1
|
Al Hageh C, O'Sullivan S, Henschel A, Abchee A, Hantouche M, Iakovidou N, Issa T, Chacar S, Nader M, Zalloua PA. PHACTR1 and APOC1 genetic variants are associated with multi-vessel coronary artery disease. Lipids Health Dis 2024; 23:332. [PMID: 39395990 PMCID: PMC11471027 DOI: 10.1186/s12944-024-02327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Severe coronary artery disease (CAD) represents an advanced arterial narrowing, often associated with critical complications like myocardial infarction and angina. This study aimed to comprehensively investigate determinants of severe and multi-vessel CAD manifestations. METHODS One thousand nine hundred patients with severe and multivessel CAD (stenosis > 70%) were recruited along with 1,056 controls without stenosis. Associations using a genotyping panel comprising 159 Single Nucleotide Polymorphisms (SNPs) previously implicated in CAD pathogenesis were examined and these associations were replicated using the UK Biobank cohort (N = 29,970). RESULTS The investigation identified 14 genetic associations with severe CAD, of which 7 were also associated with multivessel disease. Notably, PHACTR1 SNP (rs9349379*G) showed a higher association with severe and multivessel CAD in individuals aged ≤ 65, indicating a higher risk of early disease onset. Conversely, the APOC1/APOE SNP (rs445925*T) is associated with reduced susceptibility to severe CAD and multivessel disease in individuals aged over 65, indicating a persistent negative association. CONCLUSIONS Following replication of the associations in the large UK Biobank dataset, it was found that patients carrying the rs9349379*G variant in the PHACTR1 gene are at risk of developing severe or multivessel disease. Conversely, the rs445925*T variant in APOC1/APOE is associated with reduced susceptibility to severe CAD and multivessel disease, highlighting the significance of this genetic variant in these specific CAD presentations. This study contributes to a better understanding of CAD heterogeneity, paving the way for tailored management strategies based on genetic profiles.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Public Health and Epidemiology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Siobhán O'Sullivan
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Department of Computer Science, College of Computing and Mathematical Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Antoine Abchee
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Mireille Hantouche
- Department of Public Health and Epidemiology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nantia Iakovidou
- Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Taly Issa
- University of Nicosia Medical School, Egkomi, Cyprus
| | - Stephanie Chacar
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, PO Box 127788, United Arab Emirates
| | - Moni Nader
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, PO Box 127788, United Arab Emirates.
| | - Pierre A Zalloua
- Department of Public Health and Epidemiology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Jiang D, Liu H, Zhu G, Li X, Fan L, Zhao F, Xu C, Wang S, Rose Y, Rhen J, Yu Z, Yin Y, Gu Y, Xu X, Fisher EA, Ge J, Xu Y, Pang J. Endothelial PHACTR1 Promotes Endothelial Activation and Atherosclerosis by Repressing PPARγ Activity Under Disturbed Flow in Mice. Arterioscler Thromb Vasc Biol 2023; 43:e303-e322. [PMID: 37199156 PMCID: PMC10524336 DOI: 10.1161/atvbaha.122.318173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Numerous genome-wide association studies revealed that SNPs (single nucleotide polymorphisms) at the PHACTR1 (phosphatase and actin regulator 1) locus strongly correlate with coronary artery disease. However, the biological function of PHACTR1 remains poorly understood. Here, we identified the proatherosclerotic effect of endothelial PHACTR1, contrary to macrophage PHACTR1. METHODS We generated global (Phactr1-/-) and endothelial cell (EC)-specific (Phactr1ECKO) Phactr1 KO (knockout) mice and crossed these mice with apolipoprotein E-deficient (Apoe-/-) mice. Atherosclerosis was induced by feeding the high-fat/high-cholesterol diet for 12 weeks or partially ligating carotid arteries combined with a 2-week high-fat/high-cholesterol diet. PHACTR1 localization was identified by immunostaining of overexpressed PHACTR1 in human umbilical vein ECs exposed to different types of flow. The molecular function of endothelial PHACTR1 was explored by RNA sequencing using EC-enriched mRNA from global or EC-specific Phactr1 KO mice. Endothelial activation was evaluated in human umbilical vein ECs transfected with siRNA targeting PHACTR1 and in Phactr1ECKO mice after partial carotid ligation. RESULTS Global or EC-specific Phactr1 deficiency significantly inhibited atherosclerosis in regions of disturbed flow. PHACTR1 was enriched in ECs and located