1
|
Zhai M, Lei Z, Shi Y, Shi J, Zeng Y, Gong S, Jian W, Zhuang J, Yu Q, Feinberg MW, Peng W. TEAD1-Mediated Trans-Differentiation of Vascular Smooth Muscle Cells into Fibroblast-Like Cells Contributes to the Stabilization and Repair of Disrupted Atherosclerotic Plaques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407408. [PMID: 39665254 DOI: 10.1002/advs.202407408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/24/2024] [Indexed: 12/13/2024]
Abstract
Atherosclerotic plaque rupture mainly contributes to acute coronary syndrome (ACS). Insufficient repair of these plaques leads to thrombosis and subsequent ACS. Central to this process is the modulation of vascular smooth muscle cells (VSMCs) phenotypes, emphasizing their pivotal role in atherosclerotic plaque stability and healing post-disruption. Here, an expansion of FSP1+ cells in a tandem stenosis (TS) model of atherosclerotic mice is unveiled, predominantly originating from VSMCs through single-cell RNA sequencing (scRNA-seq) analyses and VSMC lineage tracing studies. Further investigation identified TEA domain transcription factor 1 (TEAD1) as the key transcription factor driving the trans-differentiation of VSMCs into fibroblast-like cells. In vivo experiments using a TS model of plaque rupture demonstrated that TEAD1 played a crucial role in promoting plaque stability and healing post-rupture through pharmacological or TEAD1-AAV treatments. Mechanistically, it is found that TEAD1 promoted the expression of fibroblast markers through the Wnt4/β-Catenin pathway, facilitating the trans-differentiation. Thus, this study illustrated that TEAD1 played a critical role in promoting the trans-differentiation of VSMCs into fibroblast-like cells and subsequent extracellular matrix production through the Wnt4/β-Catenin pathway. Consequently, this process enhanced the healing mechanisms following plaque rupture, elucidating potential therapeutic avenues for managing atherosclerotic instability.
Collapse
Affiliation(s)
- Ming Zhai
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Zhijun Lei
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yefei Shi
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Jiayun Shi
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yanxi Zeng
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Shiyu Gong
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Weixia Jian
- Department of Endocrinology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Jianhui Zhuang
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenhui Peng
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| |
Collapse
|
2
|
Ling C, Yang Y, Zhang B, Wang H, Chen C. Phoenixin-14 maintains the contractile type of vascular smooth muscle cells in cerebral aneurysms rats. J Biochem Mol Toxicol 2024; 38:e23813. [PMID: 39148253 DOI: 10.1002/jbt.23813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The rupture of intracranial aneurysm (IA) is the primary reason contributing to the occurrence of life-threatening subarachnoid hemorrhages. The oxidative stress-induced phenotypic transformation from the contractile phenotype to the synthetic phenotype of vascular smooth muscle cells (VSMCs) plays a pivotal role in IA formation and rupture. Our study aimed to figure out the role of phoenixin-14 in VSMC phenotypic switching during the pathogenesis of IA by using both cellular and animal models. Primary rat VSMCs were isolated from the Willis circle of male Sprague-Dawley rats. VSMCs were stimulated by hydrogen peroxide (H2O2) to establish a cell oxidative damage model. After pretreatment with phoenixin-14 and exposure to H2O2, VSMC viability, migration, and invasion were examined through cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Intracellular reactive oxygen species (ROS) production in VSMCs was evaluated by using 2',7'-Dichlorofluorescin diacetate (DCFH-DA) fluorescence probes and flow cytometry. Rat IA models were established by ligation of the left common carotid arteries and posterior branches of both renal arteries. The histopathological changes of rat intracranial blood vessels were observed through hematoxylin and eosin staining. The levels of contractile phenotype markers (alpha-smooth muscle actin [α-SMA] and smooth muscle 22 alpha [SM22α]) in VSMCs and rat arterial rings were determined through real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Our results showed that H2O2 stimulated the production of intracellular ROS and induced oxidative stress in VSMCs, while phoenixin-14 pretreatment attenuated intracellular ROS levels in H2O2-exposed VSMCs. H2O2 exposure promoted VSMC migration and invasion, which, however, was reversed by phoenixin-14 pretreatment. Besides, phoenixin-14 administration inhibited IA formation and rupture in rat models. The decrease in α-SMA and SM22α levels in H2O2-exposed VSMCs and IA rat models was antagonized by phoenixin-14. Collectively, phoenixin-14 ameliorates the progression of IA through preventing the loss of the contractile phenotype of VSMCs.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Rats
- Male
- Rats, Sprague-Dawley
- Intracranial Aneurysm/pathology
- Intracranial Aneurysm/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Reactive Oxygen Species/metabolism
- Oxidative Stress/drug effects
- Hydrogen Peroxide/pharmacology
- Muscle Contraction/drug effects
Collapse
Affiliation(s)
- Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Singhrao N, Flores-Tamez VA, Moustafa YA, Reddy GR, Burns AE, Pinkerton KE, Chen CY, Navedo MF, Nieves-Cintrón M. Nicotine Impairs Smooth Muscle cAMP Signaling and Vascular Reactivity. Microcirculation 2024; 31:e12871. [PMID: 38805589 PMCID: PMC11303104 DOI: 10.1111/micc.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE This study aimed to determine nicotine's impact on receptor-mediated cyclic adenosine monophosphate (cAMP) synthesis in vascular smooth muscle (VSM). We hypothesize that nicotine impairs β adrenergic-mediated cAMP signaling in VSM, leading to altered vascular reactivity. METHODS The effects of nicotine on cAMP signaling and vascular function were systematically tested in aortic VSM cells and acutely isolated aortas from mice expressing the cAMP sensor TEpacVV (Camper), specifically in VSM (e.g., CamperSM). RESULTS Isoproterenol (ISO)-induced β-adrenergic production of cAMP in VSM was significantly reduced in cells from second-hand smoke (SHS)-exposed mice and cultured wild-type VSM treated with nicotine. The decrease in cAMP synthesis caused by nicotine was verified in freshly isolated arteries from a mouse that had cAMP sensor expression in VSM (e.g., CamperSM mouse). Functionally, the changes in cAMP signaling in response to nicotine hindered ISO-induced vasodilation, but this was reversed by immediate PDE3 inhibition. CONCLUSIONS These results imply that nicotine alters VSM β adrenergic-mediated cAMP signaling and vasodilation, which may contribute to the dysregulation of vascular reactivity and the development of vascular complications for nicotine-containing product users.
