1
|
Fuior EV, Zvintzou E, Filippatos T, Giannatou K, Mparnia V, Simionescu M, Gafencu AV, Kypreos KE. Peroxisome Proliferator-Activated Receptor α in Lipoprotein Metabolism and Atherosclerotic Cardiovascular Disease. Biomedicines 2023; 11:2696. [PMID: 37893070 PMCID: PMC10604751 DOI: 10.3390/biomedicines11102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-binding transcription factors with pivotal action in regulating pleiotropic signaling pathways of energetic metabolism, immune responses and cell proliferation and differentiation. A significant body of evidence indicates that the PPARα receptor is an important modulator of plasma lipid and lipoprotein metabolism, with pluripotent effects influencing the lipid and apolipoprotein cargo of both atherogenic and antiatherogenic lipoproteins and their functionality. Clinical evidence supports an important role of PPARα agonists (fibric acid derivatives) in the treatment of hypertriglyceridemia and/or low high-density lipoprotein (HDL) cholesterol levels, although the effects of clinical trials are contradictory and point to a reduction in the risk of nonfatal and fatal myocardial infarction events. In this manuscript, we provide an up-to-date critical review of the existing relevant literature.
Collapse
Affiliation(s)
- Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Evangelia Zvintzou
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Theodosios Filippatos
- Internal Medicine Clinic, Department of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Katerina Giannatou
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Victoria Mparnia
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Kyriakos E. Kypreos
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
2
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
3
|
Busnelli M, Manzini S, Colombo A, Franchi E, Bonacina F, Chiara M, Arnaboldi F, Donetti E, Ambrogi F, Oleari R, Lettieri A, Horner D, Scanziani E, Norata GD, Chiesa G. Lack of ApoA-I in ApoEKO Mice Causes Skin Xanthomas, Worsening of Inflammation, and Increased Coronary Atherosclerosis in the Absence of Hyperlipidemia. Arterioscler Thromb Vasc Biol 2022; 42:839-856. [PMID: 35587694 PMCID: PMC9205301 DOI: 10.1161/atvbaha.122.317790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: HDL (high-density lipoprotein) and its major protein component, apoA-I (apolipoprotein A-I), play a unique role in cholesterol homeostasis and immunity. ApoA-I deficiency in hyperlipidemic, atheroprone mice was shown to drive cholesterol accumulation and inflammatory cell activation/proliferation. The present study was aimed at investigating the impact of apoA-I deficiency on lipid deposition and local/systemic inflammation in normolipidemic conditions. Methods: ApoE deficient mice, apoE/apoA-I double deficient (DKO) mice, DKO mice overexpressing human apoA-I, and C57Bl/6J control mice were fed normal laboratory diet until 30 weeks of age. Plasma lipids were quantified, atherosclerosis development at the aortic sinus and coronary arteries was measured, skin ultrastructure was evaluated by electron microscopy. Blood and lymphoid organs were characterized through histological, immunocytofluorimetric, and whole transcriptome analyses. Results: DKO were characterized by almost complete HDL deficiency and by plasma total cholesterol levels comparable to control mice. Only DKO showed xanthoma formation and severe inflammation in the skin-draining lymph nodes, whose transcriptome analysis revealed a dramatic impairment in energy metabolism and fatty acid oxidation pathways. An increased presence of CD4+ T effector memory cells was detected in blood, spleen, and skin-draining lymph nodes of DKO. A worsening of atherosclerosis at the aortic sinus and coronary arteries was also observed in DKO versus apoE deficient. Human apoA-I overexpression in the DKO background was able to rescue the skin phenotype and halt atherosclerosis development. Conclusions: HDL deficiency, in the absence of hyperlipidemia, is associated with severe alterations of skin morphology, aortic and coronary atherosclerosis, local and systemic inflammation.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Matteo Chiara
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health (F. Arnaboldi, E.D.), Università degli Studi di Milano, Italy
| | - Elena Donetti
- Department of Biomedical Sciences for Health (F. Arnaboldi, E.D.), Università degli Studi di Milano, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health (F. Ambrogi), Università degli Studi di Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - David Horner
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Eugenio Scanziani
- Department of Veterinary Medicine (E.S.), Università degli Studi di Milano, Italy.,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy (E.S.)
