1
|
Azar Y, Ludwig TE, Le Bon H, Strøm TB, Bluteau O, Di-Filippo M, Carrié A, Chtioui H, Béliard S, Marmontel O, Fonteille A, Gebhart M, Peretti N, Moulin P, Ferrières J, Pradignac A, Farnier M, Gallo A, Yelnik C, Blom D, Génin E, Bogsrud MP, Leren TP, Boileau C, Abifadel M, Rabès JP, Varret M. The singular French PCSK9-p.Ser127Arg gain-of-function variant: A significant player in cholesterol levels from a 775-year-old common ancestor. Atherosclerosis 2024; 399:118596. [PMID: 39500114 DOI: 10.1016/j.atherosclerosis.2024.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS PCSK9 is a key regulator of LDL-cholesterol levels. PCSK9 gain of function variants (GOFVs) cause autosomal dominant hypercholesterolemia (ADH). The first described PCSK9-GOFV, p.Ser127Arg, almost exclusively reported in France, represents 67 % of the PCSK9 French GOFVs due to a founder effect. Few other carriers are reported in South Africa and Norway. This study aims to estimate when the common ancestor lived and to describe a cohort of p.Ser127Arg carriers. METHODS Eight families and 14 p.Ser127Arg carriers were genotyped and phenotyped. Haplotypes were constructed using 11 microsatellites around PCSK9 and 6 intragenic single nucleotide polymorphisms (SNPs). To add to the biological analysis, eight additional p.Ser127Arg carriers, 12 carriers of other PCSK9-GOFVs, 93 LDLR loss of function variant (LOFV) carriers and 49 non-carriers subjects were phenotyped. RESULTS The most common ancestor of p.Ser127Arg was estimated to have lived 775 years ago [95 % CI: 575-1075]. French Protestants exiled after the revocation of the Edict of Nantes in 1685 AD likely brought the variant to South Africa and Norway. As expected for ADH subjects, carriers of LDLR-LOFV, the p.Ser127Arg, or other PCSK9-GOFVs showed significantly higher LDL-C levels than that of the non-carriers. Interestingly, LDL-C levels are higher for LDLR-LOFVs and for the reduced secreted p.Ser127Arg than for secreted PCSK9-GOFVs, suggesting a greater effect of the p.Ser127Arg. Conversely, HDL-C was significantly lower for LDLR-LOFV and p.Ser127Arg carriers. CONCLUSIONS This first report from a large cohort of PCSK9-p.Ser127Arg carriers provides observations suggesting a stronger hypercholesterolemic potential of the mutated pro-PCSK9 compared with the secreted mature protein. This work also provides additional data to support the association between PCSK9 and HDL metabolism, and molecular evidence that this variant appeared in France around 1248 AD (Graphical Abstract = Fig. 1).
Collapse
Affiliation(s)
- Yara Azar
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Thomas E Ludwig
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | - Hugo Le Bon
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Thea Bismo Strøm
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Olivier Bluteau
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Mathilde Di-Filippo
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Alain Carrié
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Hedi Chtioui
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Sophie Béliard
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Oriane Marmontel
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Annie Fonteille
- Centre Hospitalier d'Annecy Genevois, Médecine Interne, Epagny Metz-Tessy, F-74370, France
| | | | - Noël Peretti
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Pediatric Gastroenterology-Hepatology and Nutrition, Bron, F-69002, France
| | - Philippe Moulin
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Endocrinology and Nutrition, Bron, F-69002, France
| | - Jean Ferrières
- Toulouse Rangueil University Hospital, Department of Cardiology, INSERM, UMR 1295, F-31400, Toulouse, France
| | - Alain Pradignac
- CHU of Strasbourg, Department of Internal Medicine, Endocrinology and Nutrition, Strasbourg, F-67000, France
| | - Michel Farnier
- University of Bourgogne Franche-Comté, PEC2 Team, Dijon, Cedex, F-25000, France
| | - Antonio Gallo
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Cécile Yelnik
- CHUR of Lille, Department of Internal Medicine and Immunology, Lille, France; INSERM, UMR 1167 RID-AGE, Lille, F-59000, France
| | - Dirk Blom
- University of Cape Town, Division of Lipidology and Cape Heart Institute, Cape Town, 7925, South Africa
| | - Emmanuelle Génin
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | | | - Trond P Leren
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Catherine Boileau
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Bichat-Claude Bernard Hospital, Genetic Department, AP-HP, F-75018, Paris, France
| | - Marianne Abifadel
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Jean-Pierre Rabès
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Paris-Saclay University and Versailles-Saint-Quentin-en-Yvelines University, Ambroise Paré University Hospital, Biochemistry and Molecular Genetics Department, AP-HP, F-92104, Boulogne-Billancourt, France
| | - Mathilde Varret
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France.
| |
Collapse
|
2
|
Gao X, Yi L, Fu S, Lu Z, Wang J, Zhang S. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Is Associated With Recurrence and Survival of Resectable Non-Small Cell Lung Cancer (NSCLC): A Retrospective Study. J Surg Res 2024; 301:231-239. [PMID: 38968924 DOI: 10.1016/j.jss.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/14/2024] [Accepted: 06/16/2024] [Indexed: 07/07/2024]
Abstract
INTRODUCTION Curative lung resection remains the key therapeutic strategy for early-stage non-small cell lung cancer (NSCLC). However, a proportion of patients still experience variable outcomes and eventually develop recurrence or die from their disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been identified as a deleterious factor that inhibits tumor cells apoptosis and leads to reduction of lymphocyte infiltration. However, there has been no research on the predicted role of PCSK9 as an immunohistochemical biomarker with survival in resectable NSCLC. METHODS One hundred sixty-three patients with resectable NSCLC were retrospectively reviewed, and PCSK9 expression of resected NSCLC was analyzed by immunohistochemistry using tissue microarrays. RESULTS PCSK9 was associated with recurrence (42.1% relapsed in the PCSK9lo group versus 57.9% relapsed in the PCSK9hi group, P = 0.006) and survival status (39.6% dead in PCSK9lo group versus 60.4% dead in PCSK9hi group, P = 0.004) in patients with resectable NSCLC. Moreover, resectable NSCLC patients with higher PCSK9 expression in tumor tissue experienced poorer disease-free survival (median disease-free survival: 10.5 versus 25.2 mo, hazard ratio = 1.620, 95% confidence interval: 1.124-2.334) and overall suvrival (median overall suvrival: 20.0 versus 54.1 mo, hazard ratio = 1.646, 95% confidence interval: 1.101-2.461) compared to those with lower PCSK9 expression. CONCLUSIONS High PCSK9 expression of tumor was correlated with recurrence and worse survival status of resectable NSCLC in our retrospective study, which indicated that PCSK9 in NSCLC may be an immunohistochemical biomarker of poor prognosis for patients with resectable NSCLC. Further large-scale prospective studies are warranted to establish these results.
Collapse
Affiliation(s)
- Xiang Gao
- Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Cancer Research Center, Capital Medical University, Beijing, China; Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Department of Endoscopic Diagnosis and Treatment, Capital Medical University, Beijing, China
| | - Ling Yi
- Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Cancer Research Center, Capital Medical University, Beijing, China
| | - Siyun Fu
- Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Cancer Research Center, Capital Medical University, Beijing, China; Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Department of Medical Oncology, Capital Medical University, Beijing, China
| | - Zhendong Lu
- Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Cancer Research Center, Capital Medical University, Beijing, China; Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Department of Medical Oncology, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Cancer Research Center, Capital Medical University, Beijing, China; Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Department of Medical Oncology, Capital Medical University, Beijing, China.
| | - Shucai Zhang
- Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Department of Medical Oncology, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Grejtakova D, Boronova I, Bernasovska J, Bellosta S. PCSK9 and Lipid Metabolism: Genetic Variants, Current Therapies, and Cardiovascular Outcomes. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07599-5. [PMID: 38907775 DOI: 10.1007/s10557-024-07599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in the modulation of lipid metabolism as a critical negative regulator of hepatic low-density lipoprotein receptor (LDLR) levels and circulating low-density lipoprotein (LDL) clearance. Numerous gain-of-function (GOF) mutations in PCSK9 have been identified as causing familial hypercholesterolemia (FH) by reducing LDLR levels, and loss-of-function (LOF) mutations associated with a hypercholesterolemia phenotype protective against atherosclerosis. PCSK9 represents an example of successful translational research resulting in the identification of PCSK9 as a major drug target for a lipid-lowering therapy. To explore the genetic constitution of PCSK9 and its biologic role, in this review, we summarize the current evidence of clinically significant PCSK9 genetic variants involved in lipid metabolism as well as emphasize the importance of PCSK9 inhibition for the improvement of cardiovascular outcomes by conducting a meta-analysis of the available data on the incidence of cardiovascular disease events.
Collapse
Affiliation(s)
- Daniela Grejtakova
- Laboratory of Molecular Genetics, Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, 17 November 1, Presov, 08001, Slovakia.
| | - Iveta Boronova
- Laboratory of Molecular Genetics, Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, 17 November 1, Presov, 08001, Slovakia
| | - Jarmila Bernasovska
- Laboratory of Molecular Genetics, Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, 17 November 1, Presov, 08001, Slovakia
| | - Stefano Bellosta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
4
|
Liu S, Wan J, Wang D, Yang Y, Fang J, Luo T, Liang D, Hu J, Hou J, Wang P. Effect of the PCSK9 R46L genetic variant on plasma insulin and glucose levels, risk of diabetes mellitus and cardiovascular disease: A meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:1339-1351. [PMID: 38734541 DOI: 10.1016/j.numecd.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND AIM The impact of the loss-of-function (LOF) genetic variant PCSK9 R46L on glucose homeostasis and cardiovascular disease (CVD) remains uncertain, despite its established correlation with diminished blood cholesterol levels. This meta-analysis aimed at exploring the effect of the PCSK9 R46L genetic variant on plasma insulin and glucose levels, risk of diabetes mellitus and CVD. METHODS AND RESULTS PubMed, Embase, and the Cochrane Library were searched for cohort and case-control studies published until October 1, 2023. The studies should report the association of the PCSK9 R46L genetic variant with one of the following: fasting plasma insulin, blood glucose levels, diabetes mellitus, and CVD risk. A dominant model of the PCSK9 R46L genetic variant was employed to statistical analysis. The meta-analyses were performed for continuous variables with standard mean difference (SMD), categorical variables with odds ratio (OR) using a random-effects model. A total of 17 articles with 20 studies engaging 1,186,861 population were identified and mobilized for these analyses. The overall results indicated that, compared with non-carriers of the PCSK9 R46L genetic variant, carriers of the PCSK9 R46L genetic variant did not increase or decrease the levels of fasting plasma insulin (3 studies with 7277 population; SMD, 0.08; 95% CI, -0.04 to 0.19; P = 0.270), and the levels of fasting plasma glucose (7 studies with 9331 population; SMD, 0.03; 95% CI, -0.08 to 0.13; P = 0.610). However, carriers of the PCSK9 R46L genetic variant indeed had 17% reduction in the risk of CVD (11 studies with 558,263 population; OR, 0.83; 95% CI, 0.71 to 0.98; P = 0.030), and 9% increase in the risk of diabetes mellitus (10 studies with 744,466 population; OR, 1.09; 95% CI, 1.04 to 1.14; P < 0.01). Meta-regression analyses indicated that the increased risk of diabetes mellitus and the reduced risk of CVD were positively correlated with reduction in LDL-C (P = 0.004 and 0.033, respectively). CONCLUSIONS PCSK9 R46L genetic variant exhibited an elevated susceptibility to diabetes mellitus alongside a reduced vulnerability to CVD.
