1
|
Li G, Wu G, Huang Q, Dong S, Zhou Y, Lu M, Liang J, Zhou X, Zhou Z. Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection. Mikrochim Acta 2024; 192:35. [PMID: 39729216 DOI: 10.1007/s00604-024-06909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated Ti3C2 MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal. When LDL reacts with the LDL aptamer (LDLApt) immobilized on the photosensitive layers to form LDL-LDLApt complexes, the reaction process can induce the modification of the surface potential in the photosensitive layer, leading to potential shift observed through the I-V curves. The experimental conditions were successfully optimized with few planned tests by applying the Box-Behnken design and response surface methodology aspects of the Design-Expert software. Under the optimal condition, the potential shift had a linear relationship with concentrations of LDL from 0.02 to 0.30 μg/mL. The limit of detection (LOD) was 5.88 ng/mL (S/N = 3) and the sensitivity was 315.20 mV/μg·mL-1. In addition, the LDL C-LAPS demonstrated excellent specificity, reproducibility, and stability in detecting LDL. The sensor performed well in quantifying LDL in real samples. Therefore, the LDL C-LAPS has the potential for clinical applications.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Guangxiong Wu
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Qing Huang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Shuaikang Dong
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Yu Zhou
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Mei Lu
- Department of Clinical Laboratory, The 924, Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, People's Republic of China
| | - Jintao Liang
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Xueqing Zhou
- Department of Clinical Laboratory, The 924, Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
2
|
Schmidt AF, Hunt NB, Gordillo-Marañón M, Charoen P, Drenos F, Kivimaki M, Lawlor DA, Giambartolomei C, Papacosta O, Chaturvedi N, Bis JC, O'Donnell CJ, Wannamethee G, Wong A, Price JF, Hughes AD, Gaunt TR, Franceschini N, Mook-Kanamori DO, Zwierzyna M, Sofat R, Hingorani AD, Finan C. Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease. Nat Commun 2021; 12:5640. [PMID: 34561430 PMCID: PMC8463530 DOI: 10.1038/s41467-021-25703-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Development of cholesteryl ester transfer protein (CETP) inhibitors for coronary heart disease (CHD) has yet to deliver licensed medicines. To distinguish compound from drug target failure, we compared evidence from clinical trials and drug target Mendelian randomization of CETP protein concentration, comparing this to Mendelian randomization of proprotein convertase subtilisin/kexin type 9 (PCSK9). We show that previous failures of CETP inhibitors are likely compound related, as illustrated by significant degrees of between-compound heterogeneity in effects on lipids, blood pressure, and clinical outcomes observed in trials. On-target CETP inhibition, assessed through Mendelian randomization, is expected to reduce the risk of CHD, heart failure, diabetes, and chronic kidney disease, while increasing the risk of age-related macular degeneration. In contrast, lower PCSK9 concentration is anticipated to decrease the risk of CHD, heart failure, atrial fibrillation, chronic kidney disease, multiple sclerosis, and stroke, while potentially increasing the risk of Alzheimer's disease and asthma. Due to distinct effects on lipoprotein metabolite profiles, joint inhibition of CETP and PCSK9 may provide added benefit. In conclusion, we provide genetic evidence that CETP is an effective target for CHD prevention but with a potential on-target adverse effect on age-related macular degeneration.
Collapse
Affiliation(s)
- Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK.
- UCL British Heart Foundation Research Accelerator, London, UK.
