna-Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
5
|
Chandra A, Kaur P, Sahu SK, Mittal A. A new insight into the treatment of diabetes by means of pan PPAR agonists. Chem Biol Drug Des 2022; 100:947-967. [PMID: 34990085 DOI: 10.1111/cbdd.14020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/25/2023]
Abstract
PPARs stand for 'peroxisome proliferator-activated receptors' and are ligand-activated transcription factors of nuclear hormone receptor superfamily. A list of the most commonly used single receptor PPAR agonists, that is α (alpha) PPAR agonists, β/δ(beta/delta) PPAR agonists, γ(gamma) PPAR agonists, along with pan PPAR agents, that are being researched on, are marketed, are in clinical trials or are being studied for further derivative findings, has been listed. Type 2 diabetes constitutes about 90% of total diabetes cases. Pan PPAR ligands could very well pave the foundation for a new class of agents, that can act on all 3 PPAR receptors, and produce better effects in general, than the individual receptor-acting ligands or dual combination ligands (α/ γ). In this review paper, we have detailed various pan PPAR agonists that can be used to treat type 2 diabetes, which can generate potential derivatives as well.
Collapse
Affiliation(s)
- Avik Chandra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Paranjeet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amit Mittal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Xiao L, Wang N. PPAR-δ: A key nuclear receptor in vascular function and remodeling. J Mol Cell Cardiol 2022; 169:1-9. [DOI: 10.1016/j.yjmcc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/08/2022]
|
7
|
Efficacy of elafibranor in patients with liver abnormalities especially non-alcoholic steatohepatitis: a systematic review and meta-analysis. Clin J Gastroenterol 2021; 14:1579-1586. [PMID: 34370218 DOI: 10.1007/s12328-021-01491-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Dyslipidemia is a very common medical disorder affecting nearly 33.5% of US adults over 20 years of age. It represents the major risk factor for non-alcoholic fatty liver (NAFLD) and cardiovascular diseases, which is the most common cause of death worldwide. Elafibranor is a peroxisome proliferator-activated receptor (PPAR) alpha and delta dual agonist. A novel dual peroxisome proliferator-activated receptor alpha/delta (PPAR-α/δ), elafibranor, the agonist is an emerging therapy with promising hepatoprotective results. OBJECTIVES To estimate the efficacy of elafibranor in patients with liver abnormalities especially non-alcoholic steatohepatitis (NASH). METHODS We searched the following databases: PubMed, SCOPUS, Web of Science, and Cochrane Library for relevant clinical trials assessing the use of silymarin in patients with NAFLD. Risk of bias assessment was performed using Cochrane's risk of bias tool. We included the following outcomes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), HOMA-IR, total cholesterol (TC), triglyceride (TG), HDL-cholesterol (HDL-C), and LDL-cholesterol (LDL-C). RESULTS We included four clinical trials. We found that elafibranor significantly reduced the levels of ALT {MD = - 4.60 [- 8.17, - 1.04], (P = 0.01)}, GGT {MD = - 16.57 [- 26.59, - 6.56], (P < 0.01)}, TC {MD = - 0.37 [- 0.66, - 0.08], (P = 0.01)}, TG {MD = - 0.37 [- 0.51, - 0.24], (P < 0.01)}, ALP {(MD = - 14.45 [- 18.99, - 9.91], (P < 0.01)}, and LDL {MD = - 0.20 [- 0.33, - 0.07], (P = 0.003)}. There was no significant difference regarding HOMA-IR {MD = - 0.32 [- 0.88, 0.24], (P = 0.26) and AST (P = 0.53). CONCLUSION PPAR-alpha/delta dual agonist, elafibranor, is a promising drug that improves most metabolic parameters in dyslipidemic patients.
Collapse
|
8
|
Choi JSY, de Haan JB, Sharma A. Animal models of diabetes-associated vascular diseases: an update on available models and experimental analysis. Br J Pharmacol 2021; 179:748-769. [PMID: 34131901 DOI: 10.1111/bph.15591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disorder associated with the accelerated development of macrovascular (atherosclerosis and coronary artery disease) and microvascular complications (nephropathy, retinopathy and neuropathy), which remain the principal cause of mortality and morbidity in this population. Current understanding of cellular and molecular pathways of diabetes-driven vascular complications, as well as therapeutic interventions has arisen from studying disease pathogenesis in animal models. Diabetes-associated vascular complications are multi-faceted, involving the interaction between various cellular and molecular pathways. Thus, the choice of an appropriate animal model to study vascular pathogenesis is important in our quest to identify innovative and mechanism-based targeted therapies to reduce the burden of diabetic complications. Herein, we provide up-to-date information on available mouse models of both Type 1 and Type 2 diabetic vascular complications as well as experimental analysis and research outputs.
Collapse
Affiliation(s)
- Judy S Y Choi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.,Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Monash University, Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Yan Q, Tang J, Zhang X, Wu L, Xu Y, Wang L. Does Transient Receptor Potential Vanilloid Type 1 Alleviate or Aggravate Pathological Myocardial Hypertrophy? Front Pharmacol 2021; 12:681286. [PMID: 34040539 PMCID: PMC8143375 DOI: 10.3389/fphar.2021.681286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel, which is involved in the endogenous stress adaptation mechanism for protection of the heart as well as the occurrence and development of some heart diseases. Although the effect of activation of the TRPV1 channel on different types of non-neural cells in the heart remains unclear, most data show that stimulation of sensory nerves expressing TRPV1 or stimulation/overexpression of the TRPV1 channel has a beneficial role in heart disease. Some studies have proven that TRPV1 has an important relationship with pathological myocardial hypertrophy, but the specific mechanism and effect are not clear. In order to help researchers better understand the relationship between TRPV1 and pathological myocardial hypertrophy, this paper aims to summarize the effect of TRPV1 and the related mechanism in the occurrence and development of pathological myocardial hypertrophy from the following three points of view: 1) role of TRPV1 in alleviation of pathological myocardial hypertrophy; 2) role of TRPV1 in aggravation of pathological myocardial hypertrophy; and 3) the point of view of our team of researchers. It is expected that new therapies can provide potential targets for pathological myocardial hypertrophy.
Collapse
Affiliation(s)
- Qiqi Yan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Liuyang Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunyi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
10
|
VCAM-1-targeted and PPARδ-agonist-loaded nanomicelles enhanced suppressing effects on apoptosis and migration of oxidized low-density lipoprotein-induced vascular smooth muscle cells. Biosci Rep 2021; 40:222727. [PMID: 32314783 PMCID: PMC7218220 DOI: 10.1042/bsr20200559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose: Nanomicelles (NMs) have been widely used for various biomedical applications due to its unique physiochemical properties. The present study aims to investigate the effects of vascular cell adhesion molecule-1 (VCAM-1)-targeted and peroxisome proliferator-activated receptor δ (PPARδ) agonist (GW0742)-loaded NMs on apoptosis and migration in oxidized low-density lipoprotein (ox-LDL)-induced human aortic vascular smooth muscle cells (HAVSMCs). Methods: The GW0742-loaded NMs (M-GW) and VCAM-1-targeted NMs loaded with GW0742 (TM-GW) were prepared, and then the morphologies and the size distribution of M-GM and TM-GM were observed by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. In vitro drug release assay of M-GM and TM-GM were performed as well. Next, HAVSMCs were cultured in medium containing ox-LDL to mimic atherosclerotic environment, and the effects of free GW0742, M-GM and TM-GM on endocytosis, cell migration and apoptosis, as well as the expression of VCAM-1, and proteins associated with migration and apoptosis were measured in HAVSMCs treated with ox-LDL. Results: M-GM and TM-GM were successfully prepared. VCAM-1 was overexpressed in HAVSMCs treated with ox-LDL, and TM-GM had a strong targeting ability to HAVSMCs treated with ox-LDL compared with M-GM. In addition, compared with free GW0742, both M-GM and TM-GM significantly diminished cell apoptosis and migration in HAVSMCs treated with ox-LDL. Conclusions: TM-GM had a superior suppressing effect on apoptosis and migration of ox-LDL-induced HAVSMCs.
