1
|
Texis T, Rivera-Mancía S, Colín-Ramírez E, Cartas-Rosado R, Koepsell D, Rubio-Carrasco K, Rodríguez-Dorantes M, Gonzalez-Covarrubias V. Genetic Determinants of Atherogenic Indexes. Genes (Basel) 2023; 14:1214. [PMID: 37372394 DOI: 10.3390/genes14061214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Atherogenesis and dyslipidemia increase the risk of cardiovascular disease, which is the leading cause of death in developed countries. While blood lipid levels have been studied as disease predictors, their accuracy in predicting cardiovascular risk is limited due to their high interindividual and interpopulation variability. The lipid ratios, atherogenic index of plasma (AIP = log TG/HDL-C) and the Castelli risk index 2 (CI2 = LDL-C/HDL-C), have been proposed as better predictors of cardiovascular risk, but the genetic variability associated with these ratios has not been investigated. This study aimed to identify genetic associations with these indexes. The study population (n = 426) included males (40%) and females (60%) aged 18-52 years (mean 39 years); the Infinium GSA array was used for genotyping. Regression models were developed using R and PLINK. AIP was associated with variation on APOC3, KCND3, CYBA, CCDC141/TTN, and ARRB1 (p-value < 2.1 × 10-6). The three former were previously associated with blood lipids, while CI2 was associated with variants on DIPK2B, LIPC, and 10q21.3 rs11251177 (p-value 1.1 × 10-7). The latter was previously linked to coronary atherosclerosis and hypertension. KCND3 rs6703437 was associated with both indexes. This study is the first to characterize the potential link between genetic variation and atherogenic indexes, AIP, and CI2, highlighting the relationship between genetic variation and dyslipidemia predictors. These results also contribute to consolidating the genetics of blood lipid and lipid indexes.
Collapse
Affiliation(s)
- Tomas Texis
- National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | | | - Eloisa Colín-Ramírez
- School of Sports Sciences, Anahuac University of North Mexico, Huixquilucan 52786, Mexico
| | - Raul Cartas-Rosado
- National Institute of Cardiology Ignacio Chavez, Mexico City 14080, Mexico
| | - David Koepsell
- Conduct Research Committee, Texas A&M University, College Station, TX 77843, USA
| | - Kenneth Rubio-Carrasco
- National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
- School of Sports Sciences, Anahuac University of North Mexico, Huixquilucan 52786, Mexico
- Faculty of Chemistry UNAM, Mexico City 04510, Mexico
| | | | | |
Collapse
|
2
|
Dietrich E, Jomard A, Osto E. Crosstalk between high-density lipoproteins and endothelial cells in health and disease: Insights into sex-dependent modulation. Front Cardiovasc Med 2022; 9:989428. [PMID: 36304545 PMCID: PMC9594152 DOI: 10.3389/fcvm.2022.989428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Intense research in vascular biology has advanced our knowledge of molecular mechanisms of its onset and progression until complications; however, several aspects of the patho-physiology of atherosclerosis remain to be further elucidated. Endothelial cell homeostasis is fundamental to prevent atherosclerosis as the appearance of endothelial cell dysfunction is considered the first pro-atherosclerotic vascular modification. Physiologically, high density lipoproteins (HDLs) exert protective actions for vessels and in particular for ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute to the regulation of vascular lipid metabolism, and have immune-modulatory, anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent differences are increasingly recognized as important, although not fully elucidated, factors in cardiovascular health and disease patho-physiology. In this review, we highlight the importance of sex hormones and sex-specific gene expression in the regulation of HDL and EC cross-talk and their contribution to cardiovascular disease.