Collapse
Affiliation(s)
- Sen Liu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jindong Wan
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Dan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jie Fang
- Department of Ultrasound Medicine, Xindu District People's Hospital of Chengdu, Chengdu 610500, Sichuan, China.
| | - Tao Luo
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Dengpan Liang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jun Hu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Jixin Hou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China; Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu 610500, Sichuan, China.
| |
Collapse
|
5
|
Wei A, Border R, Fu B, Cullina S, Brandes N, Jang SK, Sankararaman S, Kenny E, Udler MS, Ntranos V, Zaitlen N, Arboleda V. Investigating the sources of variable impact of pathogenic variants in monogenic metabolic conditions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.14.23295564. [PMID: 37745486 PMCID: PMC10516069 DOI: 10.1101/2023.09.14.23295564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Over three percent of people carry a dominant pathogenic variant, yet only a fraction of carriers develop disease. Disease phenotypes from carriers of variants in the same gene range from mild to severe. Here, we investigate underlying mechanisms for this heterogeneity: variable variant effect sizes, carrier polygenic backgrounds, and modulation of carrier effect by genetic background (marginal epistasis). We leveraged exomes and clinical phenotypes from the UK Biobank and the Mt. Sinai BioMe Biobank to identify carriers of pathogenic variants affecting cardiometabolic traits. We employed recently developed methods to study these cohorts, observing strong statistical support and clinical translational potential for all three mechanisms of variable carrier penetrance and disease severity. For example, scores from our recent model of variant pathogenicity were tightly correlated with phenotype amongst clinical variant carriers, they predicted effects of variants of unknown significance, and they distinguished gain- from loss-of-function variants. We also found that polygenic scores predicted phenotypes amongst pathogenic carriers and that epistatic effects can exceed main carrier effects by an order of magnitude.
Collapse
|
6
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Rogozik J, Główczyńska R, Grabowski M. Genetic backgrounds and diagnosis of familial hypercholesterolemia. Clin Genet 2024; 105:3-12. [PMID: 37849044 DOI: 10.1111/cge.14435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Lipid disorders play a critical role in the intricate development of atherosclerosis and its clinical consequences, such as coronary heart disease and stroke. These disorders are responsible for a significant number of deaths in many adult populations worldwide. Familial hypercholesterolemia (FH) is a genetic disorder that causes extremely high levels of LDL cholesterol. The most common mutations occur in genes responsible for low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9). While genetic testing is a dependable method for diagnosing the disease, it may not detect primary mutations in 20%-40% of FH cases.
Collapse
Affiliation(s)
- Joanna Rogozik
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Renata Główczyńska
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Larrea-Sebal A, Jebari-Benslaiman S, Galicia-Garcia U, Jose-Urteaga AS, Uribe KB, Benito-Vicente A, Martín C. Predictive Modeling and Structure Analysis of Genetic Variants in Familial Hypercholesterolemia: Implications for Diagnosis and Protein Interaction Studies. Curr Atheroscler Rep 2023; 25:839-859. [PMID: 37847331 PMCID: PMC10618353 DOI: 10.1007/s11883-023-01154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia (FH) is a hereditary condition characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), which increases the risk of cardiovascular disease if left untreated. This review aims to discuss the role of bioinformatics tools in evaluating the pathogenicity of missense variants associated with FH. Specifically, it highlights the use of predictive models based on protein sequence, structure, evolutionary conservation, and other relevant features in identifying genetic variants within LDLR, APOB, and PCSK9 genes that contribute to FH. RECENT FINDINGS In recent years, various bioinformatics tools have emerged as valuable resources for analyzing missense variants in FH-related genes. Tools such as REVEL, Varity, and CADD use diverse computational approaches to predict the impact of genetic variants on protein function. These tools consider factors such as sequence conservation, structural alterations, and receptor binding to aid in interpreting the pathogenicity of identified missense variants. While these predictive models offer valuable insights, the accuracy of predictions can vary, especially for proteins with unique characteristics that might not be well represented in the databases used for training. This review emphasizes the significance of utilizing bioinformatics tools for assessing the pathogenicity of FH-associated missense variants. Despite their contributions, a definitive diagnosis of a genetic variant necessitates functional validation through in vitro characterization or cascade screening. This step ensures the precise identification of FH-related variants, leading to more accurate diagnoses. Integrating genetic data with reliable bioinformatics predictions and functional validation can enhance our understanding of the genetic basis of FH, enabling improved diagnosis, risk stratification, and personalized treatment for affected individuals. The comprehensive approach outlined in this review promises to advance the management of this inherited disorder, potentially leading to better health outcomes for those affected by FH.
Collapse
Affiliation(s)
- Asier Larrea-Sebal
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
- Fundación Biofisika Bizkaia, 48940, Leioa, Spain
| | - Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - Unai Galicia-Garcia
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - Ane San Jose-Urteaga
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
| | - Kepa B Uribe
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain.
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain.
| |
Collapse
|
9
|
Darabi M, Lhomme M, Ponnaiah M, Pučić-Baković M, Guillas I, Frisdal E, Bittar R, Croyal M, Matheron-Duriez L, Poupel L, Bonnefont-Rousselot D, Frere C, Varret M, Krempf M, Cariou B, Lauc G, Guerin M, Carrie A, Bruckert E, Giral P, Le Goff W, Kontush A. Integrated omics approach for the identification of HDL structure-function relationships in PCSK9-related familial hypercholesterolemia. J Clin Lipidol 2023; 17:643-658. [PMID: 37550151 DOI: 10.1016/j.jacl.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in dyslipidemia may go beyond its immediate effects on low-density lipoprotein receptor (LDL-R) activity. OBJECTIVE This study aimed to assess PCSK9-derived alterations of high-density lipoprotein (HDL) physiology, which bear a potential to contribute to cardiovascular risk profile. METHODS HDL was isolated from 33 patients with familial autosomal dominant hypercholesterolemia (FH), including those carrying PCSK9 gain-of-function (GOF) genetic variants (FH-PCSK9, n = 11), together with two groups of dyslipidemic patients employed as controls and carrying genetic variants in the LDL-R not treated (ntFH-LDLR, n = 11) and treated (tFH-LDLR, n = 11) with statins, and 11 normolipidemic controls. Biological evaluations paralleled by proteomic, lipidomic and glycomic analyses were applied to characterize functional and compositional properties of HDL. RESULTS Multiple deficiencies in the HDL function were identified in the FH-PCSK9 group relative to dyslipidemic FH-LDLR patients and normolipidemic controls, which involved reduced antioxidative, antiapoptotic, anti-thrombotic and anti-inflammatory activities. By contrast, cellular cholesterol efflux capacity of HDL was unchanged. In addition, multiple alterations of the proteomic, lipidomic and glycomic composition of HDL were found in the FH-PCSK9 group. Remarkably, HDLs from FH-PCSK9 patients were systematically enriched in several lysophospholipids as well as in A2G2S2 (GP13) glycan and apolipoprotein A-IV. Based on network analysis of functional and compositional data, a novel mosaic structure-function model of HDL biology involving FH was developed. CONCLUSION Several metrics of anti-atherogenic HDL functionality are altered in FH-PCSK9 patients paralleled by distinct compositional alterations. These data provide a first-ever overview of the impact of GOF PCSK9 genetic variants on structure-function relationships in HDL.
Collapse
Affiliation(s)
- Maryam Darabi
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France; LPS-BioSciences (Current affiliation of Dr Darabi), Université de Paris-Saclay, Orsay, France
| | - Marie Lhomme
- ICAN Analytics (Dr Lhomme), Lipidomics Core, Foundation for Innovation in Cardiometabolism and Nutrition (IHU-ICAN, ANR-10-IAHU-05), Paris, France
| | - Maharajah Ponnaiah
- ICAN I/O (Dr Ponnaiah), Foundation for Innovation in Cardiometabolism and Nutrition (IHU-ICAN, ANR-10-IAHU-05), Paris, France
| | - Maja Pučić-Baković
- Genos Glycoscience Research Laboratory (Drs Pučić-Baković and Lauc), Borongajska cesta 83H, HR-10 000 Zagreb, Croatia
| | - Isabelle Guillas
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Eric Frisdal
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Randa Bittar
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France; Department of Metabolic Biochemistry (Drs Bittar and Bonnefont-Rousselot), Pitié-Salpêtrière-Charles Foix Hospital, AP-HP, Paris, France
| | - Mikaël Croyal
- Université de Nantes (Drs Cariou et Croyal), CHU Nantes, CNRS, INSERM, l'Institut du Thorax, F-44000 Nantes, France; Université de Nantes (Dr Croyal), CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; CRNH-Ouest Mass Spectrometry Core Facility (Drs Croyal and Krempf), F-44000 Nantes, France
| | - Lucrèce Matheron-Duriez
- Platform MS3U (Dr Matheron), Institut de Biologie Paris Seine FR 3631, Sorbonne Université, Paris, France
| | - Lucie Poupel
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Dominique Bonnefont-Rousselot
- Department of Metabolic Biochemistry (Drs Bittar and Bonnefont-Rousselot), Pitié-Salpêtrière-Charles Foix Hospital, AP-HP, Paris, France; Université de Paris (Dr Bonnefont-Rousselot), CNRS, INSERM, UTCBS, F-75006 Paris, France
| | - Corinne Frere
- Department of Haematology (Dr Frere), Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Mathilde Varret
- Paris University and Sorbonne Paris Nord University (Dr Varret), National Institute for Health and Medical Research (INSERM, LVTS), F-75018 Paris, France
| | - Michel Krempf
- CRNH-Ouest Mass Spectrometry Core Facility (Drs Croyal and Krempf), F-44000 Nantes, France; Clinique Bretéché (Dr Krempf), Groupe Elsan, Nantes, France
| | - Bertrand Cariou
- Université de Nantes (Drs Cariou et Croyal), CHU Nantes, CNRS, INSERM, l'Institut du Thorax, F-44000 Nantes, France
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory (Drs Pučić-Baković and Lauc), Borongajska cesta 83H, HR-10 000 Zagreb, Croatia
| | - Maryse Guerin
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Alain Carrie
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Eric Bruckert
- Endocrinologie Métabolisme et Prévention Cardiovasculaire (Drs Bruckert and Giral), Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Philippe Giral
- Endocrinologie Métabolisme et Prévention Cardiovasculaire (Drs Bruckert and Giral), Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Wilfried Le Goff
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France
| | - Anatol Kontush
- Sorbonne Université, INSERM (Drs Darabi, Guillas, Frisdal, Poupel, Carrie,Bittar, Guerin, Le Goff, and Kontush), Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France.