Collapse
|
11
|
Guirguis E, Grace Y, Bolson A, DellaVecchia MJ, Ruble M. Emerging therapies for the treatment of nonalcoholic steatohepatitis: A systematic review. Pharmacotherapy 2021; 41:315-328. [PMID: 33278029 DOI: 10.1002/phar.2489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023]
Abstract
To describe the mechanism, efficacy, and safety of novel agents that have reached phase 3 clinical trials for the treatment of biopsy-proven nonalcoholic steatohepatitis (NASH). A literature search was conducted using the PRISMA guidelines of MEDLINE databases (1990 to October 2020) with the following MeSH terms: NASH, nonalcoholic liver disease, fatty liver, liver diseases, steatohepatitis, liver fibrosis; combined with obeticholic acid, FXR agonist, cenicriviroc, CCR5 receptor antagonist, elafibranor, PPAR, selonsertib, ASK-1 inhibitor, resmetirom, THR-β receptor, arachidyl amido cholanoic acid (Aramchol™), and SCD-1 modulator. Results were verified via clinicaltrials.gov, Google Scholar, and Google. Articles were included if the medications of interest had ongoing or completed phase 3 trials in biopsy-proven NASH with outcomes directly related to NASH resolution. Eleven studies were identified involving obeticholic acid (OCA), elafibranor, cenicriviroc, Aramchol, and resmetirom. Two agents have reported data from phase 3 trials: OCA and elafibranor. OCA demonstrated safety and efficacy in NASH with a primary end point of improvement or NASH resolution; a new drug approval has been submitted. Elafibranor failed to show efficacy in NASH in the preliminary report from the RESOLVE-IT trial; however, the study is being extended to reassess outcomes. The remaining agents demonstrated positive results in phase 2b studies and have initiated phase 3 trials. With projections for increased prevalence of patients with NASH and the current lack of treatment options, novel agents with targeted mechanisms could potentially change the treatment landscape. The manufacturer of OCA is first to submit a new drug application for the treatment of NASH. These novel agents may fill a pharmacotherapy gap in patients with NASH and possibly prevent progression to advanced liver disease.
Collapse
Affiliation(s)
- Erenie Guirguis
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Yasmin Grace
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Anthony Bolson
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Matthew J DellaVecchia
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida, USA
| | - Melissa Ruble
- Taneja College of Pharmacy, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
12
|
Gamdzyk M, Doycheva DM, Kang R, Tang H, Travis ZD, Tang J, Zhang JH. GW0742 activates miR-17-5p and inhibits TXNIP/NLRP3-mediated inflammation after hypoxic-ischaemic injury in rats and in PC12 cells. J Cell Mol Med 2020; 24:12318-12330. [PMID: 33034416 PMCID: PMC7686982 DOI: 10.1111/jcmm.15698] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the effects of PPAR‐β/δ receptor agonist GW0742 on neuroinflammation in a rat model of hypoxia‐ischaemia (HI) and in PC12 cells in OGD model. HI was induced by ligating the common carotid artery and inducing hypoxia for 150 minutes. Immunofluorescence was used for quantification of microglia activation and for determining cellular localization of PPAR‐β/δ. Expression of proteins was measured by Western blot. Activation of miR‐17‐5p by GW0742 was assessed in PC12 cells by Dual‐Luciferase Reporter Gene Assay. The endogenous expression of TXNIP, NLRP3, cleaved caspase‐1 and IL‐1β was increased after HI. GW0742 treatment significantly reduced the number of activated pro‐inflammatory microglia in ipsilateral hemisphere after HI. Mechanistically, GW0742 significantly decreased the expression of TXNIP, NLRP3, IL‐6 and TNF‐α. Either PPAR‐β/δ antagonist GSK3787, miR‐17‐5p inhibitor, or TXNIP CRISPR activation abolished the anti‐inflammatory effects of GW0742. Activation of PPAR‐β/δ by GW0742 activated miR‐17‐5p expression in PC12 cells and increased cell viability after OGD, which was accompanied by decreased expression of TXNIP and reduced secretion of IL‐1β and TNF‐α. In conclusion, GW0742 may be a promising neurotherapeutic for the management of HI patients.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ruiqing Kang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Zackary D Travis
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
13
|
Welc SS, Wehling-Henricks M, Antoun J, Ha TT, Tous I, Tidball JG. Differential Effects of Myeloid Cell PPARδ and IL-10 in Regulating Macrophage Recruitment, Phenotype, and Regeneration following Acute Muscle Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1664-1677. [PMID: 32817369 PMCID: PMC7484367 DOI: 10.4049/jimmunol.2000247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Changes in macrophage phenotype in injured muscle profoundly influence regeneration. In particular, the shift of macrophages from a proinflammatory (M1 biased) phenotype to a proregenerative (M2 biased) phenotype characterized by expression of CD206 and CD163 is essential for normal repair. According to the current canonical mechanism regulating for M1/M2 phenotype transition, signaling through PPARδ is necessary for obtaining the M2-biased phenotype. Our findings confirm that the murine myeloid cell-targeted deletion of Ppard reduces expression in vitro of genes that are activated in M2-biased macrophages; however, the mutation in mice in vivo increased numbers of CD206+ M2-biased macrophages and did not reduce the expression of phenotypic markers of M2-biased macrophages in regenerating muscle. Nevertheless, the mutation impaired CCL2-mediated chemotaxis of macrophages and slowed revascularization of injured muscle. In contrast, null mutation of IL-10 diminished M2-biased macrophages but produced no defects in muscle revascularization. Our results provide two significant findings. First, they illustrate that mechanisms that regulate macrophage phenotype transitions in vitro are not always predictive of mechanisms that are most important in vivo. Second, they show that mechanisms that regulate macrophage phenotype transitions differ in different in vivo environments.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jacqueline Antoun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Tracey T Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Isabella Tous
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095;
- Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095; and
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
14
|
Tian D, Hong H, Shang W, Ho CC, Dong J, Tian XY. Deletion of Ppard in CD11c + cells attenuates atherosclerosis in ApoE knockout mice. FASEB J 2020; 34:3367-3378. [PMID: 31919912 DOI: 10.1096/fj.201902069r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022]
Abstract
Ppardδ, one of the lipid-activated nuclear receptor expressed in many cell types to activate gene transcription, also regulates cellular functions other than lipid metabolism. The mechanism regulating the function of antigen-presenting cells during the development of atherosclerosis is not fully understood. Here we aimed to study the involvement of PPARδ in CD11c+ cells in atherosclerosis. We used the Cre-loxP approach to make conditional deletion of Ppard in CD11c+ cells in mice on Apoe-/- background, which were fed with high cholesterol diet to develop atherosclerosis. Ppard deficiency in CD11c+ cells attenuated atherosclerotic plaque formation and infiltration of myeloid-derived dendritic cells (DCs) and T lymphocytes. Reduced lesion was accompanied by reduced activation of dendritic cells, and also a reduction of activation and differentiation of T cells to Th1 cells. In addition, DC migration to lymph node was also attenuated with Ppard deletion. In bone marrow-derived DCs, Ppard deficiency reduced palmitic acid-induced upregulation of co-stimulatory molecules and pro-inflammatory cytokine IL12 and TNFα. Our results indicated PPARδ activation by fatty acid resulted in the activation of myeloid DCs and subsequent polarization of T lymphocytes, which contributed to atherosclerosis in Apoe-/- mice. These findings also reveal the potential regulatory role of PPARδ in antigen presentation to orchestrate the immune responses during atherosclerosis.