in the nucleus of disturbed flow areas but shuttled to cytoplasm under laminar flow in vitro. RNA sequencing showed that endothelial Phactr1 depletion affected vascular function, and PPARγ (peroxisome proliferator-activated receptor gamma) was the top transcription factor regulating differentially expressed genes. PHACTR1 functioned as a PPARγ transcriptional corepressor by binding to PPARγ through the corepressor motifs. PPARγ activation protects against atherosclerosis by inhibiting endothelial activation. Consistently, PHACTR1 deficiency remarkably reduced endothelial activation induced by disturbed flow in vivo and in vitro. PPARγ antagonist GW9662 abolished the protective effects of Phactr1 KO on EC activation and atherosclerosis in vivo. CONCLUSIONS Our results identified endothelial PHACTR1 as a novel PPARγ corepressor to promote atherosclerosis in disturbed flow regions. Endothelial PHACTR1 is a potential therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Dongyang Jiang
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Hao Liu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Guofu Zhu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Xiankai Li
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Linlin Fan
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Faxue Zhao
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Chong Xu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Shumin Wang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Yara Rose
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Jordan Rhen
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Ze Yu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yiheng Yin
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yuling Gu
- Shanghai Naturethink Life Science&Technology Co., Itd, Shanghai 201809, China (Y. G.)
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA (E. A. F.)
| | - Junbo Ge
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yawei Xu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| |
Collapse
|
3
|
Rezvan A. PHACTR1 and Atherosclerosis: It's Complicated. Arterioscler Thromb Vasc Biol 2023; 43:1409-1411. [PMID: 37317846 PMCID: PMC10527601 DOI: 10.1161/atvbaha.123.319545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Amir Rezvan
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
4
|
Xu Y, Ma Q, Ren J, Chen L, Guo W, Feng K, Zeng Z, Huang T, Cai Y. Using Machine Learning Methods in Identifying Genes Associated with COVID-19 in Cardiomyocytes and Cardiac Vascular Endothelial Cells. Life (Basel) 2023; 13:life13041011. [PMID: 37109540 PMCID: PMC10146712 DOI: 10.3390/life13041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) not only causes respiratory system damage, but also imposes strain on the cardiovascular system. Vascular endothelial cells and cardiomyocytes play an important role in cardiac function. The aberrant expression of genes in vascular endothelial cells and cardiomyocytes can lead to cardiovascular diseases. In this study, we sought to explain the influence of respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the gene expression levels of vascular endothelial cells and cardiomyocytes. We designed an advanced machine learning-based workflow to analyze the gene expression profile data of vascular endothelial cells and cardiomyocytes from patients with COVID-19 and healthy controls. An incremental feature selection method with a decision tree was used in building efficient classifiers and summarizing quantitative classification genes and rules. Some key genes, such as MALAT1, MT-CO1, and CD36, were extracted, which exert important effects on cardiac function, from the gene expression matrix of 104,182 cardiomyocytes, including 12,007 cells from patients with COVID-19 and 92,175 cells from healthy controls, and 22,438 vascular endothelial cells, including 10,812 cells from patients with COVID-19 and 11,626 cells from healthy controls. The findings reported in this study may provide insights into the effect of COVID-19 on cardiac cells and further explain the pathogenesis of COVID-19, and they may facilitate the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Wood A, Antonopoulos A, Chuaiphichai S, Kyriakou T, Diaz R, Al Hussaini A, Marsh AM, Sian M, Meisuria M, McCann G, Rashbrook VS, Drydale E, Draycott S, Polkinghorne MD, Akoumianakis I, Antoniades C, Watkins H, Channon KM, Adlam D, Douglas G. PHACTR1 modulates vascular compliance but not endothelial function: a translational study. Cardiovasc Res 2023; 119:599-610. [PMID: 35653516 PMCID: PMC10064844 DOI: 10.1093/cvr/cvac092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The non-coding locus at 6p24 located in Intron 3 of PHACTR1 has consistently been implicated as a risk allele in myocardial infarction and multiple other vascular diseases. Recent murine studies have identified a role