Collapse
Affiliation(s)
- Navid Singhrao
- Department of Pharmacology, University of California, Davis, USA
| | | | | | | | - Abby E. Burns
- Department of Pharmacology, University of California, Davis, USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, California, USA
| | - Chao-Yin Chen
- Department of Pharmacology, University of California, Davis, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, USA
| | | |
Collapse
|
4
|
Sun J, Shao Y, Pei L, Zhu Q, Yu X, Yao W. AKAP1 alleviates VSMC phenotypic modulation and neointima formation by inhibiting Drp1-dependent mitochondrial fission. Biomed Pharmacother 2024; 176:116858. [PMID: 38850669 DOI: 10.1016/j.biopha.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
The roles and mechanisms of A-kinase anchoring protein 1 (AKAP1) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. AKAP1 is a mitochondrial PKA-anchored protein and maintains mitochondrial homeostasis. This study aimed to investigate how AKAP1/PKA signaling plays a protective role in inhibiting VSMC phenotypic transformation and neointima formation by regulating mitochondrial fission. The results showed that both PDGF-BB treatment and balloon injury reduced the transcription, expression, and mitochondrial anchoring of AKAP1. In vitro, the overexpression of AKAP1 significantly inhibited PDGF-BB mediated VSMC proliferation and migration, whereas AKAP1 knockdown further aggravated VSMC phenotypic transformation. Additionally, in the balloon injury model in vivo, AKAP1 overexpression reduced neointima formation, the muscle fiber area ratio, and rat VSMC proliferation and migration. Furthermore, PDGF-BB and balloon injury inhibited Drp1 phosphorylation at Ser637 and promoted Drp1 activity and mitochondrial midzone fission; AKAP1 overexpression reversed these effects. AKAP1 overexpression also inhibited the distribution of mitochondria at the plasma membrane and the reduction of PKARIIβ expression induced by PDGF-BB, as evidenced by an increase in mitochondria-plasma membrane distance as well as PKARIIβ protein levels. Moreover, the PKA agonist promoted Drp1 phosphorylation (Ser637) and inhibited PDGF-BB-mediated mitochondrial fission, cell proliferation, and migration. The PKA antagonist reversed the increase in Drp1 phosphorylation (Ser637) and the decline in mitochondrial midzone fission and VSMC phenotypic transformation caused by AKAP1 overexpression. The results of this study reveal that AKAP1 protects VSMCs against phenotypic modulation by improving Drp1 phosphorylation at Ser637 through PKA and inhibiting mitochondrial fission, thereby preventing neointima formation.
Collapse
MESH Headings
- Animals
- Male
- Rats
- A Kinase Anchor Proteins/metabolism
- A Kinase Anchor Proteins/genetics
- Becaplermin/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dynamins/metabolism
- Mitochondrial Dynamics/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Phenotype
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
Collapse
Affiliation(s)
- Jingwen Sun
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Yuting Shao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Lele Pei
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Qingyu Zhu
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China
| | - Xiaoqiang Yu
- Department of Vascular Surgery, The First People's Hospital of Nantong, Nantong 226001, China
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong 226001, China.