Collapse
Affiliation(s)
- Danyang Tian
- School of Biomedical Sciences, Institute of Vascular Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Huiling Hong
- School of Biomedical Sciences, Institute of Vascular Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenbin Shang
- School of Biomedical Sciences, Institute of Vascular Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chin Chung Ho
- School of Biomedical Sciences, Institute of Vascular Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Institute of Vascular Medicine, the Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
15
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome (MetS) and comprises one of the largest health threats of the twenty-first century. In this chapter, we review the current state of knowledge of NAFLD and underline the striking similarities with atherosclerosis. We first describe current epidemiological data showing the staggering increase of NAFLD numbers and its related clinical and economic costs. We then provide an overview of pathophysiological hepatic processes in NAFLD and highlight the systemic aspects of NAFLD that point toward metabolic crosstalk between organs as an important cause of metabolic disease. Finally, we end by highlighting the currently investigated therapeutic approaches for NAFLD, which also show strong similarities with a range of treatment options for atherosclerosis.
Collapse
|
16
|
Wang Y, Yu Y, Wang Q, Wei S, Wang S, Qin Q, Yang M. PPAR-δ of orange-spotted grouper exerts antiviral activity against fish virus and regulates interferon signaling and inflammatory factors. FISH & SHELLFISH IMMUNOLOGY 2019; 94:38-49. [PMID: 31470135 DOI: 10.1016/j.fsi.2019.08.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Peroxisome proliferator-activated receptor δ (PPAR-δ), also called PPAR-β or PPAR-β/δ, is a member of the peroxisome proliferator-activated receptor (PPAR) family, which belongs to the nuclear steroid receptor superfamily. Activated PPARs participate in the regulation of lipid and glucose metabolism and also affect cellular proliferation, differentiation, and apoptosis, and the immune responses. To investigate the roles of PPAR-δ in Singapore grouper iridovirus (SGIV) infection, we cloned and characterized the gene encoding a PPAR-δ homologue from the orange-spotted grouper, Epinephelus coioides (EcPPAR-δ). EcPPAR-δ encodes a 514-amino-acid polypeptide, with 95.29% and 74.76% homologue to the Seriola dumerili and human proteins, respectively. EcPPAR-δ contains a typical DNA-binding domain and a ligand-binding domain. Its expression was induced by SGIV infection in vitro. A subcellular localization analysis showed that EcPPAR-δ localizes throughout the cytoplasm and nucleus, with a diffuse intracellular expression pattern. SGIV replication was reduced by EcPPAR-δ overexpression, which was evident in the reduced severity of the cytopathic effect, reduced viral gene transcription, and the reduced expression of the viral capsid protein. The replication of SGIV increased with the knockdown of EcPPAR-δ. The overexpression and silencing of EcPPAR-δ in grouper spleen cells showed that EcPPAR-δ plays a positive role in the regulation of the interferon signaling pathway, but has an anti-inflammatory effect on the inflammatory response. The anti-inflammatory effect of EcPPAR-δ may be related to its function in maintaining cell homeostasis. Because the interferon signaling pathway plays an important role in antiviral immune responses, we speculate that the activation of the interferon signaling pathway by EcPPAR-δ overexpression underlies its inhibitory effect on SGIV replication. Together, our data greatly extend our understanding of the roles of the EcPPAR-δ family members in the pathogenesis of fish viruses.
Collapse
Affiliation(s)
- Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Lee T, Park HS, Jeong JH, Jung TW. Kynurenic acid attenuates pro-inflammatory reactions in lipopolysaccharide-stimulated endothelial cells through the PPARδ/HO-1-dependent pathway. Mol Cell Endocrinol 2019; 495:110510. [PMID: 31319098 DOI: 10.1016/j.mce.2019.110510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023]
Abstract
Kynurenic acid (KA) regulates energy homeostasis and alleviates inflammation in adipose tissue but how KA affects the atherosclerotic response in HUVECs remains unclear. We evaluated the effects of KA on lipopolysaccharide (LPS)-induced inflammation and apoptosis in HUVECs. KA enhanced peroxisome proliferator-activated receptor delta (PPARδ) expression in HUVECs and THP-1 cells and suppressed LPS-induced atherosclerotic responses through PPARδ-mediated signaling. Moreover, KA treatment mitigated LPS-induced phosphorylation of nuclear factor kappa B and pro-inflammatory cytokine release in HUVECs and THP-1 cells, and down-regulated adhesion molecules in HUVECs and adhesion of THP-1 cells to HUVECs following LPS treatment. KA treatment decreased LPS-induced inflammation and apoptosis, and also promoted heme oxygenase (HO)-1 expression, which suppresses inflammation in HUVECs. Suppression of PPARδ or HO-1 expression markedly mitigated the effects of KA on atherosclerotic responses in HUVECs. Thus, KA attenuates LPS-induced atherosclerotic responses by suppressing inflammation via the PPARδ/HO-1-dependent pathway.
Collapse
Affiliation(s)
- Taeseung Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyung Sub Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Prasad AS, Bao B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants (Basel) 2019; 8:antiox8060164. [PMID: 31174269 PMCID: PMC6617024 DOI: 10.3390/antiox8060164] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
The essentiality of zinc as a trace mineral in human health has been recognized for over five decades. Zinc deficiency, caused by diet, genetic defects, or diseases, can cause growth retardation, delayed sexual maturation, depressed immune response, and abnormal cognitive functions in humans. Zinc supplementation in zinc-deficient individuals can overcome or attenuate these abnormalities, suggesting zinc is an essential micro-nutrient in the body. A large number of in vitro and in vivo experimental studies indicate that zinc deficiency also causes apoptosis, cellular dysfunction, deoxyribonucleic acid (DNA) damage, and depressed immune response. Oxidative stress, due to the imbalance of reactive oxygen species (ROS) production and detoxification in the anti-oxidant defense system of the body, along with subsequent chronic inflammation, is believed to be associated with many chronic degenerative diseases such as diabetes, heart diseases, cancers, alcohol-related disease, macular degenerative disease, and neuro-pathogenesis. A large number of experimental studies including cell culture, animal, and human clinical studies have provided supportive evidence showing that zinc acts as an anti-oxidative stress agent by inhibition of oxidation of macro-molecules such as (DNA)/ribonucleic acid (RNA) and proteins as well as inhibition of inflammatory response, eventually resulting in the down-regulation of (ROS) production and the improvement of human health. In this article, we will discuss the molecular mechanisms of zinc as an anti-oxidative stress agent or mediator in the body. We will also discuss the applications of zinc supplementation as an anti-oxidative stress agent or mediator in human health and disease.
Collapse
Affiliation(s)
- Ananda S Prasad
- Department of Oncology, School of Medicine, Wayne State University and Karmanos Cancer Center, Detroit, MI 48201, USA.
| | - Bin Bao
- Department of Oncology, School of Medicine, Wayne State University and Karmanos Cancer Center, Detroit, MI 48201, USA.
| |
Collapse
|
19
|
The association between peroxisome proliferator-activated receptor Δ rs3777744, rs3798343, and rs6922548 and coronary artery disease. Biosci Rep 2019; 39:BSR20181510. [PMID: 30429241 PMCID: PMC6328892 DOI: 10.1042/bsr20181510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of the present study is to investigate the association between the single nucleotide polymorphism (SNP) sites of peroxisome proliferator-activated receptor Δ (PPARD) and the risk of coronary artery disease (CAD). To this end, a prospective observational single-center study of the clinical data from 880 subjects in a Chinese population was conducted. Methods: A total of 880 subjects, including 609 CAD patients and 271 control subjects, were selected for the present study. All inpatients had 4 ml of venous blood drawn after 12 h of fasting, and then clinical tests were conducted to obtain the biochemical parameters. CAD patients and Controls were distinguished by coronary angiography. Statistical analysis was conducted with SPSS software (ver 16.0). Results: A significant association between the G-alleles of PPARD rs3777744 and rs3798343 and a decreased risk for CAD was found. Moreover, we found an interaction between high fasting high-density lipoprotein cholesterol (HDL-C) serum levels, low serum glucose levels and their genotypes, ultimately decreasing the risk of CAD. Haplotype analysis was conducted on the three SNP sites, rs3777744 and rs3798343 to form a block [r2 = 0.79, D′ = 0.99). The A-C haplotypes were associated with an increased risk of CAD (odds ratio (OR), 95% confidence interval (CI): 1.321 (1.060–1.647), P=0.013], and the G-G haplotypes were associated with a decreased risk [OR, 95% CI: 0.714 (0.567–0.849), P=0.004]. Conclusions: Our study indicates a significant association between the G-alleles of PPARD rs3777744 and rs3798343 and a decreased CAD risk. In addition, genotypes interact with high serum HDL-C levels and low serum glucose levels, resulting in decreased prevalence of CAD.
