1
|
Skytte HN, Roland MCP, Christensen JJ, Holven KB, Lekva T, Gunnes N, Michelsen TM. Maternal metabolic profiling across body mass index groups: An exploratory longitudinal study. Acta Obstet Gynecol Scand 2024; 103:540-550. [PMID: 38083835 PMCID: PMC10867396 DOI: 10.1111/aogs.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Increased BMI has been identified as a risk factor for most pregnancy complications, but the underlying metabolic factors mediating the detrimental effects of BMI are largely unknown. We aimed to compare metabolic profiles in overweight/obese women (body mass index [BMI] ≥ 25 kg/m2 ) and normal weight/underweight women (BMI < 25 kg/m2 ) across gestation. We also explored how gestational weight gain (GWG) affected maternal metabolic profiles. MATERIAL AND METHODS Exploratory nested case-control study based on a prospective longitudinal cohort of women who were healthy prior to pregnancy and gave birth at Oslo University Hospital from 2002 to 2008. The sample consisted of 48 women who were overweight/obese and 59 normal-weight/underweight women. Plasma samples from four time points in pregnancy (weeks 14-16, 22-24, 30-32 and 36-38) were analyzed by nuclear magnetic resonance spectroscopy and 91 metabolites were measured. Linear regression models were fitted for each of the metabolites at each time point. RESULTS Overweight or obese women had higher levels of lipids in very-low-density lipoprotein (VLDL), total triglycerides, triglycerides in VLDL, total fatty acids, monounsaturated fatty acids, saturated fatty acids, leucine, valine, and total branched-chain amino acids in pregnancy weeks 14-16 compared to underweight and normal-weight women. Docosahexaenoic acid and degree of unsaturation were significantly lower in overweight/obese women in pregnancy weeks 36-38. In addition, overweight or obese women had higher particle concentration of XXL-VLDL and glycoprotein acetyls (GlycA) at weeks 14-16 and 30-32. GWG did not seem to affect the metabolic profile, regardless of BMI group when BMI was treated as a dichotomous variable, ≥25 kg/m2 (yes/no). CONCLUSIONS Overweight or obese women had smaller pregnancy-related metabolic alterations than normal-weight/underweight women. There was a trend toward higher triglyceride and VLDL particle concentration in overweight/obese women. As this was a hypothesis-generating study, the similarities with late-onset pre-eclampsia warrant further investigation. The unfavorable development of fatty acid composition in overweight/obese women, with possible implication for the offspring, should also be studied further in the future.
Collapse
Affiliation(s)
- Hege Nyhus Skytte
- Norwegian Research Center for Women's HealthOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | | | | | - Kirsten Bjørklund Holven
- Department of NutritionUniversity of OsloOsloNorway
- Norwegian National Advisory Unit on Familial HypercholesterolemiaOslo University HospitalOsloNorway
| | - Tove Lekva
- Research Institute of Internal MedicineOslo University HospitalOsloNorway
| | - Nina Gunnes
- Norwegian Research Center for Women's HealthOslo University HospitalOsloNorway
| | - Trond Melbye Michelsen
- Faculty of MedicineUniversity of OsloOsloNorway
- Division of Obstetrics and GynecologyOslo University HospitalOsloNorway
| |
Collapse
|
2
|
Llop D, Feliu A, Ibarretxe D, Escribano J, Plana N, Borjabad-Rodríguez C, Masana L, Vallvé JC. Lipoprotein profile assessed by 1H NMR, BMI and blood pressure are associated with vascular alterations in children with familial hypercholesterolaemia. Nutr Metab Cardiovasc Dis 2023; 33:2035-2043. [PMID: 37543518 DOI: 10.1016/j.numecd.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND AND AIMS Children with familial hypercholesterolaemia (FH) have elevated low-density lipoprotein cholesterol (LDL-C) concentrations since birth, which increases the risk of cardiovascular disease in adulthood. Arterial injury and stiffness parameters, including carotid intima media thickness (cIMT), pulse wave velocity (PWV) and distensibility (DIST), can be detected early in childhood. We studied the associations between cIMT, PWV and DIST with the lipoprotein profile assessed by proton nuclear magnetic resonance (1H NMR) and with influential variables such as blood pressure (BP) or body mass index (BMI) in children with FH. METHODS AND RESULTS In this cross-sectional study, we included 201 children (96 with FH and 105 non-FH controls). Clinical history, physical examination and standard biochemical studies were performed. FH genetic testing was performed when clinically indicated. Carotid ultrasonography and an advanced lipoprotein profile by 1H NMR were performed. Multivariate and classification methods were used. There were no differences between cIMT, PWV and DIST between FH and non-FH children. FH children presented more total LDL and large, medium and small particles. Small LDL particles, BMI and systolic BP determined the presence of pathological IMT in the FH group. LDL size, high-density lipoproteins and very low-density lipoprotein particles together with blood pressure determined the presence of pathological arterial wall elasticity. CONCLUSIONS Alterations in lipoprotein parameters assessed by are associated with early structural and functional arterial characteristics in children with FH. BMI and BP act as boosting factors. Cardiovascular prevention should start early in children with FH, encompassing all components of a healthy lifestyle.
Collapse
Affiliation(s)
- D Llop
- Unitat de Recerca de Lípids I Arteriosclerosi, Universitat Rovira I Virgili, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - A Feliu
- Pediatric Nutrition and Human Development Research Unit, Universitat Rovira I Virgili, IISPV, Reus, Spain
| | - D Ibarretxe
- Unitat de Recerca de Lípids I Arteriosclerosi, Universitat Rovira I Virgili, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain; Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - J Escribano
- Pediatric Nutrition and Human Development Research Unit, Universitat Rovira I Virgili, IISPV, Reus, Spain
| | - N Plana
- Unitat de Recerca de Lípids I Arteriosclerosi, Universitat Rovira I Virgili, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain; Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - C Borjabad-Rodríguez
- Unitat de Recerca de Lípids I Arteriosclerosi, Universitat Rovira I Virgili, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain; Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - L Masana
- Unitat de Recerca de Lípids I Arteriosclerosi, Universitat Rovira I Virgili, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain; Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - J C Vallvé
- Unitat de Recerca de Lípids I Arteriosclerosi, Universitat Rovira I Virgili, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.