for Phactr1 in the development of atherosclerosis. However, the role of PHACTR1 in vascular tone and in vivo vascular remodelling has yet to be established. The aim of this study was to investigate the role of PHACTR1 in vascular function. METHODS AND RESULTS Prospectively recruited coronary artery disease (CAD) patients undergoing bypass surgery and retrospectively recruited spontaneous coronary artery dissection (SCAD) patients and matched healthy volunteers were genotyped at the PHACTR1 rs9349379 locus. We observed a significant association between the PHACTR1 loci and changes in distensibility in both the ascending aorta (AA = 0.0053 ± 0.0004, AG = 0.0041 ± 0.003, GG = 0.0034 ± 0.0009, P < 0.05, n = 58, 54, and 7, respectively) and carotid artery (AA = 12.83 ± 0.51, AG = 11.14 ± 0.38, GG = 11.69 ± 0.66, P < 0.05, n = 70, 65, and 18, respectively). This association was not observed in the descending aorta or in SCAD patients. In contrast, the PHACTR1 locus was not associated with changes in endothelial cell function with no association between the rs9349379 locus and in vivo or ex vivo vascular function observed in CAD patients. This finding was confirmed in our murine model where the loss of Phactr1 on the pro-atherosclerosis ApoE-/- background did not alter ex vivo vascular function. CONCLUSION In conclusion, we have shown a role for PHACTR1 in arterial compliance across multiple vascular beds. Our study suggests that PHACTR1 has a key structural role within the vasculature.
Collapse
Affiliation(s)
- Alice Wood
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alexios Antonopoulos
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Surawee Chuaiphichai
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Theodosios Kyriakou
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Rebeca Diaz
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Abtehale Al Hussaini
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Anna-Marie Marsh
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Manjit Sian
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Mitul Meisuria
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gerry McCann
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria S Rashbrook
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Edward Drydale
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sally Draycott
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Murray David Polkinghorne
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ioannis Akoumianakis
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Charalambos Antoniades
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Hugh Watkins
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Keith M Channon
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - David Adlam
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gillian Douglas
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| |
Collapse
|
6
|
Genome-wide analyses of early-onset acute myocardial infarction identify 29 novel loci by whole genome sequencing. Hum Genet 2023; 142:231-243. [PMID: 36336746 DOI: 10.1007/s00439-022-02495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022]
Abstract
Early-onset acute myocardial infarction (AMI) may have a higher genetic predisposition than late-onset AMI. The present study aimed to identify and characterize germline variants that affect early-onset AMI using whole-genome sequencing (WGS). We performed a genome-wide association study based on the WGS of 1239 Koreans, including 596 early-onset AMI patients and 643 healthy individuals. Patients with AMI who underwent percutaneous coronary intervention (PCI) caused by atherothrombotic occlusive lesions were included in the study. A total of 29 novel loci were found to be associated with early-onset AMI. These loci are involved in thrombosis, fibrinolysis, inflammation, and lipid metabolism. One of the associated single nucleotide variants (SNVs), rs1614576, located upstream of PRKCB, is known to be associated with thrombus formation. Additionally, the results revealed a novel locus, rs78631167, located upstream of PLAUR which plays a critical role in regulating plasminogen activation and is related to fibrinolysis. The association between early-onset AMI and rs9357455, which is located upstream of PHACTR1 and regulates inflammation in AMI, was found. Moreover, we identified a lipid metabolism related genetic risk locus, rs5072, in the APOA1-AS gene. This study provides new evidence supporting the genetic association between early-onset AMI and thrombosis and fibrinolysis, as well as inflammation and lipid metabolism, by analyzing the whole-genome of 596 patients with early-onset AMI who have been treated with PCI. Our findings highlight potential genetic markers for the prediction and management of AMI, as well as for understanding the etiology of AMI.