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy.,Centro per lo Studio dell'Aterosclerosi, Bassini Hospital, Cinisello B, Milan, Italy (G.D.N.)
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| |
Collapse
|
4
|
Opoku E, Berisha S, Brubaker G, Robinet P, Smith JD. Oxidant resistant human apolipoprotein A-I functions similarly to the unmodified human isoform in delaying atherosclerosis progression and promoting atherosclerosis regression in hyperlipidemic mice. PLoS One 2022; 17:e0259751. [PMID: 35120132 PMCID: PMC8815868 DOI: 10.1371/journal.pone.0259751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transgenic overexpression of apolipoprotein A-I (apoA1) has been shown to delay atherosclerosis lesion progression and promote lesion regression in mouse models; however, apoA1 is subject to oxidation by myeloperoxidase (MPO) and loss of function. The activity of oxidant resistant human apoA1 was compared to unmodified human apoA1 in mouse models of atherosclerosis progression and regression. METHODS AND RESULTS Human apoA1 and the MPO oxidant resistant 4WF isoform transgenic mice were bred to LDL receptor deficient (LDLr KO) mice and fed a western-type diet. High level expression of these human apoA1 isoforms did not lead to increased HDL-cholesterol levels on the LDLr KO background. In males and females, lesion progression was studied over time, and both apoA1 and 4WF transgenic mice vs. LDLr KO mice had significant and similar delayed lesion progression and reduced non-HDL cholesterol. Using time points with equivalent lesion areas, lesion regression was initiated by feeding the mice a low-fat control diet containing a microsomal triglyceride transfer protein inhibitor for 7 weeks. Lesions regressed more in the male apoA1 and 4WF transgenics vs. the LDLr KO, but the 4WF isoform was not superior to the unmodified isoform in promoting lesion regression. CONCLUSIONS Both human apoA1 and the 4WF MPO oxidant resistant apoA1 isoform delayed lesion progression and promoted lesion regression in LDLr KO mice, with more pronounced effects in males than females; moreover, the 4WF isoform functioned similarly to the unmodified human apoA1 isoform.
Collapse
Affiliation(s)
- Emmanuel Opoku
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Stela Berisha
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Gregory Brubaker
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Peggy Robinet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jonathan D. Smith
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
5
|
HDL-C/apoA-I Ratio Is Associated with the Severity of Coronary Artery Stenosis in Diabetic Patients with Acute Coronary Syndrome. DISEASE MARKERS 2021; 2021:6689056. [PMID: 34055102 PMCID: PMC8149224 DOI: 10.1155/2021/6689056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023]
Abstract
Background Emerging evidence demonstrates that the lipid metabolism in acute coronary syndrome (ACS) patients with type 2 diabetes mellitus (T2DM) differs from nondiabetic patients. However, the distinct lipid profiles and their relationships with the severity of coronary artery stenosis and prognosis in patients with T2DM remain elusive. Method and Result This single-center, prospective cohort study enrolled 468 patients diagnosed with ACS undergoing coronary angiography, consisting of 314 non-DM and 154 DM patients. The HDL-C/apoA-I ratio was significantly higher in DM patients with a multivessel (≥3 affected vessels) lesion than a single-vessel (1-2 affected vessels) lesion. Regression analyses showed that the HDL-C/apoA-I ratio was positively correlated to the number of stenotic coronary arteries in DM patients but not non-DM patients. However, Kaplan-Meier survival analysis revealed no significant difference in the major adverse cardiovascular event rate regarding different HDL-C/apoA-I levels in DM or non-DM ACS patients at the end of the 2-year follow-up. Conclusion A higher HDL-C/apoA-I ratio is associated with increased severity of coronary artery stenosis in DM patients with ACS but not with the rate of major adverse cardiovascular events at the end of the 2-year follow-up.