| |
Collapse
|
10
|
Hummelgaard S, Vilstrup JP, Gustafsen C, Glerup S, Weyer K. Targeting PCSK9 to tackle cardiovascular disease. Pharmacol Ther 2023; 249:108480. [PMID: 37331523 DOI: 10.1016/j.pharmthera.2023.108480] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Lowering blood cholesterol levels efficiently reduces the risk of developing atherosclerotic cardiovascular disease (ASCVD), including coronary artery disease (CAD), which is the main cause of death worldwide. CAD is caused by plaque formation, comprising cholesterol deposits in the coronary arteries. Proprotein convertase subtilisin kexin/type 9 (PCSK9) was discovered in the early 2000s and later identified as a key regulator of cholesterol metabolism. PCSK9 induces lysosomal degradation of the low-density lipoprotein (LDL) receptor in the liver, which is responsible for clearing LDL-cholesterol (LDL-C) from the circulation. Accordingly, gain-of-function PCSK9 mutations are causative of familial hypercholesterolemia, a severe condition with extremely high plasma cholesterol levels and increased ASCVD risk, whereas loss-of-function PCSK9 mutations are associated with very low LDL-C levels and protection against CAD. Since the discovery of PCSK9, extensive investigations in developing PCSK9 targeting therapies have been performed. The combined delineation of clear biology, genetic risk variants, and PCSK9 crystal structures have been major drivers in developing antagonistic molecules. Today, two antibody-based PCSK9 inhibitors have successfully progressed to clinical application and shown to be effective in reducing cholesterol levels and mitigating the risk of ASCVD events, including myocardial infarction, stroke, and death, without any major adverse effects. A third siRNA-based inhibitor has been FDA-approved but awaits cardiovascular outcome data. In this review, we outline the PCSK9 biology, focusing on the structure and nonsynonymous mutations reported in the PCSK9 gene and elaborate on PCSK9-lowering strategies under development. Finally, we discuss future perspectives with PCSK9 inhibition in other severe disorders beyond cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
11
|
Zhao J, Veeranan-Karmegam R, Baker FC, Mysona BA, Bagchi P, Liu Y, Smith SB, Gonsalvez GB, Bollinger KE. Defining the ligand-dependent proximatome of the sigma 1 receptor. Front Cell Dev Biol 2023; 11:1045759. [PMID: 37351276 PMCID: PMC10284605 DOI: 10.3389/fcell.2023.1045759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Sigma 1 Receptor (S1R) is a therapeutic target for a wide spectrum of pathological conditions ranging from neurodegenerative diseases to cancer and COVID-19. S1R is ubiquitously expressed throughout the visceral organs, nervous, immune and cardiovascular systems. It is proposed to function as a ligand-dependent molecular chaperone that modulates multiple intracellular signaling pathways. The purpose of this study was to define the S1R proximatome under native conditions and upon binding to well-characterized ligands. This was accomplished by fusing the biotin ligase, Apex2, to the C terminus of S1R. Cells stably expressing S1R-Apex or a GFP-Apex control were used to map proximal proteins. Biotinylated proteins were labeled under native conditions and in a ligand dependent manner, then purified and identified using quantitative mass spectrometry. Under native conditions, S1R biotinylates over 200 novel proteins, many of which localize within the endomembrane system (endoplasmic reticulum, Golgi, secretory vesicles) and function within the secretory pathway. Under conditions of cellular exposure to either S1R agonist or antagonist, results show enrichment of proteins integral to secretion, extracellular matrix formation, and cholesterol biosynthesis. Notably, Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) displays increased binding to S1R under conditions of treatment with Haloperidol, a well-known S1R antagonist; whereas Low density lipoprotein receptor (LDLR) binds more efficiently to S1R upon treatment with (+)-Pentazocine ((+)-PTZ), a classical S1R agonist. Furthermore, we demonstrate that the ligand bound state of S1R correlates with specific changes to the cellular secretome. Our results are consistent with the postulated role of S1R as an intracellular chaperone and further suggest important and novel functionalities related to secretion and cholesterol metabolism.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
| | - Rajalakshmi Veeranan-Karmegam
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Frederick C. Baker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, United States
| | - Yutao Liu
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Graydon B. Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
12
|
Bell AS, Wagner J, Rosoff DB, Lohoff FW. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system. Neurosci Biobehav Rev 2023; 149:105155. [PMID: 37019248 DOI: 10.1016/j.neubiorev.2023.105155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
The gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its protein product have been widely studied for their role in cholesterol and lipid metabolism. PCSK9 increases the rate of metabolic degradation of low-density lipoprotein receptors, preventing the diffusion of low-density lipoprotein (LDL) from plasma into cells and contributes to high lipoprotein-bound cholesterol levels in the plasma. While most research has focused on the regulation and disease relevance of PCSK9 to the cardiovascular system and lipid metabolism, there is a growing body of evidence that PCSK9 plays a crucial role in pathogenic processes in other organ systems, including the central nervous system. PCSK9's impact on the brain is not yet fully understood, though several recent studies have sought to illuminate its impact on various neurodegenerative and psychiatric disorders, as well as its connection with ischemic stroke. Cerebral PCSK9 expression is low but is highly upregulated during disease states. Among others, PCSK9 is known to play a role in neurogenesis, neural cell differentiation, central LDL receptor metabolism, neural cell apoptosis, neuroinflammation, Alzheimer's Disease, Alcohol Use Disorder, and stroke. The PCSK9 gene contains several polymorphisms, including both gain-of-function and loss-of-function mutations which profoundly impact normal PCSK9 signaling and cholesterol metabolism. Gain-of-function mutations lead to persistent hypercholesterolemia and poor health outcomes, while loss-of-function mutations generally lead to hypocholesterolemia and may serve as a protective factor against diseases of the liver, cardiovascular system, and central nervous system. Recent genomic studies have sought to identify the end-organ effects of such mutations and continue to identify evidence of a much broader role for PCSK9 in extrahepatic organ systems. Despite this, there remain large gaps in our understanding of PCSK9, its regulation, and its effects on disease risk outside the liver. This review, which incorporates data from a wide range of scientific disciplines and experimental paradigms, is intended to describe PCSK9's role in the central nervous system as it relates to cerebral disease and neuropsychiatric disorders, and to examine the clinical potential of PCSK9 inhibitors and genetic variation in the PCSK9 gene on disease outcomes, including neurological and neuropsychiatric disease.
Collapse
|
13
|
Gao X, Yi L, Jiang C, Li S, Wang X, Yang B, Li W, Che N, Wang J, Zhang H, Zhang S. PCSK9 regulates the efficacy of immune checkpoint therapy in lung cancer. Front Immunol 2023; 14:1142428. [PMID: 37025995 PMCID: PMC10070680 DOI: 10.3389/fimmu.2023.1142428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) secreted by tumors was reported as a deleterious factor that led to the reduction of lymphocyte infiltration and the poorer efficacy of ICIs in vivo. This study aimed to explore whether PCSK9 expression in tumor tissue could predict the response of advanced non-small cell lung cancer (NSCLC) to anti-PD-1 immunotherapy and the synergistic antitumor effect of the combination of the PCSK9 inhibitor with the anti-CD137 agonist. One hundred fifteen advanced NSCLC patients who received anti-PD-1 immunotherapy were retrospectively studied with PCSK9 expression in baseline NSCLC tissues detected by immunohistochemistry (IHC). The mPFS of the PCSK9lo group was significantly longer than that of the PCSK9hi group [8.1 vs. 3.6 months, hazard ratio (HR): 3.450; 95% confidence interval (CI), 2.166-5.496]. A higher objective response rate (ORR) and a higher disease control rate (DCR) were observed in the PCSK9lo group than in the PCSK9hi group (54.4% vs. 34.5%, 94.7% vs. 65.5%). Reduction and marginal distribution of CD8+ T cells were observed in PCSK9hi NSCLC tissues. Tumor growth was retarded by the PCSK9 inhibitor and the anti-CD137 agonist alone in the Lewis lung carcinoma (LLC) mice model and further retarded by the PCSK9 inhibitor in combination with the CD137 agonist with long-term survival of the host mice with noticeable increases of CD8+ and GzmB+ CD8+ T cells and reduction of Tregs. Together, these results suggested that high PCSK9 expression in baseline tumor tissue was a deleterious factor for the efficacy of anti-PD-1 immunotherapy in advanced NSCLC patients. The PCSK9 inhibitor in combination with the anti-CD137 agonist could not only enhance the recruitment of CD8+ and GzmB+ CD8+ T cells but also deplete Tregs, which may be a novel therapeutic strategy for future research and clinical practice.
Collapse
Affiliation(s)
- Xiang Gao
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chang Jiang
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Shuping Li
- Department of Cardiology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Weiying Li
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Considerations of the Genetic Background of Obesity among Patients with Psoriasis. Genes (Basel) 2023; 14:genes14030594. [PMID: 36980866 PMCID: PMC10048146 DOI: 10.3390/genes14030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Psoriasis comorbidities may emerge from pleiotropic mechanisms, including common proinflammatory pathways, cellular mediators or genetic predisposition. Obesity is considered to be an independent risk factor of psoriasis, which may influence the severity of the disease and its early onset, decrease patients’ quality of life, alter response to psoriasis therapies and affect morbidity by reduced life expectancy due to cardiovascular events. Although novel approaches, including genetic techniques, have provided a wide range of new research, there are still scarce studies elaborating on the common genetic background of psoriasis and obesity. The aim of this study was to present and evaluate a possible common genetic background of psoriasis and concomitant increased body mass based on the review of the available literature.