Collapse
|
7
|
Genome-Wide Transcriptional Profiling Reveals PHACTR1 as a Novel Molecular Target of Resveratrol in Endothelial Homeostasis. Nutrients 2022; 14:nu14214518. [DOI: 10.3390/nu14214518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease in which endothelial cells play an important role in maintaining vascular homeostasis. Endotheliitis caused by endothelial dysfunction (ED) is the key cause for the development of cardiovascular and cerebrovascular diseases as well as other vascular system diseases. Resveratrol (RES), a multi-functional polyphenol present in edible plants and fruits, prevents cardiovascular disease by regulating a variety of athero-relevant signaling pathways. By transcriptome profiling of RES-treated human umbilical vein endothelial cells (HUVECs) and in-depth bioinformatic analysis, we observed that differentially expressed genes (DEGs) were enriched in KEGG pathways of fluid shear stress and atherosclerosis, suggesting that the RES may serve as a good template for a shear stress mimetic drug that hold promise in combating atherosclerosis. A heat map and multiple datasets superimposed screening revealed that RES significantly down-regulated phosphatase and actin modulator 1 (PHACTR1), a pivotal coronary artery disease risk gene associated with endothelial inflammation and polyvascular diseases. We further demonstrate that RES down-regulated the gene and protein expression of PHACTR1 and inhibited TNF-α-induced adhesion of THP-1 monocytes to activated endothelial cells via suppressing the expression of PHACTR1. Taken together, our study reveals that PHACTR1 represents a new molecular target for RES to maintain endothelial cell homeostasis and prevent atherosclerotic cardiovascular disease.
Collapse
|
8
|
Bao M, Ma Y, Liang M, Sun X, Ju X, Yong Y, Liu X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci 2022; 8:2773-2784. [DOI: 10.1002/vms3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minglong Bao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University Beijing P. R. China
| | - Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| |
Collapse
|
9
|
Ma X, Su M, He Q, Zhang Z, Zhang F, Liu Z, Sun L, Weng J, Xu S. PHACTR1, a coronary artery disease risk gene, mediates endothelial dysfunction. Front Immunol 2022; 13:958677. [PMID: 36091033 PMCID: PMC9457086 DOI: 10.3389/fimmu.2022.958677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have recently identified phosphatase and actin regulator-1 (PHACTR1) as a critical risk gene associated with polyvascular diseases. However, it remains largely unclear how PHACTR1 is involved in endothelial dysfunction. Here, by mining published datasets of human stable and vulnerable/ruptured plaque tissues, we observed upregulated expression of PHACTR1 in vulnerable/ruptured plaques. Congruent with these data, we demonstrated increased Phactr1 gene expression in aortic endothelium from ApoE-/- mice fed a western type diet compared with that in normal C57BL/6J mice. Relevantly, PHACTR1 gene expression was upregulated by pro-inflammatory and pro-atherogenic stimuli, including TNF-α, IL-1β and oxidized LDL (oxLDL). By employing next-generation RNA sequencing, we demonstrate that PHACTR1 overexpression disrupts pathways associated with endothelial homeostasis. Cell biological studies unravel that PHACTR1 mediates endothelial inflammation and monocyte adhesion by activating NF-κB dependent intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) expression. In addition, overexpression of PHACTR1 also reduces the generation of nitric oxide (NO) by inhibiting Akt/eNOS activation. In-house compound screening of vasoprotective drugs identifies several drugs, including lipid-lowering statins, decreases PHACTR1 gene expression. However, PHACTR1 gene expression was not affected by another lipid-lowering drug-fenofibrate. We also performed a proteomic study to reveal PHACTR1 interacting proteins and validated that PHACTR1 can interact with heat shock protein A8 (HSPA8) which was reported to be associated with coronary artery disease and eNOS degradation. Further studies are warranted to confirm the precise mechanism of PHACTR1 in driving endothelial dysfunction. In conclusion, by using systems biology approach and molecular validation, we disclose the deleterious effects of PHACTR1 on endothelial function by inducing endothelial inflammation and reducing NO production, highlighting the potential to prevent endothelial dysfunction and atherosclerosis by targeting PHACTR1 expression. The precise role of endothelial cell PHACTR1 in polyvascular diseases remains to be validated in diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suowen Xu