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nicholas B Hunt
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Maria Gordillo-Marañón
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Accelerator, London, UK
| | - Pimphen Charoen
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Bangkok, Thailand
| | - Fotios Drenos
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
| | | | - Olia Papacosta
- Primary Care and Population Health, University College London, London, UK
| | - Nishi Chaturvedi
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Goya Wannamethee
- Primary Care and Population Health, University College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | | | - Alun D Hughes
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Accelerator, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Magdalena Zwierzyna
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Accelerator, London, UK
| | - Reecha Sofat
- Institute of Health Informatics, University College London, London, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK, London, UK
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Accelerator, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Health Data Research UK, London, UK
| |
Collapse
|
3
|
Yamashita S, Okazaki M, Okada T, Masuda D, Yokote K, Arai H, Araki E, Ishibashi S. Distinct Differences in Lipoprotein Particle Number Evaluation between GP-HPLC and NMR: Analysis in Dyslipidemic Patients Administered a Selective PPARα Modulator, Pemafibrate. J Atheroscler Thromb 2021; 28:974-996. [PMID: 33536398 PMCID: PMC8532064 DOI: 10.5551/jat.60764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
AIM We established a method to evaluate the lipid concentrations, size and particle numbers (PNs) of lipoprotein subclasses by gel permeation chromatography (GP-HPLC). Nuclear magnetic resonance (NMR) is widely used to analyze these parameters of lipoprotein subclasses, but differences of the two methods are unknown. Current study compared the PNs of each lipoprotein subclass measured by GP-HPLC and NMR, and assessed the effect of a selective PPARα modulator, pemafibrate. METHODS Lipoprotein profiles of 212 patients with dyslipidemia who participated in the phase 2 clinical trial of a selective PPARα modulator, pemafibrate, were analyzed by two methods, GP-HPLC and NMR, which were performed with LipoSEARCH (Skylight Biotech) and LipoProfile 3 (LabCorp), respectively. GP-HPLC evaluated the PNs of 18 subclasses, consisting of CM, VLDL1-5, LDL1-6, and HDL1-6. NMR evaluated the PNs of 9 subclasses, consisting of large VLDL & CM, medium VLDL, small VLDL, IDL, large LDL, small LDL, large HDL, medium HDL and small HDL. RESULTS Three major classes, total CM&VLDL, total LDL and total HDL were obtained by grouping of corresponding subclasses in both methods and PNs of these classes analyzed by GP-HPLC were correlated positively with those by NMR. The correlation coefficients in total CM&VLDL, total LDL and total HDL between GP-HPLC and NMR was 0.658, 0.863 and 0.798 (all p<0.0001), respectively. The PNs of total CM&VLDL, total LDL and total HDL analyzed by GP-HPLC was 249.5±51.7nM, 1,679±359 nM and 13,273±1,564 nM, respectively, while those by NMR was 124.6±41.8 nM, 1,514±386 nM and 31,161±4,839 nM, respectively. A marked difference in the PNs between the two methods was demonstrated especially in total HDL. The number of apolipoprotein (Apo) B molecule per one ApoB-containing lipoprotein particle, total CM&VLDL plus total LDL, was 1.10±0.05 by GP-HPLC, while 1.32±0.18 by NMR. The number of ApoA-I per one HDL particle was 3.40±0.17 by GP-HPLC, but only 1.46±0.15 by NMR, much less than reported previously.From the phase 2 clinical trial, randomizing 212 patients to pemafibrate 0.025-0.2 mg BID, fenofibrate 100 mg QD, or placebo groups, pemafibrate reduced the PNs of CM, large VLDL1-VLDL3 and medium VLDL4, but not small VLDL5 by GP-HPLC. It significantly decreased the PNs of smaller LDL and larger HDL particles, but increased those of larger LDL and smaller HDL particles. In contrast, NMR showed marked variations in the effect of pemafibrate on lipoprotein PNs, and no significant size-dependent changes. CONCLUSIONS GP-HPLC evaluates the lipoprotein PNs more accurately than NMR and can be used for assessing the effects of lipid-lowering drugs on lipoprotein subclasses.
Collapse
Affiliation(s)
- Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | | | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisaku Masuda
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
4
|
Trieb M, Kornej J, Knuplez E, Hindricks G, Thiele H, Sommer P, Scharnagl H, Dagres N, Dinov B, Bollmann A, Husser D, Marsche G, Buettner P. Atrial fibrillation is associated with alterations in HDL function, metabolism, and particle number. Basic Res Cardiol 2019; 114:27. [PMID: 31069509 DOI: 10.1007/s00395-019-0735-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Increased morbidity and mortality in atrial fibrillation (AF) are related to the pro-fibrotic, pro-thrombotic, and pro-inflammatory processes that underpin the disease. High-density lipoproteins (HDL) have anti-inflammatory, anti-oxidative, and anti-thrombotic properties. Functional impairment of HDL may, therefore, associate with AF initiation or progression. We studied indices of HDL quality and quantity of AF patients and healthy controls, including HDL-particle number, HDL cholesterol, apolipoprotein (apo) A-I levels, serum amyloid A (SAA) content and HDL-cholesterol efflux capacity, and paraoxonase activity of apoB-depleted serum. Serum samples were collected from AF patients (n = 91) before catheter ablation and from age- and sex-matched control subjects (n = 54). HDL-cholesterol efflux capacity was assessed in a validated assay using [3H]-cholesterol-labeled J774 macrophages. Lecithin-cholesterol acyltransferase (LCAT) and paraoxonase activities were assessed using fluorometric assays, SAA levels were determined by ELISA, and total and subclass HDL-particle number was assessed by nuclear magnetic resonance spectroscopy. ApoA-I levels were determined by immunoturbidimetry. HDL-cholesterol efflux capacity, HDL-particle number, apoA-I levels, and LCAT activity were markedly reduced in AF patients when compared to healthy individuals (all p < 0.001), whereas HDL-associated paraoxonase activity and SAA content were not altered (p = 0.578, p = 0.681). Notably, cholesterol efflux capacity, HDL-particle number, apoA-I levels as well as LCAT activity recovered following restoration of sinus rhythm (all p < 0.001). We identified marked alterations in HDL function, HDL maturation, and HDL-particle number in AF patients. Assessing HDL-particle number and function in AF may be used as a surrogate marker of AF onset and progression and may help identifying patients at high risk.