Collapse
|
15
|
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death globally. Despite its important risk of premature atherosclerosis and cardiovascular disease, familial hypercholesterolemia (FH) is still largely underdiagnosed worldwide. It is one of the most frequently inherited diseases due to mutations, for autosomal dominant forms, in either of the LDLR, APOB, and PCSK9 genes or possibly a few mutations in the APOE gene and, for the rare autosomal forms, in the LDLRAP1 gene. The discovery of the genes implicated in the disease has largely helped to improve the diagnosis and treatment of FH from the LDLR by Brown and Goldstein, as well as the introduction of statins, to PCSK9 discovery in FH by Abifadel et al., and the very rapid availability of PCSK9 inhibitors. In the last two decades, major progress has been made in clinical and genetic diagnostic tools and the therapeutic arsenal against FH. Improving prevention, diagnosis, and treatment and making them more accessible to all patients will help reduce the lifelong burden of the disease.
Collapse
Affiliation(s)
- Marianne Abifadel
- UMR1148, Inserm, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, F-75018 Paris, France.,Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Catherine Boileau
- UMR1148, Inserm, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, F-75018 Paris, France.,Département de Génétique, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| |
Collapse
|
16
|
Los B, Ferreira GM, Borges JB, Kronenberger T, Oliveira VFD, Dagli-Hernandez C, Bortolin RH, Gonçalves RM, Faludi AA, Mori AA, Barbosa TKA, Freitas RCCD, Jannes CE, Pereira ADC, Bastos GM, Poso A, Hirata RDC, Hirata MH. Effects of PCSK9 missense variants on molecular conformation and biological activity in transfected HEK293FT cells. Gene 2023; 851:146979. [DOI: 10.1016/j.gene.2022.146979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
17
|
Genetic Spectrum of Familial Hypercholesterolaemia in the Malaysian Community: Identification of Pathogenic Gene Variants Using Targeted Next-Generation Sequencing. Int J Mol Sci 2022; 23:ijms232314971. [PMID: 36499307 PMCID: PMC9736953 DOI: 10.3390/ijms232314971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is caused by mutations in lipid metabolism genes, predominantly in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin-type 9 (PCSK9) and LDL receptor adaptor protein 1 (LDLRAP1). The prevalence of genetically confirmed FH and the detection rate of pathogenic variants (PV) amongst clinically diagnosed patients is not well established. Targeted next-generation sequencing of LDLR, APOB, PCSK9 and LDLRAP1 was performed on 372 clinically diagnosed Malaysian FH subjects. Out of 361 variants identified, 40 of them were PV (18 = LDLR, 15 = APOB, 5 = PCSK9 and 2 = LDLRAP1). The majority of the PV were LDLR and APOB, where the frequency of both PV were almost similar. About 39% of clinically diagnosed FH have PV in PCSK9 alone and two novel variants of PCSK9 were identified in this study, which have not been described in Malaysia and globally. The prevalence of genetically confirmed potential FH in the community was 1:427, with a detection rate of PV at 0.2% (12/5130). About one-fourth of clinically diagnosed FH in the Malaysian community can be genetically confirmed. The detection rate of genetic confirmation is similar between potential and possible FH groups, suggesting a need for genetic confirmation in index cases from both groups. Clinical and genetic confirmation of FH index cases in the community may enhance the early detection of affected family members through family cascade screening.
Collapse
|
18
|
The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the pathophysiology of psoriasis and systemic lupus erythematosus. Postepy Dermatol Alergol 2022; 39:645-650. [PMID: 36090718 PMCID: PMC9454343 DOI: 10.5114/ada.2022.118919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
Inflammation and atherogenic dyslipidaemia are often observed in skin diseases and represent an increased risk of cardiovascular disorders. Proprotein convertase subtilisin/kexin type 9 plays an important role in the regulation of serum low-density lipoprotein cholesterol levels. Its biological role, however, seems to go much beyond the regulation of cholesterol metabolism. The article presents potential pathophysiological links between inflammatory process and lipid disorders based on the example of psoriasis and systemic lupus erythematosus.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Plasma levels of LDL cholesterol (LDL-C) are causally associated with cardiovascular risk. Reducing LDL-C results in a decreased incidence of cardiovascular events, proportionally to the absolute reduction in LDL-C. The inhibition of proprotein convertase subtilisin kexin 9 (PCSK) is a highly effective and safe approach to reducing LDL-C levels. In this review, we discuss the available data on the efficacy and safety of inclisiran, a siRNA targeting PCSK9 and propose a clinical profile for the patients who can benefit the most from this approach. RECENT FINDINGS Inclisiran is a small interfering RNA targeting the mRNA of PCSK9 specifically in the liver, owing to the conjugation with triantennary N-acetylgalactosamine. Randomized clinical trials have shown that inclisiran provides robust and durable reductions of PCSK9 and LDL-C levels, with a dosing schedule of once every 6 months after the initial and 3-month doses. These effects are consistent in different categories of patients, including patients with atherosclerotic cardiovascular disease and/or risk equivalent or patients with heterozygous familial hypercholesterolaemia. Ultimately the administration schedule may improve patients' compliance given also the favourable safety profile of the drug. Completion of ongoing outcome clinical trials will provide information on both the expected clinical benefit and the safety of inclisiran administered for longer.
Collapse
|
20
|
Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C, Burtea C. Molecular and cellular biology of PCSK9: impact on glucose homeostasis. J Drug Target 2022; 30:948-960. [PMID: 35723066 DOI: 10.1080/1061186x.2022.2092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proprotein convertase substilisin/kexin 9 (PCSK9) inhibitors (PCSK9i) revolutionised the lipid-lowering therapy. However, a risk of type 2 diabetes mellitus (T2DM) is evoked under PCSK9i therapy. In this review, we summarise the current knowledge on the link of PCSK9 with T2DM. A significant correlation was found between PCSK9 and insulin, homeostasis model assessment (HOMA) of insulin resistance and glycated haemoglobin. PCSK9 is also involved in inflammation. PCSK9 loss-of-function variants increased T2DM risk by altering insulin secretion. Local pancreatic low PCSK9 regulates β-cell LDLR expression which in turn promotes intracellular cholesterol accumulation and hampers insulin secretion. Nevertheless, the association of PCSK9 loss-of-function variants and T2DM is inconsistent. InsLeu and R46L polymorphisms were associated with T2DM, low HOMA for β-cell function and impaired fasting glucose, while the C679X polymorphism was associated with low fasting glucose in Black South African people. Hence, we assume that the impact of these variants on glucose homeostasis may vary depending on the genetic background of the studied populations and the type of effect caused by those genetic variants on the PCSK9 protein. Accordingly, these factors should be considered when choosing a genetic variant of PCSK9 to assess the impact of long-term use of PCSK9i on glucose homeostasis.
Collapse
Affiliation(s)
- Sègbédé E R Tchéoubi
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium.,Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Casimir D Akpovi
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Clément Agbangla
- Laboratory of Molecular Genetics and Genome Analyzes, Faculty of Sciences and Technics, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Carmen Burtea
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
21
|
Cuomo G, Cioffi G, Di Lorenzo A, Iannone FP, Cudemo G, Iannicelli AM, Pacileo M, D’Andrea A, Vigorito C, Iannuzzo G, Giallauria F. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors Use for Atherogenic Dyslipidemia in Solid Organ Transplant Patients. J Clin Med 2022; 11:jcm11113247. [PMID: 35683632 PMCID: PMC9180971 DOI: 10.3390/jcm11113247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Dyslipidemia is a widespread risk factor in solid organ transplant patients, due to many reasons, such as the use of immunosuppressive drugs, with a consequent increase in cardiovascular diseases in this population. PCSK9 is an enzyme mainly known for its role in altering LDL levels, consequently increasing cardiovascular risk. Monoclonal antibody PCSK9 inhibitors demonstrated remarkable efficacy in the general population in reducing LDL cholesterol levels and preventing cardiovascular disease. In transplant patients, these drugs are still poorly used, despite having comparable efficacy to the general population and giving fewer drug interactions with immunosuppressants. Furthermore, there is enough evidence that PCSK9 also plays a role in other pathways, such as inflammation, which is particularly dangerous for graft survival. In this review, the current evidence on the function of PCSK9 and the use of its inhibitors will be discussed, particularly in transplant patients, in which they may provide additional benefits.
Collapse
Affiliation(s)
- Gianluigi Cuomo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Giuseppe Cioffi
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Anna Di Lorenzo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Francesca Paola Iannone
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.P.I.); (G.I.)
| | - Giuseppe Cudemo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Anna Maria Iannicelli
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Mario Pacileo
- Unit of Cardiology and Intensive Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy; (M.P.); (A.D.)
| | - Antonello D’Andrea
- Unit of Cardiology and Intensive Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy; (M.P.); (A.D.)
| | - Carlo Vigorito
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.P.I.); (G.I.)
| | - Francesco Giallauria
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
- Correspondence:
| |
Collapse
|
22
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
23
|
PCSK9 as a Target for Development of a New Generation of Hypolipidemic Drugs. Molecules 2022; 27:molecules27020434. [PMID: 35056760 PMCID: PMC8778893 DOI: 10.3390/molecules27020434] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
PCSK9 has now become an important target to create new classes of lipid-lowering drugs. The prevention of its interaction with LDL receptors allows an increase in the number of these receptors on the surface of the cell membrane of hepatocytes, which leads to an increase in the uptake of cholesterol-rich atherogenic LDL from the bloodstream. The PCSK9 antagonists described in this review belong to different classes of compounds, may have a low molecular weight or belong to macromolecular structures, and also demonstrate different mechanisms of action. The mechanisms of action include preventing the effective binding of PCSK9 to LDLR, stimulating the degradation of PCSK9, and even blocking its transcription or transport to the plasma membrane/cell surface. Although several types of antihyperlipidemic drugs have been introduced on the market and are actively used in clinical practice, they are not without disadvantages, such as well-known side effects (statins) or high costs (monoclonal antibodies). Thus, there is still a need for effective cholesterol-lowering drugs with minimal side effects, preferably orally bioavailable. Low-molecular-weight PCSK9 inhibitors could be a worthy alternative for this purpose.