| |
Collapse
|
5
|
Sun J, Zhu Q, Yu X, Liang X, Guan H, Zhao H, Yao W. RhoGDI3 at the trans-Golgi network participates in NLRP3 inflammasome activation, VSMC phenotypic modulation, and neointima formation. Atherosclerosis 2023; 387:117391. [PMID: 38029612 DOI: 10.1016/j.atherosclerosis.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIMS The pathological roles and mechanisms of Rho-specific guanine nucleotide dissociation inhibitor 3 (RhoGDI3) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. This study aimed to investigate how RhoGDI3 regulates the Nod-like receptor protein 3 (NLRP3) inflammasome in platelet-derived growth factor-BB (PDGF-BB)-induced neointima formation. METHODS For in vitro assays, human aortic VSMCs (HA-VSMCs) were transfected with pcDNA3.1-GDI3 and RhoGDI3 siRNA to overexpress and knockdown RhoGDI3, respectively. HA-VSMCs were also treated with an NLRP3 inhibitor (CY-09) or agonist (NSS). Protein transcription and expression, cell proliferation and migration, Golgi morphology, and protein binding and colocalization were measured. For the in vivo assays, balloon injury (BI) rats were injected with recombinant adenovirus carrying RhoGDI3 shRNA. Carotid arterial morphology, protein expression and colocalization, and activation of the NLRP3 inflammasome were measured. RESULTS PDGF-BB treatment induced transcription and expression of RhoGDI3 through PDGF receptor αβ (PDGFRαβ) rather than PDGFRαα or PDGFRββ in HA-VSMCs. RhoGDI3 suppression blocked PDGF-BB-induced VSMC phenotypic transformation. In contrast, RhoGDI3 overexpression further promoted PDGF-BB-induced VSMC dedifferentiation. The in vivo results also confirmed that RhoGDI3 expressed in VSMCs participated in neointima formation and muscle fiber and collagen deposition caused by balloon injury. In addition, PDGF-BB increased binding of RhoGDI3 to NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) at the trans-Golgi membrane, which depended on the normal Golgi network. However, recruitment of NLRP3 and ASC to the trans-Golgi network after PDGF-BB treatment was independent of RhoGDI3. Moreover, RhoGDI3 knockdown significantly inhibited ASC expression and NLRP3 inflammasome assembly and activation and reduced NLRP3 protein stability in PDGF-BB-treated HA-VSMCs. Inhibiting NLRP3 effectively prevented PDGF-BB-induced VSMC phenotypic modulation, and an NLRP3 agonist reversed the decline in VSMC phenotypic transformation caused by RhoGDI3 knockdown. Furthermore, RhoGDI3 suppression reduced the protein levels and assembly of NLRP3 and ASC, and the activation of the NLRP3 inflammasome in VSMCs in a rat balloon injury model. CONCLUSIONS The results of this study reveal a novel mechanism through which RhoGDI3 regulates VSMC phenotypic modulation and neointima formation by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jingwen Sun
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Qingyu Zhu
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Xiaoqiang Yu
- Department of Vascular Surgery, The First People's Hospital of Nantong, Nantong, 226001, China
| | - Xiuying Liang
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Haijing Guan
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Heyan Zhao
- Medical School, Nantong University, 19 QiXiu Road, Nantong, 226001, China.
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China.
| |
Collapse
|
6
|
Wang L, Zhang L, Cui LK, Yue X, Huang L, Liu N, Zhu MD, Wang ZB. MiR-590-3p Promotes the Phenotypic Switching of Vascular Smooth Muscle Cells by Targeting Lysyl Oxidase. J Cardiovasc Pharmacol 2023; 82:364-374. [PMID: 37678299 DOI: 10.1097/fjc.0000000000001483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
ABSTRACT We investigated the clinical characteristics of patients with acute aortic dissection (AAD) and miR-590-3p levels in serum, tissue, and vascular smooth muscle cells. The effect of miR-590-3p on the vascular smooth muscle cell phenotype was assessed, and the regulation of lysyl oxidase by miR-5903p was determined. C57BL/6 mice were used to investigate the incidence of AAD and effects of miR-5903p on AAD. The miR-590-3p levels were measured in the aortae of mice, and hematoxylin and eosin staining and Masson staining were performed to identify the morphological features of the aorta. Comparative analysis revealed significant differences in clinical characteristics between patients with AAD and healthy control subjects, with most patients with AAD exhibiting concomitant hypertension and nearly 50% having atherosclerosis. Lysyl oxidase was a direct target of miR-590-3p. Lysyl oxidase overexpression inhibited switching of the vascular smooth muscle cell phenotype from contractile to synthetic, but miR-590-3p overexpression significantly reversed this change. In the mouse model, miR-590-3p upregulation increased the incidence of AAD to 93.3%, and its incidence decreased to 13.3% after miR-590-3p inhibition. Hematoxylin and eosin and Masson staining revealed that the miR-590-3p agomiR group had a greater loss of the contractile phenotype in the dissected aortic wall and an increased number of muscle fibers in the aortic wall, which contributed to thickening of the aortic wall and the formation of a false lumen in aortic dissection. miR-590-3p might be pivotal in the pathogenesis of AAD. Thus, targeting miR-590-3p or its downstream pathways could represent a therapeutic approach for AAD.
Collapse
Affiliation(s)
- Lei Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hu C, Wang Y, Huang W, Xia Y. E prostanoid receptor-3 promotes oxidized low-density lipoprotein-induced human aortic smooth muscle cells inflammation. ESC Heart Fail 2023; 10:1077-1089. [PMID: 36578105 PMCID: PMC10053191 DOI: 10.1002/ehf2.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 11/27/2022] [Indexed: 12/30/2022] Open
Abstract
AIM The progression of atherosclerosis can lead to the occurrence of multiple cardiovascular diseases (coronary heart disease, etc.). E prostanoid receptor-3 (EP3) is known to participate in the progression of atherosclerosis. This study aimed to investigate the mechanism by which EP3 modulates the development of atherosclerosis. METHODS AND RESULTS ApoE-/- mice were used to construct in vivo model of atherosclerosis. Human aortic smooth muscle cells (HASMCs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to construct in vitro model of atherosclerosis. mRNA expressions were assessed by qRT-PCR, and western blot was applied to assess the protein levels. CCK-8 assay was applied to assess the cell viability. The inflammatory cytokines levels were assessed by enzyme-linked immunosorbent assay, and flow cytometry was applied to assess cell apoptosis. In vivo experiment was constructed to investigate the impact of EP3 in atherosclerosis development. L-798106 (EP3 inhibitor) significantly inhibited the levels of pro-inflammatory cytokines in atherosclerosis in vivo. EP3 inhibitor (L-798106) significantly reversed ox-LDL-caused HASMCs injury via inhibiting the apoptosis and inflammatory responses (P < 0.05). The levels of interleukin-17 (IL-17) and intercellular adhesion molecule-1 (ICAM-1) in HASMCs were elevated by ox-LDL, whereas L-798106 or knockdown of cyclic AMP (cAMP) response element-binding protein (CREB) notably restored this phenomenon (P < 0.05). EP3 overexpression further aggravated ox-LDL-induced inflammation in HASMCs, and EP3 up-regulated the levels of IL-17 and ICAM-1 in ox-LDL-treated HASMCs (P < 0.05). EP3 up-regulation promoted the inflammatory responses in ox-LDL-treated HASMCs through mediation of cAMP/protein kinase A (PKA)/CREB/IL-17/ICAM-1 axis (P < 0.05). CONCLUSIONS EP3 inhibitor alleviates ox-LDL-induced HASMC inflammation via mediation of cAMP/PKA/CREB/IL-17/ICAM-1 axis. Our study might shed new lights on discovering novel strategies against atherosclerosis.