Collapse
Affiliation(s)
- Markus Trieb
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Jelena Kornej
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig-University Hospital of Cardiology, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Petra Buettner
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany.
- Department of Internal Medicine/Cardiology, Heart Center Leipzig-University Hospital of Cardiology, Strümpellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
5
|
Hollstein T, Vogt A, Grenkowitz T, Stojakovic T, März W, Laufs U, Bölükbasi B, Steinhagen-Thiessen E, Scharnagl H, Kassner U. Treatment with PCSK9 inhibitors reduces atherogenic VLDL remnants in a real-world study. Vascul Pharmacol 2019; 116:8-15. [DOI: 10.1016/j.vph.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Accepted: 03/22/2019] [Indexed: 11/15/2022]
|
6
|
Klapak D, Broadfoot S, Penner G, Singh A, Inapuri E. Development of novel aptamers for low-density lipoprotein particle quantification. PLoS One 2018; 13:e0205460. [PMID: 30307996 PMCID: PMC6181373 DOI: 10.1371/journal.pone.0205460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Low-density lipoprotein cholesterol (LDL-C) is commonly used for CVD risk assessment; however, recent research has shown LDL particle (LDL-P) number to be a more sensitive indicator of CVD risk than both LDL-C and non-high-density lipoprotein cholesterol (HDL-C). Described herein are five single stranded DNA aptamers with dissociation constants in the low picomolar range specific to LDL-P and its subfractions. Furthermore, a set of antisense sequences have been developed and characterized that are capable of binding to the best aptamers and undergoing displacement by LDL-P for use in a simple, affordable diagnostic assay.
Collapse
Affiliation(s)
- Daniel Klapak
- NeoVentures Biotechnology Inc., London, Ontario, Canada
| | | | | | - Anup Singh
- InnaMed, Inc., Philadelphia, Pennsylvania, United States of America
- * E-mail: (AS); (EI)
| | - Eshwar Inapuri
- InnaMed, Inc., Philadelphia, Pennsylvania, United States of America
- * E-mail: (AS); (EI)
| |
Collapse
|
7
|
Pichler G, Amigo N, Tellez-Plaza M, Pardo-Cea M, Dominguez-Lucas A, Marrachelli V, Monleon D, Martin-Escudero J, Ascaso J, Chaves F, Carmena R, Redon J. LDL particle size and composition and incident cardiovascular disease in a South-European population: The Hortega-Liposcale Follow-up Study. Int J Cardiol 2018; 264:172-178. [DOI: 10.1016/j.ijcard.2018.03.128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 11/30/2022]
|
8
|
Kjellmo CA, Hovland A, Lappegård KT. CVD Risk Stratification in the PCSK9 Era: Is There a Role for LDL Subfractions? Diseases 2018; 6:diseases6020045. [PMID: 29861477 PMCID: PMC6023332 DOI: 10.3390/diseases6020045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors reduce the risk of cardiovascular events and all-cause mortality in patients at high risk of cardiovascular disease (CVD). Due to high costs and unknown long-term adverse effects, critical evaluation of patients considered for PCSK9 inhibitors is important. It has been proposed that measuring low-density lipoprotein (LDL) subfractions, or LDL particle numbers (LDL-P), could be of value in CVD risk assessment and may identify patients at high risk of CVD. This review evaluates the evidence for the use of LDL subfractions, or LDL-P, when assessing CVD risk in patients for whom PCSK9 inhibitors are considered as a lipid-lowering therapy. Numerous methods for measuring LDL subfractions and LDL-P are available, but several factors limit their availability. A lack of standardization makes comparison between the different methods challenging. Longitudinal population-based studies have found an independent association between different LDL subfractions, LDL-P, and an increased risk of cardiovascular events, but definitive evidence that these measurements add predictive value to the standard risk markers is lacking. No studies have proven that these measurements improve clinical outcomes. PCSK9 inhibitors seem to be effective at lowering all LDL subfractions and LDL-P, but any evidence that measuring LDL subfractions and LDL-P yield clinically useful information is lacking. Such analyses are currently not recommended when considering whether to initiate PCKS9 inhibitors in patients at risk of CVD.