Collapse
|
24
|
Uribe KB, Chemello K, Larrea-Sebal A, Benito-Vicente A, Galicia-Garcia U, Bourane S, Jaafar AK, Lambert G, Martín C. A Systematic Approach to Assess the Activity and Classification of PCSK9 Variants. Int J Mol Sci 2021; 22:ijms222413602. [PMID: 34948399 PMCID: PMC8706470 DOI: 10.3390/ijms222413602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Gain of function (GOF) mutations of PCSK9 cause autosomal dominant familial hypercholesterolemia as they reduce the abundance of LDL receptor (LDLR) more efficiently than wild-type PCSK9. In contrast, PCSK9 loss of function (LOF) variants are associated with a hypocholesterolemic phenotype. Dozens of PCSK9 variants have been reported, but most remain of unknown significance since their characterization has not been conducted. OBJECTIVE Our aim was to make the most comprehensive assessment of PCSK9 variants and to determine the simplest approach for the classification of these variants. METHODS The expression, maturation, secretion, and activity of nine well-established PCSK9 variants were assessed in transiently transfected HEK293 cells by Western blot and flow cytometry. Their extracellular activities were determined in HepG2 cells incubated with the purified recombinant PCSK9 variants. Their binding affinities toward the LDLR were determined by solid-phase immunoassay. RESULTS LDLR expression increased when cells were transfected with LOF variants and reduced when cells were transfected with GOF variants compared with wild-type PCSK9. Extracellular activities measurements yielded exactly similar results. GOF and LOF variants had increased, respectively reduced, affinities for the LDLR compared with wild-type PCSK9 with the exception of one GOF variant (R218S) that showed complete resistance to inactivation by furin. All variants were expressed at similar levels and underwent normal maturation and secretion patterns except for two LOF and two GOF mutants. CONCLUSIONS We propose that transient transfections of HEK293 cells with a plasmid encoding a PCSK9 variant followed by LDLR expression assessment by flow cytometry is sufficient to reliably determine its GOF or LOF status. More refined experiments should only be used to determine the underlying mechanism(s) at hand.
Collapse
Affiliation(s)
- Kepa B. Uribe
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastian, Spain
| | - Kevin Chemello
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Asier Larrea-Sebal
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Asier Benito-Vicente
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Unai Galicia-Garcia
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Steeve Bourane
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Ali K. Jaafar
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
- Correspondence: (G.L.); (C.M.); Tel.: +94-601-8053 (C.M.)
| | - César Martín
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (G.L.); (C.M.); Tel.: +94-601-8053 (C.M.)
| |
Collapse
|
25
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
26
|
Bhattacharya A, Chowdhury A, Chaudhury K, Shukla PC. Proprotein convertase subtilisin/kexin type 9 (PCSK9): A potential multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188581. [PMID: 34144130 DOI: 10.1016/j.bbcan.2021.188581] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel pharmacological target for hypercholesterolemia and associated cardiovascular diseases owing to its function to mediate the degradation of low-density lipoprotein receptor (LDLR). Findings over the past two decades have identified novel binding partners and cellular functions of PCSK9. Notably, PCSK9 is aberrantly expressed in a broad spectrum of cancers and apparently contributes to disease prognosis, indicating that PCSK9 could be a valuable cancer biomarker. Experimental studies demonstrate the contribution of PCSK9 in various aspects of cancer, including cell proliferation, apoptosis, invasion, metastasis, anti-tumor immunity and radioresistance, strengthening the idea that PCSK9 could be a promising therapeutic target. Here, we comprehensively review the involvement of PCSK9 in cancer, summarizing its aberrant expression, association with disease prognosis, biological functions and underlying mechanisms in various malignancies. Besides, we highlight the potential of PCSK9 as a future therapeutic target in personalized cancer medicine.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhirup Chowdhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
27
|
Proprotein Convertase Subtilisin/Kexin Type 9 Gene Variants in Familial Hypercholesterolemia: A Systematic Review and Meta-Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9020283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proprotein Convertase Subtilisin Kexin type 9 (PCSK9), comprises 12 exons, encoded for an enzyme which plays a critical role in the regulation of circulating low density lipoprotein. The gain-of-function (GOF) mutations aggravate the degradation of LDL receptors, resulting in familial hypercholesterolemia (FH), while loss-of-function (LOF) mutations lead to higher levels of the LDL receptors, lower the levels of LDL cholesterol, and preventing from cardiovascular diseases. It is noted that, previous publications related to the mutations of PCSK9 were not always unification. Therefore, this study aims to present the spectrum and distribution of PCSK9 gene mutations by a meta-analysis. A systematic literature analysis was conducted based on previous studies published by using different keywords. The weighted average frequency of PCSK9 mutation was calculated and accessed by MedCalc®. A total of 32 cohort studies, that included 19,725 familial hypercholesterolemia blood samples, were enrolled in the current study. The analysis results indicated that, based on the random-effect model, the weighted prevalence of PCSK9 mutation was 5.67% (95%CI = 3.68–8.05, p < 0.0001). The prevalence of PCSK9 GOF mutations was 3.57% (95%CI = 1.76–5.97, p < 0.0001) and PCSK9 LOF mutations was 6.05% (95%CI = 3.35–9.47, p < 0.0001). Additionally, the first and the second exon were identified as the hot spot of mutation occurred in PCSK9. Both GOF and LOF mutations have a higher proportion in Asia and Africa compared with other regions. The GOF PCSK9 p.(Glu32Lys) and LOF PCSK9 p.(Leu21dup/tri) were dominant in the Asia region with the proportion as 6.58% (95%CI = 5.77–7.47, p = 0.62) and 16.20% (95%CI = 6.91–28.44, p = 0.0022), respectively. This systematic analysis provided scientific evidence to suggest the mutation of PCSK9 was related to the metabolism of lipoprotein and atherosclerotic cardiovascular disease.
Collapse
|
28
|
Jin X, Kim MH, Cho YR, Park JS, Song K, Yuan SL. Efficacy of Evolocumab in Patients with Hypercholesterolemia. KOSIN MEDICAL JOURNAL 2020. [DOI: 10.7180/kmj.2020.35.2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objectives The FOURIER trial reported that inhibition of PCSK9 with evolocumab on a background of statin therapy lowered low-density lipoprotein (LDL) cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. Here, we report data from a single center focusing on the effect of a PCSK9 inhibitor antibody on hyperlipidemia. Methods We enrolled 29 hypercholesterolemia patients who had LDL cholesterol levels ≥ 70 mg per deciliter or non-HDL cholesterol ≥ 100 mg per deciliter and were divided into two groups (placebo n = 14, evolocumab n = 15), and participated in a 72 – 96 week, randomized, double-blind, placebo-controlled trial with statin therapy. Patients were randomly assigned to receive evolocumab (140 mg every 2 weeks or 420 mg monthly) or matched placebo via subcutaneous injection. Lipid changes during follow-up were analyzed. Results The median LDL cholesterol level at baseline was 88 mg per deciliter, and the average LDL cholesterol level was 101.8 ± 20.0 mg per deciliter. At 4 weeks, the median LDL cholesterol level was 39 mg per deciliter, and the average LDL cholesterol level was 34.8 ± 51.8 mg per deciliter. Compared to placebo group, the LDL cholesterol levels were significantly reduced after treatment ( P < 0.001), as well as total cholesterol, ApoB, and ApoB/ApoA1 levels. During follow-up, no discomfort was reported at local injection sites, and no cases of abnormal liver function were observed. Conclusions Evolocumab significantly reduced LDL cholesterol levels and was well tolerated.
Collapse
|
29
|
Guo Q, Feng X, Zhou Y. PCSK9 Variants in Familial Hypercholesterolemia: A Comprehensive Synopsis. Front Genet 2020; 11:1020. [PMID: 33173529 PMCID: PMC7538608 DOI: 10.3389/fgene.2020.01020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Autosomal dominant familial hypercholesterolemia (FH) affects approximately 1/250, individuals and potentially leads to elevated blood cholesterol and a significantly increased risk of atherosclerosis. Along with improvements in detection and the increased early diagnosis and treatment, the serious burden of FH on families and society has become increasingly apparent. Since FH is strongly associated with proprotein convertase subtilisin/kexin type 9 (PCSK9), increasing numbers of studies have focused on finding effective diagnostic and therapeutic methods based on PCSK9. At present, as PCSK9 is one of the main pathogenic FH genes, its contribution to FH deserves more explorative research.
Collapse
Affiliation(s)
- Qianyun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Xunxun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Regions of conformational flexibility in the proprotein convertase PCSK9 and design of antagonists for LDL cholesterol lowering. Biochem Soc Trans 2020; 48:1323-1336. [DOI: 10.1042/bst20190672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022]
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma LDL cholesterol levels by binding to the liver LDL receptor (LDLR) and promoting its degradation. Therefore, PCSK9 has become a compelling new therapeutic target for lipid lowering and the prevention of cardiovascular disease. PCSK9 contains two regions of conformational flexibility, the N-terminal regions of the prodomain and of the catalytic domain. The recognition that the latter region, the so-called P′ helix, is able to transition from an α-helical to a disordered state gave rise to new strategies to develop small molecule inhibitors of PCSK9 for lipid lowering. In the ordered state the P′ helix is buried in a groove of the PCSK9 catalytic domain located next to the main LDLR binding site. The transition to a disordered state leaves the groove site vacated and accessible for compounds to antagonize LDLR binding. By use of a groove-directed phage display strategy we were able to identify several groove-binding peptides. Based on structural information of PCSK9-peptide complexes, a minimized groove-binding peptide was generated and utilized as an anchor to extend towards the adjacent main LDLR binding site, either by use of a phage-displayed peptide extension library, or by appending organic moieties to yield organo-peptides. Both strategies led to antagonists with pharmacologic activities in cell-based assays. The intricate bipartite mechanism of the potent organo-peptide inhibitors was revealed by structural studies, showing that the core peptide occupies the N-terminal groove, while the organic moiety interacts with the LDLR binding site to create antagonism. These findings validate the PCSK9 groove as an attractive target site and should inspire the development of a new class of small molecule antagonists of PCSK9.
Collapse
|
31
|
Noto D, Giammanco A, Barbagallo CM, Cefalù AB, Averna MR. Anti-PCSK9 treatment: is ultra-low low-density lipoprotein cholesterol always good? Cardiovasc Res 2019; 114:1595-1604. [PMID: 29931148 DOI: 10.1093/cvr/cvy144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022] Open
Abstract
Anti-PCSK9 (proprotein convertase subtilisin kexin 9) monoclonal antibodies (Mab) are novel, potent lipid-lowering drugs. They demonstrated to improve the lipid profile in high cardiovascular risk patients. Anti-PCSK9 Mab inhibit the targeted low-density lipoprotein (LDL)-receptor degradation induced by PCSK9 protein and are able to reduce LDL cholesterol (LDL-C) levels on top of conventional lipid-lowering therapy. Though these drugs proved to be very safe in the short-term, little is known about the possible long-term effects, due to the short period of their marketing. The genetic low cholesterol syndromes (LCS) represent the natural models of the lipid-lowering anti-PCSK9 therapy, and a valuable opportunity to predict the long-term effects of these drugs. By looking at the clinical features of such models, we could be able to foresee possible drug-induced side effects. In the present review, the correspondences and discordances between the side effects of anti-PCSK9 therapy and the corresponding LCS models will be examined in the attempt to forecast possible long-term consequences of these novel lipid-lowering agents.