Collapse
|
20
|
Cheang WS, Wong WT, Wang L, Cheng CK, Lau CW, Ma RCW, Xu A, Wang N, Huang Y, Tian XY. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor δ. Pharmacol Res 2019; 139:384-394. [DOI: 10.1016/j.phrs.2018.11.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 12/30/2022]
|
21
|
Comparison between red wine and isolated trans-resveratrol on the prevention and regression of atherosclerosis in LDLr (-/-) mice. J Nutr Biochem 2018; 61:48-55. [PMID: 30184518 DOI: 10.1016/j.jnutbio.2018.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/22/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
Moderate consumption of red wine has been widely associated with reduced cardiovascular risk, mainly due to its composition in phenolic compounds with antioxidant activity, such as resveratrol. The objective of this study was to compare the effect of red wine vs. trans-resveratrol consumption on the prevention and regression of atherosclerosis in LDLr (-/-) mice. This study consisted of two protocols: "Prevention" (PREV) and "Regression" (REGR). Both protocols included four groups: red wine (WINE), dealcoholized red wine (EXT), trans-resveratrol (RESV), and control (CONT). In PREV protocol, animals received a regular diet for 8 weeks and then switched to an atherogenic diet for the following 8 weeks, while the opposite was performed in REGR. Animals that received atherogenic diet after an initial period of standard diet (PREV) gained more body weight (39.25±2.30%) than the opposite (29.27±1.91%, P=.0013), suggesting an interaction between age and weight gain. Trans-resveratrol showed the highest hypocholesterolemic effect during PREV, reducing total cholesterol, LDL-C, VLDL-C and HDL-C. Supplementation with trans-resveratrol and dealcoholized red wine changed the fatty acids profile in the liver in both protocols, leading to an increase of MDA concentrations and SOD activity in the PREV protocol. In conclusion, supplementation with trans-resveratrol, red wine and the same wine without alcohol altered biomarkers of oxidative stress and lipidemia but had no effect on the prevention or regression of fatty streaks. These data suggest that cardiovascular protection associated with the "French Paradox" may be a result of synergistic effects between wine and the Mediterranean diet.
Collapse
|
22
|
Silva AKS, Peixoto CA. Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cell Mol Life Sci 2018; 75:2951-2961. [PMID: 29789866 PMCID: PMC11105365 DOI: 10.1007/s00018-018-2838-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
Overweight and obesity have been identified as the most important risk factors for many diseases, including cardiovascular disease, type 2 diabetes and lipid disorders, such as non-alcoholic fatty liver disease (NAFLD). The metabolic changes associated with obesity are grouped to define metabolic syndrome, which is one of the main causes of morbidity and mortality in industrialized countries. NAFLD is considered to be the hepatic manifestation of metabolic syndrome and is one of the most prevalent liver diseases worldwide. Inflammation plays an important role in the development of numerous liver diseases, contributing to the progression to more severe stages, such as non-alcoholic steatohepatitis and hepatocellular carcinoma. Peroxisome proliferator-activated receptors (PPARs) are binder-activated nuclear receptors that are involved in the transcriptional regulation of lipid metabolism, energy balance, inflammation and atherosclerosis. Three isotypes are known: PPAR-α, PPARδ/β and PPAR-γ. These isotypes play different roles in diverse tissues and cells, including the inflammatory process. In this review, we discuss current knowledge on the role PPARs in the hepatic inflammatory process involved in NAFLD as well as new pharmacological strategies that target PPARs.
Collapse
Affiliation(s)
- Amanda Karolina Soares Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
- Biological Sciences of the Federal University of Pernambuco, Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Jung TW, Park HS, Choi GH, Kim D, Jeong JH, Lee T. Chitinase‐3‐like protein 1 ameliorates atherosclerotic responses via PPARδ‐mediated suppression of inflammation and ER stress. J Cell Biochem 2018; 119:6795-6805. [DOI: 10.1002/jcb.26873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Tae Woo Jung
- Research Administration TeamSeoul National University Bundang HospitalSeongnamKorea
- Department of SurgerySeoul National University Bundang HospitalSeoul National University College of MedicineSeongnamKorea
| | - Hyung Sub Park
- Department of SurgerySeoul National University Bundang HospitalSeoul National University College of MedicineSeongnamKorea
| | - Geum Hee Choi
- Department of SurgerySeoul National University Bundang HospitalSeoul National University College of MedicineSeongnamKorea
| | - Daehwan Kim
- Department of SurgerySeoul National University Bundang HospitalSeoul National University College of MedicineSeongnamKorea
| | - Ji Hoon Jeong
- Department of PharmacologyCollege of MedicineChung‐Ang UniversitySeoulKorea
| | - Taeseung Lee
- Department of SurgerySeoul National University Bundang HospitalSeoul National University College of MedicineSeongnamKorea
- Department of SurgerySeoul National University College of MedicineSeoulKorea
| |
Collapse
|
24
|
Heck BE, Park JJ, Makani V, Kim EC, Kim DH. PPAR-δ Agonist With Mesenchymal Stem Cells Induces Type II Collagen-Producing Chondrocytes in Human Arthritic Synovial Fluid. Cell Transplant 2018; 26:1405-1417. [PMID: 28901183 PMCID: PMC5680970 DOI: 10.1177/0963689717720278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is an inflammatory joint disease characterized by degeneration of articular cartilage within synovial joints. An estimated 27 million Americans suffer from OA, and the population is expected to reach 67 million in the United States by 2030. Thus, it is urgent to find an effective treatment for OA. Traditional OA treatments have no disease-modifying effect, while regenerative OA therapies such as autologous chondrocyte implantation show some promise. Nonetheless, current regenerative therapies do not overcome synovial inflammation that suppresses the differentiation of mesenchymal stem cells (MSCs) to chondrocytes and the expression of type II collagen, the major constituent of functional cartilage. We discovered a synergistic combination that overcame synovial inflammation to form type II collagen-producing chondrocytes. The combination consists of peroxisome proliferator–activated receptor (PPAR) δ agonist, human bone marrow (hBM)-derived MSCs, and hyaluronic acid (HA) gel. Interestingly, those individual components showed their own strong enhancing effects on chondrogenesis. GW0742, a PPAR-δ agonist, greatly enhanced MSC chondrogenesis and the expression of type II collagen and glycosaminoglycan (GAG) in hBM-MSC-derived chondrocytes. GW0742 also increased the expression of transforming growth factor β that enhances chondrogenesis and suppresses cartilage fibrillation, ossification, and inflammation. HA gel also increased MSC chondrogenesis and GAG production. However, neither GW0742 nor HA gel could enhance the formation of type II collagen-producing chondrocytes from hBM-MSCs within human OA synovial fluid. Our data demonstrated that the combination of hBM-MSCs, PPAR-δ agonist, and HA gel significantly enhanced the formation of type II collagen-producing chondrocytes within OA synovial fluid from 3 different donors. In other words, the novel combination of PPAR-δ agonist, hBM-MSCs, and HA gel can overcome synovial inflammation to form type II collagen cartilage within human OA synovial fluid. This novel articularly injectable formula could improve OA treatment in the future clinical application.