| |
Collapse
|
3
|
Rodríguez-Borjabad C, Narveud I, Christensen JJ, Ibarretxe D, Andreychuk N, Girona J, Torvik K, Folkedal G, Bogsrud MP, Retterstøl K, Plana N, Masana L, Holven KB. Association between Nordic and Mediterranean diets with lipoprotein phenotype assessed by 1HNMR in children with familial hypercholesterolemia. Atherosclerosis 2023; 373:38-45. [PMID: 37137225 DOI: 10.1016/j.atherosclerosis.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Both Nordic and Mediterranean diets are considered healthy despite notable regional differences. Although these dietary patterns may lower cardiovascular risk, it is unclear if they improve the lipoprotein phenotype in children with familial hypercholesterolemia (FH). The aim is to determine the impact of Nordic and Mediterranean diets on the advanced lipoprotein profile in children with heterozygous FH (HeFH). METHODS This was a cross-sectional study performed in children with FH recruited from the Lipid Clinics at Sant Joan University Hospital in Reus (Spain) and Oslo University Hospital (Norway). Two-hundred fifty-six children (mean age 10 y/o; 48% girls): 85 Spanish and 29 Norwegian FH children, and 142 non-FH healthy controls (119 from Spain and 23 from Norway) were included in the study. A pathogenic FH-associated genetic variant was present in 81% of Spanish children with FH and all Norwegian children with FH. An 1H NMR based advanced lipoprotein test (Nightingale®) providing information on the particle number, size and lipid composition of 14 lipoprotein subclasses was performed and correlated to the dietary components. RESULTS Levels of LDL-C, HDL-C and triglycerides were not significantly different between the Nordic and Mediterranean FH groups. Spanish children with FH had more LDL particles, mainly of the large and medium LDL subclasses, than Norwegian FH children. Spanish FH children also had more HDL particles, mainly medium and small, than Norwegian FH children. The mean LDL size of Spanish FH children was larger, while the HDL size was smaller than that of the Norwegian FH children. The HDL particle number and size were the main determinants of differences between the two groups. In Norwegian children with FH, dietary total fat and MUFAs showed a significant correlation with all apolipoprotein B-containing lipoproteins and LDL size, whereas there was no correlation to SFA. A weaker association pattern was observed in the Spanish children. CONCLUSIONS The lipoprotein profiles of Spanish and Norwegian children showed differences when studied by 1H NMR. These differences were in part associated with differences in dietary patterns.
Collapse
Affiliation(s)
- Cèlia Rodríguez-Borjabad
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingunn Narveud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway
| | - Jacob Juel Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Natalia Andreychuk
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Kristin Torvik
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Guro Folkedal
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway; Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, P. O Box 4956, Nydalen, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; The Lipid Clinic, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway
| | - Núria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway
| |
Collapse
|
4
|
Gu PS, Su KW, Yeh KW, Huang JL, Lo FS, Chiu CY. Metabolomics Analysis Reveals Molecular Signatures of Metabolic Complexity in Children with Hypercholesterolemia. Nutrients 2023; 15:nu15071726. [PMID: 37049565 PMCID: PMC10096550 DOI: 10.3390/nu15071726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Despite the importance of hypercholesterolemia in children, it is overlooked, and there are currently few metabolomics-based approaches available to understand its molecular mechanisms. Children from a birth cohort had their cholesterol levels measured with the aim of identifying the metabolites for the molecular biological pathways of childhood hypercholesterolemia. One hundred and twenty-five children were enrolled and stratified into three groups according to cholesterol levels (acceptable, <170 mg/dL, n = 42; borderline, 170–200 mg/dL, n = 52; and high, >200 mg/dL, n = 31). Plasma metabolomic profiles were obtained by using 1H-nuclear magnetic resonance (NMR) spectroscopy, and partial least squares-discriminant analysis (PLS-DA) was applied using the MetaboAnalyst 5.0 platform. Metabolites significantly associated with different cholesterol statuses were identified, and random forest classifier models were used to rank the importance of these metabolites. Their associations with serum lipid profile and functional metabolic pathways related to hypercholesterolemia were also assessed. Cholesterol level was significantly positively correlated with LDL-C and Apo-B level, as well as HDL-C and Apo-A1 level separately, whereas HDL-C was negatively correlated with triglyceride level (p < 0.01). Eight metabolites including tyrosine, glutamic acid, ornithine, lysine, alanine, creatinine, oxoglutaric acid, and creatine were significantly associated with the different statuses of cholesterol level. Among them, glutamic acid and tyrosine had the highest importance for different cholesterol statuses using random forest regression models. Carbohydrate and amino acid metabolisms were significantly associated with different cholesterol statuses, with glutamic acid being involved in all amino acid metabolic pathways (FDR-adjusted p < 0.01). Hypercholesterolemia is a significant health concern among children, with up to 25% having high cholesterol levels. Glutamic acid and tyrosine are crucial amino acids in lipid metabolism, with glutamic-acid-related amino acid metabolism playing a significant role in regulating cholesterol levels.
Collapse
Affiliation(s)
- Pei-Shin Gu
- Division of Pediatric Endocrinology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuan-Wen Su
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Kuo-Wei Yeh
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Jing-Long Huang
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Fu-Sung Lo
- Division of Pediatric Endocrinology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chih-Yung Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8966); Fax: +886-3-3288957
| |
Collapse
|
5
|
Pharmacometabolomics for the Study of Lipid-Lowering Therapies: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24043291. [PMID: 36834701 PMCID: PMC9960554 DOI: 10.3390/ijms24043291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Lipid-lowering therapies are widely used to prevent the development of atherosclerotic cardiovascular disease (ASCVD) and related mortality worldwide. "Omics" technologies have been successfully applied in recent decades to investigate the mechanisms of action of these drugs, their pleiotropic effects, and their side effects, aiming to identify novel targets for future personalized medicine with an improvement of the efficacy and safety associated with the treatment. Pharmacometabolomics is a branch of metabolomics that is focused on the study of drug effects on metabolic pathways that are implicated in the variation of response to the treatment considering also the influences from a specific disease, environment, and concomitant pharmacological therapies. In this review, we summarized the most significant metabolomic studies on the effects of lipid-lowering therapies, including the most commonly used statins and fibrates to novel drugs or nutraceutical approaches. The integration of pharmacometabolomics data with the information obtained from the other "omics" approaches could help in the comprehension of the biological mechanisms underlying the use of lipid-lowering drugs in view of defining a precision medicine to improve the efficacy and reduce the side effects associated with the treatment.