Collapse
Affiliation(s)
| | - Anders Hovland
- Division of Internal Medicine, Nordland Hospital, N-8092 Bodø, Norway.
- Department of Clinical Medicine, University of Tromsø, N-9037 Tromsø, Norway.
| | - Knut Tore Lappegård
- Division of Internal Medicine, Nordland Hospital, N-8092 Bodø, Norway.
- Department of Clinical Medicine, University of Tromsø, N-9037 Tromsø, Norway.
| |
Collapse
|
9
|
Langlois MR, Chapman MJ, Cobbaert C, Mora S, Remaley AT, Ros E, Watts GF, Borén J, Baum H, Bruckert E, Catapano A, Descamps OS, von Eckardstein A, Kamstrup PR, Kolovou G, Kronenberg F, Langsted A, Pulkki K, Rifai N, Sypniewska G, Wiklund O, Nordestgaard BG. Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM. Clin Chem 2018; 64:1006-1033. [PMID: 29760220 DOI: 10.1373/clinchem.2018.287037] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/09/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND The European Atherosclerosis Society-European Federation of Clinical Chemistry and Laboratory Medicine Consensus Panel aims to provide recommendations to optimize atherogenic lipoprotein quantification for cardiovascular risk management. CONTENT We critically examined LDL cholesterol, non-HDL cholesterol, apolipoprotein B (apoB), and LDL particle number assays based on key criteria for medical application of biomarkers. (a) Analytical performance: Discordant LDL cholesterol quantification occurs when LDL cholesterol is measured or calculated with different assays, especially in patients with hypertriglyceridemia >175 mg/dL (2 mmol/L) and low LDL cholesterol concentrations <70 mg/dL (1.8 mmol/L). Increased lipoprotein(a) should be excluded in patients not achieving LDL cholesterol goals with treatment. Non-HDL cholesterol includes the atherogenic risk component of remnant cholesterol and can be calculated in a standard nonfasting lipid panel without additional expense. ApoB more accurately reflects LDL particle number. (b) Clinical performance: LDL cholesterol, non-HDL cholesterol, and apoB are comparable predictors of cardiovascular events in prospective population studies and clinical trials; however, discordance analysis of the markers improves risk prediction by adding remnant cholesterol (included in non-HDL cholesterol) and LDL particle number (with apoB) risk components to LDL cholesterol testing. (c) Clinical and cost-effectiveness: There is no consistent evidence yet that non-HDL cholesterol-, apoB-, or LDL particle-targeted treatment reduces the number of cardiovascular events and healthcare-related costs than treatment targeted to LDL cholesterol. SUMMARY Follow-up of pre- and on-treatment (measured or calculated) LDL cholesterol concentration in a patient should ideally be performed with the same documented test method. Non-HDL cholesterol (or apoB) should be the secondary treatment target in patients with mild to moderate hypertriglyceridemia, in whom LDL cholesterol measurement or calculation is less accurate and often less predictive of cardiovascular risk. Laboratories should report non-HDL cholesterol in all standard lipid panels.