Collapse
|
6
|
Relationship between muscle mass index and LDL cholesterol target levels: Analysis of two studies of the Korean population. Atherosclerosis 2021; 325:1-7. [PMID: 33857762 DOI: 10.1016/j.atherosclerosis.2021.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Decreased skeletal muscle mass is an important change in body composition with aging. Maintaining the optimal low-density lipoprotein (LDL) cholesterol level is crucial for the prevention of cardiovascular diseases (CVD). We investigated whether muscle mass was associated with dyslipidemia. METHODS We analyzed the data of 17,546 adults from the 2008-2011 Korean National Health and Nutrition Examination Survey (KNHANES) and 5126 adults from the Korean Genome and Epidemiology Study (KoGES). Participants were classified into the lower skeletal muscle mass index (LSMI) group and normal group. LSMI was defined as body mass index (BMI)-adjusted appendicular skeletal muscle mass <0.789 (men) and <0.512 (women) in the KNHANES, and as sex-specific lowest quintile of the BMI-adjusted total skeletal muscle mass in the KoGES. Participants were defined as having dyslipidemia when the serum LDL cholesterol levels were higher than their LDL cholesterol management targets based on their CVD risk level. RESULTS The odds ratio with 95% confidence interval (CI) for dyslipidemia of the LSMI group was 1.230 (1.016-1.488, p = 0.034) after adjusting for confounding variables compared to the normal group in the 2008-2011 KNHANES. In the KoGES, the hazard ratio with 95% CI for incident dyslipidemia of the LSMI group compared to the normal group was 1.225 (1.101-1.364, p < 0.001). Regardless of abdominal obesity, LSMI was significantly associated with a higher risk of incident dyslipidemia. CONCLUSIONS LSMI was associated with dyslipidemia regardless of abdominal obesity. Prevention of muscle mass loss may be an important strategy for LDL cholesterol management.
Collapse
|
7
|
Huang J, Wang D, Huang LH, Huang H. Roles of Reconstituted High-Density Lipoprotein Nanoparticles in Cardiovascular Disease: A New Paradigm for Drug Discovery. Int J Mol Sci 2020; 21:ijms21030739. [PMID: 31979310 PMCID: PMC7037452 DOI: 10.3390/ijms21030739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/08/2023] Open
Abstract
Epidemiological results revealed that there is an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and risks of atherosclerotic cardiovascular disease (ASCVD). Mounting evidence supports that HDLs are atheroprotective, therefore, many therapeutic approaches have been developed to increase HDL cholesterol (HDL-C) levels. Nevertheless, HDL-raising therapies, such as cholesteryl ester transfer protein (CETP) inhibitors, failed to ameliorate cardiovascular outcomes in clinical trials, thereby casting doubt on the treatment of cardiovascular disease (CVD) by increasing HDL-C levels. Therefore, HDL-targeted interventional studies were shifted to increasing the number of HDL particles capable of promoting ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux. One such approach was the development of reconstituted HDL (rHDL) particles that promote ABCA1-mediated cholesterol efflux from lipid-enriched macrophages. Here, we explore the manipulation of rHDL nanoparticles as a strategy for the treatment of CVD. In addition, we discuss technological capabilities and the challenge of relating preclinical in vivo mice research to clinical studies. Finally, by drawing lessons from developing rHDL nanoparticles, we also incorporate the viabilities and advantages of the development of a molecular imaging probe with HDL nanoparticles when applied to ASCVD, as well as gaps in technology and knowledge required for putting the HDL-targeted therapeutics into full gear.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, TN 37232, USA
- Correspondence:
| | - Dongdong Wang
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland;
| | - Li-Hao Huang
- Pathology and Immunology Department, Washington University School of Medicine, St. Louis, MO 63110-1093, USA;
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
8
|