Collapse
|
6
|
Skytte HN, Christensen JJ, Gunnes N, Holven KB, Lekva T, Henriksen T, Michelsen TM, Roland MCP. Metabolic profiling of pregnancies complicated by preeclampsia: A longitudinal study. Acta Obstet Gynecol Scand 2023; 102:334-343. [PMID: 36647289 PMCID: PMC9951333 DOI: 10.1111/aogs.14505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Preeclampsia is associated with maternal metabolic disturbances, but longitudinal studies with comprehensive metabolic profiling are lacking. We aimed to determine metabolic profiles across gestation in women who developed preeclampsia compared with women with healthy pregnancies. We also explored the respective effects of body mass index (BMI) and preeclampsia on various metabolic measures. MATERIAL AND METHODS We measured 91 metabolites by high-throughput nuclear magnetic resonance spectroscopy at four time points (visits) during pregnancy (weeks 14-16, 22-24, 30-32 and 36-38). Samples were taken from a Norwegian pregnancy cohort. We fitted a linear regression model for each metabolic measure to compare women who developed preeclampsia (n = 38) and healthy controls (n = 70). RESULTS Among women who developed preeclampsia, 92% gave birth after 34 weeks of gestation. Compared to women with healthy pregnancies, women who developed preeclampsia had higher levels of several lipid-related metabolites at visit 1, whereas fewer differences were observed at visit 2. At visit 3, the pattern from visit 1 reappeared. At visit 4 the differences were larger in most subgroups of very-low-density lipoprotein particles, the smallest high-density lipoprotein, total lipids and triglycerides. Total fatty acids were also increased, of which monounsaturated fatty acids and saturated fatty acids showed more pronounced differences. Concentration of glycine tended to be lower in pregnancies with preeclampsia until visit 3, although this was not significant after correction for multiple testing. After adjustment for age, BMI, parity and gestational weight gain, all significant differences were attenuated at visits 1 and 2. The estimates were less affected by adjustment at visits 3 and 4. CONCLUSIONS In early pregnancy, the metabolic differences between preeclamptic and healthy pregnancies were primarily driven by maternal BMI, probably representing the women's pre-pregnancy metabolic status. In early third trimester, several weeks before clinical manifestation, the differences were less influenced by BMI, indicating preeclampsia-specific changes. Near term, women with preeclampsia developed an atherogenic metabolic profile, including elevated total lipids, very-low-density lipoprotein, triglycerides, and total fatty acids.
Collapse
Affiliation(s)
- Hege N. Skytte
- Norwegian Research Center for Women's HealthOslo University HospitalOsloNorway,Faculty of MedicineUniversity of OsloOsloNorway
| | | | - Nina Gunnes
- Norwegian Research Center for Women's HealthOslo University HospitalOsloNorway
| | - Kirsten B. Holven
- Department of NutritionUniversity of OsloOsloNorway,Norwegian National Advisory Unit on Familial HypercholesterolemiaOslo University HospitalOsloNorway
| | - Tove Lekva
- Research Institute of Internal MedicineOslo University HospitalOsloNorway
| | - Tore Henriksen
- Division of Obstetrics and GynecologyOslo University HospitalOsloNorway
| | - Trond M. Michelsen
- Faculty of MedicineUniversity of OsloOsloNorway,Division of Obstetrics and GynecologyOslo University HospitalOsloNorway
| | | |
Collapse
|
7
|
Mir SA, Chen L, Burugupalli S, Burla B, Ji S, Smith AAT, Narasimhan K, Ramasamy A, Tan KML, Huynh K, Giles C, Mei D, Wong G, Yap F, Tan KH, Collier F, Saffery R, Vuillermin P, Bendt AK, Burgner D, Ponsonby AL, Lee YS, Chong YS, Gluckman PD, Eriksson JG, Meikle PJ, Wenk MR, Karnani N. Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk: a mother-offspring cohort study. BMC Med 2022; 20:242. [PMID: 35871677 PMCID: PMC9310480 DOI: 10.1186/s12916-022-02432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. METHODS LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26-28 weeks of gestation (n=752) and 4-5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. RESULTS Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=-2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=-0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. CONCLUSIONS In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. CLINICAL TRIAL REGISTRATION This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875 .
Collapse
Affiliation(s)
- Sartaj Ahmad Mir
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Li Chen
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Satvika Burugupalli
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Adam Alexander T Smith
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Kothandaraman Narasimhan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Adaikalavan Ramasamy
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Karen Mei-Ling Tan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Ding Mei
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Gerard Wong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Fabian Yap
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Fiona Collier
- School of Medicine, Deakin University, Geelong, Australia.,Child Health Research Unit, Barwon Health, Geelong, Australia.,Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, Australia.,Child Health Research Unit, Barwon Health, Geelong, Australia.,Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - David Burgner
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Folkhalsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore. .,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Neerja Karnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore. .,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore. .,DataHub Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
8
|
An LDLR missense variant poses high risk of familial hypercholesterolemia in 30% of Greenlanders and offers potential of early cardiovascular disease intervention. HGG ADVANCES 2022; 3:100118. [PMID: 36267056 PMCID: PMC9577620 DOI: 10.1016/j.xhgg.2022.100118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
The common Arctic-specific LDLR p.G137S variant was recently shown to be associated with elevated lipid levels. Motivated by this, we aimed to investigate the effect of p.G137S on metabolic health and cardiovascular disease risk among Greenlanders to quantify its impact on the population. In a population-based Greenlandic cohort (n = 5,063), we tested for associations between the p.G137S variant and metabolic health traits as well as cardiovascular disease risk based on registry data. In addition, we explored the variant’s impact on plasma NMR measured lipoprotein concentration and composition in another Greenlandic cohort (n = 1,629); 29.5% of the individuals in the cohort carried at least one copy of the p.G137S risk allele. Furthermore, 25.4% of the heterozygous and 54.7% of the homozygous carriers had high levels (>4.9 mmol/L) of serum LDL cholesterol, which is above the diagnostic level for familial hypercholesterolemia (FH). Moreover, p.G137S was associated with an overall atherosclerotic lipid profile, and increased risk of ischemic heart disease (HR [95% CI], 1.51 [1.18–1.92], p = 0.00096), peripheral artery disease (1.69 [1.01–2.82], p = 0.046), and coronary operations (1.78 [1.21–2.62], p = 0.0035). Due to its high frequency and large effect sizes, p.G137S has a marked population-level impact, increasing the risk of FH and cardiovascular disease for up to 30% of the Greenlandic population. Thus, p.G137S is a potential marker for early intervention in Arctic populations.
