1
|
Zhang X, Ding H, Ji X, Chen L, Huang P, Lin Z, Zhu J, Zhou S, Liu Z, Zhang M, Xu Q. Predicting vulnerable carotid plaques by detecting wall shear stress based on ultrasonic vector flow imaging. J Vasc Surg 2024; 80:1475-1486.e1. [PMID: 38925348 DOI: 10.1016/j.jvs.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Carotid plaque vulnerability is a significant factor in the risk of cardiocerebrovascular events, with intraplaque neovascularization (IPN) being a crucial characteristic of plaque vulnerability. This study investigates the value of ultrasound vector flow imaging (V-flow) for measuring carotid plaque wall shear stress (WSS) in predicting the extent of IPN. METHODS We enrolled 140 patients into three groups: 53 in the plaque group (72 plaques), 23 in the stenosis group (27 plaques), and 64 in the control group. V-flow was used to measure WSS parameters, including the average WSS (WSS mean) and the maximum WSS (WSS max), across three plaque locations: mid-upstream, maximum thickness, and mid-downstream. Contrast-enhanced ultrasound examination was used in 76 patients to analyze IPN and its correlation with WSS parameters. RESULTS WSS max in the stenosis group was significantly higher than that in the control and plaque groups at the maximum thickness part (P < .05) and WSS mean in the stenosis group was significantly lower than that in the control group at the mid-upstream and mid-downstream segments (P < .05). WSS mean in the plaque group was significantly lower than that of the control group at all three locations (P < .05). Contrast-enhanced ultrasound examination revealed that plaques with neovascularization enhancement exhibited significantly higher WSS values (P < .05), with a positive correlation between WSS parameters and IPN enhancement grades, particularly WSS max at the thickest part (r = 0.508). Receiver operating characteristic curve analysis of WSS parameters for evaluating IPN showed that the efficacy of WSS max in evaluating IPN was better than that of WSS mean (P < .05), with an area under the curve of 0.7762 and 0.6973 (95% confidence intervals, 0.725-0.822 and 0.642-0.749, respectively). The cut-offs were 4.57 Pa and 1.12 Pa, sensitivities were 74.03% and 63.64%, and specificities were 75.00% and 68.18%. CONCLUSIONS V-flow effectively measures WSS in carotid plaques. WSS max provides a promising metric for assessing IPN, offering potential insights into plaque characteristics and showing some potential in predicting plaque vulnerability.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huanhuan Ding
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoli Ji
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ling Chen
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peipei Huang
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengqiao Lin
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianbi Zhu
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shujing Zhou
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zezheng Liu
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miaomiao Zhang
- Department of Ultrasonography, Lingkun Street Community Health Service Center of Dongtou District, Wenzhou, Zhejiang, China
| | - Qi Xu
- Department of Ultrasonography, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Siogkas PK, Pleouras D, Pezoulas V, Kigka V, Tsakanikas V, Fotiou E, Potsika V, Charalampopoulos G, Galyfos G, Sigala F, Koncar I, Fotiadis DI. Combining Computational Fluid Dynamics, Structural Analysis, and Machine Learning to Predict Cerebrovascular Events: A Mild ML Approach. Diagnostics (Basel) 2024; 14:2204. [PMID: 39410608 PMCID: PMC11476427 DOI: 10.3390/diagnostics14192204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Cerebrovascular events, such as strokes, are often preceded by the rupture of atherosclerotic plaques in the carotid arteries. This work introduces a novel approach to predict the occurrence of such events by integrating computational fluid dynamics (CFD), structural analysis, and machine learning (ML) techniques. The objective is to develop a predictive model that combines both imaging and non-imaging data to assess the risk of carotid atherosclerosis and subsequent cerebrovascular events, ultimately improving clinical decision-making. Methods: A multidisciplinary approach was employed, utilizing 3D reconstruction techniques and blood-flow simulations to extract key plaque characteristics. These were combined with patient-specific clinical data for risk evaluation. The study involved 134 asymptomatic individuals diagnosed with carotid artery disease. Data imbalance was addressed using two distinct approaches, with the optimal method chosen for training a Gradient Boosting Tree (GBT) classifier. The model's performance was evaluated in terms of accuracy, sensitivity, specificity, and ROC AUC. Results: The best-performing GBT model achieved a balanced accuracy of 88%, with a ROC AUC of 0.92, a sensitivity of 0.88, and a specificity of 0.91. This demonstrates the model's high predictive power in identifying patients at risk for cerebrovascular events. Conclusions: The proposed method effectively combines CFD, structural analysis, and ML to predict cerebrovascular event risk in patients with carotid artery disease. By providing clinicians with a tool for better risk assessment, this approach has the potential to significantly enhance clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Panagiotis K. Siogkas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.K.S.); (D.P.); (V.P.); (V.K.); (V.T.); (E.F.); (V.P.)
| | - Dimitrios Pleouras
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.K.S.); (D.P.); (V.P.); (V.K.); (V.T.); (E.F.); (V.P.)
| | - Vasileios Pezoulas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.K.S.); (D.P.); (V.P.); (V.K.); (V.T.); (E.F.); (V.P.)
| | - Vassiliki Kigka
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.K.S.); (D.P.); (V.P.); (V.K.); (V.T.); (E.F.); (V.P.)
| | - Vassilis Tsakanikas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.K.S.); (D.P.); (V.P.); (V.K.); (V.T.); (E.F.); (V.P.)
| | - Evangelos Fotiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.K.S.); (D.P.); (V.P.); (V.K.); (V.T.); (E.F.); (V.P.)
| | - Vassiliki Potsika
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.K.S.); (D.P.); (V.P.); (V.K.); (V.T.); (E.F.); (V.P.)
| | - George Charalampopoulos
- First Propedeutic Department of Surgery, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.C.); (G.G.); (F.S.)
| | - George Galyfos
- First Propedeutic Department of Surgery, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.C.); (G.G.); (F.S.)
| | - Fragkiska Sigala
- First Propedeutic Department of Surgery, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.C.); (G.G.); (F.S.)
| | - Igor Koncar
- Department of Vascular and Endovascular Surgery, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dimitrios I. Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (P.K.S.); (D.P.); (V.P.); (V.K.); (V.T.); (E.F.); (V.P.)
- Biomedical Research Institute—Foundation for Research and Technology—Hellas, 45110 Ioannina, Greece
| |
Collapse
|
3
|
David E, Grazhdani H, Aliotta L, Gavazzi LM, Foti PV, Palmucci S, Inì C, Tiralongo F, Castiglione D, Renda M, Pacini P, Di Bella C, Solito C, Gigli S, Fazio A, Bella R, Basile A, Cantisani V. Imaging of Carotid Stenosis: Where Are We Standing? Comparison of Multiparametric Ultrasound, CT Angiography, and MRI Angiography, with Recent Developments. Diagnostics (Basel) 2024; 14:1708. [PMID: 39202195 PMCID: PMC11352936 DOI: 10.3390/diagnostics14161708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Atherosclerotic disease of the carotid arteries is a crucial risk factor in predicting the likelihood of future stroke events. In addition, emerging studies suggest that carotid stenosis may also be an indicator of plaque load on coronary arteries and thus have a correlation with the risk of acute cardiovascular events. Furthermore, although in symptomatic patients the degree of stenosis is the main morphological parameter studied, recent evidence suggests, especially in asymptomatic patients, that plaque vulnerability should also be evaluated as an emerging and significant imaging parameter. The reference diagnostic methods for the evaluation of carotid stenosis are currently ultrasonography, magnetic resonance imaging (MRI), and computed tomography angiography (CTA). In addition, other more invasive methods such as 123I-metaiodobenzylguanidine (MIBG) scintigraphy and PET-CT, as well as digital subtraction angiography, can be used. Each method has advantages and disadvantages, and there is often some confusion in their use. For example, the usefulness of MRI is often underestimated. In addition, implementations for each method have been developed over the years and are already enabling a significant increase in diagnostic accuracy. The purpose of our study is to make an in-depth analysis of all the methods in use and in particular their role in the diagnostic procedure of carotid stenosis, also discussing new technologies.
Collapse
Affiliation(s)
- Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy
| | | | - Lorenzo Aliotta
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Livio Maria Gavazzi
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Corrado Inì
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Francesco Tiralongo
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Davide Castiglione
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Maurizio Renda
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Patrizia Pacini
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Chiara Di Bella
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Carmen Solito
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| | - Silvia Gigli
- Department of Diagnostic Imaging, Sandro Pertini Hospital, Via dei Monti Tiburtini, 385, 00157 Rome, Italy;
| | - Alessandro Fazio
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Rita Bella
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, 95125 Catania, Italy; (L.A.); (L.M.G.); (P.V.F.); (S.P.); (C.I.); (F.T.); (D.C.); (A.F.); (R.B.); (A.B.)
| | - Vito Cantisani
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (M.R.); (P.P.); (C.D.B.); (C.S.); (V.C.)
| |
Collapse
|
4
|
Chen J, Zhang L, Gu S, Jia C, Wu R. Quantitative evaluation using carotid ultrasonography-based high-frame-rate vector flow imaging in patients with low carotid stenosis. Br J Radiol 2024; 97:1476-1482. [PMID: 38885374 PMCID: PMC11256931 DOI: 10.1093/bjr/tqae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/09/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE To explore the role of quantitative evaluation using carotid ultrasonography (US)-based high-frame-rate vector flow (V Flow) imaging in patients with low carotid stenosis. METHODS This single-centre cross-sectional study consecutively recruited volunteers without carotid plaque and patients with low carotid stenosis from August 2022 to May 2023. Patients were divided into symptomatic and asymptomatic groups according to their head CT or MRI results within 8 weeks. All V Flow imaging examinations were performed using a Mindray Resona R9 US system. The wall shear stress (WSS) values, oscillatory shear index (OSI) values, and turbulence (Tur) indexes in the normal common carotid artery (CCA), normal carotid bifurcation (CB), and on the upstream and downstream surface of carotid plaque were measured. Pearson Chi-square test and Fisher exact test were used for counting data according to their type. For measurement data, independent sample t test and non-parametric rank sum test were used. RESULTS The results proved that patients have higher WSS values and Tur indexes of CB than volunteers, and higher WSS values were detected on the surface of the plaques in symptomatic patients. What's more, the downstream side of the plaque was more vulnerable to plaque rupture than the upstream side due to more dynamic blood flow. CONCLUSION Therefore, carotid US-based high-frame-rate V Flow imaging provides reliable mechanical biomarkers for assessing the haemodynamic change in patients with low stenosis. Our study may provide a new imaging tool for monitoring the progression of atherosclerosis and aiding the management of early atherosclerotic patients. ADVANCES IN KNOWLEDGE Our study firstly investigated the difference of V Flow parameters on the surface of carotid plaques between symptomatic and asymptomatic patients with low carotid stenosis, which is expected to provide haemodynamic information and the mechanical basis for plaque rupture.
Collapse
Affiliation(s)
- Jing Chen
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Luni Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shiyao Gu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Caixia Jia
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
5
|
Good E, Bilos L, Dyverfeldt P. Editorial for "Investigating the Association of Carotid Atherosclerotic Plaque MRI Features and Silent Stroke After Carotid Endarterectomy". J Magn Reson Imaging 2024; 60:150-151. [PMID: 38018903 DOI: 10.1002/jmri.29116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 11/30/2023] Open
Affiliation(s)
- Elin Good
- Department of Cardiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Linda Bilos
- Department of Cardiothoracic and Vascular Surgery in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Xiaoyong T, Yuping C, Wei H, Juan C, Feng Q, Zhuo L. Evaluafion of the efficacy of wall shear stress in carotid artery stenting. Heliyon 2024; 10:e31383. [PMID: 38828314 PMCID: PMC11140617 DOI: 10.1016/j.heliyon.2024.e31383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Objective To characterize the value of carotid wall shear stress (WSS) following carotid artery stenting (CAS) in patients with carotid stenosis. Methods Twenty-eight patients with carotid stenosis treated with CAS between March 2021 to May 2022 in the eighth medical center of the PLA General Hospital were selected for our study. Carotid ultrasound was performed before the operation, one week post-operation, and six months post-operation. Carotid artery WSS was detected by blood flow vector imaging, and the changes in WSS before and after the operation were collected. Genetic testing of drugs was detected for patients with restenosis. Results Pre-operative WSS of the proximal, narrowest region, and distal carotid arteries in patients with ischemic carotid artery stenosis was 7.88 ± 3.18Pa, 14.36 ± 6.66Pa, and 1.55 ± 1.15Pa, respectively. Comparatively, pre-operative WSS of the proximal, narrowest region and distal carotid arteries in patients without ischemic symptoms was 5.02 ± 1.99Pa, 9.68 ± 4.23Pa, and 1.10 ± 0.68Pa, respectively, with a significant difference between the two groups (p < 0.001). Overall WSS of the proximal, narrowest region, and distal carotid arteries in patients before CAS was 6.68 ± 3.0Pa, 12.47 ± 5.98Pa, and 1.39 ± 0. 96Pa. WSS of the proximal, narrowest region, and distal carotid was 4.15 ± 1.42Pa, 6.71 ± 2.64Pa, and1.86 ± 1.13Pa one week after CAS, compared to 4.44 ± 1.91Pa, 7.90 ± 4.38Pa, and 2. 36 ± 1.09Pa six months after CAS. WSS of the proximal and narrowest region of the carotid artery was reduced after carotid stenting, and the difference was statistically significant (p < 0.001). There was no statistically significant difference in WSS between one week and six months after stenting (P > 0.05). Conclusion We employed early carotid WSS as a means of evaluating the efficacy of carotid artery stenting. Changes in carotid WSS are closely associated with carotid artery stenosis, providing valuable hemodynamic information for CAS treatment. This technique holds great application value in pre-operative evaluation and long-term follow-up.