Trusca VG, Dumitrescu M, Fenyo IM, Tudorache IF, Simionescu M, Gafencu AV. The Mechanism of Bisphenol A Atherogenicity Involves Apolipoprotein A-I Downregulation through NF-κB Activation. Int J Mol Sci 2019; 20:E6281. [PMID: 31842455 PMCID: PMC6941038 DOI: 10.3390/ijms20246281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein component of high-density lipoproteins (HDL), mediating many of its atheroprotective properties. Increasing data reveal the pro-atherogenic effects of bisphenol A (BPA), one of the most prevalent environmental chemicals. In this study, we investigated the mechanisms by which BPA exerts pro-atherogenic effects. For this, LDLR-/- mice were fed with a high-fat diet and treated with 50 µg BPA/kg body weight by gavage. After two months of treatment, the area of atherosclerotic lesions in the aorta, triglycerides and total cholesterol levels were significantly increased, while HDL-cholesterol was decreased in BPA-treated LDLR-/- mice as compared to control mice. Real-Time PCR data showed that BPA treatment decreased hepatic apoA-I expression. BPA downregulated the activity of the apoA-I promoter in a dose-dependent manner. This inhibitory effect was mediated by MEKK1/NF-κB signaling pathways. Transfection experiments using apoA-I promoter deletion mutants, chromatin immunoprecipitation, and protein-DNA interaction assays demonstrated that treatment of hepatocytes with BPA induced NF-κB signaling and thus the recruitment of p65/50 proteins to the multiple NF-κB binding sites located in the apoA-I promoter. In conclusion, BPA exerts pro-atherogenic effects downregulating apoA-I by MEKK1 signaling and NF-κB activation in hepatocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (V.G.T.); (M.D.); (I.M.F.); (I.F.T.); (M.S.)
| |
Collapse
|
9
|
|
10
|
Liu J, Lu H, Howatt DA, Balakrishnan A, Moorleghen JJ, Sorci-Thomas M, Cassis LA, Daugherty A. Associations of ApoAI and ApoB-containing lipoproteins with AngII-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 2015; 35:1826-34. [PMID: 26044581 DOI: 10.1161/atvbaha.115.305482] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Dyslipidemia is implicated in abdominal aortic aneurysms (AAAs) in humans and angiotensin (Ang) II-infused mice. This study determined effects of major lipoprotein classes on AngII-induced AAAs using multiple mouse strains with dietary and pharmacological manipulations. APPROACH AND RESULTS Western diet had minor effects on plasma cholesterol concentrations and the low incidence of AngII-induced AAAs in C57BL/6J mice. Low incidence of AAAs in this strain was not attributed to protection from high-density lipoprotein, because apolipoprotein (apo) AI deficiency did not increase AngII-induced AAAs. ApoAI deletion also failed to alter AAA occurrence in hypercholesterolemic mice. Low-density lipoprotein receptor-/- mice fed normal diet had low incidence of AngII-induced AAAs. Western diet feeding of this strain provoked pronounced hypercholesterolemia because of increased apoB-containing lipoproteins with attendant increases of atherosclerosis in both sexes, but AAAs only in male mice. ApoE-deficient mice fed normal diet were modestly hypercholesterolemic, whereas this strain fed Western diet was severely hypercholesterolemic because of increased apoB-containing lipoprotein concentrations. The latter augmented atherosclerosis, but did not change the high incidence of AAAs in this strain. To determine whether reductions in apoB-containing lipoproteins influenced AngII-induced AAAs, ezetimibe was administered at a dose that partially reduced plasma cholesterol concentrations to ApoE-deficient mice fed Western diet. This decreased atherosclerosis, but not AAAs. This ezetimibe dose in ApoE-deficient mice fed normal diet significantly decreased plasma apoB-containing lipoprotein concentrations and reduced AngII-induced AAAs. CONCLUSIONS ApoB-containing lipoproteins contribute to augmentation of AngII-induced AAA in male mice. However, unlike atherosclerosis, AAA occurrence was not correlated with increases in plasma apoB-containing lipoprotein concentrations.