Collapse
|
9
|
Christensen JJ, Narverud I, Ruuth M, Heier M, Jauhiainen M, Ulven SM, Bogsrud MP, Kovanen PT, Halvorsen B, Oda MN, Wium C, Retterstøl K, Öörni K, Holven KB. Children with familial hypercholesterolemia display changes in LDL and HDL function: A cross-sectional study. J Intern Med 2021; 290:1083-1097. [PMID: 34506681 DOI: 10.1111/joim.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The functional status of lipoprotein particles contributes to atherogenesis. The tendency of plasma low-density lipoprotein (LDL) particles to aggregate and the ability of igh-density lipoprotein (HDL) particles to induce and mediate reverse cholesterol transport associate with high and low risk for cardiovascular disease in adult patients, respectively. However, it is unknown whether children with familial hypercholesterolemia (FH) display lipoprotein function alterations. HYPOTHESIS We hypothesized that FH children had disrupted lipoprotein functions. METHODS We analyzed LDL aggregation susceptibility and HDL-apoA-I exchange (HAE), and activity of four proteins that regulate lipoprotein metabolism (cholesteryl ester transfer protein, lecithin-cholesterol acyltransferase, phospholipid transfer protein, and paraoxonase-1) in plasma samples derived from children with FH (n = 47) and from normocholesterolemic children (n = 56). Variation in lipoprotein functions was further explored using an nuclear magnetic resonance-based metabolomics profiling approach. RESULTS LDL aggregation was higher, and HAE was lower in FH children than in normocholesterolemic children. LDL aggregation associated positively with LDL cholesterol (LDL-C) and negatively with triglycerides, and HAE/apoA-I associated negatively with LDL-C. Generally, the metabolomic profile for LDL aggregation was opposite of that of HAE/apoA-I. CONCLUSIONS FH children displayed increased atherogenicity of LDL and disrupted HDL function. These newly observed functional alterations in LDL and HDL add further understanding of the risk for atherosclerotic cardiovascular disease in FH children.
Collapse
Affiliation(s)
- Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingunn Narverud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.,Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Martin Heier
- Department of Pediatric, Oslo University Hospital Ullevaal, Oslo, Norway.,Oslo Diabetes Research Centre, Oslo, Norway
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Helsinki, Finland
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Michael N Oda
- Seer BioLogics, Inc., Fairfield, California, United States
| | - Cecilie Wium
- The Lipid Clinic, Oslo University Hospital, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,The Lipid Clinic, Oslo University Hospital, Oslo, Norway
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kirsten B Holven
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Larsen SV, Holven KB, Christensen JJ, Flatberg A, Rundblad A, Leder L, Blomhoff R, Telle-Hansen V, Kolehmainen M, Carlberg C, Myhrstad MC, Thoresen M, Ulven SM. Replacing Saturated Fat with Polyunsaturated Fat Modulates Peripheral Blood Mononuclear Cell Gene Expression and Pathways Related to Cardiovascular Disease Risk Using a Whole Transcriptome Approach. Mol Nutr Food Res 2021; 65:e2100633. [PMID: 34708513 DOI: 10.1002/mnfr.202100633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/03/2021] [Indexed: 12/17/2022]
Abstract
SCOPE The aim of this study is to explore the molecular mechanisms underlying the effect of replacing dietary saturated fat (SFA) with polyunsaturated fat (PUFA) on cardiovascular disease (CVD) risk using a whole transcriptome approach. METHODS AND RESULTS Healthy subjects with moderate hypercholesterolemia (n = 115) are randomly assigned to a control diet (C-diet) group or an experimental diet (Ex-diet) group receiving comparable food items with different fatty acid composition for 8 weeks. RNA isolated from peripheral blood mononuclear cells (PBMCs) at baseline and after 8 weeks of intervention is analyzed by microarray technology (n = 95). By use of a linear regression model (n = 92), 14 gene transcripts are differentially altered in the Ex-diet group compared to the C-diet group. These include transcripts related to vascular smooth muscle cell proliferation, low-density lipoprotein receptor folding, and regulation of blood pressure. Furthermore, pathways mainly related to immune response and inflammation, signal transduction, development, and cytoskeleton remodeling, gene expression and protein function, are differentially enriched between the groups. CONCLUSION Replacing dietary SFA with PUFA for 8 weeks modulates PBMC gene expression and pathways related to CVD risk in healthy subjects with moderate hypercholesterolemia.
Collapse
Affiliation(s)
- Sunniva V Larsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | | | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
- Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Vibeke Telle-Hansen
- Department of Nutrition, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, Oslo, Norway
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari C Myhrstad
- Department of Nutrition, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
11
|
Towards early risk biomarkers: serum metabolic signature in childhood predicts cardio-metabolic risk in adulthood. EBioMedicine 2021; 72:103611. [PMID: 34628356 PMCID: PMC8511803 DOI: 10.1016/j.ebiom.2021.103611] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cardiovascular diseases may originate in childhood. Biomarkers identifying individuals with increased risk for disease are needed to support early detection and to optimise prevention strategies. METHODS In this prospective study, by applying a machine learning to high throughput NMR-based metabolomics data, we identified circulating childhood metabolic predictors of adult cardiovascular disease risk (MetS score) in a cohort of 396 females, followed from childhood (mean age 11·2 years) to early adulthood (mean age 18·1 years). The results obtained from the discovery cohort were validated in a large longitudinal birth cohort of females and males followed from puberty to adulthood (n = 2664) and in four cross-sectional data sets (n = 6341). FINDINGS The identified childhood metabolic signature included three circulating biomarkers, glycoprotein acetyls (GlycA), large high-density lipoprotein phospholipids (L-HDL-PL), and the ratio of apolipoprotein B to apolipoprotein A-1 (ApoB/ApoA) that were associated with increased cardio-metabolic risk in early adulthood (AUC = 0·641‒0·802, all p<0·01). These associations were confirmed in all validation cohorts with similar effect estimates both in females (AUC = 0·667‒0·905, all p<0·01) and males (AUC = 0·734‒0·889, all p<0·01) as well as in elderly patients with and without type 2 diabetes (AUC = 0·517‒0·700, all p<0·01). We subsequently applied random intercept cross-lagged panel model analysis, which suggested bidirectional causal relationship between metabolic biomarkers and cardio-metabolic risk score from childhood to early adulthood. INTERPRETATION These results provide evidence for the utility of a circulating metabolomics panel to identify children and adolescents at risk for future cardiovascular disease, to whom preventive measures and follow-up could be indicated. FUNDING This study was financially supported by the Academy of Finland, Ministry of Education of Finland and University of Jyv€askyl€a, the National Nature Science Foundation of China (Grant 31571219), the 111 Project (B17029), the Shanghai Jiao Tong University Zhiyuan Foundation (Grant CP2014013), China Postdoc Scholarship Council (201806230001), the Food and Health Bureau of Hong Kong SAR's Health and Medical Research Fund (HMRF grants 15162161 and 07181036) and the CUHK Direct Grants for Research (2016¢033 and 2018¢034), and a postdoctoral fellowship from K. Carole Ellison (to T.W.). The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. NFBC1966 received financial support from University of Oulu Grant no. 24000692, Oulu University Hospital Grant no. 24301140, ERDF European Regional Development Fund Grant no. 539/2010 A31592. This work was supported by European Union's Horizon 2020 research and innovation programme LongITools 874739.