Collapse
Affiliation(s)
- Tao Xiaoyong
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Chen Yuping
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Huang Wei
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Chen Juan
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Qiu Feng
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Li Zhuo
- Department of Ultrasonography, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Feng X, Fang H, Ip BYM, Chan KL, Li S, Tian X, Zheng L, Liu Y, Lan L, Liu H, Abrigo J, Ma SH, Fan FSY, Ip VHL, Soo YOY, Mok VCT, Song B, Leung TW, Xu Y, Leng X. Cerebral Hemodynamics Underlying Artery-to-Artery Embolism in Symptomatic Intracranial Atherosclerotic Disease. Transl Stroke Res 2024; 15:572-579. [PMID: 36897543 DOI: 10.1007/s12975-023-01146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
Artery-to-artery embolism (AAE) is a common stroke mechanism in intracranial atherosclerotic disease (ICAD), associated with a considerable risk of recurrent stroke. We aimed to investigate cerebral hemodynamic features associated with AAE in symptomatic ICAD. Patients with anterior-circulation, symptomatic ICAD confirmed in CT angiography (CTA) were recruited. We classified probable stroke mechanisms as isolated parent artery atherosclerosis occluding penetrating artery, AAE, hypoperfusion, and mixed mechanisms, largely based on infarct topography. CTA-based computational fluid dynamics (CFD) models were built to simulate blood flow across culprit ICAD lesions. Translesional pressure ratio (PR = Pressurepost-stenotic/Pressurepre-stenotic) and wall shear stress ratio (WSSR = WSSstenotic-throat/WSSpre-stenotic) were calculated, to reflect the relative, translesional changes of the two hemodynamic metrics. Low PR (PR ≤ median) and high WSSR (WSSR ≥ 4th quartile) respectively indicated large translesional pressure and elevated WSS upon the lesion. Among 99 symptomatic ICAD patients, 44 had AAE as a probable stroke mechanism, 13 with AAE alone and 31 with coexisting hypoperfusion. High WSSR was independently associated with AAE (adjusted OR = 3.90; P = 0.022) in multivariate logistic regression. There was significant WSSR-PR interaction on the presence of AAE (P for interaction = 0.013): high WSSR was more likely to associate with AAE in those with low PR (P = 0.075), but not in those with normal PR (P = 0.959). Excessively elevated WSS in ICAD might increase the risk of AAE. Such association was more prominent in those with large translesional pressure gradient. Hypoperfusion, commonly coexisting with AAE, might be a therapeutic indicator for secondary stroke prevention in symptomatic ICAD with AAE.
Collapse
Affiliation(s)
- Xueyan Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Fang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Bonaventure Y M Ip
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Lung Chan
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuang Li
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuan Tian
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lina Zheng
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuying Liu
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Linfang Lan
- Department of Neurology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Liu
- Research Centre for Intelligent Healthcare, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Jill Abrigo
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sze Ho Ma
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Florence S Y Fan
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent H L Ip
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yannie O Y Soo
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent C T Mok
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Song
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Thomas W Leung
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China.
| | - Xinyi Leng
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Zhang Y, Jiang C, Meng N. Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis. Mini Rev Med Chem 2024; 24:1262-1276. [PMID: 38284727 DOI: 10.2174/0113895575273164231130070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
9
|
Benson JC, Shahid A, Larson A, Brinjikji W, Nasr D, Saba L, Lanzino G, Savastano LE. Carotid Artery Tortuosity and Internal Carotid Artery Plaque Composition. Clin Neuroradiol 2023; 33:1017-1021. [PMID: 37286876 DOI: 10.1007/s00062-023-01302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/27/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Little is known about the association between carotid artery tortuosity and internal carotid artery atherosclerosis. This study sought to evaluate the associations between various types of arterial tortuosity and vulnerable plaque components on magnetic resonance angiography (MRA). MATERIAL AND METHODS A retrospective review was completed of 102 patients who had undergone MRA neck imaging, with intraplaque hemorrhage (IPH) present in one or both cervical internal carotid arteries (ICA). Each ICA was assessed for two categories of tortuosity: variant arterial pathway(s) (retrojugular and/or retropharyngeal) and abnormal curvature (kinks, loops, and/or coils). All ICA plaques were assessed for the presence or absence of intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), ulceration, and enhancement, as well as the volume of IPH and degree of luminal stenosis. RESULTS The mean age of included patients was 73.5 years (SD = 9.0 years) and 88 (86.3%) subjects were male. The left carotid plaque was significantly more likely to have IPH (68.6% vs. 47.1%; p = 0.02). The left ICA was more likely to have a retrojugular course (22% vs. 9.9%; p = 0.002) and any variant arterial course (26.5% versus 14.67%, p = 0.01). On the right there was an association between the presence of a LRNC and retropharyngeal and/or retrojugular arterial pathway (p = 0.03). On the left there was an association between the presence of any abnormal arterial curvature and IPH volume (p = 0.03). Neither association met the adjusted statistical threshold after Bonferroni correction, with alpha set at 0.0028. CONCLUSION ICA tortuosity is not associated with carotid artery plaque composition, and likely does not play a role in the development of high-risk plaques.
Collapse
Affiliation(s)
- John C Benson
- Department of Radiology, Mayo Clinic, 200 1st St. SW Rochester, 55905, Rochester, MN, USA.
| | - Adnan Shahid
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Anthony Larson
- Department of Radiology, Mayo Clinic, 200 1st St. SW Rochester, 55905, Rochester, MN, USA
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, 200 1st St. SW Rochester, 55905, Rochester, MN, USA
| | - Deena Nasr
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Luca Saba
- Department of Medical Imaging, Azienda Ospedaliero Universitaria of Cagliari-Polo di Monserrato, Cagliari, Italy
| | | | | |
Collapse
|
10
|
Wu XB, Liu YA, Huang LX, Guo X, Cai WQ, Luo B, Wang SW. Hemodynamics combined with inflammatory indicators exploring relationships between ischemic stroke and symptomatic middle cerebral artery atherosclerotic stenosis. Eur J Med Res 2023; 28:378. [PMID: 37752519 PMCID: PMC10523698 DOI: 10.1186/s40001-023-01344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Intracranial atherosclerotic stenosis (ICAS) is a major cause of ischemic stroke, and high-resolution vessel wall imaging (HR-VWI) can be used to assess the plaque characteristics of ICAS. This study combined HR-VWI, hemodynamics, and peripheral blood inflammatory indicators to investigate the role of these factors in symptomatic intracranial atherosclerotic stenosis (sICAS) and their inter-relationships. METHODS Patients diagnosed with atherosclerotic middle cerebral artery stenosis were recruited retrospectively from June 2018 to July 2022. Plaque enhancement was qualitatively and quantitatively analyzed, and the degree of plaque enhancement was graded according to the plaque-to-pituitary stalk contrast ratio (CR). Computational fluid dynamics models were constructed, and then hemodynamic parameters, including wall shear stress (WSS) and pressure ratio (PR), were measured and recorded. Univariate and multivariable analyses were performed to identify factors that can predict sICAS. In addition, the correlation analysis between the plaque characteristics on HR-VWI, hemodynamic parameters, and peripheral blood inflammatory indicators was performed to investigate the interrelationships between these factors. RESULTS Thirty-two patients were included. A higher proportion of plaque enhancement, maximum WSS, and WSS ratio (WSSR) were significantly associated with sICAS. The multiple logistic regression analysis showed that only the WSSR was an independent risk factor for sICAS. The correlation analysis revealed that both the CR and plaque burden showed linear positive correlation with the WSSR (R = 0.411, P = 0.022; R = 0.474, P = 0.007, respectively), and showed linear negative correlation with the lymphocyte to monocyte ratio (R = 0.382, P = 0.031; R = 0.716, P < 0.001, respectively). CONCLUSIONS The plaque enhancement and WSSR were significantly associated with sICAS, WSSR was an independent risk factor for sICAS. Plaque enhancement and plaque burden showed linear correlation with the WSSR and lymphocyte-to-monocyte ratio (LMR). Hemodynamics and inflammation combined to promote plaque progression.
Collapse
Affiliation(s)
- Xiao-Bing Wu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Yi-Ao Liu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Li-Xin Huang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Guo
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Wang-Qing Cai
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Bin Luo
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China.
| | - Sheng-Wen Wang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
11
|
Lozano Gonzalez R, Singh RB, Virador GM, Barrett KM, Farres H, Miller DA, Meschia JF, Sandhu SJS, Erben Y. Systematic Review on Magnetic Resonance Angiography with Vessel Wall Imaging for the Characterization of Symptomatic Carotid Artery Plaque. Ann Vasc Surg 2023; 95:224-232. [PMID: 37164170 DOI: 10.1016/j.avsg.2023.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND To perform a systematic literature review to assess the usefulness of performing magnetic resonance angiography (MRA) with vessel wall imaging (VWI) sequences for the assessment of symptomatic carotid artery plaques and the identification of risky plaque features predisposing for stroke. METHODS We performed a systematic review of the literature pertaining to MRA with VWI techniques in patients with carotid artery disease, focusing on symptomatic patients' plaque features and morphology. Independent reviewers screened and analyzed data extracted from eligible studies, and a modified Newcastle-Ottawa Scale was used to appraise the quality of the design and content of the selected manuscripts to achieve an accurate interpretation. RESULTS This review included nineteen peer-reviewed manuscripts, all of them including MRA and VWI assessments of the symptomatic carotid artery plaque. We focused on patients' comorbidities and reviewed plaque features, including intraplaque hemorrhage, a lipid-rich necrotic core, a ruptured fibrous cap, and plaque ulceration. CONCLUSIONS MRA with VWI is a useful tool in the evaluation of carotid artery plaques. This imaging technique allows clinicians to identify plaques at risk of causing a neurovascular event. The presence of intraplaque hemorrhage, plaque ulceration, a ruptured fibrous cap, and a lipid-rich necrotic core are associated with neurovascular symptoms. The timely identification of these features could have a positive impact on neurovascular event prevention.
Collapse
Affiliation(s)
| | - Rahul B Singh
- Department of Radiology, Mayo Clinic, Jacksonville, FL
| | | | | | - Houssam Farres
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL
| | | | | | | | - Young Erben
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
12
|
Liu Y, Jiang G, Wang X, An X, Wang F. The relationship between geometry and hemodynamics of the stenotic carotid artery based on computational fluid dynamics. Clin Neurol Neurosurg 2023; 231:107860. [PMID: 37390570 DOI: 10.1016/j.clineuro.2023.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/17/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVE The purpose of this work was to investigate the relationship between the geometric factors and the hemodynamics of the stenotic carotid artery. METHODS We retrospectively reviewed data of patients with carotid stenosis (40%-95%). The Navier-Stokes equations were solved using ANSYS CFX 18.0. Correlation analysis was based on Spearman's test. Geometric variables (p < 0.1 in the univariate analysis) were entered into the logistical regression. A receiver-operating characteristics analysis was used to detect hemodynamically significant lesions. RESULTS 81 patients (96 arteries) were evaluated. The logistic regression analysis revealed that the translesional pressure ratio was significantly correlated with the stenosis degree (OR = 1.147, p < 0.001) and the angle between internal carotid artery and external carotid artery (angle γ) (OR = 0.933, p = 0.01). The translesional wall shear stress ratio was significantly correlated with stenosis degree (OR = 1.094, p < 0.001), lesion length (OR = 0.873, p = 0.01), lumen area of internal carotid artery (OR = 0.867, p = 0.002), and lumen area of common carotid artery (OR = 1.058, p = 0.01). For predicting low translesional pressure ratio, the AUC was 0.71 (p < 0.001) for angle γ, and was 0.87 (p < 0.001) for stenosis degree. For predicting high translesional wall shear stress ratio, the AUC was 0.62 (p = 0.04) for lumen area of internal carotid artery, and was 0.77 (p < 0.001) for stenosis degree. CONCLUSIONS Apart from stenosis degree, other geometric characteristics of lesions may also have an influence on hemodynamics of the stenotic carotid artery.
Collapse
Affiliation(s)
- Yongsheng Liu
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guinan Jiang
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuwen Wang
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangbo An
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Wang
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
13
|
Strecker C, Kopczak A, Saam T, Sepp D, Hennemuth A, Mayerhofer E, Poli S, Ziemann U, Poppert H, Schindler A, Harloff A. Carotid geometry is independently associated with complicated carotid artery plaques. Front Cardiovasc Med 2023; 10:1177998. [PMID: 37378412 PMCID: PMC10291134 DOI: 10.3389/fcvm.2023.1177998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Complicated carotid artery plaques (cCAPs) are associated with an increased risk of rupture and subsequent stroke. The geometry of the carotid bifurcation determines the distribution of local hemodynamics and could thus contribute to the development and composition of these plaques. Therefore, we studied the role of carotid bifurcation geometry in the presence of cCAPs. Methods We investigated the association of individual vessel geometry with carotid artery plaque types in the Carotid Plaque Imaging in Acute Stroke (CAPIAS) study. After excluding arteries without plaque or with insufficient MRI quality, 354 carotid arteries from 182 patients were analyzed. Individual parameters of carotid geometry [i.e., internal carotid artery (ICA)/common carotid artery (CCA) ratio, bifurcation angle, and tortuosity) were derived from time-of-flight MR images. The lesion types of carotid artery plaques were determined according to the American Heart Association classification of lesions by multi-contrast 3T-MRI. The association between carotid geometry and a cCAP was studied using logistic regression after adjusting for age, sex, wall area, and cardiovascular risk factors. Results Low ICA/CCA ratios (OR per SD increase 0.60 [95%CI: 0.42-0.85]; p = 0.004) and low bifurcation angles (OR 0.61 [95%CI: 0.42-0.90]; p = 0.012) were significantly associated with the presence of cCAPs after adjusting for age, sex, cardiovascular risk factors, and wall area. Tortuosity had no significant association with cCAPs. Only ICA/CCA ratio remained significant in a model containing all three geometric parameters (OR per SD increase 0.65 [95%CI: 0.45-0.94]; p = 0.023). Conclusions A steep tapering of the ICA relative to the CCA and, to a lesser extent, a low angle of the carotid bifurcation were associated with the presence of cCAPs. Our findings highlight the contribution of bifurcation geometry to plaque vulnerability. Thus, assessment of carotid geometry could be helpful in identifying patients at risk of cCAPs.
