1
|
Chang Y, Wang Z, Li H, Dang W, Song Y, Kang X, Zhang H. Morphological Changes and Strong Cytotoxicity in Yarrowia lipolytica by Overexpressing Delta-12-Desaturase. J Fungi (Basel) 2024; 10:126. [PMID: 38392798 PMCID: PMC10890566 DOI: 10.3390/jof10020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, delta-12 desaturase was overexpressed in Yarrowia lipolytica using the single-copy integrative vector pINA1312 and multicopy integrative vector pINA1292, resulting in the engineered yeast strains 1312-12 and 1292-12, respectively. The content of intracellular linoleic acid (LA) in the 1292-12 strain was much higher than in the 1312-12 strain and the control group. One interesting finding was that the 1292-12 strain showed obvious changes in surface morphology. The 1292-12 colonies were much smaller and smoother, whereas their single cells became much larger compared to the control strain. In addition, the dry cell weight (DCW) of the 1292-12 strain was obviously increased from 8.5 to 12.7 g/L, but the viable cell number sharply decreased from 107 to 105/mL. These results indicated that increased LA content in Yarrowia lipolytica could induce morphological changes or even oxidative stress-dependent cell death. The reactive oxygen species (ROS) and malondialdehyde (MDA) were accumulated in the 1292-12 strain, while the antioxidant activities of intracellular catalase (CAT) and superoxide dismutase (SOD) were significantly decreased by 27.6 and 32.0%, respectively. Furthermore, it was also revealed that these issues could be ameliorated by the exogenous supplementation of vitamin C, fish and colza oil.
Collapse
Affiliation(s)
- Yufei Chang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Zhen Wang
- School of Public Health, Qilu Medical University, Zibo 255300, China
| | - Hequn Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinxin Kang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
2
|
Moroni I, De Amicis R, Ardissone A, Ravella S, Bertoli S. Nutritional status of children affected by X-linked adrenoleukodystrophy. J Hum Nutr Diet 2023; 36:1316-1326. [PMID: 36991579 DOI: 10.1111/jhn.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Adrenoleukodystrophy (ALD) is a rare X-linked metabolic disorder that causes the accumulation of very-long-chain fatty acids (VLCFAs) (C26:0) and the subsequent variety of clinical and neurological symptoms. Little is known about nutritional status and dietary habits of children affected by ALD, and so the present study aimed to assess nutritional status and food intake in children with ALD, also exploring the relationship between food intake and the consumption of disease-specific dietary supplements to reduce blood C26:0 concentrations and increase monounsaturated fatty acids (C26:1). METHODS All patients underwent a clinical and neurological evaluation and a comprehensive nutritional assessment. The association of VLCFA concentrations with dietary lipids was assessed. RESULTS Nine boys (11.49 ± 3.61 years) were enrolled in a cross-sectional study. All patients were normal weight, with normal resting energy expenditure. Only six of nine patients followed the low-fat diet and dietary supplements. An inverse association was found between the food intake of polyunsaturated lipids and C26:0; conversely, the C26:0 was positively associated with the dietary saturated lipids. When consumed, dietary supplement consumption correlated positively with C26:1 (ρ = 0.917, p = 0.029) and no correlation was found with C26:0 (ρ = 0.410, p = 0,493). CONCLUSIONS No children were found to be malnourished or overweight or obese; however, half of the children reported excessive body fat, probably as a result of the pharmacotherapies. A low-fat diet could be adjuvant in the management of the accumulation of VLCFAs, but poor dietary compliance to disease-specific nutritional guidelines appears to be a major problem of this condition and underlines the need for a structured and personalised nutritional management in ALD disease.
Collapse
Affiliation(s)
- Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Ramona De Amicis
- Department of Food Environmental and Nutritional Sciences (DeFENS), International Center for the Assessment of Nutritional Status (ICANS), University of Milan, Milan, Italy
- Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Anna Ardissone
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Simone Ravella
- Department of Food Environmental and Nutritional Sciences (DeFENS), International Center for the Assessment of Nutritional Status (ICANS), University of Milan, Milan, Italy
| | - Simona Bertoli
- Department of Food Environmental and Nutritional Sciences (DeFENS), International Center for the Assessment of Nutritional Status (ICANS), University of Milan, Milan, Italy
- Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
3
|
López-Acosta O, Ruiz-Ramírez A, Barrios-Maya MÁ, Alarcon-Aguilar J, Alarcon-Enos J, Céspedes Acuña CL, El-Hafidi M. Lipotoxicity, glucotoxicity and some strategies to protect vascular smooth muscle cell against proliferative phenotype in metabolic syndrome. Food Chem Toxicol 2023; 172:113546. [PMID: 36513245 DOI: 10.1016/j.fct.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease (CVD) and atherosclerosis through a mechanism that involves vascular smooth muscle cell (VSMC) proliferation, lipotoxicity and glucotoxicity. Several molecules found to be increased in MetS, including free fatty acids, fatty acid binding protein 4, leptin, resistin, oxidized lipoprotein particles, and advanced glycation end products, influence VSMC proliferation. Most of these molecules act through their receptors on VSMCs by activating several signaling pathways associated with ROS generation in various cellular compartments. ROS from NADPH-oxidase and mitochondria have been found to promote VSMC proliferation and cell cycle progression. In addition, most of the natural or synthetic substances described in this review, including pharmaceuticals with hypoglycemic and hypolipidemic properties, attenuate VSMC proliferation by their simultaneous modulation of cell signaling and their scavenging property due to the presence of a phenolic ring in their structure. This review discusses recent data in the literature on the role that several MetS-related molecules and ROS play in the change from contractile to proliferative phenotype of VSMCs. Hence the importance of proposing an appropriate strategy to prevent uncontrolled VSMC proliferation using antioxidants, hypoglycemic and hypolipidemic agents.
Collapse
Affiliation(s)
- Ocarol López-Acosta
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Angélica Ruiz-Ramírez
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Miguel-Ángel Barrios-Maya
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Depto. de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | - Julio Alarcon-Enos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile
| | - Carlos L Céspedes Acuña
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile.
| | - Mohammed El-Hafidi
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico.
| |
Collapse
|
4
|
Ortmayr K, Zampieri M. Sorting-free metabolic profiling uncovers the vulnerability of fatty acid β-oxidation in in vitro quiescence models. Mol Syst Biol 2022; 18:e10716. [PMID: 36094015 PMCID: PMC9465820 DOI: 10.15252/msb.202110716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Quiescent cancer cells are rare nondiving cells with the unique ability to evade chemotherapies and resume cell division after treatment. Despite the associated risk of cancer recurrence, how cells can reversibly switch between rapid proliferation and quiescence remains a long-standing open question. By developing a unique methodology for the cell sorting-free separation of metabolic profiles in cell subpopulations in vitro, we unraveled metabolic characteristics of quiescent cells that are largely invariant to basal differences in cell types and quiescence-inducing stimuli. Consistent with our metabolome-based analysis, we show that impairing mitochondrial fatty acid β-oxidation (FAO) can induce apoptosis in quiescence-induced cells and hamper their return to proliferation. Our findings suggest that in addition to mediating energy and redox balance, FAO can play a role in preventing the buildup of toxic intermediates during transitioning to quiescence. Uncovering metabolic strategies to enter, maintain, and exit quiescence can reveal fundamental principles in cell plasticity and new potential therapeutic targets beyond cancer.