Collapse
Affiliation(s)
- Chuang‐Jia Hu
- Department of CardiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
- Laboratory of Molecular CardiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
- Laboratory of Medical Molecular ImagingFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Yan‐Wei Wang
- Department of CardiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Wei‐Xing Huang
- Department of Cardiac SurgeryFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Yu‐Bin Xia
- Department of NephrologyFirst Affiliated Hospital of Shantou University Medical CollegeNo. 57, Changping RdShantou515000Guangdong ProvinceChina
| |
Collapse
|
8
|
Chen Z, Zhai J, Ma J, Chen P, Lin W, Zhang W, Xiong J, Zhang C, Wei H. Melatonin-Primed Mesenchymal Stem Cells-Derived Small Extracellular Vesicles Alleviated Neurogenic Erectile Dysfunction by Reversing Phenotypic Modulation. Adv Healthc Mater 2023; 12:e2203087. [PMID: 36652551 DOI: 10.1002/adhm.202203087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Erectile dysfunction (ED) is an adverse side effect of pelvic surgery with no effective treatment. In this study, it is explored whether melatonin could improve the therapeutic effects of small extracellular vesicles (sEVs), derived from mesenchymal stem cells (MSCs), on cavernous nerve injury (CNI) ED, and the underlying mechanisms are investigated. The sEVs from melatonin-pretreated MSCs (MT-EVs) and MSCs (NC-EVs) are isolated and applied to CNI ED. Transplantation of MT-EVs remarkably increases erectile function and reduces phenotypic modulation in CNI ED rats. The therapeutic effects of MT-EVs are superior to those of NC-EVs. Sequencing implies that miR-10a-3p is enriched in MT-EVs, and directly targets the protein kinase inhibitor α (PKIA). After the suppression of miR-10a-3p, the therapeutic actions of MT-EVs are abolished, but are rescued by PKIA. Similarly, RhoA/ROCK is inhibited by MT-EVs, but this action is reversed by suppressing miR-10a-3p, accompanied by corresponding changes in PKIA. In conclusion, transplantation of MT-EVs could significantly alleviate CNI ED. MT-EVs may relieve the phenotypic modulation of the corpora cavernosum smooth muscle cells via the miR-10a-3p/PKIA/RhoA/ROCK signaling axis. These nanovesicles should be potential therapeutic vectors or bioactive materials for CNI ED.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiancheng Zhai
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiahui Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Weishun Lin
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Weipeng Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiaming Xiong
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Chaowei Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, China
| |
Collapse
|
9
|
Bale BF, Doneen AL, Leimgruber PP, Vigerust DJ. The critical issue linking lipids and inflammation: Clinical utility of stopping oxidative stress. Front Cardiovasc Med 2022; 9:1042729. [PMID: 36439997 PMCID: PMC9682196 DOI: 10.3389/fcvm.2022.1042729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
The formation of an atheroma begins when lipoproteins become trapped in the intima. Entrapped lipoproteins become oxidized and activate the innate immune system. This immunity represents the primary association between lipids and inflammation. When the trapping continues, the link between lipids and inflammation becomes chronic and detrimental, resulting in atherosclerosis. When entrapment ceases, the association between lipids and inflammation is temporary and healthy, and the atherogenic process halts. Therefore, the link between lipids and inflammation depends upon lipoprotein retention in the intima. The entrapment is due to electrostatic forces uniting apolipoprotein B to polysaccharide chains on intimal proteoglycans. The genetic transformation of contractile smooth muscle cells in the media into migratory secretory smooth muscle cells produces the intimal proteoglycans. The protein, platelet-derived growth factor produced by activated platelets, is the primary stimulus for this genetic change. Oxidative stress is the main stimulus to activate platelets. Therefore, minimizing oxidative stress would significantly reduce the retention of lipoproteins. Less entrapment decreases the association between lipids and inflammation. More importantly, it would halt atherogenesis. This review will analyze oxidative stress as the critical link between lipids, inflammation, and the pathogenesis of atherosclerosis. Through this perspective, we will discuss stopping oxidative stress to disrupt a harmful association between lipids and inflammation. Numerous therapeutic options will be discussed to mitigate oxidative stress. This paper will add a new meaning to the Morse code distress signal SOS-stopping oxidative stress.