Collapse
Affiliation(s)
- Christoph Strecker
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Kopczak
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | | | - Dominik Sepp
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Anja Hennemuth
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ernst Mayerhofer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sven Poli
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Poppert
- Department of Neurology, Helios Klinikum München West, Munich, Germany
| | - Andreas Schindler
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Harloff
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Yao Y, Zhang P. Novel ultrasound techniques in the identification of vulnerable plaques-an updated review of the literature. Front Cardiovasc Med 2023; 10:1069745. [PMID: 37293284 PMCID: PMC10244552 DOI: 10.3389/fcvm.2023.1069745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Atherosclerosis is an inflammatory disease partly mediated by lipoproteins. The rupture of vulnerable atherosclerotic plaques and thrombosis are major contributors to the development of acute cardiovascular events. Despite various advances in the treatment of atherosclerosis, there has been no satisfaction in the prevention and assessment of atherosclerotic vascular disease. The identification and classification of vulnerable plaques at an early stage as well as research of new treatments remain a challenge and the ultimate goal in the management of atherosclerosis and cardiovascular disease. The specific morphological features of vulnerable plaques, including intraplaque hemorrhage, large lipid necrotic cores, thin fibrous caps, inflammation, and neovascularisation, make it possible to identify and characterize plaques with a variety of invasive and non-invasive imaging techniques. Notably, the development of novel ultrasound techniques has introduced the traditional assessment of plaque echogenicity and luminal stenosis to a deeper assessment of plaque composition and the molecular field. This review will discuss the advantages and limitations of five currently available ultrasound imaging modalities for assessing plaque vulnerability, based on the biological characteristics of the vulnerable plaque, and their value in terms of clinical diagnosis, prognosis, and treatment efficacy assessment.
Collapse
|
15
|
Goudot G, Bellomo TR, Gaston B, Pauly M, Patel S, Manchester S, Dua A. Wall shear rate and energy loss coefficient measures using conventional Doppler ultrasound do not predict carotid plaque progression. VASA 2023. [PMID: 37128732 DOI: 10.1024/0301-1526/a001075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Background: The rate of carotid plaque progression is believed to be related to blood flow hemodynamics and shear stress. Our objective was to determine if wall shear rate (WSR) and the energy loss coefficient (ELC) measured by Doppler ultrasound could predict atherosclerotic carotid disease progression. Patients and methods: Patients at a large tertiary center with an initial ultrasound between 2016 and 2018 with a significant carotid plaque were included if they had at least one 6 months follow-up comparative study. Stenosis progression was assessed according to the NASCET (The North American Symptomatic Carotid Endarterectomy Trial) percentage criterion. Results: The average annual progression rate for the 74 plaques included was 5.7% NASCET per year. We identified 18 plaques with ≥10% NASCET progression and 56 plaques without significant progression <10% NASCET. Among the plaques with progression, only four plaques had progression greater than 20% NASCET. Median WSR was 6266 s-1 [5813-8974] in plaques with progression and 6564 s-1 [5285-8766] in stable plaques (p=0.643). Median ELC was 3.86 m2 [2.78-5.53] in plaque with progression and 4.32 m2 [3.42-6.81] in stable plaques (p=0.296). Conclusions: Although it is a widely accepted hypothesis that shear stress and hemodynamics of the carotid bifurcation contribute to plaque progression, we found that WSR and ELC estimated by Doppler ultrasound do not reliably predict atherosclerotic plaque progression in the carotid artery. Other ultrasound modalities, such as 3D imaging, may be used to assess the influence of plaque geometry and hemodynamics in plaque progression.
Collapse
Affiliation(s)
- Guillaume Goudot
- Cardiovascular Research Center, Harvard Medical School, Massachusetts General Hospital Boston, USA
| | - Tiffany R Bellomo
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, USA
| | - Brandon Gaston
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, USA
| | - Meghan Pauly
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, USA
| | - Shiv Patel
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, USA
| | - Scott Manchester
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, USA
| | - Anahita Dua
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, USA
| |
Collapse
|
16
|
Tian X, Fang H, Lan L, Ip HL, Abrigo J, Liu H, Zheng L, Fan FSY, Ma SH, Ip B, Song B, Xu Y, Li J, Zhang B, Xu Y, Soo YOY, Mok V, Wong KS, Leung TW, Leng X. Risk stratification in symptomatic intracranial atherosclerotic disease with conventional vascular risk factors and cerebral haemodynamics. Stroke Vasc Neurol 2023; 8:77-85. [PMID: 36104090 PMCID: PMC9985805 DOI: 10.1136/svn-2022-001606] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND PURPOSE Symptomatic intracranial atherosclerotic stenosis (sICAS) is associated with a considerable risk of recurrent stroke despite contemporarily optimal medical treatment. Severity of luminal stenosis in sICAS and its haemodynamic significance quantified with computational fluid dynamics (CFD) models were associated with the risk of stroke recurrence. We aimed to develop and compare stroke risk prediction nomograms in sICAS, based on vascular risk factors and these metrics. METHODS Patients with 50%-99% sICAS confirmed in CT angiography (CTA) were enrolled. Conventional vascular risk factors were collected. Severity of luminal stenosis in sICAS was dichotomised as moderate (50%-69%) and severe (70%-99%). Translesional pressure ratio (PR) and wall shear stress ratio (WSSR) were quantified via CTA-based CFD modelling; the haemodynamic status of sICAS was classified as normal (normal PR&WSSR), intermediate (otherwise) and abnormal (abnormal PR&WSSR). All patients received guideline-recommended medical treatment. We developed and compared performance of nomograms composed of these variables and independent predictors identified in multivariate logistic regression, in predicting the primary outcome, recurrent ischaemic stroke in the same territory (SIT) within 1 year. RESULTS Among 245 sICAS patients, 20 (8.2%) had SIT. The D2H2A nomogram, incorporating diabetes, dyslipidaemia, haemodynamic status of sICAS, hypertension and age ≥50 years, showed good calibration (P for Hosmer-Lemeshow test=0.560) and discrimination (C-statistic 0.73, 95% CI 0.60 to 0.85). It also had better performance in risk reclassification and provided larger net benefits in decision curve analysis, compared with nomograms composed of conventional vascular risk factors only, and plus the severity of luminal stenosis in sICAS. Sensitivity analysis in patients with anterior-circulation sICAS showed similar results. CONCLUSIONS The D2H2A nomogram, incorporating conventional vascular risk factors and the haemodynamic significance of sICAS as assessed in CFD models, could be a useful tool to stratify sICAS patients for the risk of recurrent stroke under contemporarily optimal medical treatment.
Collapse
Affiliation(s)
- Xuan Tian
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Hui Fang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linfang Lan
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China.,Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hing Lung Ip
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Jill Abrigo
- Department of Imaging and Interventional, The Chinese University, Hong Kong, China
| | - Haipeng Liu
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China.,Research Centre of Intelligent Healthcare, Faculty of Health and Life Science, Coventry University, Coventry, UK
| | - Lina Zheng
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Florence S Y Fan
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Sze Ho Ma
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Bonaventure Ip
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingwei Li
- Department of Neurology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Bing Zhang
- Department of Radiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yannie O Y Soo
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Vincent Mok
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Ka Sing Wong
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Thomas W Leung
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| | - Xinyi Leng
- Department of Medicine and Therapeutics, The Chinese University, Hong Kong, China
| |
Collapse
|
17
|
Qiu YJ, Cheng J, Zhang Q, Yang DH, Zuo D, Mao F, Liu LX, Dong Y, Cao SQ, Wang WP. Clinical Application of High-Frame-Rate Vector Flow Imaging in Evaluation of Carotid Atherosclerotic Stenosis. Diagnostics (Basel) 2023; 13:diagnostics13030519. [PMID: 36766624 PMCID: PMC9914914 DOI: 10.3390/diagnostics13030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE This study seeks to evaluate the value of the high-frame-rate vector flow imaging technique in assessing the hemodynamic changes of carotid atherosclerotic stenosis in aging people (>60 years old). METHODS Aging patients diagnosed with carotid atherosclerotic stenosis who underwent carotid high-frame-rate vector flow imaging examination were prospectively enrolled. A Mindray Resona7s ultrasound machine equipped with high-frame-rate vector flow function was used for ultrasound evaluation. First, B mode ultrasound and color Doppler flow imaging were used to evaluate carotid stenosis. Then, the vector arrows and flow streamline detected by V Flow were analyzed and the wall shear stress values (Pa) at the carotid stenosis site were measured. All patients were divided into symptomatic and asymptomatic groups according to whether they had acute/subacute stroke or other clinical symptoms within 2 weeks before ultrasound examination. The results of digital subtraction angiography or computed tomography angiography were used as the gold standard. The stenosis rate was calcified, according to North American Symptomatic Carotid Endarterectomy Trial criteria. The diagnostic values of wall shear stress, conventional ultrasound, and the combined diagnosis in carotid atherosclerotic stenosis were compared. RESULTS Finally, 88 patients with carotid atherosclerotic plaque were enrolled (71 males (80.7%), mean age 67.6 ± 5.4 years). The success rate of high-frame-rate vector flow imaging was 96.7% (88/91). The WSS value of symptomatic carotid stenosis (1.4 ± 0.15 Pa) was significantly higher than that of asymptomatic carotid stenosis (0.80 ± 0.08 Pa) (p < 0.05). Taking the wall shear stress value > 0.78 Pa as the diagnostic criteria for symptomatic carotid atherosclerotic plaque, the area under receiver operating characteristic curves was 0.79 with 87.1% sensitivity and 69.6% specificity. The area under receiver operating characteristic curves of the combined diagnosis (0.966) for differentiating severe carotid atherosclerotic stenosis was significantly higher than that of conventional ultrasound and WSS value, with 89.7% sensitivity and 93.2% specificity (p < 0.05). CONCLUSION As a non-invasive imaging method, the high-frame-rate vector flow imaging technique showed potential value in the preoperative assessment of the symptomatic carotid atherosclerotic stenosis and diagnosing carotid atherosclerotic stenosis in aging patients.
Collapse
Affiliation(s)
- Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dao-Hui Yang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dan Zuo
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Feng Mao
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ling-Xiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Correspondence: (L.-X.L.); (Y.D.); Tel.: +86-(0)21-6404-1990 (ext. 2474) (L.-X.L.); +86-(0)21-2507-6104 (Y.D.); Fax: +86-(0)21-6422-0319 (L.-X.L.); +86-(0)21-2507-7258 (Y.D.)
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Correspondence: (L.-X.L.); (Y.D.); Tel.: +86-(0)21-6404-1990 (ext. 2474) (L.-X.L.); +86-(0)21-2507-6104 (Y.D.); Fax: +86-(0)21-6422-0319 (L.-X.L.); +86-(0)21-2507-7258 (Y.D.)
| | - Si-Qi Cao
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Han N, Ma Y, Li Y, Zheng Y, Wu C, Gan T, Li M, Ma L, Zhang J. Imaging and Hemodynamic Characteristics of Vulnerable Carotid Plaques and Artificial Intelligence Applications in Plaque Classification and Segmentation. Brain Sci 2023; 13:brainsci13010143. [PMID: 36672124 PMCID: PMC9856903 DOI: 10.3390/brainsci13010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Stroke is a massive public health problem. The rupture of vulnerable carotid atherosclerotic plaques is the most common cause of acute ischemic stroke (AIS) across the world. Currently, vessel wall high-resolution magnetic resonance imaging (VW-HRMRI) is the most appropriate and cost-effective imaging technique to characterize carotid plaque vulnerability and plays an important role in promoting early diagnosis and guiding aggressive clinical therapy to reduce the risk of plaque rupture and AIS. In recent years, great progress has been made in imaging research on vulnerable carotid plaques. This review summarizes developments in the imaging and hemodynamic characteristics of vulnerable carotid plaques on the basis of VW-HRMRI and four-dimensional (4D) flow MRI, and it discusses the relationship between these characteristics and ischemic stroke. In addition, the applications of artificial intelligence in plaque classification and segmentation are reviewed.
Collapse
Affiliation(s)
- Na Han
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Yurong Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yan Li
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730030, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Chuang Wu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Tiejun Gan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Min Li
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-139-1999-2479
| |
Collapse
|
19
|
Karageorgos GM, Kemper P, Lee C, Weber R, Kwon N, Meshram N, Mobadersany N, Grondin J, Marshall RS, Miller EC, Konofagou EE. Adaptive Wall Shear Stress Imaging in Phantoms, Simulations and In Vivo. IEEE Trans Biomed Eng 2023; 70:154-165. [PMID: 35776824 PMCID: PMC10103592 DOI: 10.1109/tbme.2022.3186854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
WSS measurement is challenging since it requires sensitive flow measurements at a distance close to the wall. The aim of this study is to develop an ultrasound imaging technique which combines vector flow imaging with an unsupervised data clustering approach that automatically detects the region close to the wall with optimally linear flow profile, to provide direct and robust WSS estimation. The proposed technique was evaluated in phantoms, mimicking normal and atherosclerotic vessels, and spatially registered Fluid Structure Interaction (FSI) simulations. A relative error of 6.7% and 19.8% was obtained for peak systolic (WSSPS) and end diastolic (WSSED) WSS in the straight phantom, while in the stenotic phantom, a good similarity was found between measured and simulated WSS distribution, with a correlation coefficient, R, of 0.89 and 0.85 for WSSPS and WSSED, respectively. Moreover, the feasibility of the technique to detect pre-clinical atherosclerosis was tested in an atherosclerotic swine model. Six swines were fed atherogenic diet, while their left carotid artery was ligated in order to disturb flow patterns. Ligated arterial segments that were exposed to low WSSPS and WSS characterized by high frequency oscillations at baseline, developed either moderately or highly stenotic plaques (p < 0.05). Finally, feasibility of the technique was demonstrated in normal and atherosclerotic human subjects. Atherosclerotic carotid arteries with low stenosis had lower WSSPS as compared to control subjects (p < 0.01), while in one subject with high stenosis, elevated WSS was found on an arterial segment, which coincided with plaque rupture site, as determined through histological examination.