Collapse
Affiliation(s)
- Davide Noto
- Department of Bioscience Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Antonina Giammanco
- Department of Bioscience Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Carlo M Barbagallo
- Department of Bioscience Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Angelo B Cefalù
- Department of Bioscience Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Maurizio R Averna
- Department of Bioscience Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
32
|
Association of PCSK9 plasma levels with metabolic patterns and coronary atherosclerosis in patients with stable angina. Cardiovasc Diabetol 2019; 18:144. [PMID: 31672148 PMCID: PMC6824037 DOI: 10.1186/s12933-019-0949-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Aim of this study was to evaluate the relationship of plasma PCSK9 with metabolic and inflammatory profile and coronary atherosclerotic burden in patients with suspected CAD enrolled in the EVINCI study. METHODS PCSK9 was measured in 539 patients (60.3 ± 8.6 years, 256 males) with symptoms of CAD characterized by risk factors, bio-humoral profiles, and treatment. N = 412 patients underwent coronary computed tomography angiography (CTA) to assess the presence and characteristics of coronary atherosclerosis. A CTA score, combining extent, severity, composition, and location of plaques was computed. RESULTS Patients were divided according to PCSK9 quartiles: I (< 136 ng/mL), II-III (136-266 ng/mL), and IV quartile (> 266 ng/mL). Compared with patients in quartile IV, patients in quartile I had a higher prevalence of the metabolic syndrome and higher values of body mass index. LDL- and HDL-cholesterol were significantly lower in patients in the quartile I than in those in quartile IV. Coronary CTA documented normal vessels in 30% and obstructive CAD in 35% of cases without differences among PCSK9 quartiles. Compared with patients with the highest levels, patients with the lowest PCSK9 levels had a higher CTA score mainly due to higher number of mixed non-obstructive coronary plaques. At multivariable analysis including clinical, medications, and lipid variables, PCSK9 was an independent predictor of the CTA score (coefficient - 0.129, SE 0.03, P < 0.0001), together with age, male gender, statins, interleukin-6, and leptin. CONCLUSION In patients with stable CAD, low PCSK9 plasma levels are associated with a particular metabolic phenotype (low HDL cholesterol, the metabolic syndrome, obesity, insulin resistance and diabetes) and diffuse non-obstructive coronary atherosclerosis. Trial registration ClinicalTrials.gov NCT00979199. Registered September 17, 2009.
Collapse
|
33
|
Sharma V, Hiller M. Losses of human disease-associated genes in placental mammals. NAR Genom Bioinform 2019; 2:lqz012. [PMID: 33575564 PMCID: PMC7671337 DOI: 10.1093/nargab/lqz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
We systematically investigate whether losses of human disease-associated genes occurred in other mammals during evolution. We first show that genes lost in any of 62 non-human mammals generally have a lower degree of pleiotropy, and are highly depleted in essential and disease-associated genes. Despite this under-representation, we discovered multiple genes implicated in human disease that are truly lost in non-human mammals. In most cases, traits resembling human disease symptoms are present but not deleterious in gene-loss species, exemplified by losses of genes causing human eye or teeth disorders in poor-vision or enamel-less mammals. We also found widespread losses of PCSK9 and CETP genes, where loss-of-function mutations in humans protect from atherosclerosis. Unexpectedly, we discovered losses of disease genes (TYMP, TBX22, ABCG5, ABCG8, MEFV, CTSE) where deleterious phenotypes do not manifest in the respective species. A remarkable example is the uric acid-degrading enzyme UOX, which we found to be inactivated in elephants and manatees. While UOX loss in hominoids led to high serum uric acid levels and a predisposition for gout, elephants and manatees exhibit low uric acid levels, suggesting alternative ways of metabolizing uric acid. Together, our results highlight numerous mammals that are 'natural knockouts' of human disease genes.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
34
|
Ben Djoudi Ouadda A, Gauthier MS, Susan-Resiga D, Girard E, Essalmani R, Black M, Marcinkiewicz J, Forget D, Hamelin J, Evagelidis A, Ly K, Day R, Galarneau L, Corbin F, Coulombe B, Çaku A, Tagliabracci VS, Seidah NG. Ser-Phosphorylation of PCSK9 (Proprotein Convertase Subtilisin-Kexin 9) by Fam20C (Family With Sequence Similarity 20, Member C) Kinase Enhances Its Ability to Degrade the LDLR (Low-Density Lipoprotein Receptor). Arterioscler Thromb Vasc Biol 2019; 39:1996-2013. [PMID: 31553664 DOI: 10.1161/atvbaha.119.313247] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE PCSK9 (proprotein convertase subtilisin-kexin 9) enhances the degradation of the LDLR (low-density lipoprotein receptor) in endosomes/lysosomes. This study aimed to determine the sites of PCSK9 phosphorylation at Ser-residues and the consequences of such posttranslational modification on the secretion and activity of PCSK9 on the LDLR. Approach and Results: Fam20C (family with sequence similarity 20, member C) phosphorylates serines in secretory proteins containing the motif S-X-E/phospho-Ser, including the cholesterol-regulating PCSK9. In situ hybridization of Fam20C mRNA during development and in adult mice revealed a wide tissue distribution, including liver, but not small intestine. Here, we show that Fam20C phosphorylates PCSK9 at Serines 47, 666, 668, and 688. In hepatocytes, phosphorylation enhances PCSK9 secretion and maximizes its induced degradation of the LDLR via the extracellular and intracellular pathways. Replacing any of the 4 Ser by the phosphomimetic Glu or Asp enhanced PCSK9 activity only when the other sites are phosphorylated, whereas Ala substitutions reduced it, as evidenced by Western blotting, Elisa, and LDLR-immunolabeling. This newly uncovered PCSK9/LDLR regulation mechanism refines our understanding of the implication of global PCSK9 phosphorylation in the modulation of LDL-cholesterol and rationalizes the consequence of natural mutations, for example, S668R and E670G. Finally, the relationship of Ser-phosphorylation to the implication of PCSK9 in regulating LDL-cholesterol in the neurological Fragile X-syndrome disorder was investigated. CONCLUSIONS Ser-phosphorylation of PCSK9 maximizes both its secretion and activity on the LDLR. Mass spectrometric approaches to measure such modifications were developed and applied to quantify the levels of bioactive PCSK9 in human plasma under normal and pathological conditions.
Collapse
Affiliation(s)
- Ali Ben Djoudi Ouadda
- From the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; affiliated to the Université de Montréal), QC, Canada (A.B.D.O., D.S.-R., E.G., R.E., J.M., J.H., A.E., N.G.S.)
| | - Marie-Soleil Gauthier
- Translational Proteomics Research Unit, Clinical Research Institute of Montreal (IRCM, affiliated to the Université de Montréal), QC, Canada (M.-S.G., D.F., B.C.)
| | - Delia Susan-Resiga
- From the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; affiliated to the Université de Montréal), QC, Canada (A.B.D.O., D.S.-R., E.G., R.E., J.M., J.H., A.E., N.G.S.)
| | - Emmanuelle Girard
- From the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; affiliated to the Université de Montréal), QC, Canada (A.B.D.O., D.S.-R., E.G., R.E., J.M., J.H., A.E., N.G.S.)
| | - Rachid Essalmani
- From the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; affiliated to the Université de Montréal), QC, Canada (A.B.D.O., D.S.-R., E.G., R.E., J.M., J.H., A.E., N.G.S.)
| | - Miles Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (M.B., V.S.T.)
| | - Jadwiga Marcinkiewicz
- From the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; affiliated to the Université de Montréal), QC, Canada (A.B.D.O., D.S.-R., E.G., R.E., J.M., J.H., A.E., N.G.S.)
| | - Diane Forget
- Translational Proteomics Research Unit, Clinical Research Institute of Montreal (IRCM, affiliated to the Université de Montréal), QC, Canada (M.-S.G., D.F., B.C.)
| | - Josée Hamelin
- From the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; affiliated to the Université de Montréal), QC, Canada (A.B.D.O., D.S.-R., E.G., R.E., J.M., J.H., A.E., N.G.S.)
| | - Alexandra Evagelidis
- From the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; affiliated to the Université de Montréal), QC, Canada (A.B.D.O., D.S.-R., E.G., R.E., J.M., J.H., A.E., N.G.S.)
| | - Kevin Ly
- Institut de Pharmacologie, Université de Sherbrooke, QC, Canada (K.L., R.D.)
| | - Robert Day
- Institut de Pharmacologie, Université de Sherbrooke, QC, Canada (K.L., R.D.)
| | - Luc Galarneau
- Department of Biochemistry, Université de Sherbrooke, and Centre de Recherche du CHUS, QC, Canada (L.G., F.C., A.Ç.)
| | - Francois Corbin
- Department of Biochemistry, Université de Sherbrooke, and Centre de Recherche du CHUS, QC, Canada (L.G., F.C., A.Ç.)
| | - Benoit Coulombe
- Translational Proteomics Research Unit, Clinical Research Institute of Montreal (IRCM, affiliated to the Université de Montréal), QC, Canada (M.-S.G., D.F., B.C.)
| | - Artuela Çaku
- Department of Biochemistry, Université de Sherbrooke, and Centre de Recherche du CHUS, QC, Canada (L.G., F.C., A.Ç.)