Collapse
Affiliation(s)
- Bradley Field Bale
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
| | - Amy Lynn Doneen
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
| | - Pierre P. Leimgruber
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
- Department of Medical Education and Clinical Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - David John Vigerust
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
10
|
Coenzyme Q10 inhibits intracranial aneurysm formation and progression in a mouse model. Pediatr Res 2022; 91:839-845. [PMID: 33859365 DOI: 10.1038/s41390-021-01512-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/21/2021] [Accepted: 03/08/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of coenzyme Q10 (CoQ10), a commonly used nutritional supplement, on intracranial aneurysm (IA) initiation and progression in a mouse model, as well as the mechanism. METHODS Hydrogen peroxide (H2O2) was used to treat mouse-derived vascular smooth muscle cells (VSMCs) to induce oxidative injury, followed by incubation with CoQ10. In the mouse IA model established by elastase injection, CoQ10 was orally administered at 10 mg/kg every other day for 14 days, during which the incidence of IA, rupture rate, symptom-free survival, and systolic blood pressure were recorded. RESULTS CoQ10 promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes. In H2O2-treated VSMCs, reactive oxygen species and cell apoptosis were reduced by CoQ10. In IA mice, CoQ10 treatment decreased the rupture rate of IA, improved the symptom-free survival, and reduced systolic blood pressure. Macrophage infiltration and expression of pro-inflammatory cytokines in the cerebral arteries were mitigated by CoQ10 treatment. CONCLUSIONS CoQ10 is effective in reducing oxidative stress in VSMCs, thereby attenuating IA formation and rupture in mice. CoQ10 also alleviates inflammation and restores normal phenotypes of VSMCs in the cerebral arteries. Our data suggest that CoQ10 is a potentially effective drug for managing IA. IMPACT To investigate the effect of CoQ10, a commonly used nutritional supplement, on IA initiation and progression in a mouse model, as well as the mechanism. CoQ10 promoted the expression of Nrf2 and antioxidant enzymes. In H2O2-treated VSMCs, ROS and cell apoptosis were reduced by CoQ10. CoQ10 is effective in reducing oxidative stress in VSMCs, thereby attenuating IA formation and rupture in mice.
Collapse
|
11
|
Li K, Yu G, Xu Y, Chu H, Zhong Y, Zhan H. Phenotypic and Functional Transformation in Smooth Muscle Cells Derived from a Superficial Thrombophlebitis-affected Vein Wall. Ann Vasc Surg 2021; 79:335-347. [PMID: 34648856 DOI: 10.1016/j.avsg.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Superficial thrombophlebitis (ST) is a frequent pathology, but its exact incidence remains to be determined. This study tested the hypothesis whether relationships exist among smooth muscle cells (SMCs) derived from ST, varicose great saphenous veins (VGSVs), and normal great saphenous veins (GSVs). METHODS Forty-one samples of ST, VGSVs, and GSVs were collected. SMCs were isolated and cultured. Proliferation, migration, adhesion, and senescence in SMCs from the three vein walls were compared by various methods. Bax, Bcl-2, caspase-3, matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2 messenger RNA (mRNA) and protein expressions were detected by fluorescence quantitative PCR and Western blot. RESULTS An obvious decrease in cytoskeletal filaments was observed in thrombophlebitic vascular smooth muscle cells (TVSMCs). The quantity of proliferation, migration, adhesion, and senescence in TVSMCs was significantly higher than in varicose vascular smooth muscle cells and normal vascular smooth muscle cells (NVSMCs) (all P < 0.05). Bax and caspase-3 mRNA and protein expression were decreased, while Bcl-2 mRNA and protein expression were increased in the TVSMCs compared with the varicose vascular smooth muscle cells and the NVSMCs (all P < 0.05). MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA and protein expression were significantly increased in the TVSMCs compared with the VVGSVs and the NVSMCs (all P < 0.05). CONCLUSION SMCs derived from ST are more dedifferentiated and demonstrate increased cell proliferation, migration, adhesion, and senescence, as well as obviously decreased cytoskeletal filaments. These results suggest that the phenotypic and functional differences could be related to the presence of atrophic and hypertrophic vein segments during the disease course among SMCs derived from ST, VGSVs, and GSVs.
Collapse
Affiliation(s)
- Kun Li
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guoting Yu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongbo Xu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Haibo Chu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China..
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China..
| | | |
Collapse
|
12
|
Unno N, Tanaka H, Yata T, Kayama T, Yamanaka Y, Tsuyuki H, Sano M, Inuzuka K, Naruse E, Takeuchi H. K-134, a phosphodiesterase 3 inhibitor, reduces vascular inflammation and hypoxia, and prevents rupture of experimental abdominal aortic aneurysms. JVS Vasc Sci 2021; 1:219-232. [PMID: 34617050 PMCID: PMC8489215 DOI: 10.1016/j.jvssci.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022] Open
Abstract
Objective Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease, which frequently results in fatal rupture; however, no pharmacologic treatment exists to inhibit AAA growth and prevent rupture. In this study, we investigated whether K-134, a novel phosphodiesterase 3 inhibitor, could limit the progression and rupture of AAA using multiple experimental models. Methods A hypoperfusion-induced AAA rat model was developed by inserting of a small catheter and via tight ligation of the infrarenal aorta. Rats were fed with a 0.15% K-134-containing diet (K-134(+) group) or a normal diet (K-134(-) group) from 7 days before the experiment to 28 days after model creation (pretreatment protocol). After the administration period, elastin fragmentation, macrophage infiltration, reactive oxygen species expression, matrix metalloproteinase levels, aneurysmal tissue hypoxia, and adventitial vasa vasorum (VV) stenosis were assessed. In the delayed treatment protocol, rats with AAA >3 mm were randomly divided to K-134(+) or K-134(-) group 7 days after model creation, and the effect of K-134 on suppressing preexisting AAA was examined. Further, elastase-induced rat model and angiotensin II-infused ApoE-/- mouse model were also used to examine the ability of K-134 to prevent rupture. Results K-134 prevented AAA rupture and significantly improved survival in the pretreatment protocol (P < .01). In the K-134(+) group, elastin degeneration was prevented; macrophage infiltration and reactive oxygen species production were significantly decreased. At 14 days, the enzymatic activity of matrix metalloproteinase-9 was significantly decreased. Further, K-134 inhibited intimal hyperplasia and VV stenosis. Expressions of hypoxic markers, hypoxia-inducible factor-1α, and pimonidazole, in the aneurysmal wall were also attenuated. In the delayed treatment protocol, K-134 also improved survival of rats with preexisting AAA. Similarly, in the elastase-induced rat model and angiotensin II-infused ApoE-/- mouse model, K-134 inhibited rupture and significantly improved survival (P < .01). Conclusions K-134 prevented the rupture of AAA and improved survival through suppressing inflammatory reaction. The inhibition of intimal hyperplasia in the adventitial VV may be associated with reduced hypoxia in the aneurysmal tissue. (JVS–Vascular Science 2020;1:219-32.) Clinical Relevance This study shows that K-134, a novel phosphodiesterase 3 inhibitor, suppressed abdominal aortic aneurysm (AAA) rupture. Considering that K-134 had already undergone a phase Ⅱ study in the United States for claudication in peripheral artery occlusive disease patients with good tolerance, K-134 may become a promising new therapeutic option for AAAs and could undergo clinical trials for patients with small AAA.