Collapse
Affiliation(s)
- Karin Ortmayr
- Institute of Molecular Systems Biology, ETHZürichSwitzerland
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | - Mattia Zampieri
- Institute of Molecular Systems Biology, ETHZürichSwitzerland
| |
Collapse
|
5
|
Oleic acid promotes atherosclerosis via multiple pathophysiological mechanisms. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Li J, Chu T, Yang M. Oleic acid induces A7r5 cell proliferation and migration associated with increased expression of HGF and p‑p38. Mol Med Rep 2021; 24:484. [PMID: 33907848 PMCID: PMC8127074 DOI: 10.3892/mmr.2021.12123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
The phenotypes and mechanisms underlying the proliferation and migration of vascular smooth muscle cells (VSMCs) induced by oleic acid (OA) are not completely understood. Therefore, the aim of the present study was to further elucidate the effects of OA on the proliferation and migration of VSMCs. Using A7r5 cells, the hepatocyte growth factor (HGF) inhibitor PHA665752 and the p38 MAPK inhibitor SB203580 were utilized, and Cell Counting Kit-8 (CCK-8) assays, Transwell assays, flow cytometry, ELISAs, western blotting and reverse transcription-quantitative PCR (RT-qPCR) were conducted to assess the effects of OA. CCK-8 assays indicated that OA promoted (at 5 and 50 µmol/l) or inhibited (at 800 µmol/l) A7r5 cell proliferation in a time- and concentration-dependent manner (P<0.05). Transwell assays revealed that OA also promoted (at 50 µmol/l) or inhibited (at 800 µmol/l) A7r5 cell migration (P<0.05). Moreover, cell-cycle analysis identified that 50 µmol/l OA reduced the cellular population in the G0/G1 phase and enhanced the cellular population in the S phase (P<0.05), whereas 800 µmol/l OA increased the cell number in the G0/G1 phase and decreased the cell number in the S phase (P<0.05). In addition, OA promoted (at 50 µmol/l) or inhibited (at 800 µmol/l) the expression level of HGF in A7r5 cells, as demonstrated via ELISA, western blotting and RT-qPCR analyses (P<0.05). It was also found that OA promoted (at 50 µmol/l) or inhibited (at 800 µmol/l) the expression level of phosphorylated (p)-p38 in A7r5 cells, as indicated by western blotting (P<0.05). Furthermore, the cell proliferation, migration and HGF expression induced by OA (50 µmol/l) were mitigated by treatment with PHA665752 (0.1 µmol/l) (P<0.05), and the cell proliferation, migration and p-p38 expression induced by OA (50 µmol/l) were mitigated by SB203580 (2 µmol/l) (P<0.05). Thus, the results suggested that OA served a role in the proliferation and migration of VSMCs via HGF and the p38 MAPK pathway. Moreover, the proliferation and migration of VSMCs induced by OA was associated with increased expression levels of HGF and p-p38. Taken together, OA, HGF and p38 MAPK may be potential therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Clinical Medicine, Jishou University School of Medicine, Jishou, Hunan 416000, P.R. China
| | - Ting Chu
- Department of Nursing, Jishou University School of Medicine, Jishou, Hunan 416000, P.R. China
| | - Maosheng Yang
- Laboratory of Disorders Genes and Department of Pharmacology, Jishou University School of Pharmacy, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
7
|
Anti-Atherosclerotic Potential of Free Fatty Acid Receptor 4 (FFAR4). Biomedicines 2021; 9:biomedicines9050467. [PMID: 33923318 PMCID: PMC8146529 DOI: 10.3390/biomedicines9050467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Fatty acids (FAs) are considered not only as a basic nutrient, but are also recognized as signaling molecules acting on various types of receptors. The receptors activated by FAs include the family of rhodopsin-like receptors: GPR40 (FFAR1), GPR41 (FFAR3), GPR43 (FFAR2), GPR120 (FFAR4), and several other, less characterized G-protein coupled receptors (GPR84, GPR109A, GPR170, GPR31, GPR132, GPR119, and Olfr78). The ubiquitously distributed FFAR4 can be activated by saturated and unsaturated medium- and long-chain fatty acids (MCFAs and LCFAs), as well as by several synthetic agonists (e.g., TUG-891). The stimulation of FFAR4 using selective synthetic agonists proved to be promising strategy of reduction of inflammatory reactions in various tissues. In this paper, we summarize the evidence showing the mechanisms of the potential beneficial effects of FFAR4 stimulation in atherosclerosis. Based partly on our own results, we also suggest that an important mechanism of such activity may be the modulatory influence of FFAR4 on the phenotype of macrophage involved in atherogenesis.
Collapse
|
8
|
Girona J, Rosales R, Saavedra P, Masana L, Vallvé JC. Palmitate decreases migration and proliferation and increases oxidative stress and inflammation in smooth muscle cells: role of the Nrf2 signaling pathway. Am J Physiol Cell Physiol 2019; 316:C888-C897. [PMID: 30865473 DOI: 10.1152/ajpcell.00293.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fatty acids are essential to cell functionality and may exert diverging vascular effects including migration, proliferation, oxidative stress, and inflammation. This study examined the effect of palmitate on human coronary artery smooth muscle cell (HCASMC) function. An in vitro wound-healing assay indicated that palmitate decreased HCASMC migration in dose- and time-dependent manners. Furthermore, bromodeoxyuridine incorporation assays indicated that palmitate decreased HCASMC proliferation in a dose-response manner. Palmitate also increased reactive oxygen species formation, malondialdehyde content, and intracellular lipid droplets accompanied with increased fatty acid binding protein 4 expression. Moreover, palmitate induced gene expression (monocyte chemoattractant protein 1, matrix metalloproteinase-2, IL-1β, IL-6, IL-8, and TNF-α) and intracellular protein content (plasminogen activator inhibitor-1 and urokinase plasminogen activator) of inflammatory mediators. Finally, we showed that palmitate activates the transcription factor Nrf2 and the upstream kinases ERK1/2 and Akt in HCASMCs. The inhibitor of Nrf2, trigonelline, significantly attenuated palmitate-induced HCASMC expression of the Nrf2 target gene NQO1. These findings indicate that palmitate might be critically related to HCASMC function by slowing cell migration and proliferation and inducing lipid-laden cells, oxidative stress, and inflammation in part by activation of the Nrf2 transcription factor. Palmitate's activation of proinflammatory Nrf2 signaling may represent a novel mechanism mediating the proatherogenic actions of saturated fatty acids.
Collapse
Affiliation(s)
- Josefa Girona
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Roser Rosales
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Paula Saavedra
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Lluís Masana
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Joan-Carles Vallvé
- Research Unit on Lipid and Atherosclerosis, "Sant Joan" University Hospital, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| |
Collapse
|
9
|
Oikonomou E, Mourouzis K, Fountoulakis P, Papamikroulis GA, Siasos G, Antonopoulos A, Vogiatzi G, Tsalamadris S, Vavuranakis M, Tousoulis D. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2019; 23:389-408. [PMID: 29453696 DOI: 10.1007/s10741-018-9682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a common cardiac syndrome, whose pathophysiology involves complex mechanisms, some of which remain unknown. Diabetes mellitus (DM) constitutes not only a glucose metabolic disorder accompanied by insulin resistance but also a risk factor for cardiovascular disease and HF. During the last years though emerging data set up, a bidirectional interrelationship between these two entities. In the case of DM impaired calcium homeostasis, free fatty acid metabolism, redox state, and advance glycation end products may accelerate cardiac dysfunction. On the other hand, when HF exists, hypoperfusion of the liver and pancreas, b-blocker and diuretic treatment, and autonomic nervous system dysfunction may cause impairment of glucose metabolism. These molecular pathways may be used as therapeutic targets for novel antidiabetic agents. Peroxisome proliferator-activated receptors (PPARs) not only improve insulin resistance and glucose and lipid metabolism but also manifest a diversity of actions directly or indirectly associated with systolic or diastolic performance of left ventricle and symptoms of HF. Interestingly, they may beneficially affect remodeling of the left ventricle, fibrosis, and diastolic performance but they may cause impaired water handing, sodium retention, and decompensation of HF which should be taken into consideration in the management of patients with DM. In this review article, we present the pathophysiological data linking HF with DM and we focus on the molecular mechanisms of PPARs agonists in left ventricle systolic and diastolic performance providing useful insights in the molecular mechanism of this class of metabolically active regiments.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece.