Collapse
Affiliation(s)
- Bruce E Heck
- 1 NWO Stem Cure, LLC, Findlay, OH, USA.,2 Northwest Ohio Orthopedics and Sports Medicine, Findlay, OH, USA
| | - Joshua J Park
- 3 Department of Neurosciences, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Vishruti Makani
- 3 Department of Neurosciences, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Eun-Cheol Kim
- 4 Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- 1 NWO Stem Cure, LLC, Findlay, OH, USA.,2 Northwest Ohio Orthopedics and Sports Medicine, Findlay, OH, USA.,5 Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Choudhary M, Ding JD, Qi X, Boulton ME, Yao PL, Peters JM, Malek G. PPARβ/δ selectively regulates phenotypic features of age-related macular degeneration. Aging (Albany NY) 2017; 8:1952-1978. [PMID: 27622388 PMCID: PMC5076447 DOI: 10.18632/aging.101031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/26/2016] [Indexed: 01/18/2023]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a nuclear receptor that regulates differentiation, inflammation, lipid metabolism, extracellular matrix remodeling, and angiogenesis in multiple tissues. These pathways are also central to the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss globally. With the goal of identifying signaling pathways that may be important in the development of AMD, we investigated the impact of PPARβ/δ activation on ocular tissues affected in the disease. PPARβ/δ is expressed and can be activated in AMD vulnerable cells, including retinal pigment epithelial (RPE) and choroidal endothelial cells. Further, PPARβ/δ knockdown modulates AMD-related pathways selectively. Specifically, genetic ablation of Pparβ/δ in aged mice resulted in exacerbation of several phenotypic features of early dry AMD, but attenuation of experimentally induced choroidal neovascular (CNV) lesions. Antagonizing PPARβ/δ in both in vitro angiogenesis assays and in the in vivo experimentally induced CNV model, inhibited angiogenesis and angiogenic pathways, while ligand activation of PPARβ/δ, in vitro, decreased RPE lipid accumulation, characteristic of dry AMD. This study demonstrates for the first time, selective regulation of a nuclear receptor in the eye and establishes that selective targeting of PPARβ/δ may be a suitable strategy for treatment of different clinical sub-types of AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA
| | - Xiaoping Qi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael E Boulton
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pei-Li Yao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27703, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27703, USA
| |
Collapse
|
26
|
Raj R, Bhatti JS, Bhadada SK, Ramteke PW. Association of polymorphisms of peroxisome proliferator activated receptors in early and late onset of type 2 diabetes mellitus. Diabetes Metab Syndr 2017; 11 Suppl 1:S287-S293. [PMID: 28292576 DOI: 10.1016/j.dsx.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/03/2017] [Indexed: 12/06/2022]
Abstract
OBJECTIVE Genetic variation of disease susceptible genes is different in different ethnic groups and there is an evidence of association of polymorphisms of Peroxisome Proliferator Activated Receptors (PPARs) in Type 2 Diabetes Mellitus (T2DM). This research analyses the association of PPARs in early and late onset of T2DM in North Indian Population (NIP). METHODS Total of 703 subjects were recruited from north of India and subjects were further divided into subjects of early onset (less than 25 years of onset, 26 T2DM and 26 controls) and late onset (more than 25 years of onset, 326 T2DM and 325 controls). RESULT The onset of T2DM begins from 15 years and continues further to maximum T2DM subjects to the age of 50 (76% of T2DM). High BMI and WHR, high blood pressure leading to early onset of hypertension, early mortality due to T2DM (7% of T2DM is above 75 years and 3% of T2DM has 20 years duration of onset) and high hyperglycemic NIP were the few outcomes of this research. CONCLUSION There is a strong association of PPAR γ, PPAR α and PPAR δ genes on the susceptibility of T2DM in late onset but not with the early onset of T2DM subjects in North Indian Population: Dual association of PPAR γ was observed with its genotype G/G (Ala/Ala) favoring protection against T2DM and genotype C/C (Pro/Pro) favoring susceptibility to T2DM. Association of intron7 polymorphism of PPAR α and +T294C polymorphism of PPAR δ on the susceptibility to T2DM requires further analysis.
Collapse
Affiliation(s)
- Resal Raj
- Department of Computational Biology & Bioinformatics, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, UP, India.
| | - Jasvinder Singh Bhatti
- Department of Biotechnology & Bioinformatics, SGGS College, Sector L26 Chandigarh, India
| | | | - Pramod W Ramteke
- Department of Biological Sciences, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Deemed to be University, Allahabad, India
| |
Collapse
|
27
|
Chinetti-Gbaguidi G, Staels B. PPARβ in macrophages and atherosclerosis. Biochimie 2016; 136:59-64. [PMID: 28011212 DOI: 10.1016/j.biochi.2016.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/19/2022]
Abstract
Macrophages are central cells in the genesis and development of atherosclerosis, one of the major causes of cardiovascular diseases. Macrophages take up lipids (mainly cholesterol and triglycerides) from lipoproteins thus transforming into foam cells. Moreover, through the efflux pathway, macrophages are the main actors of the elimination of excessive tissue cholesterol toward extra-cellular acceptors. Macrophages participate in the control of inflammation by displaying different functional phenotypes, from the M1 pro-inflammatory to the M2 anti-inflammatory state. The nuclear receptor Peroxisome Proliferator-Activated Receptor (PPAR)β (also called PPARδ or PPARβ/δ) is expressed in macrophages where it plays a different role in the control of lipid metabolism, inflammation and phagocytosis of apoptotic cells. This review will summarize our current understanding of how PPARβ regulates macrophage biology and its impact on atherosclerosis. Differences between studies and species-specific macrophage gene regulation will be discussed.
Collapse
Affiliation(s)
| | - B Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, F-59000, Lille, France.
| |
Collapse
|
28
|
Tan NS, Vázquez-Carrera M, Montagner A, Sng MK, Guillou H, Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog Lipid Res 2016; 64:98-122. [PMID: 27665713 DOI: 10.1016/j.plipres.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research, 138673, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | | | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore
| | - Hervé Guillou
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France; Center for Integrative Genomics, University of Lausanne, Le Génopode, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
29
|
Choudhary M, Malek G. Rethinking Nuclear Receptors as Potential Therapeutic Targets for Retinal Diseases. ACTA ACUST UNITED AC 2016; 21:1007-1018. [PMID: 27455994 DOI: 10.1177/1087057116659856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Collectively, retinal diseases, including age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, result in severe vision impairment worldwide. The absence and/or limited availability of successful drug therapies for these blinding disorders necessitates further understanding their pathobiology and identifying new targetable signaling pathways. Nuclear receptors are transcription regulators of many key aspects of human physiology, as well as pathophysiology, with reported roles in development, aging, and disease. Some of the pathways regulated by nuclear receptors include, but are not limited to, angiogenesis, inflammation, and lipid metabolic dysregulation, mechanisms also important in the initiation and development of several retinal diseases. Herein, we present an overview of the biology of three diseases affecting the posterior eye, summarize a growing body of evidence that suggests direct or indirect involvement of nuclear receptors in disease progression, and discuss the therapeutic potential of targeting nuclear receptors for treatment.
Collapse
Affiliation(s)
- Mayur Choudhary
- 1 Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- 1 Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.,2 Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
30
|
Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries. Clin Sci (Lond) 2016; 130:1823-36. [PMID: 27413020 DOI: 10.1042/cs20160141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.