Collapse
Affiliation(s)
- Elisa Dietrich
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Anne Jomard
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Functional Haplotype of LIPC Induces Triglyceride-Mediated Suppression of HDL-C Levels According to Genome-Wide Association Studies. Genes (Basel) 2021; 12:genes12020148. [PMID: 33499410 PMCID: PMC7910859 DOI: 10.3390/genes12020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatic lipase (encoded by LIPC) is a glycoprotein in the triacylglycerol lipase family and mainly synthesized in and secreted from the liver. Previous studies demonstrated that hepatic lipase is crucial for reverse cholesterol transport and modulating metabolism and the plasma levels of several lipoproteins. This study was conducted to investigate the suppression effect of high-density lipoprotein cholesterol (HDL-C) levels in a genome-wide association study and explore the possible mechanisms linking triglyceride (TG) to LIPC variants and HDL-C. Genome-wide association data for TG and HDL-C were available for 4657 Taiwan-biobank participants. The prevalence of haplotypes in the LIPC promoter region and their effects were calculated. The cloned constructs of the haplotypes were expressed transiently in HepG2 cells and evaluated in a luciferase reporter assay. Genome-wide association analysis revealed that HDL-C was significantly associated with variations in LIPC after adjusting for TG. Three haplotypes (H1: TCG, H2: CTA and H3: CCA) in LIPC were identified. H2: CTA was significantly associated with HDL-C levels and H1: TCG suppressed HDL-C levels when a third factor, TG, was included in mediation analysis. The luciferase reporter assay further showed that the H2: CTA haplotype significantly inhibited luciferase activity compared with the H1: TCG haplotype. In conclusion, we identified a suppressive role for TG in the genome-wide association between LIPC and HDL-C. A functional haplotype of hepatic lipase may reduce HDL-C levels and is suppressed by TG.
Collapse
|
4
|
Feitosa MF, Lunetta KL, Wang L, Wojczynski MK, Kammerer CM, Perls T, Schupf N, Christensen K, Murabito JM, Province MA. Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. Atherosclerosis 2020; 297:102-110. [PMID: 32109663 DOI: 10.1016/j.atherosclerosis.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUNDS AND AIMS Several genes are known to contribute to the levels and metabolism of HDL-C, however, their protective effects in cardiovascular disease (CVD), healthy aging, and longevity are complex and poorly understood. It is also unclear if these genes predict longitudinal HDL-C change. We aimed to identify loci influencing HDL-C change. METHODS We performed a genome-wide association study (GWAS) with harmonized HDL-C and imputed genotype in three family-based studies recruited for exceptional survival (Long Life Family Study), from community-based (Framingham Heart Study) and enriched for CVD (Family Heart Study). In 7738 individuals with at least 2 visits, we employed a growth curve model to estimate the random linear trajectory parameter of age-sex-adjusted HDL-C for each person. GWAS was performed using a linear regression model on HDL-C change accounting for kinship correlations, population structure, and differences among studies. RESULTS We identified a novel association for HDL-C with GRID1 (p = 5.43 × 10-10), which encodes a glutamate receptor channel subunit involved in synaptic plasticity. Seven suggestive novel loci (p < 1.0 × 10-6; MBOAT2, LINC01876-NR4A2, NTNG2, CYSLTR2, SYNE2, CTXND1-LINC01314, and CYYR1) and a known lipid gene (ABCA10) showed associations with HDL-C change. Two additional sex-specific suggestive loci were identified in women (DCLK2 and KCNJ2). Several of these genetic variants are associated with lipid-related conditions influencing cardiovascular and metabolic health, have predictive regulatory function, and are involved in lipid-related pathways. CONCLUSIONS Modeling longitudinal HDL-C in prospective studies, with differences in healthy aging, longevity and CVD risk, contributed to gene discovery and provided insights into mechanisms of HDL-C regulation.