| | - Konstantinos Mourouzis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Petros Fountoulakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgios Angelos Papamikroulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Alexis Antonopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgia Vogiatzi
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Sotiris Tsalamadris
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Manolis Vavuranakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| |
Collapse
|
10
|
Zhang L, Su S, Zhu Y, Guo J, Guo S, Qian D, Ouyang Z, Duan JA. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and TGF-β/Smads signaling pathway. Biomed Pharmacother 2019; 112:108675. [PMID: 30780108 DOI: 10.1016/j.biopha.2019.108675] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Mulberry leaf is one of the commonly used traditional Chinese medicines, has been shown to exert hypoglycemic effects against diabetes. The aim of this study is to investigate the effects and mechanism of mulberry leaf flavonoids (MF), polysaccharides (MP) and alkaloids (MA) on diabetic and its liver and kidney injury. The db/db mice was adopted and the results showed that the FBG (fasting blood glucose) of model group continued to increase and associated liver and kidney injury. After the intervention of MP and MA, the value of FBG exhibited the most obvious hypoglycemic effect. MF and MP have obvious improved effect on kidney injury, which reduced the content of mALB/Cre (microalbumin/creatinine) in urine and improved the tubular epithelial cells edematous and renal cystic epithelial thickening. While the MF and MA possessed a significant effect on liver damage, manifested in reducing the levels of ALT (alanine aminotransferase) and AST (aspartate aminotransferase) and pathological changes of liver on db/db mice. Through metabolomics analysis, 13 endogenous potential biomarkers were identified in serum. The three effective components of mulberry can regulate the 13 potential biomarkers and the corresponding metabolic pathway. Collectively, the components of mulberry leaf have clear hypoglycemic effect and protective effect on liver and kidney injury and the effects are related to insulin receptor and TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- Liwen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen Ouyang
- College of Pharmacy, Jiangsu University, Zhenjiang 210013, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Marei WFA, Alvarez MA, Van Hoeck V, Gutierrez-Adan A, Bols PEJ, Leroy JLMR. Effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality depends on the type of major fatty acid in the diet. Reprod Fertil Dev 2018; 29:1856-1867. [PMID: 27832581 DOI: 10.1071/rd16297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
The present study examined whether the effects of dietary-induced hyperlipidaemia on preimplantation embryo development depend on the predominant fatty acid (FA) type in the diet. In a combined in vivo-in vitro bovine model, two groups of cows (n=3 in each group) were fed with three diets consecutively (4 weeks feeding for each): (1) a maintenance control diet (CONT); (2) a high-starch diet rich in saturated fat (SAT); and (3) a high-starch diet rich in omega-3 unsaturated fat (UNSAT). Two feeding sequences were used to test for carry-over effects: Group A was fed CONT, SAT1 and then UNSAT2, whereas Group B was fed CONT, UNSAT1 and then SAT2. Serum was collected after each dietary period, analysed and tested in bovine in vitro embryo culture. Introducing SAT and UNSAT diets induced hyperlipidaemia (specifically hypercholesterolaemia and elevated free FAs) and reduced insulin sensitivity. Carry-over effects in serum metabolites and FA profile were dependent on the diet and feeding sequence. SAT1 and SAT2 serum decreased blastocyst rates and altered blastocyst mRNA expression related to apoptosis and oxidative stress. UNSAT1 and UNSAT2 serum resulted in normal embryo development and quality. Other in vitro effects depended on the sequence of feeding. In conclusion, substitution of saturated fat with omega-3 fat in a high-caloric diet induced hyperlipidaemia with an FA profile yielding similar rates and quality of blastocysts compared with normolipidaemic controls.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Maria Arias Alvarez
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Veerle Van Hoeck
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion Animal, Instituto nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. De la CorunaKm 5.9, Madrid 28040, Spain
| | - Peter E J Bols
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
12
|
Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy JLMR. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod 2018; 96:1181-1196. [PMID: 28520897 DOI: 10.1093/biolre/iox046] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/17/2017] [Indexed: 12/22/2022] Open
Abstract
Elevated concentrations of free fatty acids (FFAs), predominantly palmitic, stearic, and oleic acids (PSO), exert detrimental effects on oocyte developmental competence. This study examined the effects of omega-3 alpha-linolenic acid (ALA) during in vitro oocyte maturation (IVM) in the presence of PSO on subsequent embryo development and quality, and the cellular mechanisms that might be involved. Bovine cumulus-oocyte complexes (COCs) were supplemented during IVM with ALA (50 μM), PSO (425 μM), or PSO+ALA. Compared with FFA-free controls (P < 0.05), PSO increased embryo fragmentation and decreased good quality embryos on day 2 postfertilization. Day 7 blastocyst rate was also reduced. Day 8 blastocysts had lower cell counts and higher apoptosis but normal metabolic profile. In the PSO group, cumulus cell (CC) expansion was inhibited with an increased CC apoptosis while COC metabolism was not affected. Mitochondrial inner membrane potential (MMP; JC-1 staining) was reduced in the CCs and oocytes. Heat shock protein 70 (HSP70) but not glucose-regulated protein 78 kDa (GRP78, known as BiP; an endoplasmic reticulum stress marker) was upregulated in the CCs. Higher reactive oxygen species levels (DCHFDA staining) were detected in the oocytes. In contrast, adding ALA in the presence of PSO normalized embryo fragmentation, cleavage, blastocyst rates, and blastocyst quality compared to controls (P > 0.05). Combined treatment with ALA also reduced CC apoptosis, partially recovered CC expansion, abrogated the reduction in MMP in the CCs but not in the oocytes, and reduced BiP and HSP70 expression in CCs, compared with PSO only (P < 0.05). In conclusion, ALA supplementation protected oocyte developmental capacity under lipotoxic conditions mainly by protecting cumulus cell viability.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Jessie De Bie
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Omnia Mohey-Elsaeed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eline Wydooghe
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter E J Bols
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
13
|
Lewis X-Carrying Neoglycolipids Evoke Selective Apoptosis in Neural Stem Cells. Neurochem Res 2017; 43:212-218. [PMID: 29019053 DOI: 10.1007/s11064-017-2415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
N-glycans carrying the Lewis X trisaccharide [Galβ1-4 (Fucα1-3) GlcNAc] are expressed by neural stem cells (NSCs) exclusively before differentiation, and they actively contribute to the maintenance of stemness of these cells. To address the functional roles of the Lewis X-mediated molecular interactions in NSCs, we created a series of synthetic neoglycolipids that contained a Lewis X-carrying glycan connected to an acyl chain through an amide bond. The neoglycolipids formed aqueous micelles displaying functional Lewis X glycotopes. Surprisingly, the neoglycolipid micelles evoked selective apoptosis in undifferentiated NSCs, whereas their differentiated cells remained unaffected. The apoptotic activity depended on the structural integrity of the Lewis X glycotopes and also on the length of the acyl chain, with an optimum length of C18. We propose hypothetical functional mechanisms of the neoglycolipid, which involves selective NSC targeting with Lewis X glycan and apoptotic signaling by the intracellular release of fatty acids. This serendipitous finding may offer a new strategy for controlling neural cell fates using artificial glycoclusters.