Collapse
Affiliation(s)
- Michel R Langlois
- Department of Laboratory Medicine, AZ St-Jan, Brugge, and University of Ghent, Belgium;
| | - M John Chapman
- National Institute for Health and Medical Research (INSERM), and Endocrinology-Metabolism Service, Pitié-Salpetriere University Hospital, Paris, France
| | - Christa Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Samia Mora
- Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Emilio Ros
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, University of Western Australia, Perth, Australia
| | - Jan Borén
- Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hannsjörg Baum
- Institute for Laboratory Medicine, Blutdepot und Krankenhaushygiene, Regionale Kliniken Holding RKH GmbH, Ludwigsburg, Germany
| | - Eric Bruckert
- Pitié-Salpetriere University Hospital, Paris, France
| | - Alberico Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | | | | | - Pia R Kamstrup
- Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Genovefa Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Florian Kronenberg
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Langsted
- Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kari Pulkki
- Department of Clinical Chemistry, University of Turku and Turku University Hospital, Turku, Finland
| | - Nader Rifai
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Grazyna Sypniewska
- Department of Laboratory Medicine, Collegium Medicum, NC University, Bydgoszcz, Poland
| | - Olov Wiklund
- Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Børge G Nordestgaard
- Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Kuklenyik Z, Jones JI, Gardner MS, Schieltz DM, Parks BA, Toth CA, Rees JC, Andrews ML, Carter K, Lehtikoski AK, McWilliams LG, Williamson YM, Bierbaum KP, Pirkle JL, Barr JR. Core lipid, surface lipid and apolipoprotein composition analysis of lipoprotein particles as a function of particle size in one workflow integrating asymmetric flow field-flow fractionation and liquid chromatography-tandem mass spectrometry. PLoS One 2018; 13:e0194797. [PMID: 29634782 PMCID: PMC5892890 DOI: 10.1371/journal.pone.0194797] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 12/18/2022] Open
Abstract
Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples.
Collapse
Affiliation(s)
- Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeffery I. Jones
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael S. Gardner
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David M. Schieltz
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bryan A. Parks
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christopher A. Toth
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jon C. Rees
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael L. Andrews
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kayla Carter
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Antony K. Lehtikoski
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lisa G. McWilliams
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Yulanda M. Williamson
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kevin P. Bierbaum
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James L. Pirkle
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Update on the laboratory investigation of dyslipidemias. Clin Chim Acta 2018; 479:103-125. [PMID: 29336935 DOI: 10.1016/j.cca.2018.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/08/2023]
Abstract
The role of the clinical laboratory is evolving to provide more information to clinicians to assess cardiovascular disease (CVD) risk and target therapy more effectively. Current routine methods to measure LDL-cholesterol (LDL-C), the Friedewald calculation, ultracentrifugation, electrophoresis and homogeneous direct methods have established limitations. Studies suggest that LDL and HDL size or particle concentration are alternative methods to predict future CVD risk. At this time there is no consensus role for lipoprotein particle or subclasses in CVD risk assessment. LDL and HDL particle concentration are measured by several methods, namely gradient gel electrophoresis, ultracentrifugation-vertical auto profile, nuclear magnetic resonance and ion mobility. It has been suggested that HDL functional assays may be better predictors of CVD risk. To assess the issue of lipoprotein subclasses/particles and HDL function as potential CVD risk markers robust, simple, validated analytical methods are required. In patients with small dense LDL particles, even a perfect measure of LDL-C will not reflect LDL particle concentration. Non-HDL-C is an alternative measurement and includes VLDL and CM remnant cholesterol and LDL-C. However, apolipoprotein B measurement may more accurately reflect LDL particle numbers. Non-fasting lipid measurements have many practical advantages. Defining thresholds for treatment with new measurements of CVD risk remain a challenge. In families with genetic variants, ApoCIII and lipoprotein (a) may be additional risk factors. Recognition of familial causes of dyslipidemias and diagnosis in childhood will result in early treatment. This review discusses the limitations in current laboratory technologies to predict CVD risk and reviews the evidence for emergent approaches using newer biomarkers in clinical practice.
Collapse
|
12
|
Aru V, Lam C, Khakimov B, Hoefsloot HC, Zwanenburg G, Lind MV, Schäfer H, van Duynhoven J, Jacobs DM, Smilde AK, Engelsen SB. Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
A Routine 'Top-Down' Approach to Analysis of the Human Serum Proteome. Proteomes 2017; 5:proteomes5020013. [PMID: 28587287 PMCID: PMC5489773 DOI: 10.3390/proteomes5020013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Serum provides a rich source of potential biomarker proteoforms. One of the major obstacles in analysing serum proteomes is detecting lower abundance proteins owing to the presence of hyper-abundant species (e.g., serum albumin and immunoglobulins). Although depletion methods have been used to address this, these can lead to the concomitant removal of non-targeted protein species, and thus raise issues of specificity, reproducibility, and the capacity for meaningful quantitative analyses. Altering the native stoichiometry of the proteome components may thus yield a more complex series of issues than dealing directly with the inherent complexity of the sample. Hence, here we targeted method refinements so as to ensure optimum resolution of serum proteomes via a top down two-dimensional gel electrophoresis (2DE) approach that enables the routine assessment of proteoforms and is fully compatible with subsequent mass spectrometric analyses. Testing included various fractionation and non-fractionation approaches. The data show that resolving 500 µg protein on 17 cm 3–10 non-linear immobilised pH gradient strips in the first dimension followed by second dimension resolution on 7–20% gradient gels with a combination of lithium dodecyl sulfate (LDS) and sodium dodecyl sulfate (SDS) detergents markedly improves the resolution and detection of proteoforms in serum. In addition, well established third dimension electrophoretic separations in combination with deep imaging further contributed to the best available resolution, detection, and thus quantitative top-down analysis of serum proteomes.