Collapse
|
20
|
Song D, Liu M, Dong Y, Hong S, Chen M, Du Y, Li S, Xu J, Gao W, Dong F. Investigation on the differences of hemodynamics in normal common carotid, subclavian, and common femoral arteries using the vector flow technique. Front Cardiovasc Med 2022; 9:956023. [PMID: 36465451 PMCID: PMC9712999 DOI: 10.3389/fcvm.2022.956023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/31/2022] [Indexed: 10/16/2023] Open
Abstract
OBJECTIVES To investigate the feasibility of the vector flow imaging (V Flow) technique to measure peripheral arterial hemodynamic parameters, including wall shear stress (WSS) and turbulence index (Tur) in healthy adults, and compare the results in different arteries. MATERIALS AND METHODS Fifty-two healthy adult volunteers were recruited in this study. The maximum and mean values of WSS, and the Tur values at early-systole, mid-systole, late-systole, and early diastole for total 156 normal peripheral arteries [common carotid arteries (CCA), subclavian arteries (SCA), and common femoral arteries (CFA)] were assessed using the V Flow technique. RESULTS The mean WSS values for CCA, SCA, and CFA were (1.66 ± 0.68) Pa, (0.62 ± 0.30) Pa, and (0.56 ± 0.27) Pa, respectively. The mean Tur values for CCA, SCA, and CFA were (0.46 ± 1.09%), (20.7 ± 9.06%), and (24.63 ± 17.66%), respectively. The CCA and SCA, as well as the CCA and CFA, showed statistically significant differences in the mean WSS and the mean Tur (P < 0.01). The mean Tur values had a negative correlation with the mean WSS; the correlation coefficient between log(Tur) and WSS is -0.69 (P < 0.05). CONCLUSION V Flow technique is a simple, practical, and feasible quantitative imaging approach for assessing WSS and Tur in peripheral arteries. It has the potential to be a useful tool for evaluating atherosclerotic plaques in peripheral arteries. The results provide a new quantitative foundation for future investigations into diverse arterial hemodynamic parameters.
Collapse
Affiliation(s)
- Di Song
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Mengmeng Liu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yinghui Dong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Shaofu Hong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Ming Chen
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yigang Du
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, Guangdong, China
| | - Shuangshuang Li
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Wenjing Gao
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Shen R, Tong X, Li D, Ning Z, Han H, Han Y, Yang D, Du C, Wang T, Cao J, Xu Y, Huo R, Qiao H, Zhao X. Slice-based and time-specific hemodynamic measurements discriminate carotid artery vulnerable atherosclerotic plaques. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107050. [PMID: 35985150 DOI: 10.1016/j.cmpb.2022.107050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Hemodynamic patterns play key roles in progression of carotid vulnerable plaques. However, most of previous studies utilized maximum or averaged value of hemodynamic measurements which is not an ideal representative of hemodynamic patterns. This study aimed to investigate the association of slice-based and time-specific hemodynamic measurements with carotid vulnerable plaque using magnetic resonance (MR) vessel wall imaging and histology. METHODS Thirty-two patients (mean age: 63.9±8.1 years; 25 males) with carotid atherosclerotic stenosis (≥50% stenosis) referred to carotid endarterectomy were recruited and underwent MR vessel wall imaging. Carotid plaque burden was evaluated on MR images and vulnerable plaque features including calcification, lipid-rich necrotic core, and intra-plaque hemorrhage (IPH) were identified by histology. The slice-based and time-specific hemodynamic measurements were extracted from computational fluid dynamics simulation of 3D carotid arterial model. Correlation coefficients between hemodynamic measurements and carotid plaque features were calculated and the logistic regressions with generalized estimating equation (GEE) were conducted. The value in discriminating carotid vulnerable plaque features was determined by receiver-operating-characteristic analysis. RESULTS Of 102 MR-histology matched slices from 32 patients, time-averaged wall shear stress (TAWSS) (r=0.263, p=0.008), oscillatory shear index (OSI) (r=-0.374, p<0.001), and peakWSS (r=0.232, p=0.019) were significantly associated with carotid IPH. The logistic regression with GEE revealed that peakWSS (OR, 1.206; 95% CI, 1.026-1.418; p, 0.023) and TAWSS (OR, 0.364, 95% CI, 0.138-0.959; p, 0.041) were significantly associated with presence of IPH after adjusting for age and BMI. In discriminating carotid IPH, the AUC of TAWSS, OSI, combined TAWSS with maximum wall thickness (MWT) and combined OSI with MWT was 0.656, 0.722, 0.761, and 0.764, respectively. CONCLUSIONS Slice-based and time-specific hemodynamic characteristics could effectively discriminate carotid IPH. Combination of hemodynamic measurements with carotid plaque burden might be a stronger indicator for carotid vulnerable plaque features than each measurement alone.
Collapse
Affiliation(s)
- Rui Shen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xinyu Tong
- Department of Biomedical Engineering, School of Life and Science, Beijing Institute of Technology, Beijing, China
| | - Dongye Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yongjun Han
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Dandan Yang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Chenlin Du
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Jingli Cao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yilan Xu
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ran Huo
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Looking beyond the Skin: Pathophysiology of Cardiovascular Comorbidity in Psoriasis and the Protective Role of Biologics. Pharmaceuticals (Basel) 2022; 15:ph15091101. [PMID: 36145322 PMCID: PMC9503011 DOI: 10.3390/ph15091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a chronic systemic inflammatory disease associated with a higher incidence of cardiovascular disease, especially in patients with moderate to severe psoriasis. It has been estimated that severe psoriasis confers a 25% increase in relative risk of cardiovascular disease, regardless of traditional risk factors. Although the underlying pathogenic mechanisms relating psoriasis to increased cardiovascular risk are not clear, atherosclerosis is emerging as a possible link between skin and vascular affection. The hypothesis that the inflammatory cascade activated in psoriasis contributes to the atherosclerotic process provides the underlying basis to suggest that an anti-inflammatory therapy that improved atherosclerosis would also reduce the risk of MACEs. In this sense, the introduction of biological drugs which specifically target cytokines implicated in the inflammatory cascade have increased the expectations of control over the cardiovascular comorbidity present in psoriasis patients, however, their role in vascular damage processes remains controversial. The aim of this paper is to review the mechanistic link between psoriasis and cardiovascular disease development, as well as analyzing which of the biological treatments could also reduce the cardiovascular risk in these patients, fueling a growing debate on the modification of the general algorithm of treatment.
Collapse
|
23
|
Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022; 12:biom12091192. [PMID: 36139031 PMCID: PMC9496377 DOI: 10.3390/biom12091192] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Vulnerable plaques have been a hot topic in the field of stroke and carotid atherosclerosis. Currently, risk stratification and intervention of carotid plaques are guided by the degree of luminal stenosis. Recently, it has been recognized that the vulnerability of plaques may contribute to the risk of stroke. Some classical interventions, such as carotid endarterectomy, significantly reduce the risk of stroke in symptomatic patients with severe carotid stenosis, while for asymptomatic patients, clinically silent plaques with rupture tendency may expose them to the risk of cerebrovascular events. Early identification of vulnerable plaques contributes to lowering the risk of cerebrovascular events. Previously, the identification of vulnerable plaques was commonly based on imaging technologies at the macroscopic level. Recently, some microscopic molecules pertaining to vulnerable plaques have emerged, and could be potential biomarkers or therapeutic targets. This review aimed to update the previous summarization of vulnerable plaques and identify vulnerable plaques at the microscopic and macroscopic levels.
Collapse
|
24
|
Takami Y, Norikane T, Yamamoto Y, Fujimoto K, Mitamura K, Okauchi M, Kawanishi M, Nishiyama Y. A preliminary study of relationship among the degree of internal carotid artery stenosis, wall shear stress on MR angiography and 18F-FDG uptake on PET/CT. J Nucl Cardiol 2022; 29:569-577. [PMID: 32743752 DOI: 10.1007/s12350-020-02300-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND This preliminary study was undertaken to evaluate relationship among the degree of internal carotid artery (ICA) stenosis, wall shear stress (WSS) by computational fluid dynamics (CFD) on magnetic resonance angiography (MRA) and 18F-FDG uptake of ICA on PET/CT. METHODS A total of 40 carotid arteries in 20 patients with carotid atherosclerotic disease were examined with MRA and 18F-FDG PET/CT. Atherosclerotic risk factors were assessed in all patients. Degree of ICA stenosis was calculated according to NASCET method. CFD analysis was performed and maximum WSS (WSSmax) was measured. 18F-FDG uptake in ICA was quantified using maximum target-to-blood pool ratio (TBRmax). RESULTS Atherosclerotic risk factors did not affect imaging findings. There were significant correlations between WSSmax and degree of ICA stenosis (ρ = .81, P < .001), WSSmax and TBRmax (ρ = .64, P < .001), and TBRmax and degree of ICA stenosis (ρ = .50, P = .001). CONCLUSIONS These preliminary results indicate that there may be significant correlations among the degree of ICA stenosis, WSSmax and TBRmax in patients with carotid artery stenosis.
Collapse
Affiliation(s)
- Yasukage Takami
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kengo Fujimoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Masanobu Okauchi
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masahiko Kawanishi
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
25
|
Shen Y, Wei Y, Bokkers RPH, Uyttenboogaart M, Van Dijk JMC. Patient-Specific Cerebral Blood Flow Simulation Based on Commonly Available Clinical Datasets. Front Bioeng Biotechnol 2022; 10:835347. [PMID: 35309980 PMCID: PMC8931461 DOI: 10.3389/fbioe.2022.835347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral hemodynamics play an important role in the development of cerebrovascular diseases. In this work, we propose a numerical framework for modeling patient-specific cerebral blood flow, using commonly available clinical datasets. Our hemodynamic model was developed using Simscape Fluids library in Simulink, based on a block diagram language. Medical imaging data obtained from computerized tomography angiography (CTA) in 59 patients with aneurysmal subarachnoid hemorrhage was used to extract arterial geometry parameters. Flow information obtained from transcranial Doppler (TCD) measurement was employed to calibrate input parameters of the hemodynamic model. The results show that the proposed numerical model can reproduce blood flow in the circle of Willis (CoW) per patient per measurement set. The resistance at the distal end of each terminal branch was the predominant parameter for the flow distribution in the CoW. The proposed model may be a promising tool for assessing cerebral hemodynamics in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yanji Wei
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Reinoud P. H. Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maarten Uyttenboogaart
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. Marc C. Van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: J. Marc C. Van Dijk,
| |
Collapse
|
26
|
Crombag G, Aizaz M, Schreuder F, Benali F, van Dam-Nolen D, Liem M, Lucci C, van der Steen A, Daemen M, Mess W, van der Lugt A, Nederkoorn P, Hendrikse J, Hofman P, van Oostenbrugge R, Wildberger J, Kooi M. Proximal Region of Carotid Atherosclerotic Plaque Shows More Intraplaque Hemorrhage: The Plaque at Risk Study. AJNR Am J Neuroradiol 2022; 43:265-271. [PMID: 35121587 PMCID: PMC8985675 DOI: 10.3174/ajnr.a7384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Intraplaque hemorrhage contributes to lipid core enlargement and plaque progression, leading to plaque destabilization and stroke. The mechanisms that contribute to the development of intraplaque hemorrhage are not completely understood. A higher incidence of intraplaque hemorrhage and thin/ruptured fibrous cap (upstream of the maximum stenosis in patients with severe [≥70%] carotid stenosis) has been reported. We aimed to noninvasively study the distribution of intraplaque hemorrhage and a thin/ruptured fibrous cap in patients with mild-to-moderate carotid stenosis. MATERIALS AND METHODS Eighty-eight symptomatic patients with stroke (<70% carotid stenosis included in the Plaque at Risk study) demonstrated intraplaque hemorrhage on MR imaging in the carotid artery plaque ipsilateral to the side of TIA/stroke. The intraplaque hemorrhage area percentage was calculated. A thin/ruptured fibrous cap was scored by comparing pre- and postcontrast black-blood TSE images. Differences in mean intraplaque hemorrhage percentages between the proximal and distal regions were compared using a paired-samples t test. The McNemar test was used to reveal differences in proportions of a thin/ruptured fibrous cap. RESULTS We found significantly larger areas of intraplaque hemorrhage in the proximal part of the plaque at 2, 4, and 6 mm from the maximal luminal narrowing, respectively: 14.4% versus 9.6% (P = .04), 14.7% versus 5.4% (P < .001), and 11.1% versus 2.2% (P = .001). Additionally, we found an increased proximal prevalence of a thin/ruptured fibrous cap on MR imaging at 2, 4, 6, and 8 mm from the MR imaging section with the maximal luminal narrowing, respectively: 33.7% versus 18.1%, P = .007; 36.1% versus 7.2%, P < .001; 33.7% versus 2.4%, P = .001; and 30.1% versus 3.6%, P = .022. CONCLUSIONS We demonstrated that intraplaque hemorrhage and a thin/ruptured fibrous cap are more prevalent on the proximal side of the plaque compared with the distal side in patients with mild-to-moderate carotid stenosis.