Collapse
Affiliation(s)
- Naoki Unno
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Division of Vascular Surgery, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Hiroki Tanaka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuro Yata
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Kayama
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuta Yamanaka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hajime Tsuyuki
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masaki Sano
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazunori Inuzuka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ena Naruse
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
Ni XQ, Zhang YR, Jia LX, Lu WW, Zhu Q, Ren JL, Chen Y, Zhang LS, Liu X, Yu YR, Jia MZ, Ning ZP, Du J, Tang CS, Qi YF. Inhibition of Notch1-mediated inflammation by intermedin protects against abdominal aortic aneurysm via PI3K/Akt signaling pathway. Aging (Albany NY) 2021; 13:5164-5184. [PMID: 33535178 PMCID: PMC7950288 DOI: 10.18632/aging.202436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
The Notch1-mediated inflammatory response participates in the development of abdominal aortic aneurysm (AAA). The vascular endogenous bioactive peptide intermedin (IMD) plays an important role in maintaining vascular homeostasis. However, whether IMD inhibits AAA by inhibiting Notch1-mediated inflammation is unclear. In this study, we found Notch intracellular domain (NICD) and hes1 expression were higher in AAA patients’ aortas than in healthy controls. In angiotensin II (AngII)-induced AAA mouse model, IMD treatment significantly reduced AAA incidence and maximal aortic diameter. IMD inhibited AngII-enlarged aortas and -degraded elastic lamina, reduced NICD, hes1 and inflammatory factors expression, decreased infiltration of CD68 positive macrophages and the NOD-like receptor family pyrin domain containing 3 protein level. IMD inhibited lipopolysaccharide-induced macrophage migration in vitro and regulated macrophage polarization. Moreover, IMD overexpression significantly reduced CaCl2-induced AAA incidence and down-regulated NICD and hes1 expression. However, IMD deficiency showed opposite results. Mechanically, IMD treatment significantly decreased cleavage enzyme-a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) level. Pre-incubation with IMD17-47 (IMD receptors blocking peptide) and the phosphatidylinositol 3-kinase/protein kinase b (PI3K/Akt) inhibitor LY294002 reversed ADAM10 level. In conclusion, exogenous and endogenous IMD could inhibit the development of AAA by inhibiting Notch1 signaling-mediated inflammation via reducing ADAM10 through IMD receptor and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Li-Xin Jia
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing 100029, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Xin Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing 100029, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| |
Collapse
|
14
|
Song W, Gao K, Huang P, Tang Z, Nie F, Jia S, Guo R. Bazedoxifene inhibits PDGF-BB induced VSMC phenotypic switch via regulating the autophagy level. Life Sci 2020; 259:118397. [DOI: 10.1016/j.lfs.2020.118397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023]
|
15
|
Fan S, Qi D, Yu Q, Tang X, Wen X, Wang D, Deng X. Intermedin alleviates the inflammatory response and stabilizes the endothelial barrier in LPS-induced ARDS through the PI3K/Akt/eNOS signaling pathway. Int Immunopharmacol 2020; 88:106951. [PMID: 32892076 DOI: 10.1016/j.intimp.2020.106951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory storms and endothelial barrier dysfunction are the central pathophysiological features of acute respiratory distress syndrome (ARDS). Intermedin (IMD), a member of the calcitonin gene-related peptide (CGRP) family, has been reported to alleviate inflammation and protect endothelial cell (EC) integrity. However, the effects of IMD on ARDS have not been clearly elucidated. In the present study, clinical ARDS data were used to explore the relationship between serum IMD levels and disease severity and prognosis, and we then established a model to predict the possibility of hospital survival. Mouse models of ARDS and LPS-challenged endothelial cells were used to analyze the protective effect and underlying mechanism of IMD. We found that in patients with ARDS, increased serum IMD levels were associated with reduced disease severity and increased rates of hospital survival. IMD alleviated the LPS-induced inflammatory response by decreasing proinflammatory cytokines, NF-κB p65 expression and NF-κB p65 nuclear translocation. In addition, IMD stabilized the endothelial barrier by repairing adherens junctions (AJs), cytoskeleton and capillary leakage. IMD exerted protective effects against ARDS on pulmonary endothelial cells, at least partly, through PI3K/Akt/eNOS signaling, while IMD's anti-inflammation effect was mediated through an eNOS-independent mechanism. Our study may provide new therapeutic insight for ARDS treatment.