Collapse
|
14
|
Potočnjak I, Degoricija V, Trbušić M, Pregartner G, Berghold A, Marsche G, Frank S. Serum Concentration of HDL Particles Predicts Mortality in Acute Heart Failure Patients. Sci Rep 2017; 7:46642. [PMID: 28418031 PMCID: PMC5394530 DOI: 10.1038/srep46642] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/21/2017] [Indexed: 12/31/2022] Open
Abstract
Clinical studies have shown that assessing circulating concentrations of high-density lipoprotein (HDL) particles by nuclear magnetic resonance (NMR) spectroscopy is superior to HDL-cholesterol in predicting cardiovascular risk. We tested the hypothesis that circulating concentrations of HDL particles predict 3-month mortality of patients with acute heart failure (AHF). Out of 152 included patients, 52% were female, additionally the mean patient age was 75.2 ± 10.3 years, and three-month mortality was 27%. Serum lipoprotein profile at admission was determined by NMR spectroscopy. Univariate logistic regression analyses revealed a significant inverse association of total (odds ratio (OR) 0.38 per 1-SD increase, 95% confidence interval (CI) 0.23-0.60, p < 0.001) and small HDL particle concentrations (OR 0.35 per 1-SD increase, 95% CI 0.19-0.60, p < 0.001) with 3-month mortality, whereas concentrations of large HDL particles (p = 0.353) or HDL-cholesterol (p = 0.107) showed no significant association. After adjustment for age, sex, mean arterial pressure, low-density lipoprotein cholesterol, glomerular filtration rate, urea, and N-terminal pro-brain natriuretic peptide, both the total and small HDL particle concentrations remained significantly associated with 3-month mortality. Based on our results, we conclude that total and small HDL particle concentrations strongly and independently predict 3-month mortality in AHF patients.
Collapse
Affiliation(s)
- Ines Potočnjak
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
| | - Vesna Degoricija
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Matias Trbušić
- University Hospital Centre Sisters of Charity, Department of Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
- BioTechMed-Graz, Austria
| | - Saša Frank
- BioTechMed-Graz, Austria
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
15
|
Fonseca MIH, da Silva IT, Ferreira SRG. Impact of menopause and diabetes on atherogenic lipid profile: is it worth to analyse lipoprotein subfractions to assess cardiovascular risk in women? Diabetol Metab Syndr 2017; 9:22. [PMID: 28405227 PMCID: PMC5384156 DOI: 10.1186/s13098-017-0221-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/26/2017] [Indexed: 01/13/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women at advanced age, who are affected a decade later compared to men. Cardiovascular risk factors in women are not properly investigated nor treated and events are frequently lethal. Both menopause and type 2 diabetes substantially increase cardiovascular risk in the female sex, promoting modifications on lipid metabolism and circulating lipoproteins. Lipoprotein subfractions suffer a shift after menopause towards a more atherogenic lipid profile, consisted of hypertriglyceridemia, lower levels of both total high density lipoprotein (HDL) and its subfraction HDL2, but also higher levels of HDL3 and small low-density lipoprotein particles. This review discusses the impact of diabetes and menopause to the lipid profile, challenges in lipoprotein subfractions determination and their potential contribution to the cardiovascular risk assessment in women. It is still unclear whether lipoprotein subfraction changes are a major driver of cardiometabolic risk and which modifications are predominant. Prospective trials with larger samples, methodological standardizations and pharmacological approaches are needed to clarify the role of lipoprotein subfractions determination on cardiovascular risk prediction and intervention planning in postmenopausal women, with or without DM.
Collapse
Affiliation(s)
- Marília Izar Helfenstein Fonseca
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904 Brazil
| | - Isis Tande da Silva
- Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904 Brazil
| | - Sandra Roberta G. Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904 Brazil
- Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904 Brazil
| |
Collapse
|