Collapse
|
14
|
Cheng CI, Lee YH, Chen PH, Lin YC, Chou MH, Kao YH. Free Fatty Acids Induce Autophagy and LOX-1 Upregulation in Cultured Aortic Vascular Smooth Muscle Cells. J Cell Biochem 2017; 118:1249-1261. [PMID: 28072480 DOI: 10.1002/jcb.25784] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/03/2016] [Indexed: 11/07/2022]
Abstract
Elevation of free fatty acids (FFAs) is known to affect microvascular function and contribute to obesity-associated insulin resistance, hypertension, and microangiopathy. Proliferative and synthetic vascular smooth muscle cells (VSMCs) increase intimal thickness and destabilize atheromatous plaques. This study aimed to investigate whether saturated palmitic acid (PA) and monounsaturated oleic acid (OA) modulate autophagy activity, cell proliferation, and vascular tissue remodeling in an aortic VSMC cell line. Exposure to PA and OA suppressed growth of VSMCs without apoptotic induction, but enhanced autophagy flux with elevation of Beclin-1, Atg5, and LC3I/II. Cotreatment with autophagy inhibitors potentiated the FFA-suppressed VSMC growth and showed differential actions of PA and OA in autophagy flux retardation. Both FFAs upregulated lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) but only OA increased LDL uptake by VSMCs. Mechanistically, FFAs induced hyperphosphorylation of Akt, ERK1/2, JNK1/2, and p38 MAPK. All pathways, except OA-activated PI3K/Akt cascade, were involved in the LOX-1 upregulation, whereas blockade of PI3K/Akt and MEK/ERK cascades ameliorated the FFA-induced growth suppression on VSMCs. Moreover, both FFAs exhibited tissue remodeling effect through increasing MMP-2 and MMP-9 expression and their gelatinolytic activities, whereas high-dose OA significantly suppressed collagen type I expression. Conversely, siRNA-mediated LOX-1 knockdown significantly attenuated the OA-induced tissue remodeling effects in VSMCs. In conclusion, OA and PA enhance autophagy flux, suppress aortic VSMC proliferation, and exhibit vascular remodeling effect, thereby leading to the loss of VSMCs and interstitial ECM in vascular walls and eventually the instability of atheromatous plaques. J. Cell. Biochem. 118: 1249-1261, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Hong Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Huei Chou
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Lee ES, Kim SH. Fabrication of size-controlled linoleic acid particles and evaluation of their in-vitro lipotoxicity. Food Chem Toxicol 2016; 100:50-61. [PMID: 27939595 DOI: 10.1016/j.fct.2016.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/30/2022]
Abstract
The biological activities of fatty acids (FAs) can differ with size even for lipids of similar compositions. The aim of this study was to develop size-controlled FA particles and to evaluate their toxicity as a function of size. Well-stabilized nano- and microscale linoleic acid (LA) were fabricated based on specific physical factors. Then, resulting LAs were characterized by size distribution, surface charge, assembly structure, composition, and serum effects. The sizes of the nano- (LAnano) and microscale (LAmicro) LAs, determined by electron microscopy, were 109 nm and 12 μm, respectively. LAnano, a multilamellar structure as determined by cryo-electron microscopy, was rapidly internalized into cells via free fatty acid receptor 3. After internalization, LAnano, but not LAmicro, induced nuclear translocation of fatty acid binding protein 4 (FABP4). Translocation of FABP4 into the nucleus then induced expression of the FA metabolism-related genes InsR and AdipoR1. Their expression was significantly increased in the presence of only LAnano. Cytotoxicity was also significantly increased in cells treated with LAnano, but not LAmicro, as indicated by the endoplasmic reticulum stress markers CHOP and GRP78. Therefore, our results demonstrated that FAs with the same composition but varying in size can cause different cellular responses.
Collapse
Affiliation(s)
- Eun-Soo Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340, Republic of Korea
| | - Se-Hwa Kim
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340, Republic of Korea; Center for Nanosafety Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340, Republic of Korea; Department of Bio-Analytical Science, Korea University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 341-113, Republic of Korea.
| |
Collapse
|
16
|
Paillamanque J, Madrid C, Carmona EM, Osses N, Moreno RD, Oresti GM, Pino JA, Reyes JG. Effects of Fatty Acids on Intracellular [Ca2+], Mitochondrial Uncoupling and Apoptosis in Rat Pachytene Spermatocytes and Round Spermatids. PLoS One 2016; 11:e0158518. [PMID: 27428262 PMCID: PMC4948913 DOI: 10.1371/journal.pone.0158518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/16/2016] [Indexed: 12/30/2022] Open
Abstract
The aim of this work was to explore the ability of free arachidonic acid, palmitic acid and the unsaturated fatty acids oleic acid and docosahexaenoic acid to modify calcium homeostasis and mitochondrial function in rat pachytene spermatocytes and round spermatids. In contrast to palmitic acid, unsaturated fatty acids produced significant increases in intracellular calcium concentrations ([Ca2+]i) in both cell types. Increases were fatty acid specific, dose-dependent and different for each cell type. The arachidonic acid effects on [Ca2+]i were higher in spermatids than in spermatocytes and persisted when residual extracellular Ca2+ was chelated by EGTA, indicating that the increase in [Ca2+]i originated from release of intracellular calcium stores. At the concentrations required for these increases, unsaturated fatty acids produced no significant changes in the plasma membrane potential of or non-specific permeability in spermatogenic cells. For the case of arachidonic acid, the [Ca2+]i increases were not caused by its metabolic conversion to eicosanoids or anandamide; thus we attribute this effect to the fatty acid itself. As estimated with fluorescent probes, unsaturated fatty acids did not affect the intracellular pH but were able to induce a progressive decrease in the mitochondrial membrane potential. The association of this decrease with reduced reactive oxygen species (ROS) production strongly suggests that unsaturated fatty acids induced mitochondrial uncoupling. This effect was stronger in spermatids than in spermatocytes. As a late event, arachidonic acid induced caspase 3 activation in a dose-dependent manner both in the absence and presence of external Ca2+. The concurrent but differential effects of unsaturated fatty acids on [Ca2+]i and mitochondrial functions are additional manifestations of the metabolic changes that germ cells undergo during their differentiation.
Collapse
Affiliation(s)
- Joaquín Paillamanque
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristian Madrid
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Emerson M Carmona
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo M Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Bahia Blanca, Argentina
| | - José A Pino
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan G Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
17
|
Lee H, Yang Z, Wi Y, Kim TW, Verwilst P, Lee YH, Han GI, Kang C, Kim JS. BODIPY–Coumarin Conjugate as an Endoplasmic Reticulum Membrane Fluidity Sensor and Its Application to ER Stress Models. Bioconjug Chem 2015; 26:2474-80. [PMID: 26588433 DOI: 10.1021/acs.bioconjchem.5b00508] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hoyeon Lee
- The
School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Zhigang Yang
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| | - Youngjin Wi
- The
School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Tae Woo Kim
- The
School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Peter Verwilst
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| | - Yun Hak Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| | - Ga-in Han
- The
School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Chulhun Kang
- The
School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
18
|
Hypolipidemic Activity and Antiatherosclerotic Effect of Polysaccharide of Polygonatum sibiricum in Rabbit Model and Related Cellular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:391065. [PMID: 26089938 PMCID: PMC4451159 DOI: 10.1155/2015/391065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/17/2022]
Abstract
Objective. To evaluate the hypolipidemic activity and antiatherosclerotic effect of polysaccharide of Polygonatum sibiricum (PPGS), which is a kind of Chinese herbal medicine using the rhizome part of the whole herb. Materials and Methods. Thirty rabbits were divided into normal control group, model control group, and PPGS subgroups of 0.8, 1.6, and 3.2 mL/kg/day under random selection. In atherosclerosis model, the effects of PPGS on diverse blood lipids, foam cells number, and aortic morphology were evaluated. In the primary culture of endothelial cells (ECs), the activities of PPGS on both ECs proliferation and ECs injury were studied as well. Results. In atherosclerosis model, the hypolipidemic activities of PPGS were mainly focused on TC, LDL-C, and Lp(a). All changes on these factors were statistically significant compared with model group (P < 0.01), except TG and HDL-C. The intimal foam cell number of PPGS subgroups (0.8, 1.6, and 3.2 mL/kg/day) was significantly reduced than model control (P < 0.01). In the primary culture of endothelial cells (ECs), PPGS showed no effect on cell proliferation but preferred to protect EC from injury and apoptosis induced by H2O2 and lipopolysaccharide (LPS). Discussion and Conclusion. The antiatherosclerotic effect of PPGS may be supported by its hypolipidemic activities, improving aortic morphology, and reducing foam cells number and ECs injury.