Collapse
Affiliation(s)
- Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoting Wen
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Zhang LS, Liu Y, Chen Y, Ren JL, Zhang YR, Yu YR, Jia MZ, Ning ZP, Du J, Tang CS, Qi YF. Intermedin alleviates pathological cardiac remodeling by upregulating klotho. Pharmacol Res 2020; 159:104926. [PMID: 32502636 DOI: 10.1016/j.phrs.2020.104926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 11/19/2022]
Abstract
Cardiac remodeling is accompanied by cardiac hypertrophy, fibrosis, dysfunction, and eventually leading to heart failure. Intermedin (IMD), as a paracrine/autocrine peptide, has a protective effect in cardiovascular diseases. In this study, we elucidated the role and the underlying mechanism of IMD in pathological remodeling. Pathological remodeling mouse models were induced by abdominal aorta constriction for 4 weeks or angiotensin II (Ang II) infusion for 2 weeks in wildtype, IMD-overexpression, IMD-knockout and klotho-knockdown mice. Western blot, real-time PCR, histological staining, echocardiography and hemodynamics were used to detect the role of IMD in cardiac remodeling. Cardiac hypertrophy, fibrosis and dysfunction were significantly aggravated in IMD-knockout mice versus wildtype mice, and the expression of klotho was downregulated. Conversely, cardiac remodeling was alleviated in IMD-overexpression mice, and the expression of klotho was upregulated. Hypertension induced by Ang II infusion rather than abdominal aorta constriction was mitigated by IMD. However, the cardioprotective effect of IMD was blocked in klotho-knockdown mice. Similar results were found in cultured neonatal rat cardiomyocytes, which was pretreated with IMD before Ang II stimulation. Mechanistically, IMD inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the activity of calcineurin to protect against cardiac hypertrophy through upregulating klotho in vivo and in vitro. Furthermore, peroxisome proliferator-activated receptor γ (PPARγ) might mediate IMD upregulating klotho. In conclusion, pathological remodeling may be alleviated by endogenous IMD, which inhibits the expression of calcineurin and p-CaMKII by upregulating klotho via the PPARγ pathway. It suggested that IMD might be a therapeutic target for heart disease.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Abdominal/physiopathology
- Aorta, Abdominal/surgery
- Calcineurin/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- Constriction
- Disease Models, Animal
- Fibrosis
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Klotho Proteins
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Neuropeptides/genetics
- Neuropeptides/metabolism
- PPAR gamma/metabolism
- Peptide Hormones/pharmacology
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yan Liu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, Beijing, 100029, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, Beijing, 100029, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China.
| |
Collapse
|
17
|
Sun X, Li S, Gan X, Chen K, Yang D, Yang Y. NF2 deficiency accelerates neointima hyperplasia following vascular injury via promoting YAP-TEAD1 interaction in vascular smooth muscle cells. Aging (Albany NY) 2020; 12:9726-9744. [PMID: 32422606 PMCID: PMC7288949 DOI: 10.18632/aging.103240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/31/2020] [Indexed: 01/12/2023]
Abstract
Neurofibromin 2 (NF2), a potent tumor suppressor, is reported to inhibit proliferation in several cell types. The role of NF2 in neointima hyperplasia after vascular injury is unknown. We explored the role of NF2 in proliferation, migration of vascular smooth muscle cell (VSMC) and neointima hyperplasia after vascular injury. NF2 phosphorylation was elevated in VSMC subjected to platelet-derived growth factor (PDGF)-BB and in artery subjected to vascular injury. Mice deficient for Nf2 in VSMC showed enhanced neointima hyperplasia after injury, increased proliferation and migration of VSMC after PDGF-BB treatment. Mechanistically, we observed increased nuclear p-NF2, declined p-Yes-Associated Protein (YAP), nuclear translocation of YAP after PDGF-BB treatment or injury. NF2 knockdown or YAP overexpression showed similar phenotype in VSMC proliferation, migration and neointima hyperplasia. YAP inhibition abolished the above effects mediated by NF2 knockdown. Finally, NF2 knockdown further promoted YAP-TEA Domain Transcription Factor 1 (TEAD1) interaction after PDGF-BB treatment. Inhibition of TEAD1 blocked PDGF-BB-induced VSMC proliferation and migration, which were not reversed by either NF2 knockdown or YAP overexpression. In conclusion, NF2 knockdown promotes VSMC proliferation, migration and neointima hyperplasia after vascular injury via inducing YAP-TEAD1 interaction.