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (M.B., V.S.T.)
| | - Nabil G Seidah
- From the Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; affiliated to the Université de Montréal), QC, Canada (A.B.D.O., D.S.-R., E.G., R.E., J.M., J.H., A.E., N.G.S.)
| |
Collapse
|
35
|
Sánchez-Hernández RM, Di Taranto MD, Benito-Vicente A, Uribe KB, Lamiquiz-Moneo I, Larrea-Sebal A, Jebari S, Galicia-Garcia U, Nóvoa FJ, Boronat M, Wägner AM, Civeira F, Martín C, Fortunato G. The Arg499His gain-of-function mutation in the C-terminal domain of PCSK9. Atherosclerosis 2019; 289:162-172. [PMID: 31518966 DOI: 10.1016/j.atherosclerosis.2019.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is a monogenic disease characterized by high levels of low-density lipoprotein cholesterol and premature atherosclerotic cardiovascular disease. FH is caused by loss of function mutations in genes encoding LDL receptor (LDLR), and Apolipoprotein B (APOB) or gain of function (GOF) mutations in proprotein convertase subtilisin/kexin type 9 (PCSK9). In this study, we identified a novel variant in PCSK9, p.(Arg499His), located in the C-terminal domain, in two unrelated FH patients from Spain and Italy. METHODS We studied familial segregation and determined variant activity in vitro. RESULTS We determined PCSK9 expression, secretion and activity of the variant in transfected HEK293 cells; extracellular activity of the recombinant p.(Arg499His) PCSK9 variant in HEK 293 and HepG2 cells; PCSK9 affinity to the LDL receptor at neutral and acidic pH; the mechanism of action of the p.(Arg499His) PCSK9 variant by co-transfection with a soluble construct of the LDL receptor and by determining total PCSK9 intracellular accumulation when endosomal acidification is impaired and when an excess of soluble LDLr is present in the culture medium. Our results show high LDL-C concentrations and FH phenotype in p.(Arg499His) carriers. In vitro functional characterization shows that p.(Arg499His) PCSK9 variant causes a reduction in LDLr expression and LDL uptake. An intracellular activity for this variant is also shown when blocking the activity of secreted PCSK9 and by inhibiting endosomal acidification. CONCLUSIONS We demonstrated that p.(Arg499His) PCSK9 variant causes a direct intracellular degradation of LDLr therefore causing FH by reducing LDLr availability.
Collapse
Affiliation(s)
- Rosa M Sánchez-Hernández
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l, Biotecnologie Avanzate, Napoli, Italy
| | - Asier Benito-Vicente
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Kepa B Uribe
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Itziar Lamiquiz-Moneo
- Hospital Universitario Miguel Servet. IIS Aragon. CIBERCV. Universidad de Zaragoza, Zaragoza, Spain
| | - Asier Larrea-Sebal
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Shifa Jebari
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Unai Galicia-Garcia
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain
| | - F Javier Nóvoa
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Fernando Civeira
- Hospital Universitario Miguel Servet. IIS Aragon. CIBERCV. Universidad de Zaragoza, Zaragoza, Spain
| | - César Martín
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain.
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l, Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
36
|
Mikaeeli S, Susan‐Resiga D, Girard E, Ben Djoudi Ouadda A, Day R, Prost S, Seidah NG. Functional analysis of natural
PCSK
9 mutants in modern and archaic humans. FEBS J 2019; 287:515-528. [DOI: 10.1111/febs.15036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/03/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sepideh Mikaeeli
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Delia Susan‐Resiga
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Emmanuelle Girard
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Ali Ben Djoudi Ouadda
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| | - Robert Day
- Department of Surgery/Urology Division Faculté de Médecine et des Sciences de la Santé Institut de Pharmacologie de Sherbrooke Université de Sherbrooke Canada
| | - Stefan Prost
- LOEWE‐Center for Translational Biodiversity Genomics Senckenberg Nature Research Society Frankfurt Germany
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Clinical Research Institute of Montreal Canada
| |
Collapse
|
37
|
Lu X. Structure and Function of Proprotein Convertase Subtilisin/kexin Type 9 (PCSK9) in Hyperlipidemia and Atherosclerosis. Curr Drug Targets 2019; 20:1029-1040. [DOI: 10.2174/1389450120666190214141626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/01/2023]
Abstract
Background:One of the important factors in Low-Density Lipoprotein (LDL) metabolism is the LDL receptor (LDLR) by its capacity to bind and subsequently clear cholesterol derived from LDL (LDL-C) in the circulation. Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is a newly discovered serine protease that destroys LDLR in the liver and thereby controls the levels of LDL in plasma. Inhibition of PCSK9-mediated degradation of LDLR has, therefore, become a novel target for lipid-lowering therapy.Methods:We review the current understanding of the structure and function of PCSK9 as well as its implications for the treatment of hyperlipidemia and atherosclerosis.Results:New treatments such as monoclonal antibodies against PCSK9 may be useful agents to lower plasma levels of LDL and hence prevent atherosclerosis.Conclusion:PCSK9's mechanism of action is not yet fully clarified. However, treatments that target PCSK9 have shown striking early efficacy and promise to improve the lives of countless patients with hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR, United Kingdom
| |
Collapse
|
38
|
Nishikido T, Ray KK. Non-antibody Approaches to Proprotein Convertase Subtilisin Kexin 9 Inhibition: siRNA, Antisense Oligonucleotides, Adnectins, Vaccination, and New Attempts at Small-Molecule Inhibitors Based on New Discoveries. Front Cardiovasc Med 2019; 5:199. [PMID: 30761308 PMCID: PMC6361748 DOI: 10.3389/fcvm.2018.00199] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Low-density lipoprotein (LDL) is one of the principal risk factors for atherosclerosis. Circulating LDL particles can penetrate into the sub-endothelial space of arterial walls. These particles undergo oxidation and promote an inflammatory response, resulting in injury to the vascular endothelial wall. Persistent elevation of LDL-cholesterol (LDL-C) is linked to the progression of fatty streaks to lipid-rich plaque and thus atherosclerosis. LDL-C is a causal factor for atherosclerotic cardiovascular disease and lowering it is beneficial across a range of conditions associated with high risk of cardiovascular events. Therefore, all guidelines-recommended initiations of statin therapy for patients at high cardiovascular risk is irrespective of LDL-C. In addition, intensive LDL-C lowering therapy with statins has been demonstrated to result in a greater reduction of cardiovascular event risk in large clinical trials. However, many high-risk patients receiving statins fail to achieve the guideline-recommended reduction in LDL-C levels in routine clinical practice. Moreover, low levels of adherence and often high rates of discontinuation demand the need for further therapies. Ezetimibe has typically been used as a complement to statins when further LDL-C reduction is required. More recently, proprotein convertase subtilisin kexin 9 (PCSK9) has emerged as a novel therapeutic target for lowering LDL-C levels, with PCSK9 inhibitors offering greater reductions than feasible through the addition of ezetimibe. PCSK9 monoclonal antibodies have been shown to not only considerably lower LDL-C levels but also cardiovascular events. However, PCSK9 monoclonal antibodies require once- or twice-monthly subcutaneous injections. Further, their manufacturing process is expensive, increasing the cost of therapy. Therefore, several non-antibody treatments to inhibit PCSK9 function are being developed as alternative approaches to monoclonal antibodies. These include gene-silencing or editing technologies, such as antisense oligonucleotides, small interfering RNA, and the clustered regularly interspaced short palindromic repeats/Cas9 platform; small-molecule inhibitors; mimetic peptides; adnectins; and vaccination. In this review, we summarize the current knowledge base on the role of PCSK9 in lipid metabolism and an overview of non-antibody approaches for PCSK9 inhibition and their limitations. The subsequent development of alternative approaches to PCSK9 inhibition may give us more affordable and convenient therapeutic options for the management of high-risk patients.
Collapse
Affiliation(s)
- Toshiyuki Nishikido
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.,Department of Cardiovascular medicine, Saga University, Saga, Japan
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Carreras A, Pane LS, Nitsch R, Madeyski-Bengtson K, Porritt M, Akcakaya P, Taheri-Ghahfarokhi A, Ericson E, Bjursell M, Perez-Alcazar M, Seeliger F, Althage M, Knöll R, Hicks R, Mayr LM, Perkins R, Lindén D, Borén J, Bohlooly-Y M, Maresca M. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biol 2019; 17:4. [PMID: 30646909 PMCID: PMC6334452 DOI: 10.1186/s12915-018-0624-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Background Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. Results To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. Conclusions Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia. Electronic supplementary material The online version of this article (10.1186/s12915-018-0624-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba Carreras
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.,Present Address: Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Luna Simona Pane
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Roberto Nitsch
- Advanced Medicines Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Katja Madeyski-Bengtson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Michelle Porritt
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Pinar Akcakaya
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Amir Taheri-Ghahfarokhi
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Elke Ericson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Mikael Bjursell
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Marta Perez-Alcazar
- Pathology Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ralph Knöll
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lorenz M Mayr
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.,Present Address: GE Healthcare Life Sciences, The Grove Centre, White Lion Road, Amersham, UK
| | - Rosie Perkins
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Lindén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mohammad Bohlooly-Y
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.
| |
Collapse
|
40
|
The Elusive Inhibitory Function of the Acidic N-Terminal Segment of the Prodomain of PCSK9: The Plot Thickens. J Mol Biol 2019; 431:904-907. [PMID: 30658056 DOI: 10.1016/j.jmb.2019.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Identification of a Helical Segment within the Intrinsically Disordered Region of the PCSK9 Prodomain. J Mol Biol 2019; 431:885-903. [PMID: 30653992 DOI: 10.1016/j.jmb.2018.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 01/03/2023]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a key regulator of lipid metabolism by degrading liver LDL receptors. Structural studies have provided molecular details of PCSK9 function. However, the N-terminal acidic stretch of the PCSK9 prodomain (Q31-T60) has eluded structural investigation, since it is in a disordered state. The interest in this region is intensified by the presence of human missense mutations associated with low and high LDL-c levels (E32K, D35Y, and R46L, respectively), as well as two posttranslationally modified sites, sulfated Y38 and phosphorylated S47. Herein we show that a segment within this region undergoes disorder-to-order transition. Experiments with acidic stretch-derived peptides demonstrated that the folding is centered at the segment Y38-L45, which adopts an α-helix as determined by NMR analysis of free peptides and by X-ray crystallography of peptides in complex with antibody 6E2 (Ab6E2). In the Fab6E2-peptide complexes, the structured region features a central 2 1/4-turn α-helix and encompasses up to 2/3 of the length of the acidic stretch, including the missense mutations and posttranslationally modified sites. Experiments with helix-breaking proline substitutions in peptides and in PCSK9 protein indicated that Ab6E2 specifically recognizes the helical conformation of the acidic stretch. Therefore, the observed quantitative binding of Ab6E2 to native PCSK9 from various cell lines suggests that the disorder-to-order transition is a true feature of PCSK9 and not limited to peptides. Because the helix provides a constrained spatial orientation of the missense mutations and the posttranslationally modified residues, it is probable that their biological functions take place in the context of an ordered conformational state.
Collapse
|
42
|
Carreras A, Pane LS, Nitsch R, Madeyski-Bengtson K, Porritt M, Akcakaya P, Taheri-Ghahfarokhi A, Ericson E, Bjursell M, Perez-Alcazar M, Seeliger F, Althage M, Knöll R, Hicks R, Mayr LM, Perkins R, Lindén D, Borén J, Bohlooly-Y M, Maresca M. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biol 2019. [PMID: 30646909 DOI: 10.1186/s12915-018-0624-2.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. RESULTS To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. CONCLUSIONS Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.