Collapse
|
12
|
High-Density Lipoprotein Subfractions: Much Ado about Nothing or Clinically Important? Biomedicines 2021; 9:biomedicines9070836. [PMID: 34356900 PMCID: PMC8301429 DOI: 10.3390/biomedicines9070836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
High-density lipoproteins (HDL) are a heterogenous group of plasma molecules with a large variety in composition. There is a wide specter in lipid content and the number of different proteins that has been associated with HDL is approaching 100. Given this heterogeneity and the fact that the total amount of HDL is inversely related to the risk of coronary heart disease (CHD), there has been increasing interest in the function of specific HDL subgroups and in what way measuring and quantifying these subgroups could be of clinical importance in determining individual CHD risk. If certain subgroups appear to be more protective than others, it may also in the future be possible to pharmacologically increase beneficial and decrease harmful subgroups in order to reduce CHD risk. In this review we give a short historical perspective, summarize some of the recent clinical findings regarding HDL subclassifications and discuss why such classification may or may not be of clinical relevance.
Collapse
|
13
|
Meeusen JW. Is Small Dense LDL a Highly Atherogenic Lipid or a Biomarker of Pro-Atherogenic Phenotype? Clin Chem 2021; 67:927-928. [PMID: 34100930 DOI: 10.1093/clinchem/hvab075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Jeffrey W Meeusen
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester MN, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Escolà-Gil JC, Rotllan N, Julve J, Blanco-Vaca F. Reverse Cholesterol Transport Dysfunction Is a Feature of Familial Hypercholesterolemia. Curr Atheroscler Rep 2021; 23:29. [PMID: 33914189 DOI: 10.1007/s11883-021-00928-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/21/2023]
Abstract
PURPOSE OF REVIEW We seek to establish whether high-density lipoprotein HDL metabolism and reverse cholesterol transport (RCT) impairment is an intrinsic feature of familial hypercholesterolemia (FH). RECENT FINDINGS RCT from macrophages (m-RCT), a vascular cell type of major influence on atherosclerosis, is impaired in FH due to defective low-density lipoprotein receptor (LDLR) function via both the HDL- and LDL-mediated pathways. Potential mechanisms include impaired HDL metabolism, which is linked to increased LDL levels, as well as the increased transport of cellular unesterified cholesterol to LDL, which presents a defective catabolism. RCT dysfunction is consistently associated with mutation-positive FH linked to decreased HDL levels as well as impaired HDL remodeling and LDLR function. It remains to be explored whether these alterations are also present in less well-characterized forms of FH, such as cases with no identified mutations, and whether they are fully corrected by current standard treatments.
Collapse
Affiliation(s)
- Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Noemí Rotllan
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
| |
Collapse
|
15
|
Amersfoort J, Schaftenaar FH, Douna H, van Santbrink PJ, van Puijvelde GHM, Slütter B, Foks AC, Harms A, Moreno-Gordaliza E, Wang Y, Hankemeier T, Bot I, Chi H, Kuiper J. Diet-induced dyslipidemia induces metabolic and migratory adaptations in regulatory T cells. Cardiovasc Res 2021; 117:1309-1324. [PMID: 32653923 PMCID: PMC8064436 DOI: 10.1093/cvr/cvaa208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS A hallmark of advanced atherosclerosis is inadequate immunosuppression by regulatory T (Treg) cells inside atherosclerotic lesions. Dyslipidemia has been suggested to alter Treg cell migration by affecting the expression of specific membrane proteins, thereby decreasing Treg cell migration towards atherosclerotic lesions. Besides membrane proteins, cellular metabolism has been shown to be a crucial factor in Treg cell migration. We aimed to determine whether dyslipidemia contributes to altered migration of Treg cells, in part, by affecting cellular metabolism. METHODS AND RESULTS Dyslipidemia was induced by feeding Ldlr-/- mice a western-type diet for 16-20 weeks and intrinsic changes in Treg cells affecting their migration and metabolism were examined. Dyslipidemia was associated with altered mTORC2 signalling in Treg cells, decreased expression of membrane proteins involved in migration, including CD62L, CCR7, and S1Pr1, and decreased Treg cell migration towards lymph nodes. Furthermore, we discovered that diet-induced dyslipidemia inhibited mTORC1 signalling, induced PPARδ activation and increased fatty acid (FA) oxidation in Treg cells. Moreover, mass-spectrometry analysis of serum from Ldlr-/- mice with normolipidemia or dyslipidemia showed increases in multiple PPARδ ligands during dyslipidemia. Treatment with a synthetic PPARδ agonist increased the migratory capacity of Treg cells in vitro and in vivo in an FA oxidation-dependent manner. Furthermore, diet-induced dyslipidemia actually enhanced Treg cell migration into the inflamed peritoneum and into atherosclerotic lesions in vitro. CONCLUSION Altogether, our findings implicate that dyslipidemia does not contribute to atherosclerosis by impairing Treg cell migration as dyslipidemia associated with an effector-like migratory phenotype in Treg cells.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Movement/drug effects
- Cells, Cultured
- Coculture Techniques
- Diet, High-Fat
- Disease Models, Animal
- Dyslipidemias/genetics
- Dyslipidemias/immunology
- Dyslipidemias/metabolism
- Energy Metabolism/drug effects
- Fatty Acids/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mechanistic Target of Rapamycin Complex 2/metabolism
- Mice, Knockout, ApoE
- Oxidation-Reduction
- PPAR gamma/agonists
- PPAR gamma/metabolism
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thiazoles/pharmacology
- Mice
Collapse
Affiliation(s)
- Jacob Amersfoort
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hidde Douna
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Peter J van Santbrink
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijs H M van Puijvelde
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amy Harms
- Division of Biomedicine and Systems Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| | | | - Yanyan Wang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Thomas Hankemeier