Collapse
Affiliation(s)
- Jing Liu
- From the Saha Cardiovascular Research Center (J.L., H.L., D.A.H., A.B., J.J.M., A.D.) and Department of Pharmacology and Nutritional Sciences (J.L., L.A.C., A.D.), University of Kentucky, Lexington; and Department of Medicine, Medical College of Wisconsin, Milwaukee (M.S.-T.)
| | - Hong Lu
- From the Saha Cardiovascular Research Center (J.L., H.L., D.A.H., A.B., J.J.M., A.D.) and Department of Pharmacology and Nutritional Sciences (J.L., L.A.C., A.D.), University of Kentucky, Lexington; and Department of Medicine, Medical College of Wisconsin, Milwaukee (M.S.-T.)
| | - Deborah A Howatt
- From the Saha Cardiovascular Research Center (J.L., H.L., D.A.H., A.B., J.J.M., A.D.) and Department of Pharmacology and Nutritional Sciences (J.L., L.A.C., A.D.), University of Kentucky, Lexington; and Department of Medicine, Medical College of Wisconsin, Milwaukee (M.S.-T.)
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (J.L., H.L., D.A.H., A.B., J.J.M., A.D.) and Department of Pharmacology and Nutritional Sciences (J.L., L.A.C., A.D.), University of Kentucky, Lexington; and Department of Medicine, Medical College of Wisconsin, Milwaukee (M.S.-T.)
| | - Jessica J Moorleghen
- From the Saha Cardiovascular Research Center (J.L., H.L., D.A.H., A.B., J.J.M., A.D.) and Department of Pharmacology and Nutritional Sciences (J.L., L.A.C., A.D.), University of Kentucky, Lexington; and Department of Medicine, Medical College of Wisconsin, Milwaukee (M.S.-T.)
| | - Mary Sorci-Thomas
- From the Saha Cardiovascular Research Center (J.L., H.L., D.A.H., A.B., J.J.M., A.D.) and Department of Pharmacology and Nutritional Sciences (J.L., L.A.C., A.D.), University of Kentucky, Lexington; and Department of Medicine, Medical College of Wisconsin, Milwaukee (M.S.-T.)
| | - Lisa A Cassis
- From the Saha Cardiovascular Research Center (J.L., H.L., D.A.H., A.B., J.J.M., A.D.) and Department of Pharmacology and Nutritional Sciences (J.L., L.A.C., A.D.), University of Kentucky, Lexington; and Department of Medicine, Medical College of Wisconsin, Milwaukee (M.S.-T.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (J.L., H.L., D.A.H., A.B., J.J.M., A.D.) and Department of Pharmacology and Nutritional Sciences (J.L., L.A.C., A.D.), University of Kentucky, Lexington; and Department of Medicine, Medical College of Wisconsin, Milwaukee (M.S.-T.).
| |
Collapse
|
11
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
12
|
Averill MM, Kim EJ, Goodspeed L, Wang S, Subramanian S, Den Hartigh LJ, Tang C, Ding Y, Reardon CA, Getz GS, Chait A. The apolipoprotein-AI mimetic peptide L4F at a modest dose does not attenuate weight gain, inflammation, or atherosclerosis in LDLR-null mice. PLoS One 2014; 9:e109252. [PMID: 25286043 PMCID: PMC4186861 DOI: 10.1371/journal.pone.0109252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/08/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE High density lipoprotein (HDL) cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein) mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/-) model fed a high fat high sucrose with cholesterol (HFHSC) diet. METHODS Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse) subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks. RESULTS Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis. CONCLUSION Our results suggest that neither L4F (100 µg/day/mouse) nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.