Collapse
|
19
|
Da Silva MS, Rudkowska I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol Nutr Food Res 2015; 59:1249-63. [DOI: 10.1002/mnfr.201400569] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Marine S. Da Silva
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| | - Iwona Rudkowska
- Department of Endocrinology and Nephrology; CHU de Québec Research Center; Quebec QC Canada
| |
Collapse
|
20
|
Gao Y, Chen ZY, Liang X, Xie C, Chen YF. Anti-atherosclerotic effect of geniposidic acid in a rabbit model and related cellular mechanisms. PHARMACEUTICAL BIOLOGY 2015; 53:280-285. [PMID: 24963945 DOI: 10.3109/13880209.2014.916310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Geniposidic acid, one of the main active ingredients in Gardenia jasminoides J. Ellis (Rubiaceae), may also possess important pharmacological activities for cardiovascular disorders similar to other derivatives, such as geniposide. OBJECTIVE To evaluate its anti-atherosclerosis (anti-AS) effect, the related pharmacological activities and possible cellular mechanisms were studied. MATERIALS AND METHODS Thirty rabbits were randomly divided into normal control group, model control group, and geniposidic acid subgroups. In the AS model, its effects on the intima/media thickness ratio and aortic morphology were observed. In the study of primary cultured endothelial cells (ECs) and human umbilical artery smooth muscle cells (HUASMCs), its activities on both ECs and HUASMCs proliferation, HUASMCs' migration were also studied. RESULTS Compared with the model control group, the plaque area, intima/media thickness ratio, and intimal foam cells number in geniposidic acid (80, 160, and 240 mg/kg) subgroups were significantly improved (p < 0.05). By HE staining, the activities of geniposidic acid on relieving ECs shedding and improving aortic morphology disorders were also demonstrated. From the results of CCK-8 testing, only 100 μg/ml geniposidic acid performed significant inhibition on SMC proliferation. The relative IC50 of geniposidic acid on SMC inhibition was 87.73 μg/ml. Geniposide acid also showed promotion effect on ECs proliferation, and the related ED50 of geniposidic acid was 86.05 μg/ml. Besides, only 50 and 100 μg/ml geniposidic acid showed obvious inhibition on SMC migration from the upper chamber (p < 0.05). DISCUSSION AND CONCLUSION The effects of geniposidic acid on protecting vascular endothelium and reversing plaque formation in an atherosclerotic model were demonstrated.
Collapse
Affiliation(s)
- Yu Gao
- The Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | | | | | | | | |
Collapse
|
21
|
Kruska N, Schönfeld P, Pujol A, Reiser G. Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions. Biochim Biophys Acta Mol Basis Dis 2015; 1852:925-36. [PMID: 25583114 DOI: 10.1016/j.bbadis.2015.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 12/21/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a severe neurodegenerative disorder resulting from defective ABCD1 transport protein. ABCD1 mediates peroxisomal uptake of free very-long-chain fatty acids (VLCFA) as well as their CoA-esters. Consequently, VLCFA accumulate in patients' plasma and tissues, which is considered as pathogenic X-ALD triggering factor. Clinical symptoms are mostly manifested in neural tissues and adrenal gland. Here, we investigate astrocytes from wild-type control and a genetic X-ALD mouse model (Abcd1-knockout), exposed to supraphysiological VLCFA (C22:0, C24:0 and C26:0) concentrations. They exhibit multiple impairments of energy metabolism. Furthermore, brain mitochondria from Abcd1(-/-) mice and wild-type control respond similarly to VLCFA with increased ROS generation, impaired oxidative ATP synthesis and diminished Ca(2+) uptake capacity, suggesting that a defective ABCD1 exerts no adaptive pressure on mitochondria. In contrast, astrocytes from Abcd1(-/-) mice respond more sensitively to VLCFA than wild-type control astrocytes. Moreover, long-term application of VLCFA induces high ROS generation, and strong in situ depolarization of mitochondria, and, in Abcd1(-/-) astrocytes, severely diminishes the capability to revert oxidized pyridine nucleotides to NAD(P)H. In addition, observed differences in responses of mitochondria and astrocytes to the hydrocarbon chain length of VLCFA suggest that detrimental VLCFA activities in astrocytes involve defective cellular functions other than mitochondria. In summary, we clearly demonstrate that VLCFA increase the vulnerability of Abcd1(-/-) astrocytes.
Collapse
Affiliation(s)
- Nicol Kruska
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | - Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, ICREA and Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Hospitalet de Llobregat 08908 Barcelona, Spain; Center for Biomedical Research in Rare Diseases (CIBERER), ISCIII Madrid, Spain
| | - Georg Reiser
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
22
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
23
|
Khan S, Abu Jawdeh BG, Goel M, Schilling WP, Parker MD, Puchowicz MA, Yadav SP, Harris RC, El-Meanawy A, Hoshi M, Shinlapawittayatorn K, Deschênes I, Ficker E, Schelling JR. Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis. J Clin Invest 2014; 124:1057-68. [PMID: 24531551 DOI: 10.1172/jci71863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease progression can be predicted based on the degree of tubular atrophy, which is the result of proximal tubule apoptosis. The Na+/H+ exchanger NHE1 regulates proximal tubule cell survival through interaction with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], but pathophysiologic triggers for NHE1 inactivation are unknown. Because glomerular injury permits proximal tubule luminal exposure and reabsorption of fatty acid/albumin complexes, we hypothesized that accumulation of amphipathic, long-chain acyl-CoA (LC-CoA) metabolites stimulates lipoapoptosis by competing with the structurally similar PI(4,5)P2 for NHE1 binding. Kidneys from mouse models of progressive, albuminuric kidney disease exhibited increased fatty acids, LC-CoAs, and caspase-2-dependent proximal tubule lipoapoptosis. LC-CoAs and the cytosolic domain of NHE1 directly interacted, with an affinity comparable to that of the PI(4,5)P2-NHE1 interaction, and competing LC-CoAs disrupted binding of the NHE1 cytosolic tail to PI(4,5)P2. Inhibition of LC-CoA catabolism reduced NHE1 activity and enhanced apoptosis, whereas inhibition of proximal tubule LC-CoA generation preserved NHE1 activity and protected against apoptosis. Our data indicate that albuminuria/lipiduria enhances lipotoxin delivery to the proximal tubule and accumulation of LC-CoAs contributes to tubular atrophy by severing the NHE1-PI(4,5)P2 interaction, thereby lowering the apoptotic threshold. Furthermore, these data suggest that NHE1 functions as a metabolic sensor for lipotoxicity.
Collapse
|
24
|
Voss U, Sand E, Olde B, Ekblad E. Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro. PLoS One 2013; 8:e81413. [PMID: 24312551 PMCID: PMC3849255 DOI: 10.1371/journal.pone.0081413] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/12/2013] [Indexed: 12/21/2022] Open
Abstract
Objective Obese and/or diabetic patients have elevated levels of free fatty acids and increased susceptibility to gastrointestinal symptoms. Since the enteric nervous system is pivotal in regulating gastrointestinal functions alterations or neuropathy in the enteric neurons are suspected to occur in these conditions. Lipid induced intestinal changes, in particular on enteric neurons, were investigated in vitro and in vivo using primary cell culture and a high fat diet (HFD) mouse model. Design Mice were fed normal or HFD for 6 months. Intestines were analyzed for neuronal numbers, remodeling and lipid accumulation. Co-cultures of myenteric neurons, glia and muscle cells from rat small intestine, were treated with palmitic acid (PA) (0 – 10−3 M) and / or oleic acid (OA) (0 – 10−3 M), with or without modulators of intracellular lipid metabolism. Analyses were by immunocyto- and histochemistry. Results HFD caused substantial loss of myenteric neurons, leaving submucous neurons unaffected, and intramuscular lipid accumulation in ileum and colon. PA exposure in vitro resulted in neuronal shrinkage, chromatin condensation and a significant and concentration-dependent decrease in neuronal survival; OA exposure was neuroprotective. Carnitine palmitoyltransferase 1 inhibition, L-carnitine- or alpha lipoic acid supplementation all counteracted PA-induced neuronal loss. PA or OA alone both caused a significant and concentration-dependent loss of muscle cells in vitro. Simultaneous exposure of PA and OA promoted survival of muscle cells and increased intramuscular lipid droplet accumulation. PA exposure transformed glia from a stellate to a rounded phenotype but had no effect on their survival. Conclusions HFD and PA exposure are detrimental to myenteric neurons. Present results indicate excessive palmitoylcarnitine formation and exhausted L-carnitine stores leading to energy depletion, attenuated acetylcholine synthesis and oxidative stress to be main mechanisms behind PA-induced neuronal loss.High PA exposure is suggested to be a factor in causing diabetic neuropathy and gastrointestinal dysregulation.