Collapse
Affiliation(s)
- Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Shuang Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xueqing Gan
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Ken Chen
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
18
|
Zhang X, Huang T, Zhai H, Peng W, Zhou Y, Li Q, Yang H. Inhibition of lysine-specific demethylase 1A suppresses neointimal hyperplasia by targeting bone morphogenetic protein 2 and mediating vascular smooth muscle cell phenotype. Cell Prolif 2019; 53:e12711. [PMID: 31737960 PMCID: PMC6985674 DOI: 10.1111/cpr.12711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Vascular disorders are associated with phenotypical switching of vascular smooth muscle cells (VSMCs). We investigated the effect of bone morphogenetic protein (BMP)-2 in controlling VSMC phenotype and vascular disorder progression. Lysine (K)-specific demethylase 1A (KDM1A) has been identified to target BMP-2 and is employed as a therapeutic means of regulating BMP-2 expression in VSMCs. MATERIALS AND METHODS VSMCs were stimulated with angiotensin II, and the expression of KDM1A and BMP-2 was detected. VSMC proliferation, apoptosis, and phenotype were evaluated. An in vivo aortic injury model was established, and VSMC behaviour was evaluated by the expression of key markers. The activation of BMP-2-associated signalling pathways was examined. RESULTS We confirmed the inhibitory effect of KDM1A on BMP-2 activity and demonstrated that KDM1A inhibition prevented VSMC transformation from a contractile to synthetic phenotype. In angiotensin II-treated VSMCs, KDM1A inhibition triggered a decrease in cell proliferation and inflammatory response. In vivo, KDM1A inhibition alleviated post-surgery neointimal formation and collagen deposition, preventing VSMCs from switching into a synthetic phenotype and suppressing disease onset. These processes were mediated by BMP-2 through canonical small mothers against decapentaplegic signalling, which was associated with the activation of BMP receptors 1A and 1B. CONCLUSIONS The regulatory correlation between KDM1A and BMP-2 offers insights into vascular remodelling and VSMC phenotypic modulation. The reported findings contribute to the development of innovative strategies against vascular disorders.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifeng Yang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Xue CD, Chen Y, Ren JL, Zhang LS, Liu X, Yu YR, Tang CS, Qi YF. Endogenous intermedin protects against intimal hyperplasia by inhibiting endoplasmic reticulum stress. Peptides 2019; 121:170131. [PMID: 31408662 DOI: 10.1016/j.peptides.2019.170131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022]
Abstract
Extensive proliferation of vascular smooth muscle cell (VSMC) contributes to intimal hyperplasia following vascular injury, in which endoplasmic reticulum stress (ERS) plays a critical role. Intermedin (IMD) is a vascular paracrine/autocrine peptide exerting numerous beneficial effects in cardiovascular diseases. IMD overexpression could alleviate intimal hyperplasia. Here, we investigated whether endogenous IMD protects against intimal hyperplasia by inhibiting endoplasmic reticulum stress. The mouse left common carotid-artery ligation-injury model was established to induce intimal hyperplasia using IMD-/-mice and C57BL/6 J wild-type (WT) mice. Platelet-derived growth factor-BB (PDGF-BB) was used to stimulate the proliferation of VSMC. IMD-/- mice displayed exacerbated intimal hyperplasia induced by complete ligation of the left carotid artery at 14 d and 28 d compared to WT mice. However, IMD-deficiency had no effect on blood pressure, plasma triglyceride, and fasting blood glucose levels in mice. Furthermore, VSMCs derived from IMD-/- mice showed increased cell proliferation and dramatically elevated levels of glucose regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), ATF6 mRNA under PDGF-BB treatment compared to WT mice-derived VSMCs. In addition, exogenous administration of IMD significantly attenuated PDGF-BB-induced cell proliferation and GRP78, phosphorylase-inositol requiring enzyme 1α, ATF4, and ATF6 protein levels. Thus, endogenous IMD may counteract ERS to exert protective role in response to vascular injury and IMD is expected to be a therapeutic target for the prevention and treatment of restenosis.
Collapse
MESH Headings
- Activating Transcription Factor 4
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Animals
- Becaplermin/pharmacology
- Carotid Arteries/surgery
- Cell Proliferation/drug effects
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Gene Expression Regulation
- Heat-Shock Proteins
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Hyperplasia/prevention & control
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neuropeptides/deficiency
- Neuropeptides/genetics
- Primary Cell Culture
- Signal Transduction
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Chang-Ding Xue
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Xin Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing 100083, China.
| |
Collapse
|
20
|
Shi Y, Li S, Song Y, Liu P, Yang Z, Liu Y, Quan K, Yu G, Fan Z, Zhu W. Nrf-2 signaling inhibits intracranial aneurysm formation and progression by modulating vascular smooth muscle cell phenotype and function. J Neuroinflammation 2019; 16:185. [PMID: 31585542 PMCID: PMC6778377 DOI: 10.1186/s12974-019-1568-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Oxidative stress and vascular smooth muscle cell (VSMC) phenotypic modulation influence intracranial aneurysm (IA) formation and progression. Oxidative stress plays an important role in phenotype switching, and nuclear factor erythroid 2-related factor 2 (Nrf-2) is one of the main antioxidant systems. Unfortunately, little is known about how Nrf-2 signaling influences VSMC phenotype switches during IA pathogenesis. METHODS We examined the effect of Nrf-2 activation IA on formation and progression in an elastase-induced rat IA model. We also developed a hydrogen peroxide (H2O2)-induced VSMC oxidative damage model. Then, we analyzed VSMC phenotype changes in the setting of Nrf-2 activation or inhibition in vitro. The proliferation, migration ability, and apoptosis rate of VSMCs were tested. Lastly, we measured the expression levels of antioxidant enzymes and inflammatory cytokines downstream of Nrf-2. RESULTS Nrf-2 activation suppressed IA formation and progression in vivo. We confirmed Nrf-2 nuclear translocation and a VSMC switch from the contractile to synthetic phenotype. Nrf-2 activation inhibited the proliferation, migratory ability, and apoptosis rate enhanced by H2O2. Quantitative real-time polymerase chain reaction (PCR) and western blot analysis revealed that Nrf-2 activation promoted antioxidant enzymes and VSMC-specific marker gene expressions but decreased pro-inflammatory cytokine levels. CONCLUSION These results suggest that Nrf-2 exerts protective effects against IA development by preventing VSMCs from changing to a synthetic phenotype.
Collapse
Affiliation(s)
- Yuan Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China
| | - Sichen Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Rd. No.2, Shanghai, 200025, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China
| | - Zixiao Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China
| | - Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China
| | - Kai Quan
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China
| | - Guo Yu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China
| | - Zhiyuan Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumiqi Rd., Shanghai, 200040, People's Republic of China.
| |
Collapse
|