Collapse
Affiliation(s)
- G.A.J.C. Crombag
- From the Departments of Radiology and Nuclear Medicine (G.A.J.C.C., M.A., F.B., P.A.M.H., J.E.W., M.E.K.),CARIM School for Cardiovascular Diseases (G.A.J.C.C., M.A., R.J.v.O., J.E.W., M.E.K.), Maastricht University, Maastricht, the Netherlands
| | - M. Aizaz
- From the Departments of Radiology and Nuclear Medicine (G.A.J.C.C., M.A., F.B., P.A.M.H., J.E.W., M.E.K.),CARIM School for Cardiovascular Diseases (G.A.J.C.C., M.A., R.J.v.O., J.E.W., M.E.K.), Maastricht University, Maastricht, the Netherlands
| | - F.H.B.M. Schreuder
- Department of Neurology & Donders Institute for Brain Cognition & Behaviour (F.H.B.M.S.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - F. Benali
- From the Departments of Radiology and Nuclear Medicine (G.A.J.C.C., M.A., F.B., P.A.M.H., J.E.W., M.E.K.)
| | | | - M.I. Liem
- Departments of Neurology (M.I.L., P.J.N.)
| | - C. Lucci
- Department of Radiology (C.L., J.H.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - A.F. van der Steen
- Biomedical Engineering (A.F.v.d.S.), Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M.J.A.P. Daemen
- Pathology (M.J.A.P.D.), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | | | - A. van der Lugt
- Departments of Radiology and Nuclear Medicine (D.H.K.v.D.-N., A.v.d.L.)
| | | | - J. Hendrikse
- Department of Radiology (C.L., J.H.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - P.A.M. Hofman
- From the Departments of Radiology and Nuclear Medicine (G.A.J.C.C., M.A., F.B., P.A.M.H., J.E.W., M.E.K.)
| | - R.J. van Oostenbrugge
- Neurology (R.J.v.O.), Maastricht University Medical Center, Maastricht, the Netherlands,CARIM School for Cardiovascular Diseases (G.A.J.C.C., M.A., R.J.v.O., J.E.W., M.E.K.), Maastricht University, Maastricht, the Netherlands
| | - J.E. Wildberger
- From the Departments of Radiology and Nuclear Medicine (G.A.J.C.C., M.A., F.B., P.A.M.H., J.E.W., M.E.K.),CARIM School for Cardiovascular Diseases (G.A.J.C.C., M.A., R.J.v.O., J.E.W., M.E.K.), Maastricht University, Maastricht, the Netherlands
| | - M.E. Kooi
- From the Departments of Radiology and Nuclear Medicine (G.A.J.C.C., M.A., F.B., P.A.M.H., J.E.W., M.E.K.),CARIM School for Cardiovascular Diseases (G.A.J.C.C., M.A., R.J.v.O., J.E.W., M.E.K.), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
27
|
Moerman AM, Korteland S, Dilba K, van Gaalen K, Poot DHJ, van Der Lugt A, Verhagen HJM, Wentzel JJ, van Der Steen AFW, Gijsen FJH, Van der Heiden K. The Correlation Between Wall Shear Stress and Plaque Composition in Advanced Human Carotid Atherosclerosis. Front Bioeng Biotechnol 2022; 9:828577. [PMID: 35155418 PMCID: PMC8831262 DOI: 10.3389/fbioe.2021.828577] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The role of wall shear stress (WSS) in atherosclerotic plaque development is evident, but the relation between WSS and plaque composition in advanced atherosclerosis, potentially resulting in plaque destabilization, is a topic of discussion. Using our previously developed image registration pipeline, we investigated the relation between two WSS metrics, time-averaged WSS (TAWSS) and the oscillatory shear index (OSI), and the local histologically determined plaque composition in a set of advanced human carotid plaques. Our dataset of 11 carotid endarterectomy samples yielded 87 histological cross-sections, which yielded 511 radial bins for analysis. Both TAWSS and OSI values were subdivided into patient-specific low, mid, and high tertiles. This cross-sectional study shows that necrotic core (NC) size and macrophage area are significantly larger in areas exposed to high TAWSS or low OSI. Local TAWSS and OSI tertile values were generally inversely related, as described in the literature, but other combinations were also found. Investigating the relation between plaque vulnerability features and different combinations of TAWSS and OSI tertile values revealed a significantly larger cap thickness in areas exposed to both low TAWSS and low OSI. In conclusion, our study confirmed previous findings, correlating high TAWSS to larger macrophage areas and necrotic core sizes. In addition, our study demonstrated new relations, correlating low OSI to larger macrophage areas, and a combination of low TAWSS and low OSI to larger cap thickness.
Collapse
Affiliation(s)
- A. M. Moerman
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | - S. Korteland
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | - K. Dilba
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | - K. van Gaalen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | - D. H. J. Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - A. van Der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - J. J. Wentzel
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
| | | | - F. J. H. Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Delft University of Technology, Delft, Netherlands
| | - K. Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: K. Van der Heiden,
| |
Collapse
|
28
|
Dilba K, van Dam-Nolen DHK, Korteland SA, van der Kolk AG, Kassem M, Bos D, Koudstaal PJ, Nederkoorn PJ, Hendrikse J, Kooi ME, Gijsen FJH, van der Steen AFW, van der Lugt A, Wentzel JJ. The Association Between Time-Varying Wall Shear Stress and the Development of Plaque Ulcerations in Carotid Arteries From the Plaque at Risk Study. Front Cardiovasc Med 2021; 8:732646. [PMID: 34869634 PMCID: PMC8636734 DOI: 10.3389/fcvm.2021.732646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose: Shear stress (WSS) is involved in the pathophysiology of atherosclerotic disease and might affect plaque ulceration. In this case-control study, we compared carotid plaques that developed a new ulcer during follow-up and plaques that remained silent for their exposure to time-dependent oscillatory shear stress parameters at baseline. Materials and Methods: Eighteen patients who underwent CTA and MRI of their carotid arteries at baseline and 2 years follow-up were included. These 18 patients consisted of six patients who demonstrated a new ulcer and 12 control patients selected from a larger cohort with similar MRI-based plaque characteristics as the ulcer group. (Oscillatory) WSS parameters [time average WSS, oscillatory shear index (OSI), and relative residence time (RRT)] were calculated using computational fluid dynamics applying the MRI-based geometry of the carotid arteries and compared among plaques (wall thickness>2 mm) with and without ulceration (Mann–Whitney U test) and ulcer-site vs. non-ulcer-site within the plaque (Wilcoxon signed rank test). More detailed analysis on ulcer cases was performed and the predictive value of oscillatory WSS parameters was calculated using linear and logistic mixed-effect regression models. Results: The ulcer group demonstrated no difference in maximum WSS [9.9 (6.6–18.5) vs. 13.6 (9.7–17.7) Pa, p = 0.349], a lower maximum OSI [0.04 (0.01–0.10) vs. 0.12 (0.06–0.20) p = 0.019] and lower maximum RRT [1.25 (0.78–2.03) Pa−1 vs. 2.93 (2.03–5.28) Pa−1, p = 0.011] compared to controls. The location of the ulcer (ulcer-site) within the plaque was not always at the maximal WSS, but demonstrated higher average WSS, lower average RRT and OSI at the ulcer-site compared to the non-ulcer-sites. High WSS (WSS>4.3 Pa) and low RRT (RRT < 0.25 Pa) were associated with ulceration with an odds ratio of 3.6 [CI 2.1–6.3] and 2.6 [CI 1.54–4.44] respectively, which remained significant after adjustment for wall thickness. Conclusion: In this explorative study, ulcers were not exclusively located at plaque regions exposed to the highest WSS, OSI, or RRT, but high WSS and low RRT regions had a significantly higher odds to present ulceration within the plaque even after adjustment for wall thickness.
Collapse
Affiliation(s)
- Kristine Dilba
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dianne H K van Dam-Nolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anja G van der Kolk
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mohamed Kassem
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Daniel Bos
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Paul J Nederkoorn
- Department of Neurology, University Medical Centers Amsterdam, Amsterdam, Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Frank J H Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anton F W van der Steen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
29
|
Strecker C, Krafft AJ, Kaufhold L, Hüllebrandt M, Treppner M, Ludwig U, Köber G, Hennemuth A, Hennig J, Harloff A. Carotid Geometry and Wall Shear Stress Independently Predict Increased Wall Thickness-A Longitudinal 3D MRI Study in High-Risk Patients. Front Cardiovasc Med 2021; 8:723860. [PMID: 34765650 PMCID: PMC8576112 DOI: 10.3389/fcvm.2021.723860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Carotid geometry and wall shear stress (WSS) have been proposed as independent risk factors for the progression of carotid atherosclerosis, but this has not yet been demonstrated in larger longitudinal studies. Therefore, we investigated the impact of these biomarkers on carotid wall thickness in patients with high cardiovascular risk. Methods: Ninety-seven consecutive patients with hypertension, at least one additional cardiovascular risk factor and internal carotid artery (ICA) plaques (wall thickness ≥ 1.5 mm and degree of stenosis ≤ 50%) were prospectively included. They underwent high-resolution 3D multi-contrast and 4D flow MRI at 3 Tesla both at baseline and follow-up. Geometry (ICA/common carotid artery (CCA)-diameter ratio, bifurcation angle, tortuosity and wall thickness) and hemodynamics [WSS, oscillatory shear index (OSI)] of both carotid bifurcations were measured at baseline. Their predictive value for changes of wall thickness 12 months later was calculated using linear regression analysis for the entire study cohort (group 1, 97 patients) and after excluding patients with ICA stenosis ≥10% to rule out relevant inward remodeling (group 2, 61 patients). Results: In group 1, only tortuosity at baseline was independently associated with carotid wall thickness at follow-up (regression coefficient = −0.52, p < 0.001). However, after excluding patients with ICA stenosis ≥10% in group 2, both ICA/CCA-ratio (0.49, p < 0.001), bifurcation angle (0.04, p = 0.001), tortuosity (−0.30, p = 0.040), and WSS (−0.03, p = 0.010) at baseline were independently associated with changes of carotid wall thickness at follow-up. Conclusions: A large ICA bulb and bifurcation angle and low WSS seem to be independent risk factors for the progression of carotid atherosclerosis in the absence of ICA stenosis. By contrast, a high carotid tortuosity seems to be protective both in patients without and with ICA stenosis. These biomarkers may be helpful for the identification of patients who are at particular risk of wall thickness progression and who may benefit from intensified monitoring and treatment.
Collapse
Affiliation(s)
- Christoph Strecker
- Department of Neurology and Neurophysiology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Axel Joachim Krafft
- Department of Radiology-Medical Physics, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Lilli Kaufhold
- Fraunhofer MEVIS, Bremen, Germany.,Institute for Imaging Science and Computational Modeling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Hüllebrandt
- Fraunhofer MEVIS, Bremen, Germany.,Institute for Imaging Science and Computational Modeling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Treppner
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ute Ludwig
- Department of Radiology-Medical Physics, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Göran Köber
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Anja Hennemuth
- Fraunhofer MEVIS, Bremen, Germany.,Institute for Imaging Science and Computational Modeling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Hennig
- Department of Radiology-Medical Physics, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Andreas Harloff
- Department of Neurology and Neurophysiology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Zhang G, Zhang S, Qin Y, Fang J, Tang X, Li L, Zhou Y, Wu D, Yan S, Liu WV, Zhu W. Differences in Wall Shear Stress Between High-Risk and Low-Risk Plaques in Patients With Moderate Carotid Artery Stenosis: A 4D Flow MRI Study. Front Neurosci 2021; 15:678358. [PMID: 34456667 PMCID: PMC8385133 DOI: 10.3389/fnins.2021.678358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
This study aimed to evaluate the difference in wall shear stress (WSS) (axial, circumferential, and 3D) between high-risk and low-risk plaques in patients with moderate carotid artery stenosis and to identify which time points and directions play the dominant roles in determining the risk associated with plaques. Forty carotid arteries in 30 patients were examined in this study. All patients underwent high-resolution vessel wall (HRVW) imaging, diffusion-weighted imaging (DWI), and 4D flow MRI; HRVW imaging and DWI were used to separate low- and high-risk plaque. Twenty-four high-risk plaques and 16 low-risk plaques were enrolled. An independent-sample t-test was used to compare WSS between low- and high-risk plaques in the whole cardiac cycle and at 20 different time points in the cardiac cycle. The study found that patients with high-risk plaques had higher WSS than those with low-risk plaques throughout the entire cardiac cycle (p < 0.05), but the changes varied at the 20 different time points. The number of non-significant differences (p > 0.05) was less in diastole than in systole across different time points. The axial WSS values were higher than the circumferential WSS values; the difference in axial WSS values between high- and low-risk plaques was more significant than the difference in circumferential WSS, whereas 3D WSS values best reflected the difference between high-risk and low-risk plaques because they showed significant differences at every time point. In conclusion, increased WSS, especially during the diastolic period and in the axial direction, may be a signal of a high-risk plaque and may cause cerebrovascular events in patients with moderate carotid artery stenosis. Additionally, WSS can provide hemodynamic information and help clinicians make more appropriate decisions for patients with plaques.
Collapse
Affiliation(s)
- Guiling Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jicheng Fang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiyin Vivian Liu
- Magnetic Resonance Research, General Electric Healthcare, Beijing, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Evaluation of Plaque Vulnerability via Combination of Hemodynamic Analysis and Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage (SNAP) Sequence for Carotid Intraplaque Hemorrhage. J Pers Med 2021; 11:jpm11090856. [PMID: 34575633 PMCID: PMC8465016 DOI: 10.3390/jpm11090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to assess the vulnerability of plaque using a combination of simultaneous non-contrast angiography, intraplaque hemorrhage (SNAP) sequence, and local hemodynamic analysis in an intraplaque hemorrhage (IPH), and to evaluate the association between morphological and hemodynamic factors and IPH by comparing the IPH (presence of IPH) and non-IPH (plaque with absence of IPH) groups. In total, 27 IPH patients and 27 non-IPH patients were involved in this study, and baseline characteristics were collected. For morphological factors, diameters, and areas of the internal carotid artery (ICA), external carotid artery, and common carotid artery were measured, and bifurcation angle (α) and ICA angle (β) were also measured for comparison between the IPH group and non-IPH group. For hemodynamic factors, time-averaged wall shear stress (WSS), minimum WSS, maximum WSS, and oscillatory shear index were calculated using computational fluid dynamics (CFD) simulations. For the qualitative analysis, cross-sectional images with analyzed WSS and SNAP sequences were combined to precisely assess local hemodynamics. Bifurcation angle (α) was significantly different between the IPH and non-IPH groups (39.47 degrees vs. 47.60 degrees, p = 0.041). Significantly higher time-averaged WSS, minimum WSS, and maximum WSS were observed in the IPH group compared to the non-IPH group. In the IPH group, when using the combined analysis with SNAP sequences and WSS, the WSS of the region with IPH was significantly higher than the region without IPH (2.32 vs. 1.21 Pa, p = 0.005). A smaller bifurcation angle (α) and higher time-averaged WSS, minimum WSS, and maximum WSS were associated with IPH. The combined analysis of SNAP sequences and WSS might help to evaluate the risk of carotid IPH.