Collapse
Affiliation(s)
- Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Candace M Kammerer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | - Thomas Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, MA, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, Southern Denmark University, Odense, Denmark
| | - Joanne M Murabito
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA; Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
5
|
The Effect of Haplotypes in the CETP and LIPC Genes on the Triglycerides to HDL-C Ratio and Its Components in the Roma and Hungarian General Populations. Genes (Basel) 2020; 11:genes11010056. [PMID: 31947886 PMCID: PMC7016864 DOI: 10.3390/genes11010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The triglycerides (TG) to high-density lipoprotein (HDL)-cholesterol (HDL-C) ratio (TG/HDL-C) is a well-known predictor for cardiovascular diseases (CVDs) with great heritability background. The cholesteryl ester transfer protein (CETP) and hepatic lipase (LIPC) gene affect TG/HDL-C ratio. This study aims to explore the association between haplotypes (H) in CETP (based on 5 single nucleotide polymorphisms (SNPs)) and LIPC (based on 6 SNPs) genes and the TG/HDL-C ratio and its components, among Roma and Hungarian general populations. METHODS The prevalence of haplotypes and their effect on HDL-C, TG and TG/HDL-C ratio were calculated in both populations and compared. RESULTS Ten haplotypes in CETP and 6 in LIPC gene were identified. Three haplotypes in CETP and 3 in LIPC have significant effect on HDL-C level, whereas two in CETP and 3 in LIPC on TG level. The H6 in CETP (β = 0.52, p = 0.015; odds ratio (OR) = 1.87, p = 0.009) and H5 in LIPC (β = 0.56, p < 0.001; OR = 1.51, p = 0.002) have a significant increasing effect on TG/HDL-C ratio and have shown higher prevalence among the Roma, as compared to Hungarian general population. The H2 in the CETP gene has a decreasing effect on the TG/HDL-C ratio (OR = 0.58, p = 0.019) and is significantly less frequent among the Roma. CONCLUSIONS Accumulation of harmful haplotypes in CETP and LIPC genes might have a role in the elevated TG/HDL-C ratio in the Roma population, which contributes to a higher risk in the development of cardiovascular diseases.
Collapse
|
6
|
Feng D, Huang QY, Liu K, Zhang SC, Liu ZH. Comparative studies of zebrafish Danio rerio lipoprotein lipase (lpl) and hepatic lipase (lipc) genes belonging to the lipase gene family: evolution and expression pattern. JOURNAL OF FISH BIOLOGY 2014; 85:329-342. [PMID: 24905963 DOI: 10.1111/jfb.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
In this study, bioinformatics analysis, tissue distribution and developmental expression pattern of lipoprotein lipase (lpl) and hepatic lipase (lipc) in zebrafish Danio rerio are reported. In adult D. rerio, lpl was highly expressed in liver. This is remarkably different from the tissue expression pattern of LPL in mammals, which is not detected in the adult liver. The expression of lipc was liver specific, which is consistent with that in mammals. During embryogenesis, lpl mRNA was increased gradually in concentration from 0.5 hpf (hour post fertilization) to 6 dpf (days post fertilization), but lipc was not expressed at the early stage of the embryo until 3 dpf. In situ hybridization further displayed the expression pattern of lpl mainly restricted to the head region including cells surrounding the mouth opening, branchial arches, pectoral fin and lateral line neuromast, whereas lipc was mainly restricted to the liver and part of head regions including lens. This lays a foundation for further investigation of lpl or lipc function and evolution in fishes.
Collapse
Affiliation(s)
- D Feng
- Institute of Evolution & Marine Biodiversity and College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
7
|
Abstract
PURPOSE To determine whether there is an association between hepatic lipase (LIPC) and age-related macular degeneration (AMD) in two independent Caucasian cohorts. METHODS A discovery cohort of 1626 patients with advanced AMD and 859 normal controls and a replication cohort of 2159 cases and 1150 controls were genotyped for two single-nucleotide polymorphisms (SNPs) in the promoter region of LIPC. The associations between the SNPs and AMD were examined by χ(2) tests. RESULTS In the discovery cohort, rs493258 and rs10468017 were both associated with advanced AMD (P=9.63E-3 and P=0.048, respectively). The association was corroborated in the replication cohort (P=4.48E-03 for rs493258 and P=0.015 for rs10468017). Combined analysis resulted in even more significant associations (P=1.21E-04 for rs493258 and P=1.67E-03 for rs10468017). CONCLUSION The LIPC promoter variants rs493258 and rs10468017 were associated with advanced AMD in two independent Caucasian populations, confirming that LIPC polymorphisms may be a genetic risk factor for AMD in the Caucasian population.