Collapse
Affiliation(s)
- Alba Carreras
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.,Present Address: Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Luna Simona Pane
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Roberto Nitsch
- Advanced Medicines Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Katja Madeyski-Bengtson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Michelle Porritt
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Pinar Akcakaya
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Amir Taheri-Ghahfarokhi
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Elke Ericson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Mikael Bjursell
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Marta Perez-Alcazar
- Pathology Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ralph Knöll
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lorenz M Mayr
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.,Present Address: GE Healthcare Life Sciences, The Grove Centre, White Lion Road, Amersham, UK
| | - Rosie Perkins
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Lindén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mohammad Bohlooly-Y
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.
| |
Collapse
|
43
|
Zhang H, de Aguiar Vallim TQ, Martel C. Translational and Therapeutic Approaches to the Understanding and Treatment of Dyslipidemia. Arterioscler Thromb Vasc Biol 2018; 36:e56-61. [PMID: 27335468 DOI: 10.1161/atvbaha.116.307808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Thomas Q de Aguiar Vallim
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Catherine Martel
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | | |
Collapse
|
44
|
Brown WV. Clinical Lipidology and the Prevention of Vascular Disease: Time for Personalized Therapy. Clin Pharmacol Ther 2018; 104:269-281. [DOI: 10.1002/cpt.1127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
|
45
|
Auer J, Berent R. Alirocumab as add-on therapy to statins: current evidence and clinical potential. Ther Adv Cardiovasc Dis 2018; 12:191-202. [PMID: 29792380 DOI: 10.1177/1753944718775352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs) are associated with a substantial mortality, physical morbidity, and mental disability. Elevated plasma low-density lipoprotein cholesterol (LDL-C) levels play a major role in the pathophysiology of ASCVDs. Statins have been shown to reduce ASCVD risk and associated events and are recommended as first-line therapy for treatment of hypercholesterolemia by current international guidelines. The key issue is to attain guideline-recommended LDL-C levels (below 70 mg/dl) for patients at very high cardiovascular risk. However, many high-risk and very-high-risk patients on statin therapy remain beyond treatment goals despite lifestyle modification and statins, and are exposed to a high risk of future cardiovascular events including myocardial infarction (MI), stroke, revascularization procedures, and death. This clearly emphasizes the urgent need for additional LDL-C reduction with new therapeutic strategies to target these highly atherogenic particles and to further reduce the burden of ASCVDs. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a major role as a key regulator of the hepatic LDL receptor recycling process. Developments over the past 15 years have demonstrated PCSK9 inhibition to be a novel therapeutic strategy to manage increased LDL-C levels. A number of clinical studies using humanized monoclonal antibody technology against PCSK9 have shown profound reductions of LDL-C levels when used either alone or in combination with statin therapy. Recently, the first cardiovascular outcome study demonstrated a significant reduction of ASCV events when evolocumab was added to a statin therapy. This review will discuss current knowledge about antibody-mediated PCSK9 inhibition as add-on therapy to statin and the clinical potential that may be expected.
Collapse
Affiliation(s)
- Johann Auer
- Department of Cardiology and Intensive Care, St Josef Hospital Braunau, Austria
| | - Robert Berent
- Center of Cardiovascular Rehabilitation, HerzReha Bad Ischl, Austria
| |
Collapse
|
46
|
Lebeau P, Platko K, Al-Hashimi AA, Byun JH, Lhoták Š, Holzapfel N, Gyulay G, Igdoura SA, Cool DR, Trigatti B, Seidah NG, Austin RC. Loss-of-function PCSK9 mutants evade the unfolded protein response sensor GRP78 and fail to induce endoplasmic reticulum stress when retained. J Biol Chem 2018; 293:7329-7343. [PMID: 29593095 DOI: 10.1074/jbc.ra117.001049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR). In this study, we investigated whether a variety of LOF PCSK9 variants that are retained in the ER can cause ER stress and hepatic cytotoxicity. Although overexpression of these PCSK9 variants caused an accumulation in the ER of hepatocytes, UPR activation or apoptosis was not observed. Furthermore, ER retention of endogenous PCSK9 via splice switching also failed to induce the UPR. Consistent with these in vitro studies, overexpression of PCSK9 in the livers of mice had no impact on UPR activation. To elucidate the cellular mechanism to explain these surprising findings, we observed that the 94-kDa glucose-regulated protein (GRP94) sequesters PCSK9 away from the 78-kDa glucose-regulated protein (GRP78), the major activator of the UPR. As a result, GRP94 knockdown increased the stability of GRP78-PCSK9 complex and resulted in UPR activation following overexpression of ER-retained PCSK9 variants relative to WT secreted controls. Given that overexpression of these LOF PCSK9 variants does not cause UPR activation under normal homeostatic conditions, therapeutic strategies aimed at blocking the autocatalytic cleavage of PCSK9 in the ER represent a viable strategy for reducing circulating PCSK9.
Collapse
Affiliation(s)
- Paul Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Ali A Al-Hashimi
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Šárka Lhoták
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Nicholas Holzapfel
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Gabriel Gyulay
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Suleiman A Igdoura
- Departments of Biology and Pathology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - David R Cool
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435-0001
| | - Bernardo Trigatti
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada; Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
47
|
Hachem A, Hariri E, Saoud P, Lteif C, Lteif L, Welty F. The Role of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Cardiovascular Homeostasis: A Non-Systematic Literature Review. Curr Cardiol Rev 2018; 13:274-282. [PMID: 28782494 PMCID: PMC5730960 DOI: 10.2174/1573403x13666170804150954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/09/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ahmad Hachem
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Cairo St., Hamra, Beirut. Lebanon
| | - Essa Hariri
- University of Massachusetts Medical School, Department of Cardiovascular Medicine, Worcester, MA. United States
| | - Perla Saoud
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos. Lebanon
| | - Christelle Lteif
- School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos. Lebanon
| | - Louis Lteif
- Department of Pharmacy Practice, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hawaii, HI. United States
| | - Francine Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA. United States
| |
Collapse
|
48
|
Baragetti A, Grejtakova D, Casula M, Olmastroni E, Jotti GS, Norata GD, Catapano AL, Bellosta S. Proprotein Convertase Subtilisin-Kexin type-9 (PCSK9) and triglyceride-rich lipoprotein metabolism: Facts and gaps. Pharmacol Res 2018; 130:1-11. [PMID: 29428206 DOI: 10.1016/j.phrs.2018.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 01/24/2023]
Abstract
After more than a decade of intense investigation, Pro-protein Convertase Subtilisin-Kexin type 9 (PCSK9) remains a hot topic of research both at experimental and clinical level. Interestingly PCSK9 is expressed in different tissues suggesting the existence of additional function(s) beyond the modulation of the Low-Density Lipoprotein (LDL) receptor in the liver. Emerging data suggest that PCSK9 might play a role in the modulation of triglyceride-rich lipoprotein (TGRL) metabolism, mainly Very Low-Density Lipoproteins (VLDL) and their remnants. In vitro, PCSK9 affects TGRLs production by intestinal cells as well as the catabolism of LDL receptor homologous and non-homologous targets such as VLDL receptor, CD36 and ApoE2R. However, the in vivo relevance of these findings is still debated. This review aims at critically discussing the role of PCSK9 on TGRLs metabolism with a major focus on the impact of its genetic and pharmacological modulation on circulating lipids and lipoproteins beyond LDL.
Collapse
Affiliation(s)
- Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133, Milan, Italy; S.I.S.A. Center for the Study of Atherosclerosis - Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | | | - Manuela Casula
- Epidemiology and Preventive Pharmacology Centre (SEFAP), Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Centre (SEFAP), Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | - Gloria Saccani Jotti
- Department of Medicine & Surgery, Faculty of Medicine, University of Parma, Via Volturno 39, 43121 Parma, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133, Milan, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Kent St., Bentley Western Australia 6102, Australia
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133, Milan, Italy; IRCCS MultiMedica, via Fantoli 16, 20138, Milan, Italy.
| | - Stefano Bellosta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133, Milan, Italy; IRCCS MultiMedica, via Fantoli 16, 20138, Milan, Italy
| |
Collapse
|
49
|
Ganjali S, Momtazi-Borojeni AA, Banach M, Kovanen PT, Gotto AM, Sahebkar A. HDL functionality in familial hypercholesterolemia: effects of treatment modalities and pharmacological interventions. Drug Discov Today 2018; 23:171-180. [DOI: 10.1016/j.drudis.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/02/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023]
|
50
|
Di Taranto MD, Benito-Vicente A, Giacobbe C, Uribe KB, Rubba P, Etxebarria A, Guardamagna O, Gentile M, Martín C, Fortunato G. Identification and in vitro characterization of two new PCSK9 Gain of Function variants found in patients with Familial Hypercholesterolemia. Sci Rep 2017; 7:15282. [PMID: 29127338 PMCID: PMC5681505 DOI: 10.1038/s41598-017-15543-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by pathogenic variants in genes encoding for LDL receptor (LDLR), Apolipoprotein B and Proprotein convertase subtilisin/kexin type 9 (PCSK9). Among PCSK9 variants, only Gain-of- Function (GOF) variants lead to FH. Greater attention should be paid to the classification of variants as pathogenic. Two hundred sixty nine patients with a clinical suspect of FH were screened for variants in LDLR and the patients without pathogenic variants were screened for variants in PCSK9 and APOB. Functional characterization of PCSK9 variants was performed by assessment of protein secretion, of LDLR activity in presence of PCSK9 variant proteins as well as of the LDLR affinity of the PCSK9 variants. Among 81 patients without pathogenic variants in LDLR, 7 PCSK9 heterozygotes were found, 4 of whom were carriers of variants whose role in FH pathogenesis is still unknown. Functional characterization revealed that two variants (p.(Ser636Arg) and p.(Arg357Cys)) were GOF variants. In Conclusions, we demonstrated a GOF effect of 2 PCSK9 variants that can be considered as FH-causative variants. The study highlights the important role played by functional characterization in integrating diagnostic procedures when the pathogenicity of new variants has not been previously demonstrated.
Collapse
Affiliation(s)
- Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Asier Benito-Vicente
- Biofisika Institute (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Kepa Belloso Uribe
- Biofisika Institute (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Aitor Etxebarria
- Biofisika Institute (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Ornella Guardamagna
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Torino, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Cesar Martín
- Biofisika Institute (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain.
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|