Collapse
Affiliation(s)
- Michelle M. Averill
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington, United States of America
| | - Eung Ju Kim
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Leela Goodspeed
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shari Wang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Savitha Subramanian
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Laura J. Den Hartigh
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Yilei Ding
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Catherine A. Reardon
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Alan Chait
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Zhao Y, Black AS, Bonnet DJ, Maryanoff BE, Curtiss LK, Leman LJ, Ghadiri MR. In vivo efficacy of HDL-like nanolipid particles containing multivalent peptide mimetics of apolipoprotein A-I. J Lipid Res 2014; 55:2053-63. [PMID: 24975585 DOI: 10.1194/jlr.m049262] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have observed that molecular constructs based on multiple apoA-I mimetic peptides attached to a branched scaffold display promising anti-atherosclerosis functions in vitro. Building on these promising results, we now describe chronic in vivo studies to assess anti-atherosclerotic efficacy of HDL-like nanoparticles assembled from a trimeric construct, administered over 10 weeks either ip or orally to LDL receptor-null mice. When dosed ip, the trimer-based nanolipids markedly reduced plasma LDL-cholesterol levels by 40%, unlike many other apoA-I mimetic peptides, and were substantially atheroprotective. Surprisingly, these nanoparticles were also effective when administered orally at a dose of 75 mg/kg, despite the peptide construct being composed of l-amino acids and being undetectable in the plasma. The orally administered nanoparticles reduced whole aorta lesion areas by 55% and aortic sinus lesion volumes by 71%. Reductions in plasma cholesterol were due to the loss of non-HDL lipoproteins, while plasma HDL-cholesterol levels were increased. At a 10-fold lower oral dose, the nanoparticles were marginally effective in reducing atherosclerotic lesions. Intriguingly, analogous results were obtained with nanolipids of the corresponding monomeric peptide. These nanolipid formulations provide an avenue for developing orally efficacious therapeutic agents to manage atherosclerosis.
Collapse
Affiliation(s)
- Yannan Zhao
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Audrey S Black
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - David J Bonnet
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Bruce E Maryanoff
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Linda K Curtiss
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - Luke J Leman
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| | - M Reza Ghadiri
- Departments of Chemistry and Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
14
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. For close to four decades, we have known that high density lipoprotein (HDL) levels are inversely correlated with the risk of CVD. HDL is a complex particle that consists of proteins, phospholipids, and cholesterol and has the ability to carry micro-RNAs. HDL is constantly undergoing remodelling throughout its life-span and carries out many functions. This review summarizes many of the different aspects of HDL from its assembly, the receptors it interacts with, along with the functions it performs and how it can be altered in disease. While HDL is a key cholesterol efflux particle, this review highlights the many other important functions of HDL in the innate immune system and details the potential therapeutic uses of HDL outside of CVD.
Collapse
|
15
|
Leman LJ, Maryanoff BE, Ghadiri MR. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis. J Med Chem 2013; 57:2169-96. [PMID: 24168751 DOI: 10.1021/jm4005847] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.
Collapse
Affiliation(s)
- Luke J Leman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
16
|
Vincent PE, Weinberg PD. Flow-dependent concentration polarization and the endothelial glycocalyx layer: multi-scale aspects of arterial mass transport and their implications for atherosclerosis. Biomech Model Mechanobiol 2013; 13:313-26. [DOI: 10.1007/s10237-013-0512-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
17
|
Ramakrishnan G, Arjuman A, Suneja S, Das C, Chandra NC. The association between insulin and low-density lipoprotein receptors. Diab Vasc Dis Res 2012; 9:196-204. [PMID: 22278734 DOI: 10.1177/1479164111430243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The insulin receptor (IR) and low-density lipoprotein receptor (LDLR) maintain glucose and lipid metabolism, respectively. Diabetes is associated with increased blood glucose, dyslipidaemia and increased risk of atherosclerosis. We hypothesise that interactions between IR and LDLR play a role in the atherosclerotic process in subjects with diabetes. Therefore, in this work we studied potential interactions between these two receptors. Our data show an intracellular and surface membrane-bound co-association of IR and LDLR. The co-association makes LDLR functionally poor in clearing extra-cellular LDL particles. A short 10 min exposure of cells to insulin disrupts the association between the two receptors and generates LDLR with higher LDL clearing activity without any change in protein expression. This co-association of LDLR with IR and their dissociation by insulin may be an important part of the regulatory mechanism of the normal physiological receptor function in a biological system. Modulation of receptor co-association is potentially a therapeutic target to reduce cardiovascular risk, and further studies are needed to investigate this possibility.