Collapse
Affiliation(s)
- Ulrikke Voss
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| | - Elin Sand
- Department of Clinical Science Malmö, Lund University, Malmö, Sweden
| | - Björn Olde
- Department of Clinical Science Lund, Lund University, Lund, Sweden
| | - Eva Ekblad
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Engineering of an ω-3 polyunsaturated fatty acid-containing nanoemulsion system for combination C6-ceramide and 17β-estradiol delivery and bioactivity in human vascular endothelial and smooth muscle cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:885-94. [DOI: 10.1016/j.nano.2013.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/26/2013] [Accepted: 02/19/2013] [Indexed: 12/14/2022]
|
26
|
Moraes CT. Adrenoleukodystrophy and the mitochondrial connection: clues for supplementing Lorenzo's oil. ACTA ACUST UNITED AC 2013; 136:2339-41. [PMID: 23842565 DOI: 10.1093/brain/awt189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos T Moraes
- University of Miami, Miller School of Medicine, Miami, FL 33133, USA.
| |
Collapse
|
27
|
Abstract
The rising epidemic of T2DM (Type 2 diabetes mellitus) worldwide is of significant concern. The inherently silent nature of the disease in its early stages precludes early detection; hence cardiovascular disease is often established by the time diabetes is diagnosed. This increased cardiovascular risk leads to significant morbidity and mortality in these individuals. Progressive development of complications as a result of previous exposure to metabolic disturbances appears to leave a long-lasting impression on cells of the vasculature that is not easily reversed and is termed 'metabolic memory'. SMCs (smooth muscle cells) of blood vessel walls, through their inherent ability to switch between a contractile quiescent phenotype and an active secretory state, maintain vascular homoeostasis in health and development. This plasticity also confers SMCs with the essential capacity to adapt and remodel in pathological states. Emerging clinical and experimental studies propose that SMCs in diabetes may be functionally impaired and thus contribute to the increased incidence of macrovascular complications. Although this idea has general support, the underlying molecular mechanisms are currently unknown and hence are the subject of intense research. The aim of the present review is to explore and evaluate the current literature relating to the problem of vascular disease in T2DM and to discuss the critical role of SMCs in vascular remodelling. Possibilities for therapeutic strategies specifically at the level of T2DM SMCs, including recent novel advances in the areas of microRNAs and epigenetics, will be evaluated. Since restoring glucose control in diabetic patients has limited effect in ameliorating their cardiovascular risk, discovering alternative strategies that restrict or reverse disease progression is vital. Current research in this area will be discussed.
Collapse
|
28
|
Nishijima-Matsunobu A, Aoki S, Uchihashi K, Fujimoto K, Toda S. Three-dimensional culture model for analyzing crosstalk between adipose tissue and hepatocytes. Cell Tissue Res 2013; 352:611-21. [PMID: 23512139 DOI: 10.1007/s00441-013-1588-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/11/2013] [Indexed: 01/09/2023]
Abstract
Systemic adipose tissue is involved in the pathophysiology of obesity-associated liver diseases. However, a method has not been established for analyzing the direct interaction between adipose tissue and hepatocytes. We describe a useful three-dimensional model comprising a collagen gel coculture system in which HepG2 hepatocytes are cultured on a gel layer with visceral adipose tissue fragments (VAT) or subcutaneous tissue samples (SAT). Male adipose tissues were obtained from 5-week-old Wistar rats and human autopsy cases. Cellular behavior was analyzed by electron microscopy, immunohistochemistry, Western blot, real-time reverse transcription plus the polymerase chain reaction and enzyme-linked immunosorbent assay. VAT significantly promoted lipid accumulation and apoptosis in HepG2 cells and suppressed their growth and differentiation compared with SAT. VAT produced higher concentrations of fatty acids (palmitate, oleate, linoleate) than SAT. HepG2 cells significantly decreased the production of these fatty acids in VAT. Only HepG2 cells treated with 250 μM palmitate replicated VAT-induced apoptosis. Neither VAT nor SAT affected lipotoxicity-associated signals of nuclear factor kappa B, c-Jun N-terminal kinase and inositol requiring enzyme-1α in HepG2 cells. HepG2 cells never affected adiponectin, leptin, or resistin production in VAT and SAT. The data indicate that our model actively creates adipose tissue and HepG2 hepatocyte interactions, suggesting that (1) VAT plays more critical roles in hepatocyte lipotoxicity than SAT; (2) palmitate but not adipokines, is partly involved in the mechanisms of VAT-induced lipotoxicity; (3) HepG2 cells might inhibit fatty acid production in VAT to protect themselves against lipotoxicity. Our model should serve in studies of interactions between adipose tissue and hepatocytes and of the mechanisms in obesity-related lipotoxicity and liver diseases.
Collapse
Affiliation(s)
- Aki Nishijima-Matsunobu
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | | | | | | | | |
Collapse
|
29
|
Molecular mechanisms of apoptosis induction by 2-dodecylcyclobutanone, a radiolytic product of palmitic acid, in human lymphoma U937 cells. Apoptosis 2012; 17:636-45. [PMID: 22311471 DOI: 10.1007/s10495-012-0698-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The irradiation of fat-containing food forms 2-dodecylcyclobutanone (2-DCB) from palmitic acid (PA). In this study, we investigated whether 2-DCB and PA induce apoptosis in human lymphoma U937 cells. We found that cell viability decreased by 2-DCB and apoptosis was induced by 2-DCB and PA. 2-DCB and PA significantly enhanced the formation of intracellular reactive oxygen species (ROS). Apoptosis induced by 2-DCB and PA was strongly prevented by an antioxidant, N-acetyl-L: -cysteine. The treatment with 2-DCB and PA resulted in the loss of mitochondrial membrane potential, and Fas, caspase-8 and caspase-3 activation. Pretreatment with a pan-caspase inhibitor (z-VAD) significantly inhibited apoptosis induced by 2-DCB and PA. Moreover, 2-DCB and PA also induced Bax up-regulation, the reduction in Bcl-2 expression level, Bid cleavage and the release of cytochrome c from the mitochondria to the cytosol. In addition, an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) was observed after the treatment with 2-DCB and PA. Our results indicated that intracellular ROS generation, the modulation of the Fas-mitochondrion-caspase-dependent pathway and the increase in [Ca(2+)](i) involved in apoptosis are induced by 2-DCB and PA in U937 cells.
Collapse
|
30
|
The caspase pathway of linoelaidic acid (9t, 12t-c18:2)-induced apoptosis in human umbilical vein endothelial cells. Lipids 2012; 48:115-26. [PMID: 23065354 DOI: 10.1007/s11745-012-3728-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Trans fatty acids (TFA) are reported to contribute to inflammation and coronary heart disease. The study aim was to investigate the proapoptotic effects of two double bond TFA (TDTFA) on human umbilical vein endothelial cells (HUVEC). The HUVEC were grown in media supplied with linoelaidic acid (9t,12t-C18:2) at 50, 100, 200, 400 μmol/l for 24 or 48 h to examine the effects of TDTFA on the viability and apoptosis of these cells. Flow cytometry analysis and confocal scanning were used to measure apoptosis, cell binding of Annexin V and propidium iodide uptake. Colorimetric assay and RT-PCR were used to analyze enzyme activities and mRNA expression of caspase-3, -8 and -9 in HUVEC. Results showed that 9t,12t-C18:2 inhibited the viability of HUVEC in a dose-dependent and time-dependent manner. The percentages of 9t,12t-C18:2 induced apoptotic and necrotic cells significantly increased compared with that of the control. The activities and mRNA expression of caspase-8, -9 and -3 were significantly increased in 9t,12t-C18:2 treated cells compared to that of the control. Addition of specific inhibitors of caspase-8 (z-IETD-fmk) and caspase-9 (z-LEHD-fmk) to HUVEC was found to completely inhibit 9t,12t-C18:2-induced activation of caspase-3, and z-IETD-fmk inhibited the activation of caspase-9. Meanwhile, it was found that mRNA expression of Bid, Smac/DIABLO and the release of mitochondrial cytochrome c were significantly elevated by 9t,12t-C18:2 treatment. These results suggest that 9t,12t-C18:2 may induce apoptosis of HUVEC through activating caspase-8, -9 and -3. Both the death receptor pathway and the mitochondrial pathway may be involved in the apoptosis induced by 9t,12t-C18:2.