Collapse
|
31
|
Pharmacological Activation of Peroxisome Proliferator-Activated Receptor {Delta} Increases Sphingomyelin Synthase Activity in THP-1 Macrophage-Derived Foam Cell. Inflammation 2016; 39:1538-46. [DOI: 10.1007/s10753-016-0389-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Toral M, Romero M, Jiménez R, Robles-Vera I, Tamargo J, Martínez MC, Pérez-Vizcaíno F, Duarte J. Role of UCP2 in the protective effects of PPARβ/δ activation on lipopolysaccharide-induced endothelial dysfunction. Biochem Pharmacol 2016; 110-111:25-36. [DOI: 10.1016/j.bcp.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022]
|
33
|
Romero M, Jiménez R, Toral M, León-Gómez E, Gómez-Gúzman M, Sánchez M, Zarzuelo MJ, Rodríguez-Gómez I, Rath G, Tamargo J, Pérez-Vizcaíno F, Dessy C, Duarte J. Vascular and Central Activation of Peroxisome Proliferator-Activated Receptor-β Attenuates Angiotensin II-Induced Hypertension: Role of RGS-5. J Pharmacol Exp Ther 2016; 358:151-63. [PMID: 27189971 DOI: 10.1124/jpet.116.233106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor-β/δ (PPARβ) lowers blood pressure in genetic and mineralocorticoid-induced hypertension. Regulator of G-protein-coupled receptor signaling 5 (RGS5) protein, which interferes in angiotensin II (AngII) signaling, is a target gene to PPARβ The aim of the present study was to examine whether PPARβ activation in resistance arteries and brain tissues prevents the elevated blood pressure in AngII-induced hypertension and evaluate the role of RGS5 in this effect. C57BL/6J male mice were divided into five groups (control mice, PPARβ agonist [4-[[[2-[3-Fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy]acetic acid (GW0742)-treated mice AngII-infused mice, GW0742-treated AngII-infused mice, and AngII-infused mice treated with GW0742 plus PPARβ antagonist 3-[[[2-Methoxy-4-(phenylamino)phenyl]amino]sulfonyl]-2-thiophenecarboxylic acid methyl ester (GSK0660)) and were followed for 3 weeks. GW0742 prevented the increase in both arterial blood pressure and plasma noradrenaline levels and the higher reduction of blood pressure after ganglionic blockade, whereas it reduced the mesenteric arterial remodeling and the hyper-responsiveness to vasoconstrictors (AngII and endothelin-1) in AngII-infused mice. These effects were accompanied by an inhibition of NADPH oxidase expression and activity in the brain. Gene expression profiling revealed a marked loss of brainstem and vascular RGS5 in AngII-infused mice, which was restored by GW0742. GW0742-induced effects were abolished by GSK0660. Small interfering RNA targeting RGS5 caused augmented contractile response to AngII in resistance mesenteric arteries and blunted the inhibitory effect of GW0742 on this response. In conclusion, GW0742 exerted antihypertensive effects, restoring sympathetic tone and vascular structure and function in AngII-infused mice by PPARβ activation in brain and vessels inhibiting AngII signaling as a result of RGS5 upregulation.
Collapse
Affiliation(s)
- Miguel Romero
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Marta Toral
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Elvira León-Gómez
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Manuel Gómez-Gúzman
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - María José Zarzuelo
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Isabel Rodríguez-Gómez
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Geraldine Rath
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Juan Tamargo
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Chantal Dessy
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy (M.R., R.J., M.T., M.G.-G., M.S., M.J.Z., J.D.), and Department of Physiology (I.R.-G.); University of Granada, Granada, Spain; Center for Biomedical Research, Granada, Spain (R.J., J.D.); Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, School of Medicine, University of Louvain, Brussels, Belgium (E.L.-G., G.R., C.D.); Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain (J.T., F.P.-V.); and Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain (F.P.-V.)
| |
Collapse
|
34
|
Chronic peroxisome proliferator-activated receptorβ/δ agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. J Hypertens 2016; 33:1831-44. [PMID: 26147382 DOI: 10.1097/hjh.0000000000000634] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Endothelial dysfunction plays a key role in obesity-induced risk of cardiovascular disease. The aim of the present study was to analyze the effect of chronic peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW0742 treatment on endothelial function in obese mice fed a high-fat diet (HFD). METHODS AND RESULTS Five-week-old male mice were allocated to one of the following groups: control, control-treated (GW0742, 3 mg/kg per day, by oral gavage), HFD, HFD + GW0742, HFD + GSK0660 (1 mg/kg/day, intraperitoneal) or HFD-GW0742-GSK0660 and followed for 11 or 13 weeks. GW0742 administration to mice fed HFD prevented the gain of body weight, heart and kidney hypertrophy, and fat accumulation. The increase in plasma levels of fasting glucose, glucose tolerance test, homeostatic model assessment of insulin resistance, and triglyceride found in the HFD group was suppressed by GW0742. This agonist increased plasma HDL in HFD-fed mice and restored the levels of tumor necrosis factor-α and adiponectin in fat. GW0742 prevented the impaired nitric oxide-dependent vasodilatation induced by acetylcholine in aortic rings from mice fed HFD. Moreover, GW0742 increased both aortic Akt and endothelial nitric oxide synthase phosphorylation, and inhibited the increase in caveolin-1/endothelial nitric oxide synthase interaction, ethidium fluorescence, NOX-1, Toll-like receptor 4, tumor necrosis factor-α, and interleukin-6 expression, and IκBα phosphorylation found in aortae from the HFD group. GSK0660 prevented all changes induced by GW0742. CONCLUSION PPARβ/δ activation prevents obesity and exerts protective effects on hypertension and on the early manifestations of atherosclerosis, that is, endothelial dysfunction and the vascular pro-oxidant and pro-inflammatory status, in HFD-fed mice.
Collapse
|
35
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Yu CW, Liang X, Lipsky S, Karaaslan C, Kozakewich H, Hotamisligil GS, Bischoff J, Cataltepe S. Dual role of fatty acid-binding protein 5 on endothelial cell fate: a potential link between lipid metabolism and angiogenic responses. Angiogenesis 2015; 19:95-106. [PMID: 26625874 DOI: 10.1007/s10456-015-9491-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
Abstract
Fatty acid-binding proteins (FABP) are small molecular mass intracellular lipid chaperones that are expressed in a tissue-specific manner with some overlaps. FABP4 and FABP5 share ~55 % amino acid sequence homology and demonstrate synergistic effects in regulation of metabolic and inflammatory responses in adipocytes and macrophages. Recent studies have shown that FABP4 and FABP5 are also co-expressed in a subset of endothelial cells (EC). FABP4, which has a primarily microvascular distribution, enhances angiogenic responses of ECs, including proliferation, migration, and survival. However, the vascular expression of FABP5 has not been well characterized, and the role of FABP5 in regulation of angiogenic responses in ECs has not been studied to date. Herein we report that while FABP4 and FABP5 are co-expressed in microvascular ECs in several tissues, FABP5 expression is also detected in ECs of larger blood vessels. In contrast to FABP4, EC-FABP5 levels are not induced by VEGF-A or bFGF. FABP5 deficiency leads to a profound impairment in EC proliferation and chemotactic migration. These effects are recapitulated in an ex vivo assay of angiogenesis, the aortic ring assay. Interestingly, in contrast to FABP4-deficient ECs, FABP5-deficient ECs are significantly more resistant to apoptotic cell death. The effect of FABP5 on EC proliferation and survival is mediated, only in part, by PPARδ-dependent pathways. Collectively, these findings demonstrate that EC-FABP5, similar to EC-FABP4, promotes angiogenic responses under certain conditions, but it can also exert opposing effects on EC survival as compared to EC-FABP4. Thus, the balance between FABP4 and FABP5 in ECs may be important in regulation of angiogenic versus quiescent phenotypes in blood vessels.
Collapse
Affiliation(s)
- Chen-Wei Yu
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Xiaoliang Liang
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha Lipsky
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cagatay Karaaslan
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Hacettepe University, Beytepe, Ankara, Turkey
| | - Harry Kozakewich
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gokhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Sule Cataltepe
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction. Clin Sci (Lond) 2015; 129:823-37. [PMID: 26253087 DOI: 10.1042/cs20150111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fatty acids cause endothelial dysfunction involving increased ROS (reactive oxygen species) and reduced NO (nitric oxide) bioavailability. We show that in MAECs (mouse aortic endothelial cells), the PPARβ/δ (peroxisome- proliferator-activated receptor β/δ) agonist GW0742 prevented the decreased A23187-stimulated NO production, phosphorylation of eNOS (endothelial nitric oxide synthase) at Ser1177 and increased intracellular ROS levels caused by exposure to palmitate in vitro. The impaired endothelium-dependent relaxation to acetylcholine in mouse aorta induced by palmitate was restored by GW0742. In vivo, GW0742 treatment prevented the reduced aortic relaxation, phosphorylation of eNOS at Ser1177, and increased ROS production and NADPH oxidase in mice fed on a high-fat diet. The PPARβ/δ antagonist GSK0660 abolished all of these protective effects induced by GW0742. This agonist enhanced the expression of CPT (carnitine palmitoyltransferase)-1. The effects of GW0742 on acetylcholine- induced relaxation in aorta and on NO and ROS production in MAECs exposed to palmitate were abolished by the CPT-1 inhibitor etomoxir or by siRNA targeting CPT-1. GW0742 also inhibited the increase in DAG (diacylglycerol), PKCα/βII (protein kinase Cα/βII) activation, and phosphorylation of eNOS at Thr495 induced by palmitate in MAECs, which were abolished by etomoxir. In conclusion, PPARβ/δ activation restored the lipid-induced endothelial dysfunction by up-regulation of CPT-1, thus reducing DAG accumulation and the subsequent PKC-mediated ROS production and eNOS inhibition.