Collapse
|
18
|
Roosens B, Bala G, Droogmans S, Van Camp G, Breyne J, Cosyns B. Animal models of organic heart valve disease. Int J Cardiol 2012; 165:398-409. [PMID: 22475840 DOI: 10.1016/j.ijcard.2012.03.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/18/2012] [Accepted: 03/03/2012] [Indexed: 01/23/2023]
Abstract
Heart valve disease is a frequently encountered pathology, related to high morbidity and mortality rates in industrialized and developing countries. Animal models are interesting to investigate the causality, but also underlying mechanisms and potential treatments of human valvular diseases. Recently, animal models of heart valve disease have been developed, which allow to investigate the pathophysiology, and to follow the progression and the potential regression of disease with therapeutics over time. The present review provides an overview of animal models of primary, organic heart valve disease: myxoid age-related, infectious, drug-induced, degenerative calcified, and mechanically induced valvular heart disease.
Collapse
Affiliation(s)
- Bram Roosens
- Centrum Voor Hart- en Vaatziekten (CHVZ), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
19
|
Perdomo G, Henry Dong H. Apolipoprotein D in lipid metabolism and its functional implication in atherosclerosis and aging. Aging (Albany NY) 2010; 1:17-27. [PMID: 19946382 PMCID: PMC2784685 DOI: 10.18632/aging.100004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Murphy AJ, Chin-Dusting J, Sviridov D. Reconstituted HDL: a therapy for atherosclerosis and beyond. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Hime NJ, Black AS, Bulgrien JJ, Curtiss LK. Leukocyte-derived hepatic lipase increases HDL and decreases en face aortic atherosclerosis in LDLr-/- mice expressing CETP. J Lipid Res 2008; 49:2113-23. [PMID: 18599739 DOI: 10.1194/jlr.m700564-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In addition to hepatic expression, cholesteryl ester transfer protein (CETP) and hepatic lipase (HL) are expressed by human macrophages. The combined actions of these proteins have profound effects on HDL structure and function. It is not known how these HDL changes influence atherosclerosis. To elucidate the role of leukocyte-derived HL on atherosclerosis in a background of CETP expression, we studied low density lipoprotein receptor-deficient mice expressing human CETP (CETPtgLDLr -/-) with a leukocyte-derived HL deficiency (HL -/- BM). HL(-/-) bone marrow (BM), CETPtgLDLr(-/-) mice were generated via bone marrow transplantation. Wild-type bone marrow was transplanted into CETPtgLDLr(-/-) mice to generate HL +/+ BM, CETPtgLDLr(-/-) controls. The chimeras were fed a high-fat, high-cholesterol diet for 14 weeks to promote atherosclerosis. In female HL(-/-) BM, CETPtgLDLr(-/-) mice plasma HDL-cholesterol concentration during high-fat feeding was decreased 27% when compared with HL +/+ BM, CETPtgLDLr(-/-) mice (P < 0.05), and this was associated with a 96% increase in en face aortic atherosclerosis (P < 0.05). In male CETPtgLDLr(-/-) mice, leukocyte-derived HL deficiency was associated with a 16% decrease in plasma HDL-cholesterol concentration and a 25% increase in aortic atherosclerosis. Thus, leukocyte-derived HL in CETPtgLDLr(-/-) mice has an atheroprotective role that may involve increased HDL levels.
Collapse
Affiliation(s)
- Neil J Hime
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | |
Collapse
|
22
|
Effect of treatment with human apolipoprotein A-I on atherosclerosis in uremic apolipoprotein-E deficient mice. Atherosclerosis 2008; 202:372-81. [PMID: 18489910 DOI: 10.1016/j.atherosclerosis.2008.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 02/24/2008] [Accepted: 04/04/2008] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Uremia markedly increases the risk of atherosclerosis. Thus, effective anti-atherogenic treatments are needed for uremic patients. This study examined effects of non-lipidated recombinant human apoA-I (h-apoA-I) and a recombinant trimeric apoA-I molecule (TripA-I) on lipid metabolism and atherosclerosis in uremic apoE-/- mice. METHODS AND RESULTS Upon intraperitoneal injection, h-apoA-I and TripA-I rapidly associated with plasma HDL and reduced mouse apoA-I plasma levels without affecting total or HDL cholesterol concentrations. The plasma half-life was approximately 36 h for TripA-I and approximately 16 h for h-apoA-I. Injection of h-apoA-I (100mg/kg) or TripA-I (100mg/kg) twice weekly for 7 weeks did not affect the cross-sectional area of atherosclerotic lesions in the aortic root, or the en face lesion area and cholesterol content in the thoracic aorta in uremic apoE-/- mice. Also, the treatments did not affect expression of selected inflammatory genes in the thoracic aorta or plasma concentrations of soluble ICAM-1 and VCAM-1. However, h-apoA-I-treated mice had larger smooth muscle cell-staining areas in aortic root plaques than PBS-treated mice (4.8+/-0.8% vs. 2.5+/-0.6%, P<0.05). CONCLUSIONS The data suggest that long-term treatment with non-lipidated h-apoA-I or TripA-I might affect plaque composition but does not reduce atherosclerotic lesion size in uremic apoE-/- mice.