Collapse
|
32
|
Wang Y, Pisapati AV, Zhang XF, Cheng X. Recent Developments in Nanomaterial-Based Shear-Sensitive Drug Delivery Systems. Adv Healthc Mater 2021; 10:e2002196. [PMID: 34076369 PMCID: PMC8273148 DOI: 10.1002/adhm.202002196] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/21/2021] [Indexed: 01/30/2023]
Abstract
Nanomaterial-based drug delivery systems (DDSs) increase the efficacy of various therapeutics, and shear stress has been shown to be a robust modulator of payload release. In the past few decades, a deeper understanding has been gained of the effects of flow in the body and its alteration in pathological microenvironments. More recently, shear-responsive nanomaterial DDSs have been developed. Studies on this subject mainly from the last decade are reviewed here, focusing on innovations of the material design and mechanisms of the shear response. The two most popular shear-controlled drug carriers distinguished by different release mechanisms, that is, shear-deformable nanoparticles (NPs) and shear-dissociated NP aggregates (NPAs), are surveyed. The influence of material structures on their properties such as drug loading, circulation time, and shear sensitivity are discussed. The drug development stages, therapeutic effects, limitations, and potential of these DDSs are further inspected. The reviewed research emphasizes the advantages and significance of nanomaterial-based shear-sensitive DDSs in the field of targeted drug delivery. It is also believed that efforts to rationally design nanomaterial DDSs responsive to shear may prompt a new class of diagnostics and therapeutics for signaling and rectifying pathological flows in the body.
Collapse
Affiliation(s)
- Yi Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Avani V. Pisapati
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - X. Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| |
Collapse
|
33
|
Goudot G, Sitruk J, Jimenez A, Julia P, Khider L, Alsac JM, El Batti S, Bruneval P, Amemyia K, Pedreira O, Mortelette H, Calvet D, Tanter M, Mirault T, Pernot M, Messas E. Carotid Plaque Vulnerability Assessed by Combined Shear Wave Elastography and Ultrafast Doppler Compared to Histology. Transl Stroke Res 2021; 13:100-111. [PMID: 34181190 DOI: 10.1007/s12975-021-00920-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Ultrafast ultrasound imaging (UUI) provides an estimation of carotid plaque stiffness by shear wave elastography (SWE) and the quantification of wall shear stress (WSS) by ultrafast Doppler. We aimed to evaluate the combined criteria of plaque stiffness and WSS applied on the plaque as potential biomarkers of plaque vulnerability assessed by histology. We included patients for whom carotid endarterectomy had been decided by a multidisciplinary team. UUI was performed within 48 h before surgery, and acquisitions were obtained on a carotid longitudinal view. After endarterectomy, gross examination and histological analysis were performed on each removed plaque. Forty-six plaques with SWE data and 29 with WSS data were analyzed. Histological analysis revealed 29 vulnerable and 17 stable plaques. Gray-scale median analysis by B-mode, mean, and standard deviation of stiffness by SWE did not differ between vulnerable and stable plaques. SWE analysis revealed that the percentage of stiffness range of 3-5 m/s was significantly increased in vulnerable plaques (p = 0.048). WSS alone showed no difference between stable and vulnerable plaques regardless of the segment of the plaque which was analyzed. A multiparametric score using maximal WSS at the peak of the plaque associated with SWE texture analysis parameters was calculated by stepwise regression, leading to a score with a sensitivity of 80% and a specificity of 78%. Area under the receiver operating characteristics curve was 0.85. A multiparameter scoring system including plaque stiffness and flow analysis using UUI allows to effectively identify histologically vulnerable carotid plaques. ClinicalTrials.gov Identifier: NCT03234257.
Collapse
Affiliation(s)
- Guillaume Goudot
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France. .,INSERM U970 PARCC, Paris University, Paris, France.
| | - Jonas Sitruk
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France.,Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Anatole Jimenez
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Pierre Julia
- Vascular Surgery Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France
| | - Lina Khider
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France.,Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Jean-Marc Alsac
- Vascular Surgery Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France
| | - Salma El Batti
- Vascular Surgery Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France
| | - Patrick Bruneval
- Pathology Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France
| | - Kisaki Amemyia
- Pathology Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France
| | - Olivier Pedreira
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Hélène Mortelette
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France
| | - David Calvet
- Department of Neurology and Stroke Unit, Sainte-Anne Hospital, GHU Paris Psychiatrie Et Neurosciences, INSERM 1266, Institut de Psychiatrie Et Neurosciences de Paris, DHU Neurovasc, Paris University, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Tristan Mirault
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France.,INSERM U970 PARCC, Paris University, Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Emmanuel Messas
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris University, Paris, France.,INSERM U970 PARCC, Paris University, Paris, France
| |
Collapse
|
34
|
Goudot G, Poree J, Pedreira O, Khider L, Julia P, Alsac JM, Laborie E, Mirault T, Tanter M, Messas E, Pernot M. Wall Shear Stress Measurement by Ultrafast Vector Flow Imaging for Atherosclerotic Carotid Stenosis. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2021; 42:297-305. [PMID: 31856281 DOI: 10.1055/a-1060-0529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Carotid plaque vulnerability assessment could guide the decision to perform endarterectomy. Ultrafast ultrasound imaging (UF) can evaluate local flow velocities over an entire 2D image, allowing measurement of the wall shear stress (WSS). We aimed at evaluating the feasibility of WSS measurement in a prospective series of patients with carotid stenosis. METHODS UF acquisitions, performed with a linear probe, had an effective frame rate of 5000 Hz. The flow velocity was imaged over the entire plaque area. WSS was computed with the vector field speed using the formula: with the blood velocity and μ, the blood viscosity. The WSS measurement method was validated using a calibrated phantom. In vivo, WSS was analyzed in 5 areas of the carotid wall: common carotid artery, plaque ascent, plaque peak, plaque descent, internal carotid artery. RESULTS Good correlation was found between in vitro measurement and the theoretical WSS values (R2 = 0.95; p < 0.001). 33 patients were prospectively evaluated, with a median carotid stenosis degree of 80 % [75-85]. The maximum WSS value over the cardiac cycle follows the shape of the plaque with an increase during the ascent, reaching its maximum value of 3.25 Pa [2.26-4.38] at the peak of the plaque, and a decrease after passing of the peak (0.93 Pa [0.80-1.19]) lower than the WSS values in the non-stenotic areas (1.47 Pa [1.12-1.77] for the common carotid artery). CONCLUSION UF allowed local and direct evaluation of the plaque's WSS, thus better characterizing local hemodynamics to identify areas of vulnerability. KEY POINTS · Ultrafast vector Doppler allows calculation of the wall shear stress (WSS) by measuring velocity vectors over the entire 2D image.. · The setup to measure the WSS has been validated in vitro on a linear flow phantom by comparing measurements to in silico calculations.. · Applying this method to carotid plaque allows us to better describe the hemodynamic constraints that apply along the entire length of the plaque..
Collapse
Affiliation(s)
- Guillaume Goudot
- Georges-Pompidou European Hospital, vascular medicine department, APHP, Paris, France
- INSERM U1273, Physics for Medicine, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Jonathan Poree
- INSERM U1273, Physics for Medicine, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Olivier Pedreira
- INSERM U1273, Physics for Medicine, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Lina Khider
- Georges-Pompidou European Hospital, vascular medicine department, APHP, Paris, France
- INSERM U1273, Physics for Medicine, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Pierre Julia
- Georges-Pompidou European Hospital, vascular surgery department, APHP, Paris, France
| | - Jean-Marc Alsac
- Georges-Pompidou European Hospital, vascular surgery department, APHP, Paris, France
| | - Emeline Laborie
- INSERM U1273, Physics for Medicine, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Tristan Mirault
- Georges-Pompidou European Hospital, vascular medicine department, APHP, Paris, France
- INSERM U1273, Physics for Medicine, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Mickael Tanter
- INSERM U1273, Physics for Medicine, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Emmanuel Messas
- Georges-Pompidou European Hospital, vascular medicine department, APHP, Paris, France
- INSERM U970, PARCC, Paris University, Paris, France
| | - Mathieu Pernot
- INSERM U1273, Physics for Medicine, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| |
Collapse
|
35
|
Saba L, Sanfilippo R, Suri JS, Cademartiri F, Corrias G, Mannelli L, Zucca S, Senis I, Montisci R, Wintermark M. Does Carotid Artery Tortuosity Play a Role in Stroke? Can Assoc Radiol J 2021; 72:789-796. [PMID: 33656944 DOI: 10.1177/0846537121991057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To explore the association between carotid artery length and tortuosity, and the occurrence of stroke. MATERIAL AND METHODS In this retrospective study, IRB approved, 411 consecutive patients (males: 245; median age: 56 ± 12 years, age range: 21-93 years) with anterior circulation ischemic stroke were included. Only patients that underwent CTA within 7 days were considered and stroke caused by cardiac embolism and thoracic aorta embolism were excluded. For each patient, both carotid arteries were considered, and the ICA, CCA-ICA length and tortuosity were calculated. Inter-observer analysis was quantified with the Bland-Altman test. Mann-Whitney test and logistic regression analysis were also calculated to test the association between length and tortuosity with the occurrence of stroke. RESULTS In the final analysis, 166 patients (males: 72; median age: 54 ± 12 years, age range: 24-89 years) with anterior circulation ischemic stroke that were admitted to our hospital between February 2008 and December 2013 were included. The results showed a good concordance for the length of the vessels with a mean variation of 0.7% and 0.5% for CCA-ICA and ICA length respectively an for the tortuosity with a mean variation of 0.2% and -0.4% for CCA-ICA and ICA respectively. The analysis shows a statistically significant association between the tortuosity index of the ICA and CCA-ICA sides with stroke (P value = 0.0001 in both cases) and these findings were confirmed also with the logistic regression analysis. CONCLUSION Results of this study suggest that tortuosity index is associated with the presence of stroke whereas the length of the carotid arteries does not play a significant role.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Monserrato (Cagliari), Italy
| | - Roberto Sanfilippo
- Department of Vascular Surgery, Azienda Ospedaliero Universitaria (A.O.U.), Monserrato (Cagliari), Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | | | - Giuseppe Corrias
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Monserrato (Cagliari), Italy
| | | | - Serena Zucca
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Monserrato (Cagliari), Italy
| | - Ignazio Senis
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Monserrato (Cagliari), Italy
| | - Roberto Montisci
- Department of Vascular Surgery, Azienda Ospedaliero Universitaria (A.O.U.), Monserrato (Cagliari), Italy
| | - Max Wintermark
- Department of Radiology, 6429University of Stanford, CA, USA
| |
Collapse
|
36
|
Bajraktari A, Bytyçi I, Henein MY. High Coronary Wall Shear Stress Worsens Plaque Vulnerability: A Systematic Review and Meta-Analysis. Angiology 2021; 72:706-714. [PMID: 33535802 PMCID: PMC8326896 DOI: 10.1177/0003319721991722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aim: The aim of this meta-analysis is to assess the impact of wall shear stress (WSS) severity on arterial plaque vulnerability. Methods: We systematically searched electronic databases and selected studies which assessed the relationship between WSS measured by intravascular ultrasound and coronary artery plaque features. In 7 studies, a total of 615 patients with 28 276 arterial segments (median follow-up: 7.71 months) were identified. At follow-up, the pooled analysis showed high WSS to be associated with regression of plaque fibrous area, weighted mean difference (WMD) −0.11 (95% CI: −0.20 to −0.02, P = .02) and fibrofatty area, WMD −0.09 (95% CI: −0.17 to −0.01, P = .02), reduction in plaque total area, WMD −0.09 (95% CI: −0.14 to −0.04, P = .007) and increased necrotic core area, and WMD 0.04 (95% CI: 0.01-0.09, P = .03) compared with low WSS. Dense calcium deposits remained unchanged in high and low WSS (0.01 vs 0.02 mm2; P > .05). High WSS resulted in profound remodeling (40% vs 18%, P < .05) and with more constructive remodeling than low WSS (78% vs 40%, P < .01). Conclusions: High WSS in coronary arteries is associated with worsening plaque vulnerability and more profound arterial wall remodeling compared with low WSS.