- Division of Biomedicine and Systems Pharmacology, LACDR, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Johan Kuiper
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
16
|
Rodríguez-Borjabad C, Narveud I, Christensen JJ, Ulven SM, Malo AI, Ibarretxe D, Girona J, Torvik K, Bogsrud MP, Retterstøl K, Plana N, Masana L, Holven KB. Dietary intake and lipid levels in Norwegian and Spanish children with familial hypercholesterolemia. Nutr Metab Cardiovasc Dis 2021; 31:1299-1307. [PMID: 33549456 DOI: 10.1016/j.numecd.2020.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Both the Nordic and Mediterranean diets claim to have a beneficial effect on lipid metabolism and cardiovascular prevention. The objective of this study was to compare diets consumed by children with FH at the time of diagnosis in Norway and Spain and to study their relationship with the lipid profile. METHODS AND RESULTS In this cross-sectional study, we appraised the dietary intake in children (4-18 years old) with (n = 114) and without FH (n = 145) from Norway and Spain. We compared Nordic and Mediterranean diet composition differences and determined the association between food groups and lipid profiles. RESULTS The Spanish FH group had a higher intake of total fats (mainly monounsaturated fatty acids (MUFAs)), cholesterol and fibre, but a lower intake of polyunsaturated fatty acids (PUFAs) compared to the Norwegian FH group. The Norwegian children consumed more rapeseed oil, low-fat margarine and whole grains and less olive oil, eggs, fatty fish, meat, legumes and nuts. In the Norwegian FH group, fat and MUFAs were directly correlated with total cholesterol, low-density lipoprotein cholesterol and apolipoprotein B and inversely correlated with high-density lipoprotein (HDL-C). In Spanish children with FH, the intake of fats (mainly MUFAs) was directly associated with HDL-C and apolipoprotein A1. CONCLUSIONS Despite a similar lipid phenotype, diets consumed by children with FH in Norway and Spain have significant differences at time of diagnosis. Nutrition advice should be more adapted to local intake patterns than on specific nutrient composition.
Collapse
Affiliation(s)
- Cèlia Rodríguez-Borjabad
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgil University, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingunn Narveud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Aker Hospital, Norway
| | - Jacob Juel Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Aker Hospital, Norway
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ana Irene Malo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgil University, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgil University, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgil University, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Kristin Torvik
- Nutrition outpatient clinic, Division of cancer medicine, Oslo University Hospital, Norway
| | - Martin Prøven Bogsrud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Aker Hospital, Norway; Unit for cardiac and cardiovascular genetics, Oslo University Hospital, P. O Box 4950, Nydalen, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; The Lipid Clinic, Oslo University Hospital, Rikshospitalet, P. O Box 4950, Nydalen, Norway
| | - Núria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgil University, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgil University, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Kristen Bjørklund Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Aker Hospital, Norway
| |
Collapse
|
17
|
Rodríguez-Borjabad C, Malo AI, Ibarretxe D, Girona J, Heras M, Ferré R, Feliu A, Salvadó M, Varela A, Amigó N, Masana L, Plana N. Efficacy of therapeutic lifestyle changes on lipid profiles assessed by NMR in children with familial and non-familial hypercholesterolemia. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 32:49-58. [PMID: 32005605 DOI: 10.1016/j.arteri.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS The first line of therapy in children with hypercholesterolaemia is therapeutic lifestyle changes (TLSC). The efficacy of lifestyle intervention in children with familial hypercholesterolaemia (FH), where LDL-C levels are genetically driven, deserves a focused study. AIMS To evaluate the impact of a lifestyle education program, focused on food patterns and physical activity, on lipid profiles assessed by nuclear magnetic resonance (NMR) in children with FH vs. non-FH. METHODS Phase 1 was a cross-sectional study of baseline characteristics, and phase 2 was a prospective TLSC intervention study. In total, the study included 238 children (4 to 18 years old; 47% girls) attending the lipid unit of our hospital due to high cholesterol levels. Eighty-five were diagnosed with FH (72% genetic positive), and 153 were diagnosed with non-Familial hypercholesterolaemia. A quantitative food frequency questionnaire (FFQ) including 137 items was used. Physical activity (PA) was assessed by the Minnesota questionnaire. The lipid profile was assessed using the 2D-1H-NMR (Liposcale test). A total of 127 children (81 in the FH group) participated in the prospective phase and were re-assessed after 1 year of the TLSC intervention, consisting of education on lifestyle changes delivered by a specialized nutritionist. RESULTS The FH and non-FH groups were similar in anthropometry and clinical data, except that those in the FH were slightly younger than those in the non-FH group. Both the FH and non-FH groups showed a similar diet composition characterized by a high absolute calorie intake and a high percentage of fat, mainly saturated fat. The PA was below the recommended level in both groups. After one year of TLSC, the percentage of total and saturated fats was reduced, and the amount of fiber increased significantly in both groups. The percentage of protein increased slightly. The number of children engaged in at least 1 hour/day of PA increased by 56% in the FH group and by 53% in the non-FH group, and both these increases were significant. The total and small-LDL particle numbers were reduced in both groups, although the absolute change was greater in the FH group than in the non-FH group. CONCLUSIONS Educational strategies to implement TLSC in children lead to empowerment, increased adherence, and overall metabolic improvement in children with high blood cholesterol, including those with FH.