Collapse
|
8
|
Jacobo-Albavera L, Aguayo-de la Rosa PI, Villarreal-Molina T, Villamil-Ramírez H, León-Mimila P, Romero-Hidalgo S, López-Contreras BE, Sánchez-Muñoz F, Bojalil R, González-Barrios JA, Aguilar-Salinas CA, Canizales-Quinteros S. VNN1 gene expression levels and the G-137T polymorphism are associated with HDL-C levels in Mexican prepubertal children. PLoS One 2012. [PMID: 23185446 PMCID: PMC3504107 DOI: 10.1371/journal.pone.0049818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND VNN1 gene expression levels and the G-137T polymorphism have been associated with high density lipoprotein cholesterol (HDL-C) levels in Mexican American adults. We aim to evaluate the contribution of VNN1 gene expression and the G-137T variant to HDL-C levels and other metabolic traits in Mexican prepubertal children. METHODOLOGY/PRINCIPAL FINDINGS VNN1 mRNA expression levels were quantified in peripheral blood leukocytes from 224 unrelated Mexican-Mestizo children aged 6-8 years (107 boys and 117 girls) and were genotyped for the G-137T variant (rs4897612). To account for population stratification, a panel of 10 ancestry informative markers was analyzed. After adjustment for admixture, the TT genotype was significantly associated with lower VNN1 mRNA expression levels (P = 2.9 × 10(-5)), decreased HDL-C levels (β = -6.19, P = 0.028) and with higher body mass index (BMI) z-score (β = 0.48, P = 0.024) in the total sample. In addition, VNN1 expression showed a positive correlation with HDL-C levels (r = 0.220; P = 0.017) and a negative correlation with BMI z-score (r = -0.225; P = 0.015) only in girls. CONCLUSION/SIGNIFICANCE Our data suggest that VNN1 gene expression and the G-137T variant are associated with HDL-C levels in Mexican children, particularly in prepubertal girls.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Pablo I. Aguayo-de la Rosa
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Hugo Villamil-Ramírez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Paola León-Mimila
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Departamento de Cuidado de la Salud, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City, Mexico
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Samuel Canizales-Quinteros
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- * E-mail:
| |
Collapse
|
9
|
Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, Kullo IJ, Sovio U, Mathias RA, Sun YV, Franceschini N, Absher D, Li G, Zhang Q, Feitosa MF, Glazer NL, Haritunians T, Hartikainen AL, Knowles JW, North KE, Iribarren C, Kral B, Yanek L, O'Reilly PF, McCarthy MI, Jaquish C, Couper DJ, Chakravarti A, Psaty BM, Becker LC, Province MA, Boerwinkle E, Quertermous T, Palotie L, Jarvelin MR, Becker DM, Kardia SLR, Rotter JI, Chen YDI, Borecki IB. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 2011; 60:1329-39. [PMID: 21386085 PMCID: PMC3064107 DOI: 10.2337/db10-1011] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS. RESEARCH DESIGN AND METHODS Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of ∼2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected. RESULTS Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from ∼9% of the variance in triglycerides, 5.8% of high-density lipoprotein cholesterol, 3.6% of fasting glucose, and 1.4% of systolic blood pressure. CONCLUSIONS Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants.
Collapse
Affiliation(s)
- Aldi T Kraja
- Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chatterjee C, Sparks DL. Hepatic lipase, high density lipoproteins, and hypertriglyceridemia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1429-33. [PMID: 21406176 DOI: 10.1016/j.ajpath.2010.12.050] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 11/17/2022]
Abstract
Hepatic lipase (HL) is a lipolytic enzyme that contributes to the regulation of plasma triglyceride (TG) levels. Elevated TG levels may increase the risk of developing coronary heart disease, and studies suggest that mutations in the HL gene may be associated with elevated TG levels and increased risk of coronary heart disease. Hepatic lipase facilitates the clearance of TG from the very low density lipoprotein (VLDL) pool, and this function is governed by the composition and quality of high density lipoprotein (HDL) particles. In humans, HL is a liver resident enzyme regulated by factors that release it from the liver and activate it in the bloodstream. HDL regulates the release of HL from the liver and HDL structure controls HL transport and activation in the circulation. Alterations in HDL-apolipoprotein composition can perturb HL function by inhibiting the release and activation of the enzyme. HDL structure may therefore affect plasma TG levels and coronary heart disease risk.
Collapse
Affiliation(s)
- Cynthia Chatterjee
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
11
|
Motazacker MM, Kastelein JJ, Kuivenhoven JA. Are high-density lipoprotein genes and their products targets for therapy? Curr Opin Lipidol 2010; 21:157-8. [PMID: 20616629 DOI: 10.1097/mol.0b013e3283376923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|