Collapse
Affiliation(s)
- Artan Bajraktari
- Institute of Public Health and Clinical Medicine, Umea University, Sweden
| | - Ibadete Bytyçi
- Institute of Public Health and Clinical Medicine, Umea University, Sweden.,University College, Bardhosh, Kosovo.,Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Michael Y Henein
- Institute of Public Health and Clinical Medicine, Umea University, Sweden.,Molecular and Clinic Research Institute, St George University, London, and Brunel University, United Kingdom
| |
Collapse
|
37
|
Konishi T, Norikane T, Yamamoto Y, Fujimoto K, Takami Y, Mitamura K, Okauchi M, Nishiyama Y. The potential relationship between 18F-FDG uptake and wall shear stress in a patient with carotid artery disease. J Nucl Cardiol 2021; 28:367-370. [PMID: 31970680 DOI: 10.1007/s12350-019-01957-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Toru Konishi
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kengo Fujimoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yasukage Takami
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Masanobu Okauchi
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
38
|
Zhang D, Wu X, Tang J, Wang P, Chen GZ, Yin X. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis. Eur Radiol 2021; 31:5234-5242. [PMID: 33439317 DOI: 10.1007/s00330-020-07607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate the relationship between hemodynamics and vessel wall remodeling patterns in middle cerebral artery (MCA) stenosis based on high-resolution magnetic resonance imaging and computational fluid dynamics (CFD). METHODS Forty consecutive patients with recent ischemic stroke or transient ischemic attack attributed to unilateral atherosclerotic MCA stenosis (50-99%) were prospectively recruited. All patients underwent a cross-sectional scan of the stenotic MCA vessel wall. The parameters of the vessel wall, the number of patients with acute infarction, translesional wall shear stress ratio (WSSR), wall shear stress in stenosis (WSSs), and translesional pressure ratio were obtained. The patients were divided into positive remodeling (PR) and negative remodeling (NR) groups. The differences in vessel wall parameters and hemodynamics were compared. Correlations between the parameters of the vessel wall and hemodynamics were calculated. RESULTS Of the 40 patients, 16 had PR, 19 had NR, and the other 5 displayed non-remodeling. The PR group had a smaller lumen area (p = 0.004), larger plaque area (p < 0.001), normal wall index (p = 0.004), and higher WSSR (p = 0.004) and WSSs (p = 0.023) at the most narrowed site. The PR group had more enhanced plaques (12 vs 6, p = 0.03). The number of patients with acute stroke in the PR group was more than that in the NR group (11 vs 4, p = 0.01). The remodeling index (r = 0.376, p = 0.026) and plaque area (r = 0.407, p = 0.015) showed a positive correlation with WSSR, respectively. CONCLUSIONS Hemodynamics plays a role in atherosclerotic plaques and vessel wall remodeling. Individuals with greater hemodynamic values might be more prone to stroke. KEY POINTS • Stenotic plaques in middle cerebral artery with positive remodeling have smaller lumen area and larger resp. higher plaque area, normal wall index, translesional wall shear stress ratio, and wall shear stress than negative remodeling. • The remodeling index and plaque area are positively correlated with translesional wall shear stress ratio. • Hemodynamic may help to understand the role of positive remodeling in the development of acute stroke.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jie Tang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Guo Zhong Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
39
|
Messas E, Goudot G, Halliday A, Sitruk J, Mirault T, Khider L, Saldmann F, Mazzolai L, Aboyans V. Management of carotid stenosis for primary and secondary prevention of stroke: state-of-the-art 2020: a critical review. Eur Heart J Suppl 2020; 22:M35-M42. [PMID: 33664638 PMCID: PMC7916422 DOI: 10.1093/eurheartj/suaa162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carotid atherosclerotic plaque is encountered frequently in patients at high cardiovascular risk, especially in the elderly. When plaque reaches 50% of carotid lumen, it induces haemodynamically significant carotid stenosis, for which management is currently at a turning point. Improved control of blood pressure, smoking ban campaigns, and the widespread use of statins have reduced the risk of cerebral infarction to <1% per year. However, about 15% of strokes are still secondary to a carotid stenosis, which can potentially be detected by effective imaging techniques. For symptomatic carotid stenosis, current ESC guidelines put a threshold of 70% for formal indication for revascularization. A revascularization should be discussed for symptomatic stenosis over 50% and for asymptomatic carotid stenosis over 60%. This evaluation should be performed by ultrasound as a first-line examination. As a complement, computed tomography angiography (CTA) and/or magnetic resonance angiography are recommended for evaluating the extent and severity of extracranial carotid stenosis. In perspective, new high-risk markers are currently being developed using markers of plaque neovascularization, plaque inflammation, or plaque tissue stiffness. Medical management of patient with carotid stenosis is always warranted and applied to any patient with atheromatous lesions. Best medical therapy is based on cardiovascular risk factors correction, including lifestyle intervention and a pharmacological treatment. It is based on the tri-therapy strategy with antiplatelet, statins, and ACE inhibitors. The indications for carotid endarterectomy (CEA) and carotid artery stenting (CAS) are similar: for symptomatic patients (recent stroke or transient ischaemic attack ) if stenosis >50%; for asymptomatic patients: tight stenosis (>60%) and a perceived high long-term risk of stroke (determined mainly by imaging criteria). Choice of procedure may be influenced by anatomy (high stenosis, difficult CAS or CEA access, incomplete circle of Willis), prior illness or treatment (radiotherapy, other neck surgery), or patient risk (unable to lie flat, poor AHA assessment). In conclusion, neither systematic nor abandoned, the place of carotid revascularization must necessarily be limited to the plaques at highest risk, leaving a large place for optimized medical treatment as first line management. An evaluation of the value of performing endarterectomy on plaques considered to be at high risk is currently underway in the ACTRIS and CREST 2 studies. These studies, along with the next result of ACST-2 trial, will provide us a more precise strategy in case of carotid stenosis.
Collapse
Affiliation(s)
- Emmanuel Messas
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Guillaume Goudot
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Alison Halliday
- Nuffield Department of Surgical Sciences, University of Oxford, Level 6 John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jonas Sitruk
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Tristan Mirault
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Lina Khider
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Frederic Saldmann
- Vascular Medicine Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Lucia Mazzolai
- Angiology Division, CHUV University Hospital, Lausanne, Switzerland
| | - Victor Aboyans
- Department of Cardiology, Dupuytren University Hospital, INSERM 1094 & IRD, Limoges, France
| |
Collapse
|
40
|
Saito K, Abe S, Kumamoto M, Uchihara Y, Tanaka A, Sugie K, Ihara M, Koga M, Yamagami H. Blood Flow Visualization and Wall Shear Stress Measurement of Carotid Arteries Using Vascular Vector Flow Mapping. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2692-2699. [PMID: 32753289 DOI: 10.1016/j.ultrasmedbio.2020.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/13/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Carotid artery ultrasound is extensively used to assess early- and late-stage atherosclerosis via the intima-media thickness and increased blood flow velocity caused by stenosis, respectively. However, the effect of wall shear stress (WSS) has not been considered to date. This study aimed to visualize the blood flow of carotid arteries and measured WSS using vector flow mapping (VFM) developed specifically for vascular use. Patients with cerebrovascular diseases were prospectively enrolled and examined with carotid ultrasound using VFM Vascular. WSS was calculated in the common carotid artery and internal carotid artery. Blood flow in 82 common carotid arteries was visualized with VFM Vascular. The maximum and mean WSSs were negatively correlated with age and intima-media thickness. The WSS in 16 internal carotid artery plaques was significantly higher upstream of the plaque than downstream. Therefore, VFM Vascular is a promising method that provides a novel indicator of atherosclerosis.
Collapse
Affiliation(s)
- Kozue Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Neurology, Nara Medical University, Nara, Japan.
| | - Soichiro Abe
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masaya Kumamoto
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuto Uchihara
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Akito Tanaka
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroshi Yamagami
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
41
|
Strecker C, Krafft AJ, Kaufhold L, Hüllebrandt M, Weber S, Ludwig U, Wolkewitz M, Hennemuth A, Hennig J, Harloff A. Carotid geometry is an independent predictor of wall thickness - a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J Cardiovasc Magn Reson 2020; 22:67. [PMID: 32912285 PMCID: PMC7488078 DOI: 10.1186/s12968-020-00657-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The posterior wall of the proximal internal carotid artery (ICA) is the predilection site for the development of stenosis. To optimally prevent stroke, identification of new risk factors for plaque progression is of high interest. Therefore, we studied the impact of carotid geometry and wall shear stress on cardiovascular magnetic resonance (CMR)-depicted wall thickness in the ICA of patients with high cardiovascular disease risk. METHODS One hundred twenty-one consecutive patients ≥50 years with hypertension, ≥1 additional cardiovascular risk factor and ICA plaque ≥1.5 mm thickness and < 50% stenosis were prospectively included. High-resolution 3D-multi-contrast (time of flight, T1, T2, proton density) and 4D flow CMR were performed for the assessment of morphological (bifurcation angle, ICA/common carotid artery (CCA) diameter ratio, tortuosity, and wall thickness) and hemodynamic parameters (absolute/systolic wall shear stress (WSS), oscillatory shear index (OSI)) in 242 carotid bifurcations. RESULTS We found lower absolute/systolic WSS, higher OSI and increased wall thickness in the posterior compared to the anterior wall of the ICA bulb (p < 0.001), whereas this correlation disappeared in ≥10% stenosis. Higher carotid tortuosity (regression coefficient = 0.764; p < 0.001) and lower ICA/CCA diameter ratio (regression coefficient = - 0.302; p < 0.001) were independent predictors of increased wall thickness even after adjustment for cardiovascular risk factors. This association was not found for bifurcation angle, WSS or OSI in multivariate regression analysis. CONCLUSIONS High carotid tortuosity and low ICA diameter were independent predictors for wall thickness of the ICA bulb in this cross-sectional study, whereas this association was not present for WSS or OSI. Thus, consideration of geometric parameters of the carotid bifurcation could be helpful to identify patients at increased risk of carotid plaque generation. However, this association and the potential benefit of WSS measurement need to be further explored in a longitudinal study.
Collapse
Affiliation(s)
- Christoph Strecker
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| | - Axel Joachim Krafft
- Department of Radiology - Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lilli Kaufhold
- Fraunhofer MEVIS, Bremen, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Hüllebrandt
- Fraunhofer MEVIS, Bremen, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Weber
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ute Ludwig
- Department of Radiology - Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Anja Hennemuth
- Fraunhofer MEVIS, Bremen, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Hennig
- Department of Radiology - Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Harloff
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, 79106 Freiburg, Germany
| |
Collapse
|
42
|
Porcu M, Mannelli L, Melis M, Suri JS, Gerosa C, Cerrone G, Defazio G, Faa G, Saba L. Carotid plaque imaging profiling in subjects with risk factors (diabetes and hypertension). Cardiovasc Diagn Ther 2020; 10:1005-1018. [PMID: 32968657 DOI: 10.21037/cdt.2020.01.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carotid artery stenosis (CAS) due to the presence of atherosclerotic plaque (AP) is a frequent medical condition and a known risk factor for stroke, and it is also known from literature that several risk factors promote the AP development, in particular aging, smoke, male sex, hypertension, hyperlipidemia, smoke, diabetes type 1 and 2, and genetic factors. The study of carotid atherosclerosis is continuously evolving: even if the strategies of treatment still depends mainly on the degree of stenosis (DoS) determined by the plaque, in the last years the attention has moved to the study of the plaque components in order to identify the so called "vulnerable" plaque: features like the fibrous cap status and thickness, the volume of the lipid-rich necrotic core and the presence of intraplaque hemorrhage (IPH) are risk factors for plaque rupture, that can be studied with modern imaging techniques. The aim of this review is to give a general overview of the principle histological and imaging features of the subcomponent of carotid AP (CAP), focalizing in particular on the features of CAP of patients affected by hypertension and diabetes (in particular type 2 diabetes mellitus).
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| | | | - Marta Melis
- Department of Neurology, AOU of Cagliari, University of Cagliari, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint, Roseville, California, USA
| | - Clara Gerosa
- Department of Pathology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Giulia Cerrone
- Department of Pathology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Department of Neurology, AOU of Cagliari, University of Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| |
Collapse
|
43
|
Du Y, Goddi A, Bortolotto C, Shen Y, Dell'Era A, Calliada F, Zhu L. Wall Shear Stress Measurements Based on Ultrasound Vector Flow Imaging: Theoretical Studies and Clinical Examples. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1649-1664. [PMID: 32124997 PMCID: PMC7497026 DOI: 10.1002/jum.15253] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 05/15/2023]
Abstract
Wall shear stress (WSS) is considered as a key factor for atherosclerosis development. Previous WSS research based on pulsed wave Doppler (PWD) showed limitations in complex flows. To improve accuracy for nonlaminar flow, a commercial ultrasound vector flow imaging (UVFI)-based WSS calculation is proposed. Errors for PWD are presented theoretically when flow is not laminar. Based on this, simulations of WSS calculations between PWD and UVFI were set up for different turbulent flows. Our simulations show that UVFI has obviously better performance than PWD in WSS calculations. Wall shear stress results in different flow conditions at carotid bifurcations are described.
Collapse
Affiliation(s)
- Yigang Du
- Shenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenChina
| | | | - Chandra Bortolotto
- Radiology DepartmentFondazione Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San MatteoPaviaItaly
| | - Yingying Shen
- Shenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenChina
| | - Alex Dell'Era
- Shenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenChina
| | - Fabrizio Calliada
- Radiology DepartmentFondazione Istituto di Ricovero e Cura a Carattere Scientifico, Policlinico San MatteoPaviaItaly
| | - Lei Zhu
- Shenzhen Mindray Bio‐Medical Electronics Co., Ltd.ShenzhenChina
| |
Collapse
|
44
|
Qiu Y, Yang D, Zhang Q, Chen K, Dong Y, Wang WP. V Flow technology in measurement of wall shear stress of common carotid arteries in healthy adults: Feasibility and normal values. Clin Hemorheol Microcirc 2020; 74:453-462. [PMID: 31683473 DOI: 10.3233/ch-190719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the feasibility of vector flow imaging technique (V Flow) in measurement of wall shear stress (WSS) of common carotid arteries (CCA) in healthy adults and to provide the normal WSS values assessed by V Flow. METHODS & MATERIALS This prospective study was approved by the Ethics Committee of our University. Eighty healthy adult volunteers were included (mean age 43.3 y, 47 females, 33 males). The volunteers were classified into three groups according to their age: group I (age 20 - 39 y), group II (age 40 - 59 y) and group III (age 60 - 80 y). Mindray Resona 8 ultrasound machine and a linear array transducer (3-9 MHz) was used, equipped with the updated V Flow function. Common carotid arteries of both sides were evaluated in three segments (initial segment, middle segment and near bifurcation segment). The WSS values of CCA were measured by two independent radiologists. The intraclass correlation coefficient (ICC) of observer reliability in WSS measurement was calculated. Inter-observer reproducibility was also evaluated with the 95% Bland-Altman limits of agreement (LOA). RESULTS V Flow measurements were performed successfully in 79 volunteers (98.8 %, 79/80). The mean value of WSS in right CCA was (0.66±0.24) Pa, in left CCA was (0.66±0.18) Pa (P > 0.05). Mean WSS value had a moderately negative correlation with age group (P < 0.05). The mean WSS value of group I(mean±SD, 0.75±0.25 Pa) is larger than group II (mean±SD, 0.62±0.13 Pa) and group III (mean±SD, 0.49±0.11 Pa) (P < 0.05). The ICC of observer reliability of group I, II and III was 0.96 (95% confidence interval (95% CI) 0.92-0.98), 0.94 (95% CI 0.88-0.97), 0.93 (95% CI 0.76-0.98) respectively. The Bland-Altman plots showed that the 95% LOA were -0.17-0.12 (Pa) for group I, -0.09-0.13 (Pa) for group II and -0.08-0.10 (Pa) for group III. CONCLUSION V Flow measurement is a simple, rapid and feasible imaging method for the WSS assessment of CCA in healthy volunteers, which will probably be an important tool for assessing CCA function.