Collapse
|
31
|
El Akoum S, Cloutier I, Tanguay JF. Vascular smooth muscle cell alterations triggered by mice adipocytes: role of high-fat diet. J Atheroscler Thromb 2012; 19:1128-41. [PMID: 23047600 DOI: 10.5551/jat.13482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Inherent mechanisms leading to vascular smooth muscle cells (VSMC) alterations in obesitylinked type 2 diabetes (T2D) situation remain to be clarified. This study evaluates the impact of supernatant of adipocytes extracted from mice fed high-fat-diets (HFD) on the proliferation and apoptosis of VSMC. METHODS Adipocytes were extracted from visceral white fat pads of male and female C57Bl6 mice showing different stages of metabolic alterations after 20 weeks of vegetal or animal HFD feeding. These cells were stimulated or not with insulin or glucose to condition VSMC media. After 24h of stimulation with adipocyte supernatants (AdS), VSMC proliferation and sustainability were assessed in the absence and presence of AdS. CD36 and insulin receptor mRNA levels were also evaluated. RESULTS Proliferation and viability of VSMC were significantly modulated by the nature of the AdS used and the gender of mice from which adipocytes have been extracted. The most extensive effects on VSMC were triggered by adipocytes from males fed animal HFD and females fed vegetal HFD. These effects were concurrent with increased leptin concentration and decreased adiponectin levels in AdS. In addition, adipocytes of HFD-fed mice increased caspase-3 activity and apoptosis in VSMC. Significant up-regulation of CD36 mRNA was also found in these cells. CONCLUSION Adipocytes of HFD-fed mice induce VSMC alterations. These changes involved mouse gender, most probably correlated to the diet-induced adipocyte secretion profile. Greater sensitivity to AdS effects in VSMC raises concerns about the more frequent cardiovascular events associated with obesity in the presence of T2D, which impairs adipocyte activity.
Collapse
|
32
|
Reduced plasma nonesterified fatty acid levels and the advent of an acute lung injury in mice after intravenous or enteral oleic acid administration. Mediators Inflamm 2012; 2012:601032. [PMID: 22529526 PMCID: PMC3317028 DOI: 10.1155/2012/601032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/12/2011] [Accepted: 11/13/2011] [Indexed: 01/11/2023] Open
Abstract
Although exerting valuable functions in living organisms, nonesterified fatty acids (NEFAs) can be toxic to cells. Increased blood concentration of oleic acid (OLA) and other fatty acids is detected in many pathological conditions. In sepsis and leptospirosis, high plasma levels of NEFA and low albumin concentrations are correlated to the disease severity. Surprisingly, 24 h after intravenous or intragastric administration of OLA, main NEFA levels (OLA inclusive) were dose dependently decreased. However, lung injury was detected in intravenously treated mice, and highest dose killed all mice. When administered by the enteral route, OLA was not toxic in any tested conditions. Results indicate that OLA has important regulatory properties on fatty acid metabolism, possibly lowering circulating fatty acid through activation of peroxisome proliferator-activated receptors. The significant reduction in blood NEFA levels detected after OLA enteral administration can contribute to the already known health benefits brought about by unsaturated-fatty-acid-enriched diets.
Collapse
|
33
|
Zhang Y, Xue R, Zhang Z, Yang X, Shi H. Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells. Lipids Health Dis 2012; 11:1. [PMID: 22221411 PMCID: PMC3306830 DOI: 10.1186/1476-511x-11-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/05/2012] [Indexed: 12/12/2022] Open
Abstract
Objectives Hepatic inflammation and degeneration induced by lipid depositions may be the major cause of nonalcoholic fatty liver disease. In this study, we tried to investigate the effects of saturated and unsaturated fatty acids on hepatoma cell apoptosis. Methods H4IIE liver cells were treated with palmitic acid, linoleic acid, or both with or without the calcium-specific chelator BAPTA-AM after which the expression of proteins associated with endoplasmic reticulum (ER) stress, apoptosis, caspase-3 levels, and calcium flux were measured. Results Palmitic or linoleic acid (250 μM) induced H4IIE cell apoptosis, which required calcium flux but not caspase-3. Apoptosis was not observed when cells were co-treated with linoleic acid (125 μM) and palmitic acid (250 μM). Importantly, the release of cytochrome C from mitochondria into cytoplasm during cell apoptosis was specifically detected only when linoleic acid (125 μM), but not palmitic acid (250 μM), was added to the cells. Depletion of intracellular calcium flux by the calcium-specific chelator, BAPTA-AM, abolished linoleic acid-induced apoptosis. Moreover, in the presence of BAPTA-AM, expression of the unfolded protein response (UPR)-associated genes, CHOP, GRP78, and GRP94, was induced by linoleic acid, but not palmitic acid. Conclusions The results suggest that linoleic acid promotes cell apoptosis through the release of cytochrome C, only if the intracellular calcium flux is unperturbed and intact. These results confirm that ER stress contributes to fatty acid-induced liver cell apoptosis.
Collapse
Affiliation(s)
- Yong Zhang
- Anesthesia Department, the Second Affiliated Hospital of Xi'an Jiaotong University, No, 157, West 5th Road, Xi'an, Shaanxi Province-710004, China
| | | | | | | | | |
Collapse
|
34
|
Minville-Walz M, Gresti J, Pichon L, Bellenger S, Bellenger J, Narce M, Rialland M. Distinct regulation of stearoyl-CoA desaturase 1 gene expression by cis and trans C18:1 fatty acids in human aortic smooth muscle cells. GENES AND NUTRITION 2011; 7:209-16. [PMID: 22057664 DOI: 10.1007/s12263-011-0258-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/25/2011] [Indexed: 12/25/2022]
Abstract
Consumption of trans fatty acids is positively correlated with cardiovascular diseases and with atherogenic risk factors. Trans fatty acids might play their atherogenic effects through lipid metabolism alteration of vascular cells. Accumulation of lipids in vascular smooth muscle cells is a feature of atherosclerosis and a consequence of lipid metabolism alteration. Stearoyl-CoA desaturase 1 (scd1) catalyses the production of monounsaturated fatty acids (e.g. oleic acid) and its expression is associated with lipogenesis induction and with atherosclerosis development. We were interested in analysing the regulation of delta-9 desaturation rate and scd1 expression in human aortic smooth muscle cells (HASMC) exposed to cis and trans C18:1 fatty acid isomers (cis-9 oleic acid, trans-11 vaccenic acid or trans-9 elaidic acid) for 48 h at 100 μM. Treatment of HASMC with these C18:1 fatty acid isomers led to differential effects on delta-9 desaturation; oleic acid repressed the desaturation rate more potently than trans-11 vaccenic acid, whereas trans-9 elaidic acid increased the delta-9 desaturation rate. We then correlated the delta-9 desaturation rate with the expression of scd1 protein and mRNA. We showed that C18:1 fatty acids controlled the expression of scd1 at the transcriptional level in HASMC, leading to an increase in scd1 mRNA content by trans-9 elaidic acid treatment, whereas a decrease in scd1 mRNA content was observed with cis-9 oleic acid and trans-11 vaccenic acid treatments. Altogether, this work highlights a differential capability of C18:1 fatty acid isomers to control scd1 gene expression, which presumes of different consequent effects on cell functions.