Collapse
|
38
|
PPARα Is Required for PPARδ Action in Regulation of Body Weight and Hepatic Steatosis in Mice. PPAR Res 2015; 2015:927057. [PMID: 26604919 PMCID: PMC4641930 DOI: 10.1155/2015/927057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARβ/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expressing human PPARδ demonstrated pronounced weight loss and promoted hepatic steatosis when treated with GW501516 (PPARδ-agonist) when compared to wild type mice. This effect was completely absent in mice with either a dominant negative form of PPARδ or deletion of the DNA binding domain of PPARδ. This confirmed the absolute requirement for PPARδ in the physiological actions of GW501516 and confirmed the potential utility against the human form of this receptor. Surprisingly the genetic deletion of PPARα also abrogated the effect of GW501516 in terms of both weight loss and hepatic lipid accumulation. Also the levels of the PPARα endogenous agonist 16:0/18:1-GPC were shown to be modulated by PPARδ in wild type mice. Our results show that both PPARδ and PPARα receptors are essential for GW501516-driven adipose tissue reduction and subsequently hepatic steatosis, with PPARα working downstream of PPARδ.
Collapse
|
39
|
Li G, Chen C, Laing SD, Ballard C, Biju KC, Reddick RL, Clark RA, Li S. Hematopoietic knockdown of PPARδ reduces atherosclerosis in LDLR-/- mice. Gene Ther 2015. [PMID: 26204499 DOI: 10.1038/gt.2015.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PPARδ (peroxisome proliferator-activated receptor δ) mediates inflammation in response to lipid accumulation. Systemic administration of a PPARδ agonist can ameliorate atherosclerosis. Paradoxically, genetic deletion of PPARδ in hematopoietic cells led to a reduction of atherosclerosis in murine models, suggesting that downregulation of PPARδ expression in these cells may mitigate atherogenesis. To advance this finding forward to potential clinical translation through hematopoietic stem cell transplantation-based gene therapy, we employed a microRNA (miRNA) approach to knock down PPARδ expression in bone marrow cells followed by transplantation of the cells into LDLR-/- mice. We found that knockdown of PPARδ expression in the hematopoietic system caused a dramatic reduction in aortic atherosclerotic lesions. In macrophages, a key component in atherogenesis, knockdown of PPARδ led to decreased expression of multiple pro-inflammatory factors, including monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β and IL-6. Expression of CCR2, a receptor for MCP-1, was also decreased. The downregulation of pro-inflammatory factors is consistent with significant reduction of macrophage presence in the lesions, which may also be attributable to elevation of ABCA1 (ATP-binding cassette, subfamily A, member 1) and depression of adipocyte differentiate-related protein. Furthermore, the abundance of both MCP-1 and matrix metalloproteinase-9 proteins was reduced in plaque areas. Our results demonstrate that miRNA-mediated PPARδ knockdown in hematopoietic cells is able to ameliorate atherosclerosis.
Collapse
Affiliation(s)
- G Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - C Chen
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - S D Laing
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - C Ballard
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - K C Biju
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - R L Reddick
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, USA
| | - R A Clark
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - S Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
40
|
Fang X, Fang L, Liu A, Wang X, Zhao B, Wang N. Activation of PPAR-δ induces microRNA-100 and decreases the uptake of very low-density lipoprotein in endothelial cells. Br J Pharmacol 2015; 172:3728-36. [PMID: 25857370 DOI: 10.1111/bph.13160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/18/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Increased level of very low-density lipoprotein (VLDL) is a key feature of the metabolic syndrome and is associated with cardiovascular diseases. PPAR-δ agonists play a protective role in lipid metabolism and vascular function. In this study, we aimed to investigate the role of PPAR-δ in the uptake of VLDL in endothelial cells and its underlying mechanism(s). EXPERIMENTAL APPROACH Uptake of VLDL in HUVECs was assessed by Dil-fluorescent labelling of VLDL. Levels of VLDL receptor mRNA and microRNA (miR-100) were detected by quantitative PCR. The target genes of miR-100 were predicted using bioinformatics analysis. 3'-Untranslated region (3'-UTR) luciferase reporter and Argonaute 1 pull-down assays were used to validate the target of miR-100. KEY RESULTS PPAR-δ agonist GW501516 decreased uptake of VLDL and expression of VLDL receptor at mRNA and protein levels. GW501516 inhibited the luciferase reporter activity of the 3'-UTR of VLDL receptor. VLDL receptor was a direct target of miR-100. miR-100 was significantly increased by GW501516 in HUVECs. Transfection of a miR-100 mimic decreased the mRNA and protein levels of VLDL receptor and uptake of VLDL. Furthermore, a miR-100 inhibitor abolished the inhibitory effect of PPAR-δ on VLDL receptor expression and VLDL uptake. CONCLUSIONS AND IMPLICATIONS In endothelial cells, activation of PPAR-δ decreased VLDL receptor expression and VLDL uptake via the induction of miR-100. These results provided a novel mechanism for the vascular protective effect of PPAR-δ agonists.
Collapse
Affiliation(s)
- Xi Fang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China.,Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Fang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Ao Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Xiaohong Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Beilei Zhao
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China.,Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages. PLoS One 2015; 10:e0130893. [PMID: 26098914 PMCID: PMC4476747 DOI: 10.1371/journal.pone.0130893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/26/2015] [Indexed: 11/19/2022] Open
Abstract
AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.
Collapse
|
42
|
Giordano Attianese GMP, Desvergne B. Integrative and systemic approaches for evaluating PPARβ/δ (PPARD) function. NUCLEAR RECEPTOR SIGNALING 2015; 13:e001. [PMID: 25945080 PMCID: PMC4419664 DOI: 10.1621/nrs.13001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of genes involved in cellular differentiation, development, metabolism and also tumorigenesis. Three PPAR isotypes (α, β/δ and γ) have been identified, among which PPARβ/δ is the most difficult to functionally examine due to its tissue-specific diversity in cell fate determination, energy metabolism and housekeeping activities. PPARβ/δ acts both in a ligand-dependent and -independent manner. The specific type of regulation, activation or repression, is determined by many factors, among which the type of ligand, the presence/absence of PPARβ/δ-interacting corepressor or coactivator complexes and PPARβ/δ protein post-translational modifications play major roles. Recently, new global approaches to the study of nuclear receptors have made it possible to evaluate their molecular activity in a more systemic fashion, rather than deeply digging into a single pathway/function. This systemic approach is ideally suited for studying PPARβ/δ, due to its ubiquitous expression in various organs and its overlapping and tissue-specific transcriptomic signatures. The aim of the present review is to present in detail the diversity of PPARβ/δ function, focusing on the different information gained at the systemic level, and describing the global and unbiased approaches that combine a systems view with molecular understanding.