Collapse
Affiliation(s)
- Yijie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daohui Yang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kailing Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Pandey R, Kumar M, Majdoubi J, Rahimi-Gorji M, Srivastav VK. A review study on blood in human coronary artery: Numerical approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 187:105243. [PMID: 31805457 DOI: 10.1016/j.cmpb.2019.105243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Computational fluid dynamics (CFD) study of blood flow in human coronary artery is one of the emerging fields of Biomed- ical engineering. In present review paper, Finite Volume Method with governing equations and boundary conditions are briefly discussed for different coronary models. Many researchers have come up with astonishing results related to the various factors (blood viscosity, rate of blood flow, shear stress on the arterial wall, Reynolds number, etc.) affecting the hemodynamic of blood in the right/left coronary artery. The aim of this paper is to present an overview of all those work done by the researchers to justify their work related to factors which hampers proper functioning of heart and lead to Coronary Artery Disease (CAD). Governing equations like Navier-stokes equations, continuity equations etc. are widely used and are solved using CFD solver to get a clearer view of coronary artery blockage. Different boundary conditions and blood properties published in the last ten years are summarized in the tabulated form. This table will help new researchers to work on this area.
Collapse
Affiliation(s)
- Rupali Pandey
- Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, India.
| | - Manoj Kumar
- Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, India.
| | - Jihen Majdoubi
- Department of Computer Science, College of Science and Humanities at Alghat, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Mohammad Rahimi-Gorji
- Experimental Surgery Lab, Faculty of Medicine and Health Science, Ghent University, 9000 Gent, Belgium.
| | - Vivek Kumar Srivastav
- Department of Mathematics & Computing, Motihari college of Engineering, Bihar, India.
| |
Collapse
|
46
|
Jiang P, Chen Z, Hippe DS, Watase H, Sun B, Lin R, Yang Z, Xue Y, Zhao X, Yuan C. Association Between Carotid Bifurcation Geometry and Atherosclerotic Plaque Vulnerability: A Chinese Atherosclerosis Risk Evaluation Study. Arterioscler Thromb Vasc Biol 2020; 40:1383-1391. [PMID: 32160772 DOI: 10.1161/atvbaha.119.313830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Carotid bifurcation geometry has been believed to be a risk factor for the initiation of atherosclerosis because of its influence on hemodynamics. However, the relationships between carotid bifurcation geometry and plaque vulnerability are not fully understood. This study aimed to determine the association between carotid bifurcation geometry and plaque vulnerability using magnetic resonance vessel wall imaging. Approach and Results: A total of 501 carotid arteries with nonstenotic atherosclerosis were included from the cross-sectional, multicenter CARE II study (Chinese Atherosclerosis Risk Evaluation). Four standardized carotid bifurcation geometric parameters (bifurcation angle, internal carotid artery planarity, luminal expansion FlareA, and tortuosity Tort2D) were derived from time-of-flight magnetic resonance angiography. Presence of vulnerable plaque, which was characterized by intraplaque hemorrhage, large lipid-rich necrotic core, or disrupted luminal surface, was determined based on multicontrast carotid magnetic resonance vessel wall images. Vulnerable plaques (N=43) were found to occur at more distal locations (ie, near the level of flow divider) than stable plaques (N=458). Multivariable logistic regression showed that the luminal expansion FlareA (odds ratio, 0.45 [95% CI, 0.25-0.81]; P=0.008) was associated with plaque vulnerability after adjustment for age, sex, maximum wall thickness, plaque location, and other geometric parameters. CONCLUSIONS Smaller luminal expansion at carotid bifurcation is associated with vulnerable plaque. The finding needs to be verified with longitudinal studies and the underlying mechanism should be further explored with hemodynamics measurement in the future.
Collapse
Affiliation(s)
- Peirong Jiang
- From the Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China (P.J., B.S., R.L., Z.Y., Y.X.)
| | - Zhensen Chen
- Department of Radiology (Z.C., D.S.H., C.Y.), University of Washington, Seattle
| | - Daniel S Hippe
- Department of Radiology (Z.C., D.S.H., C.Y.), University of Washington, Seattle
| | - Hiroko Watase
- Department of Surgery (H.W.), University of Washington, Seattle
| | - Bin Sun
- From the Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China (P.J., B.S., R.L., Z.Y., Y.X.)
| | - Ruolan Lin
- From the Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China (P.J., B.S., R.L., Z.Y., Y.X.)
| | - Zheting Yang
- From the Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China (P.J., B.S., R.L., Z.Y., Y.X.)
| | - Yunjing Xue
- From the Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China (P.J., B.S., R.L., Z.Y., Y.X.)
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China (X.Z.)
| | - Chun Yuan
- Department of Radiology (Z.C., D.S.H., C.Y.), University of Washington, Seattle
| |
Collapse
|
47
|
Goudot G, Khider L, Pedreira O, Poree J, Julia P, Alsac JM, Amemiya K, Bruneval P, Messas E, Pernot M, Mirault T. Innovative Multiparametric Characterization of Carotid Plaque Vulnerability by Ultrasound. Front Physiol 2020; 11:157. [PMID: 32194437 PMCID: PMC7064056 DOI: 10.3389/fphys.2020.00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/12/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE The degree of stenosis of a carotid plaque is a well-established risk factor for ischemic stroke. Nevertheless, the risk of ipsilateral stroke in asymptomatic carotid stenosis remains low and new imaging markers are needed to better target which patients would benefit most from endarterectomy or intensive medical therapy. Ultrafast ultrasound imaging offers parameters helping at characterizing the carotid plaque by shear wave elastography and Ultrafast Doppler (UFD). We aimed at using these techniques to characterize 3 different ultrasound biomarkers: plaque stiffness heterogeneity, wall shear stress (WSS) and intraplaque micro-flows and to correlate these biomarkers with findings on computed tomography angiography (CTA) and the pathological examination. METHODS We present the case of a multimodal evaluation of a carotid plaque using ultrasound. Elastography has been coupled to the WSS assessment and the detection of intraplaque micro-flows by UFD. The data have been compared to CTA and to the pathology examination of the tissue after carotid endarterectomy. RESULTS Elastography allowed at identifying stiff areas corresponding to calcifications, as well as a soft area corresponding to an intraplaque hemorrhage. The flow evaluation with UFD showed an increase of the WSS along the plaque and identified the presence of a plaque rupture, confirmed by the pathologist. CONCLUSION Ultrafast ultrasound imaging is an innovative, easily accessible technique that provides imaging modalities on top of the conventional B-mode. Ultrafast ultrasound biomarkers such as plaque stiffness heterogeneity, WSS and intraplaque micro-flows could help to define the vulnerability of the carotid plaque in order to stratify patients that could benefit most from endarterectomy or intensive medical therapy.
Collapse
Affiliation(s)
- Guillaume Goudot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
- Vascular Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Lina Khider
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
- Vascular Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Olivier Pedreira
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Jonathan Poree
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Pierre Julia
- Vascular Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Jean-Marc Alsac
- Vascular Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | | | | | - Emmanuel Messas
- Vascular Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
- INSERM U970 PARCC, Paris University, Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
| | - Tristan Mirault
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Research University, Paris, France
- Vascular Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
- INSERM U970 PARCC, Paris University, Paris, France
| |
Collapse
|
48
|
Dai Y, Yan T, Gao Y. Silence of miR-32-5p promotes endothelial cell viability by targeting KLF2 and serves as a diagnostic biomarker of acute myocardial infarction. Diagn Pathol 2020; 15:19. [PMID: 32127011 PMCID: PMC7053100 DOI: 10.1186/s13000-020-00942-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been investigated in various cardiovascular diseases. As a fatal disease, acute myocardial infarction (AMI) is a serious global health burden. The purpose of this study was to investigate the role of miR-32-5p in AMI patients and human umbilical vein endothelial cells (HUVECs) to explore novel diagnostic and therapeutic approaches for AMI. Methods A target prediction tool miRanda and the luciferase activity assay were used to confirm the interaction of miR-32-5p with Kruppel-like factor 2 (KLF2). Effect of miR-32-5p on HUVECs viability was examined using CCK-8 assay. Serum miR-32-5p expression was measured using quantitative Real-Time PCR, and its correlation with myocardial damage and endothelial injury markers and pro-inflammatory cytokines was assessed. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of miR-32-5p in AMI patients. Results miR-32-5p, as a direct regulator of KLF2, could suppress the cell proliferation of HUVECs. Serum miR-32-5p expression was elevated in AMI patients and positively correlated with the biomarker levels of myocardial damage and endothelial injury and pro-inflammatory cytokines. The area under the ROC curve for miR-32-5p was 0.949, indicating the relatively high diagnostic accuracy of miR-32-5p in AMI patients. Conclusion The data of this study revealed that the increased serum miR-32-5p expression serves as a candidate diagnostic biomarker of AMI, and that miR-32-5p may be involved in the myocardial damage, endothelial injury and inflammatory responses of AMI by targeting KLF2, indicating the potential of miR-32-5p as a diagnostic biomarker and molecular target to improve the treatment of AMI.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Emergency, Qingdao Jiaozhou Central Hospital, No. 29 Xuzhou Road, Qingdao, 266300, Shandong, China
| | - Tingguo Yan
- Department of cardiovascular medicine, Anqiu People's Hospital, Weifang, 262100, Shandong, China
| | - Yuming Gao
- Department of Emergency, Qingdao Jiaozhou Central Hospital, No. 29 Xuzhou Road, Qingdao, 266300, Shandong, China.
| |
Collapse
|
49
|
Bajraktari A, Bytyçi I, Henein MY. The Relationship between Coronary Artery Wall Shear Strain and Plaque Morphology: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2020; 10:diagnostics10020091. [PMID: 32046306 PMCID: PMC7168174 DOI: 10.3390/diagnostics10020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 11/26/2022] Open
Abstract
Background and Aim: Arterial wall shear strain (WSS) has been proposed to impact the features of atherosclerotic plaques. The aim of this meta-analysis was to assess the impact of different types of WSS on plaque features in coronary artery disease (CAD). Methods: We systematically searched PubMed-Medline, EMBASE, Scopus, Google Scholar, and the Cochrane Central Registry, from 1989 up to January 2020 and selected clinical trials and observational studies which assessed the relationship between WSS, measured by intravascular ultrasound (IVUS), and plaque morphology in patients with CAD. Results: In four studies, a total of 72 patients with 13,098 coronary artery segments were recruited, with mean age 57.5 ± 9.5 years. The pooled analysis showed that low WSS was associated with larger baseline lumen area (WMD 2.55 [1.34 to 3.76, p < 0.001]), smaller plaque area (WMD −1.16 [−1.84 to −0.49, p = 0.0007]), lower plaque burden (WMD −12.7 [−21.4 to −4.01, p = 0.04]), and lower necrotic core area (WMD −0.32 [−0.78 to 0.14, p = 0.04]). Low WSS also had smaller fibrous area (WMD −0.79 [−1.88 to 0.30, p = 0.02]) and smaller fibro-fatty area (WMD −0.22 [−0.57 to 0.13, p = 0.02]), compared with high WSS, but the dense calcium score was similar between the two groups (WMD −0.17 [−0.47 to 0.13, p = 0.26]). No differences were found between intermediate and high WSS. Conclusions: High WSS is associated with signs of plaque instability such as higher necrotic core, higher calcium score, and higher plaque burden compared with low WSS. These findings highlight the role of IVUS in assessing plaque vulnerability.
Collapse
Affiliation(s)
- Artan Bajraktari
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (A.B.); (I.B.)
| | - Ibadete Bytyçi
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (A.B.); (I.B.)
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina 10000, Kosovo
| | - Michael Y. Henein
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (A.B.); (I.B.)
- Institute of Environment & Health and Societies, Brunel University, Middlesex UB8 3PH, UK
- Molecular and Clinic Research Institute, St George University, London SW17 0RE, UK
- Correspondence: ; Tel.: +46-90-785-1431
| |
Collapse
|
50
|
Cui Y, Lv X, Wang F, Kong J, Zhao H, Ye Z, Si C, Pan L, Liu P, Wen J. Geometry of the Carotid Artery and Its Association With Pathologic Changes in a Chinese Population. Front Physiol 2020; 10:1628. [PMID: 32038300 PMCID: PMC6985580 DOI: 10.3389/fphys.2019.01628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023] Open
Abstract
Objectives Carotid artery geometry influences blood flow disturbances and is thus an important risk factor for carotid atherosclerosis. Extracellular matrix (ECM) and yes-associated protein (YAP) expression may play essential roles in the pathophysiology of carotid artery stenosis, but the effect of blood flow disturbances of carotid bifurcation location on the ECM is unknown. We hypothesized that carotid artery anatomy and geometry are independently associated with the ECM and YAP expression. Methods In this cross-sectional study, 193 patients were divided into two groups: an asymptomatic group (n = 111) and a symptomatic group (n = 82), symptomatic patients presenting with ischemic attack, amaurosis fugax, or minor non-disabling stroke. For all subjects before surgery, carotid bifurcation angle and internal artery angle were measured with computed tomography angiography (CTA), and laminar shear stress was measured with ultrasonography. After surgery, pathology of all plaque specimens was analyzed using hematoxylin and eosin (HE) staining and Movat special staining. Immunohistochemistry was performed to detect expression of YAP in a subset of 30 specimens. Results Symptomatic patients had increased carotid bifurcation angle and laminar shear stress compared to asymptomatic patients (P < 0.05), although asymptomatic patients had increased internal carotid angle compared to symptomatic patients (P < 0.001). Relative higher bifurcation angles were correlated with increased carotid bifurcation, decreased internal angle, and decreased laminar shear stress. For each change in intervertebral space or one-third of vertebral body height, carotid bifurcation angle changed 4.76°, internal carotid angle changed 6.91°, and laminar shear stress changed 0.57 dynes/cm2. Pathology showed that average fibrous cap thickness and average narrowest fibrous cap thickness were greater in asymptomatic patients than symptomatic patients (P < 0.05). Expression of proteoglycan and YAP protein in symptomatic patients was higher than in asymptomatic patients (P < 0.001), while collagen expression was lower in symptomatic patients than asymptomatic patients (P < 0.05). Conclusion Geometry of the carotid artery and position relative to cervical spine might be associated with ECM and YAP protein expression, which could contribute to carotid artery stenosis.
Collapse
Affiliation(s)
- Yiyao Cui
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Kong
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Hao Zhao
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Lin Pan
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|