Collapse
|
23
|
Valenta DT, Bulgrien JJ, Bonnet DJ, Curtiss LK. Macrophage PLTP is atheroprotective in LDLr-deficient mice with systemic PLTP deficiency. J Lipid Res 2008; 49:24-32. [DOI: 10.1194/jlr.m700228-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Argraves KM, Argraves WS. HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res 2007; 48:2325-33. [PMID: 17698855 DOI: 10.1194/jlr.r700011-jlr200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The lysosphingolipid sphingosine 1-phosphate (S1P) is a component of HDL. Findings from a growing number of studies indicate that S1P is a mediator of many of the cardiovascular effects of HDL, including the ability to promote vasodilation, vasoconstriction, and angiogenesis, protect against ischemia/reperfusion injury, and inhibit/reverse atherosclerosis. These latter cardioprotective effects are being shown to involve the S1P-mediated suppression of inflammatory processes, including reduction of the endothelial expression of monocyte and lymphocyte adhesion molecules, decreased recruitment of polymorphonuclear cells to sites of infarction, and blocking of cardiomyocyte apoptosis after myocardial infarction. This review article summarizes the evidence that S1P as a component of HDL serves to regulate vascular cell and lymphocyte behaviors associated with cardiovascular (patho)physiology.
Collapse
Affiliation(s)
- Kelley M Argraves
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
25
|
|
26
|
Valenta DT, Ogier N, Bradshaw G, Black AS, Bonnet DJ, Lagrost L, Curtiss LK, Desrumaux CM. Atheroprotective Potential of Macrophage-Derived Phospholipid Transfer Protein in Low-Density Lipoprotein Receptor-Deficient Mice Is Overcome by Apolipoprotein AI Overexpression. Arterioscler Thromb Vasc Biol 2006; 26:1572-8. [PMID: 16675720 DOI: 10.1161/01.atv.0000225700.43836.ae] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Using bone marrow transplantation, we assessed the impact of macrophage-derived phospholipid transfer protein (PLTP) on lesion development in hypercholesterolemic mice that expressed either normal levels of mouse apolipoprotein AI (apoAI) or elevated levels of only human apoAI.
Methods and Results—
Bone marrow transplantations were performed in low-density lipoprotein receptor-deficient mice (LDLr−/−) that expressed either normal levels of mouse apoAI (
ms
apoAI) or high levels of only human apoAI (
ms
apoAI−/−, LDLr−/−,
hu
apoAITg). Mice were lethally irradiated, reconstituted with either PLTP-expressing or PLTP-deficient bone marrow cells, and fed a high-fat diet over 16 weeks. Macrophage PLTP deficiency increased atherosclerosis in LDLr−/− mice with minimal changes in total plasma cholesterol levels. In contrast, the extent of atherosclerosis in
ms
apoAI−/−, LDLr−/−,
hu
apoAITg mice was not significantly different between groups that had received PLTP−/− or PLTP+/+ bone marrow. In vitro studies indicated that PLTP deficiency led to a significant decrease in α-tocopherol content and increased oxidative stress in bone marrow cells.
Conclusions—
Our observations suggest an atheroprotective role of macrophage-derived PLTP in mice with normal apoAI plasma levels. The atheroprotective properties of macrophage-derived PLTP were not observable in the presence of elevated plasma concentrations of apoAI.
Collapse
Affiliation(s)
- David T Valenta
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|