Collapse
|
43
|
Gim HJ, Li H, Jeong JH, Lee SJ, Sung MK, Song MY, Park BH, Oh SJ, Ryu JH, Jeon R. Design, synthesis, and biological evaluation of a series of alkoxy-3-indolylacetic acids as peroxisome proliferator-activated receptor γ/δ agonists. Bioorg Med Chem 2015; 23:3322-36. [PMID: 25982078 DOI: 10.1016/j.bmc.2015.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 01/08/2023]
Abstract
A series of alkoxy-3-indolylacetic acid analogs has been discovered as peroxisome proliferator-activated receptor (PPAR) agonists. Structure-activity relationship study indicated that PPARα/γ/δ activities were dependent on the nature of the hydrophobic group, the attachment position of the alkoxy linker to the indole ring, and N-alkylation of indole nitrogen. Some compounds presented significant PPARγ/δ activity and molecular modeling suggested their putative binding modes in the ligand binding domain of PPARγ. Of these, compound 51 was selected for in vivo study via an evaluation of microsomal stability in mouse and human liver. Compound 51 lowered the levels of fasting blood glucose, insulin, and HbA1c without gain in body weight in db/db mice. When compound 51 was treated, hepatic triglycerides level and the size of adipocytes in white adipose tissue of db/db mice were also reduced as opposed to treatment with rosiglitazone. Taken together, compound 51 shows high potential warranting further studies in models for diabetes and related metabolic disorders and may be in use as a chemical tool for the understanding of PPAR biology.
Collapse
Affiliation(s)
- Hyo Jin Gim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Hua Li
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Ji Hye Jeong
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Su Jeong Lee
- Department of Food and Nutrition, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Mi-Young Song
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk 363-833, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Raok Jeon
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Chengpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea.
| |
Collapse
|
44
|
Li D, Zhang L, Dong F, Liu Y, Li N, Li H, Lei H, Hao F, Wang Y, Zhu Y, Tang H. Metabonomic Changes Associated with Atherosclerosis Progression for LDLR(-/-) Mice. J Proteome Res 2015; 14:2237-54. [PMID: 25784267 DOI: 10.1021/acs.jproteome.5b00032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atherosclerosis resulting from hyperlipidemia causes many serious cardiovascular diseases. To understand the systems changes associated with pathogenesis and progression of atherosclerosis, we comprehensively analyzed the dynamic metabonomic changes in multiple biological matrices of LDLR(-/-) mice using NMR and GC-FID/MS with gene expression, clinical chemistry, and histopathological data as well. We found that 12 week "Western-type" diet (WD) treatment caused obvious aortic lesions, macrophage infiltration, and collagen level elevation in LDLR(-/-) mice accompanied by up-regulation of inflammatory factors including aortic ICAM-1, MCP-1, iNOS, MMP2, and hepatic TNFα and IL-1β. The WD-induced atherosclerosis progression was accompanied by metabonomic changes in multiple matrices including biofluids (plasma, urine) and (liver, kidney, myocardial) tissues involving multiple metabolic pathways. These included disruption of cholesterol homeostasis, disturbance of biosynthesis of amino acids and proteins, altered gut microbiota functions together with metabolisms of vitamin-B3, choline, purines, and pyrimidines. WD treatment caused down-regulation of SCD1 and promoted oxidative stress reflected by urinary allantoin elevation and decreases in hepatic PUFA-to-MUFA ratio. When switching to normal diet, atherosclerotic LDLR(-/-) mice reprogrammed their metabolisms and reversed the atherosclerosis-associated metabonomic changes to a large extent, although aortic lesions, inflammation parameters, macrophage infiltration, and collagen content were only partially alleviated. We concluded that metabolisms of fatty acids and vitamin-B3 together with gut microbiota played crucially important roles in atherosclerosis development. These findings offered essential biochemistry details of the diet-induced atherosclerosis and demonstrated effectiveness of the integrated metabonomic analysis of multiple biological matrices for understanding the molecular aspects of cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Li
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lulu Zhang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fangcong Dong
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yan Liu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ning Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huihui Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hehua Lei
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuhua Hao
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yulan Wang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,∥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China.,⊥Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huiru Tang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
45
|
PPAR-β/δ activation promotes phospholipid transfer protein expression. Biochem Pharmacol 2015; 94:101-8. [DOI: 10.1016/j.bcp.2015.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 12/30/2022]
|
46
|
Kan CFK, Singh AB, Dong B, Shende VR, Liu J. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:577-87. [PMID: 25645621 DOI: 10.1016/j.bbalip.2015.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 12/29/2022]
Abstract
The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells.
Collapse
Affiliation(s)
- Chin Fung Kelvin Kan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Amar Bahadur Singh
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Bin Dong
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Vikram Ravindra Shende
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States; Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States.
| |
Collapse
|
47
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
49
|
TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-δ Upregulation. PPAR Res 2014; 2014:491963. [PMID: 25152753 PMCID: PMC4131514 DOI: 10.1155/2014/491963] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/20/2014] [Indexed: 12/30/2022] Open
Abstract
High-salt diet-induced cardiac hypertrophy and fibrosis are associated with increased reactive oxygen species production. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, exerts a protective role in cardiac remodeling that resulted from myocardial infarction, and peroxisome proliferation-activated receptors δ (PPAR-δ) play an important role in metabolic myocardium remodeling. However, it remains unknown whether activation of TRPV1 could alleviate cardiac hypertrophy and fibrosis and the effect of cross-talk between TRPV1 and PPAR-δ on suppressing high-salt diet-generated oxidative stress. In this study, high-salt diet-induced cardiac hypertrophy and fibrosis are characterized by significant enhancement of HW/BW%, LVEDD, and LVESD, decreased FS and EF, and increased collagen deposition. These alterations were associated with downregulation of PPAR-δ, UCP2 expression, upregulation of iNOS production, and increased oxidative/nitrotyrosine stress. These adverse effects of long-term high-salt diet were attenuated by chronic treatment with capsaicin. However, this effect of capsaicin was absent in TRPV1−/− mice on a high-salt diet. Our finding suggests that chronic dietary capsaicin consumption attenuates long-term high-salt diet-induced cardiac hypertrophy and fibrosis. This benefit effect is likely to be caused by TRPV1 mediated upregulation of PPAR-δ expression.
Collapse
|
50
|
Kojonazarov B, Luitel H, Sydykov A, Dahal BK, Paul-Clark MJ, Bonvini S, Reed A, Schermuly RT, Mitchell JA. The peroxisome proliferator-activated receptor β/δ agonist GW0742 has direct protective effects on right heart hypertrophy. Pulm Circ 2014; 3:926-35. [PMID: 25006409 DOI: 10.1086/674755] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/21/2013] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension is a debilitating disease with no cure. We have previously shown that peroxisome proliferator-activated receptor (PPAR) β/δ agonists protect the right heart in hypoxia-driven pulmonary hypertension without affecting vascular remodeling. PPARβ/δ is an important receptor in lipid metabolism, athletic performance, and the sensing of prostacyclin. Treatment of right heart hypertrophy and failure in pulmonary hypertension is an emerging target for future therapy. Here we have investigated the potential of GW0742, a PPARβ agonist, to act directly on the right heart in vivo and what transcriptomic signatures are associated with its actions. Right heart hypertrophy and failure was induced in mice using a pulmonary artery banding (PAB) model. GW0742 was administered throughout the study. Cardiovascular parameters were measured using echocardiography and pressure monitoring. Fibrosis and cellular changes were measured using immunohistochemistry. Transcriptomics were measured using the Illumina MouseRef-8v3 BeadChip array and analyzed using GeneSpring GX (ver. 11.0). PAB resulted in right heart hypertrophy and failure and in increased fibrosis. GW0742 reduced or prevented the effects of PAB on all parameters measured. GW0742 altered a number of genes in the transcriptome, with Angptl4 emerging as the top gene altered (increased) in animals with PAB. In conclusion, the PPARβ/δ agonist GW0742 has direct protective effects on the right heart in vivo. These observations identify PPARβ/δ as a viable therapeutic target to treat pulmonary hypertension that may complement current and future vasodilator drugs.
Collapse
Affiliation(s)
| | - Himal Luitel
- Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Akylbek Sydykov
- Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Bhola K Dahal
- Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Mark J Paul-Clark
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Sara Bonvini
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Anna Reed
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Jane A Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|