Collapse
Affiliation(s)
- Cèlia Rodríguez-Borjabad
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana Irene Malo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Mercedes Heras
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Raimon Ferré
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Albert Feliu
- Pediatrics Research Unit, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | | | | | - Núria Amigó
- Department of Electronic Engineering and Automation, Universitat Rovira i Virgili, IISPV, Tarragona, Spain; Biosfer Teslab, Reus, Tarragona, Spain
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Núria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | | | |
Collapse
|
18
|
Rämö JT, Ripatti P, Tabassum R, Söderlund S, Matikainen N, Gerl MJ, Klose C, Surma MA, Stitziel NO, Havulinna AS, Pirinen M, Salomaa V, Freimer NB, Jauhiainen M, Palotie A, Taskinen MR, Simons K, Ripatti S. Coronary Artery Disease Risk and Lipidomic Profiles Are Similar in Hyperlipidemias With Family History and Population-Ascertained Hyperlipidemias. J Am Heart Assoc 2019; 8:e012415. [PMID: 31256696 PMCID: PMC6662358 DOI: 10.1161/jaha.119.012415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background We asked whether, after excluding familial hypercholesterolemia, individuals with high low‐density lipoprotein cholesterol (LDL‐C) or triacylglyceride levels and a family history of the same hyperlipidemia have greater coronary artery disease risk or different lipidomic profiles compared with population‐based hyperlipidemias. Methods and Results We determined incident coronary artery disease risk for 755 members of 66 hyperlipidemic families (≥2 first‐degree relatives with similar hyperlipidemia) and 19 644 Finnish FINRISK population study participants. We quantified 151 circulating lipid species from 550 members of 73 hyperlipidemic families and 897 FINRISK participants using mass spectrometric shotgun lipidomics. Familial hypercholesterolemia was excluded using functional LDL receptor testing and genotyping. Hyperlipidemias (LDL‐C or triacylglycerides >90th population percentile) associated with increased coronary artery disease risk in meta‐analysis of the hyperlipidemic families and the population cohort (high LDL‐C: hazard ratio, 1.74 [95% CI, 1.48–2.04]; high triacylglycerides: hazard ratio, 1.38 [95% CI, 1.09–1.74]). Risk estimates were similar in the family and population cohorts also after adjusting for lipid‐lowering medication. In lipidomic profiling, high LDL‐C associated with 108 lipid species, and high triacylglycerides associated with 131 lipid species in either cohort (at 5% false discovery rate; P‐value range 0.038–2.3×10−56). Lipidomic profiles were highly similar for hyperlipidemic individuals in the families and the population (LDL‐C: r=0.80; triacylglycerides: r=0.96; no lipid species deviated between the cohorts). Conclusions Hyperlipidemias with family history conferred similar coronary artery disease risk as population‐based hyperlipidemias. We identified distinct lipidomic profiles associated with high LDL‐C and triacylglycerides. Lipidomic profiles were similar between hyperlipidemias with family history and population‐ascertained hyperlipidemias, providing evidence of similar and overlapping underlying mechanisms.
Collapse
Affiliation(s)
- Joel T Rämö
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland
| | - Pietari Ripatti
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland
| | - Rubina Tabassum
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland
| | - Sanni Söderlund
- 2 Research Programs Unit Clinical and Molecular Metabolism University of Helsinki Finland.,3 Endocrinology Abdominal Center Helsinki University Hospital Helsinki Finland
| | - Niina Matikainen
- 2 Research Programs Unit Clinical and Molecular Metabolism University of Helsinki Finland.,3 Endocrinology Abdominal Center Helsinki University Hospital Helsinki Finland
| | | | | | - Michal A Surma
- 4 Lipotype GmbH Dresden Germany.,5 Łukasiewicz Research Network-PORT Polish Center for Technology Development Wroclaw Poland
| | - Nathan O Stitziel
- 6 Cardiovascular Division Department of Medicine Washington University School of Medicine St. Louis MO.,7 Department of Genetics Washington University School of Medicine St. Louis MO.,8 McDonnell Genome Institute Washington University School of Medicine St. Louis MO
| | - Aki S Havulinna
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland.,9 National Institute for Health and Welfare Helsinki Finland
| | - Matti Pirinen
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland.,10 Department of Mathematics and Statistics Faculty of Science University of Helsinki Finland.,16 Department of Public Health Clinicum Faculty of Medicine University of Helsinki Finland
| | - Veikko Salomaa
- 9 National Institute for Health and Welfare Helsinki Finland
| | - Nelson B Freimer
- 11 Center for Neurobehavioral Genetics Semel Institute for Neuroscience and Human Behavior University of California Los Angeles CA
| | - Matti Jauhiainen
- 9 National Institute for Health and Welfare Helsinki Finland.,12 Minerva Foundation Institute for Medical Research Biomedicum Helsinki Finland
| | - Aarno Palotie
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland.,13 Program in Medical and Population Genetics and The Stanley Center for Psychiatric Research The Broad Institute of MIT and Harvard Cambridge MA.,14 Psychiatric and Neurodevelopmental Genetics Unit Department of Psychiatry, Analytic and Translational Genetics Unit Department of Medicine, and the Department of Neurology Massachusetts General Hospital Boston MA
| | - Marja-Riitta Taskinen
- 2 Research Programs Unit Clinical and Molecular Metabolism University of Helsinki Finland
| | - Kai Simons
- 4 Lipotype GmbH Dresden Germany.,15 Max Planck Institute of Cell Biology and Genetics Dresden Germany
| | - Samuli Ripatti
- 1 Institute for Molecular Medicine Finland HiLIFE University of Helsinki Finland.,13 Program in Medical and Population Genetics and The Stanley Center for Psychiatric Research The Broad Institute of MIT and Harvard Cambridge MA.,16 Department of Public Health Clinicum Faculty of Medicine University of Helsinki Finland
| |
Collapse
|
19
|
Ulven SM, Christensen JJ, Nygård O, Svardal A, Leder L, Ottestad I, Lysne V, Laupsa-Borge J, Ueland PM, Midttun Ø, Meyer K, McCann A, Andersen LF, Holven KB. Using metabolic profiling and gene expression analyses to explore molecular effects of replacing saturated fat with polyunsaturated fat-a randomized controlled dietary intervention study. Am J Clin Nutr 2019; 109:1239-1250. [PMID: 31051508 PMCID: PMC6499508 DOI: 10.1093/ajcn/nqy356] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Replacing dietary saturated fatty acids (SFAs) with polyunsaturated fatty acids (PUFA) reduces the plasma low-density lipoprotein (LDL) cholesterol and subsequently the risk of cardiovascular disease. However, beyond changes in LDL cholesterol, we lack a complete understanding of the physiologic alterations that occur when improving dietary fat quality. OBJECTIVES The aim of this study was to gain knowledge of metabolic alterations paralleling improvements in the fat quality of the diet. METHODS We recently conducted an 8-wk, double-blind, randomized controlled trial replacing SFAs with PUFAs in healthy subjects with moderate hypercholesterolemia (n = 99). In the present substudy, we performed comprehensive metabolic profiling with multiple platforms (both nuclear magnetic resonance- and mass spectrometry-based technology) (n = 99), and analyzed peripheral blood mononuclear cell gene expression (n = 95) by quantitative real-time polymerase chain reaction. RESULTS A large number of lipoprotein subclasses, myristoylcarnitine and palmitoylcarnitine, and kynurenine were reduced when SFAs were replaced with PUFAs. In contrast, bile acids, proprotein convertase subtilisin/kexin type 9, acetate, and acetoacetate were increased by the intervention. Some amino acids were also altered by the intervention. The mRNA levels of LXRA and LDLR were increased, in addition to several liver X receptor α target genes and genes involved in inflammation, whereas the mRNA levels of UCP2 and PPARD were decreased in peripheral blood mononuclear cells after replacing SFAs with PUFAs. Partial least squares-discriminant analysis showed that the 30 most important variables that contributed to class separation spanned all classes of biomarkers, and was in accordance with the univariate analysis. CONCLUSIONS Applying metabolomics in randomized controlled dietary intervention trials has the potential to extend our knowledge of the biological and molecular effects of dietary fat quality. This study was registered at clinicaltrials.gov as NCT01679496.