Collapse
Affiliation(s)
- M Minville-Walz
- Université de Bourgogne, Centre de recherche INSERM, UMR866, 6 Boulevard Gabriel, 21000, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Ferreira TC, de Moraes LMP, Campos ÉG. Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae. FEMS Yeast Res 2011; 11:408-17. [DOI: 10.1111/j.1567-1364.2011.00729.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
36
|
Chen X, Liu L, Palacios G, Gao J, Zhang N, Li G, Lu J, Song T, Zhang Y, Lv H. Plasma metabolomics reveals biomarkers of the atherosclerosis. J Sep Sci 2010; 33:2776-83. [DOI: 10.1002/jssc.201000395] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Kim MJ, Kwak JH, Baek SH, Yeo HY, Song JH, Cho BJ, Kim OY. Diallyl Sulfides (DAS) and Diallyl Disulfides (DADS) Exhibit a Suppressive Effect on the Proliferation and Migration of Vascular Smooth Muscle. Prev Nutr Food Sci 2010. [DOI: 10.3746/jfn.2010.15.2.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Lamers D, Schlich R, Greulich S, Sasson S, Sell H, Eckel J. Oleic acid and adipokines synergize in inducing proliferation and inflammatory signalling in human vascular smooth muscle cells. J Cell Mol Med 2010; 15:1177-88. [PMID: 20518853 PMCID: PMC3822630 DOI: 10.1111/j.1582-4934.2010.01099.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the context of obesity, perivascular fat produces various adipokines and releases free fatty acids, which may induce inflammation and proliferation in the vascular wall. In this study we investigated how adipokines, oleic acid (OA) and the combined treatment regulate human vascular smooth muscle cell (hVSMC) proliferation and migration and the underlying signalling pathways. Adipocyte-conditioned media (CM) generated from human adipocytes induces a prominent proliferation and migration of hVSMC. Autocrine action of adiponectin totally abolishes CM-induced proliferation. Furthermore, OA but not palmitic acid induces proliferation of hVSMC. CM itself does not contain fatty acids, but CM in combination with OA markedly enhances proliferation of hVSMC in a synergistic way. Both the nuclear factor (NF)-κB and the mammalian target of rapamycin (mTOR) pathway were synergistically activated under these conditions and found to be essential for hVSMC proliferation. Expression of iNOS and production of nitric oxide was only enhanced by combined treatment inducing a marked release of VEGF. Combination of OA and VEGF induces an additive increase of hVSMC proliferation. We could show that the combination of CM and OA led to a synergistic proliferation of hVSMC. Expression of iNOS and production of nitric oxide were only enhanced under these conditions and were paralleled by a marked release of VEGF. These results suggest that the combined elevated release of fatty acids and adipokines by adipose tissue in obesity might be critically related to hVSMC dysfunction, vascular inflammation and the development of atherosclerosis.
Collapse
Affiliation(s)
- Daniela Lamers
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Ivanova L, Petersen D, Uhlig S. Phomenins and fatty acids from Alternaria infectoria. Toxicon 2010; 55:1107-14. [DOI: 10.1016/j.toxicon.2009.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
40
|
Ander BP, Edel AL, McCullough R, Rodriguez-Leyva D, Rampersad P, Gilchrist JSC, Lukas A, Pierce GN. Distribution of omega-3 fatty acids in tissues of rabbits fed a flaxseed-supplemented diet. Metabolism 2010; 59:620-7. [PMID: 19913851 DOI: 10.1016/j.metabol.2009.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 01/07/2023]
Abstract
Diets rich in omega-3 polyunsaturated fatty acids are associated with decreased incidences of cardiovascular disease. The extent of incorporation and distribution of these beneficial fats into body tissues is uncertain. Rabbits were fed regular rabbit chow or a diet containing 10% ground flaxseed that is highly enriched with the omega-3 polyunsaturated fatty acid alpha-linolenic acid (ALA). The high-flaxseed diet resulted in an incorporation of ALA in all tissues, but mostly in the heart and liver with little in the brain. Docosahexaenoic and eicosapentaenoic acid levels were also selectively increased in some tissues, and the effects were not as large as ALA. Arachidonic acid and the ratio of omega-6/omega-3 fatty acids were decreased in all tissues obtained from the flax-supplemented group. Consumption of dietary flaxseed appears to be an effective means to increase ALA content in body tissues, but the degree will depend upon the tissues examined.
Collapse
Affiliation(s)
- Bradley P Ander
- Department of Physiology, Faculty of Medicine, Canadian Centre for Agri-Food Research in Health and Medicine and Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cutini PH, Massheimer VL. Role of progesterone on the regulation of vascular muscle cells proliferation, migration and apoptosis. Steroids 2010; 75:355-61. [PMID: 20132833 DOI: 10.1016/j.steroids.2010.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/18/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to investigate the effect of progesterone (Pg) on cellular growth, migration, apoptosis, and the molecular mechanism of action displayed by the steroid. To that end, rat aortic vascular smooth muscle cell (VSMC) cultures were employed. Pg (10nM) significantly increased [(3)H]thymidine incorporation after 24h of treatment. The enhancement in DNA synthesis was blunted in the presence of an antagonist of Pg receptor (RU486 compound). The mitogenic action of the steroid was suppressed by the presence of the compounds PD98059 (MEK inhibitor), chelerythrine (PKC inhibitor), and indomethacin (cyclooxygenase antagonist) suggesting that the stimulation of DNA synthesis involves MAPK, PKC, and cyclooxygenase transduction pathways. The proliferative effect of the hormone depends on the presence of endothelial cells (EC). When muscle cells were incubated with conditioned media obtained of EC treated with Pg, the mitogenic action of the steroid declined. Wounding assays shows that 10nM Pg enhances VSMC migration and motility. The role of the steroid on programmed cell death was measured using DNA fragmentation technique. Four hours of treatment with 10nM Pg enhanced DNA laddering in a similarly extent to the apoptotic effect induced by the apoptogen hydrogen peroxide (H(2)O(2)). In summary the results presented provide evidence that Pg enhances cell proliferation, migration, and apoptosis of VSMC. The modulation of cell growth elicited by the steroid involves integration between genomic and signal transduction pathways activation.
Collapse
Affiliation(s)
- Pablo H Cutini
- Cátedra de Bioquímica Clínica II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Argentina
| | | |
Collapse
|
42
|
Oörni K, Kovanen PT. Lipoprotein modification by secretory phospholipase A(2) enzymes contributes to the initiation and progression of atherosclerosis. Curr Opin Lipidol 2009; 20:421-7. [PMID: 19593123 DOI: 10.1097/mol.0b013e32832fa14d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Secretory phospholipase A2s (sPLA2s) are considered to be important enzymes in the initiation and progression of atherosclerosis. In this review, we discuss the various mechanisms by which the direct action of the sPLA2s on LDL particles in the arterial intima may contribute to atherogenesis. RECENT FINDINGS A wealth of evidence, both in vitro and in vivo, supports a role for the sPLA2s in atherogenesis. Very recently, systemic inhibition of sPLA2s was found to reduce measures of arterial inflammation. The mechanisms behind this inhibition, however, are largely unknown. Here, we discuss the consequences of sPLA2 action on LDL in the arterial intima and address the recent findings regarding the effects of the lipolytic products of sPLA2, lysophosphatidylcholine, and fatty acids on intimal cells. LDL modified by sPLA2 can accumulate in the arterial intima both extracellularly and intracellularly. Importantly, the lipolytic products promote atherosclerosis by monocyte/macrophage recruitment, by enhancing the production of proretentive molecules by vascular smooth muscle cells, and by inducing cell death. SUMMARY Recent findings on sPLA2s support the idea that the enzymes contribute to human atherogenesis not only as initiating agents but also in maintaining plaque inflammation.
Collapse
|