Collapse
Affiliation(s)
- Stine M Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway,Address correspondence to SMU (e-mail: )
| | - Jacob J Christensen
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Norway
| | - Asbjørn Svardal
- Department of Clinical Science, University of Bergen, Norway
| | - Lena Leder
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway,Mills DA, Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Vegard Lysne
- Department of Clinical Science, University of Bergen, Norway
| | | | | | | | | | | | - Lene F Andersen
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo, Norway
| |
Collapse
|
20
|
Delayed postprandial TAG peak after intake of SFA compared with PUFA in subjects with and without familial hypercholesterolaemia: a randomised controlled trial. Br J Nutr 2019; 119:1142-1150. [PMID: 29759104 DOI: 10.1017/s0007114518000673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Postprandial hypertriacylglycerolaemia is associated with an increased risk of developing CVD. How fat quality influences postprandial lipid response is scarcely explored in subjects with familial hypercholesterolaemia (FH). The aim of this study was to investigate the postprandial response of TAG and lipid sub-classes after consumption of high-fat meals with different fat quality in subjects with FH compared with normolipidaemic controls. A randomised controlled double-blind cross-over study with two meals and two groups was performed. A total of thirteen hypercholesterolaemic subjects with FH who discontinued lipid-lowering treatment 4 weeks before and during the study, and fourteen normolipidaemic controls, were included. Subjects were aged 18-30 years and had a BMI of 18·5-30·0 kg/m2. Each meal consisted of a muffin containing 60 g (70 E%) of fat, either mainly SFA (40 E%) or PUFA (40 E%), eaten in a random order with a wash-out period of 3-5 weeks between the meals. Blood samples were collected at baseline (fasting) and 2, 4 and 6 h after intake of the meals. In both FH and control subjects, the level of TAG and the largest VLDL sub-classes peaked at 2 h after intake of PUFA and at 4 h after intake of SFA. No significant differences were found in TAG levels between meals or between groups (0·25≤P≤0·72). The distinct TAG peaks may reflect differences in the postprandial lipid metabolism after intake of fatty acids with different chain lengths and degrees of saturation. The clinical impact of these findings remains to be determined.
Collapse
|
21
|
Plana N, Rodríguez-Borjabad C, Ibarretxe D, Ferré R, Feliu A, Caselles A, Masana L. Lipid and lipoprotein parameters for detection of familial hypercholesterolemia in childhood. The DECOPIN Project. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2018; 30:170-178. [PMID: 29602595 DOI: 10.1016/j.arteri.2017.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Familial hypercholesterolaemia (FH) in children is under-detected and is difficult to diagnose in clinical practice. The aim of this study was to evaluate clinical, biochemical and vascular imaging variables in order to detect children and adolescents with FH. METHODS A total of 222 children aged 4-18 years old were recruited to participate in a project for the early detection of FH (The DECOPIN Project). They were distributed into 3groups: FH, if genetic study or clinical criteria were positive (n=91); Polygenic hypercholesterolaemia (PH) if LDL-Cholesterol >135mg/dL without FH criteria (n=23), and Control group (CG) if LDL-C <135mg/dL (n=108). Data were collected from family history, anthropometric data, and clinical variables. The usual biochemical parameters, including a complete lipid profile were analysed. The carotid intima-media thickness (cIMT) and thickness of Achilles tendons were determined using ultrasound in all participants. RESULTS A total of 91 children had a diagnosis of FH, 23 with PH, and 108 with CG. Children with FH had higher concentrations of total cholesterol, LDL-C, ApoB/ApoA1 ratio, and cholesterol-year score, than the other groups. HDL-C was lower in the FH group than in the CG. Thickness of the Achilles tendon and cIMT did not show any differences between groups, although a greater cIMT trend was observed in the FH group. ApoB/ApoA1 ratio >0.82 was the parameter with the highest sensitivity and specificity to predict the presence of mutation in children with FH. CONCLUSIONS Although LDL-C is the main biochemical parameter used to define FH, the ApoB/ApoA1 ratio (>0.82) may be a useful tool to identify children with FH and a positive mutation.
Collapse
Affiliation(s)
- Núria Plana
- Unitat de Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan, Unitat d'Investigació en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili (IISPV), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Reus, Tarragona, España.
| | - Cèlia Rodríguez-Borjabad
- Unitat de Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan, Unitat d'Investigació en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili (IISPV), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Reus, Tarragona, España
| | - Daiana Ibarretxe
- Unitat de Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan, Unitat d'Investigació en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili (IISPV), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Reus, Tarragona, España
| | - Raimon Ferré
- Unitat de Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan, Unitat d'Investigació en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili (IISPV), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Reus, Tarragona, España
| | - Albert Feliu
- Unitat d'Endocrinologia Pediàtrica, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, Reus, Tarragona, España
| | | | - Luis Masana
- Unitat de Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan, Unitat d'Investigació en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili (IISPV), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Reus, Tarragona, España
| |
Collapse
|