- *Correspondence: Suowen Xu, ; Jianping Weng,
| |
Collapse
|
10
|
Yang M, Xiao Z, Chen Z, Ru Y, Wang J, Jiang J, Wang X, Wang T. S100A1 is Involved in Myocardial Injury Induced by Exhaustive Exercise. Int J Sports Med 2021; 43:444-454. [PMID: 34688220 DOI: 10.1055/a-1642-8352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Many studies have confirmed that exhaustive exercise has adverse effects on the heart by generating reactive oxygen species (ROS). S100A1 calcium-binding protein A1 (S100A1) is a regulator of myocardial contractility and a protector against myocardial injury. However, few studies have investigated the role of S100A1 in the regulation of myocardial injury induced by exhaustive exercise. In the present study, we suggested that exhaustive exercise led to increased ROS, downregulation of S100a1, and myocardial injury. Downregulation of S100a1 promoted exhaustive exercise-induced myocardial injury and overexpression of S100A1 reversed oxidative stress-induced cardiomyocyte injury, indicating S100A1 is a protective factor against myocardial injury caused by exhaustive exercise. We also found that downregulation of S100A1 promoted damage to critical proteins of the mitochondria by inhibiting the expression of Ant1, Pgc1a, and Tfam under exhaustive exercise. Our study indicated S100A1 as a potential prognostic biomarker or therapeutic target to improve the myocardial damage induced by exhaustive exercise and provided new insights into the molecular mechanisms underlying the myocardial injury effect of exhaustive exercise.
Collapse
Affiliation(s)
- Miaomiao Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 301617, China
| | - Zhigang Xiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,School of Materials Science and Engineering,Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yongxin Ru
- Institute of Hematology and Blood Diseases Hospital Peaking Union Medical College, Tianjin 300020, China
| | - Jun Wang
- Air Force Medical Center, Medical Evaluation Department, Beijing 100042, China
| | - Jianhua Jiang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tianhui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.,Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
11
|
Knockdown of circ_0004104 Alleviates Oxidized Low-Density Lipoprotein-Induced Vascular Endothelial Cell Injury by Regulating miR-100/TNFAIP8 Axis. J Cardiovasc Pharmacol 2021; 78:269-279. [PMID: 34554678 DOI: 10.1097/fjc.0000000000001063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/08/2021] [Indexed: 01/12/2023]
Abstract
ABSTRACT Coronary artery disease (CAD) is a common cardiovascular disease, mainly due to vascular endothelial cell (VEC) injury caused by atherosclerosis. Circular RNA has been shown to be involved in the regulation of various diseases. However, the role and mechanism of circ_0004104 in CAD are still unclear. Oxidized low-density lipoprotein (ox-LDL) was used to construct the VEC injury model in vitro. The expression levels of circ_0004104 and miR-100 were measured by quantitative real-time polymerase chain reaction. The proliferation of VECs was determined using 3-(45)-dimethylthiahiazo (-z-y1)-35-di-phenytetrazoliumromide assay and 5-ethynyl-2'-deoxyuridine staining assay. VEC apoptosis rate was assessed using flow cytometry, and caspase-3 activity was measured using a Caspase-3 Assay Kit. The protein expression levels of Ki-67, cleaved-caspase3, and tumor necrosis factor-α-induced protein 8 (TNFAIP8) were detected by western blot analysis. Furthermore, enzyme-linked immunosorbent assay was performed to assess the concentrations of inflammatory cytokines. In addition, the relationship between miR-100 and circ_0004104 or TNFAIP8 was confirmed by dual-luciferase reporter assay and biotin-labeled RNA pull-down assay. Our results revealed that circ_0004104 was upregulated and miR-100 was downregulated in patients with CAD and ox-LDL-induced VECs. Ox-LDL could inhibit the proliferation and promote the apoptosis and inflammation of VECs to induce VEC injury. However, silenced circ_0004104 could alleviate VEC injury induced by ox-LDL. Moreover, we found that circ_0004104 could sponge miR-100 and a miR-100 inhibitor could reverse the inhibition effect of circ_0004104 knockdown on ox-LDL-induced VEC injury. In addition, TNFAIP8 was a target of miR-100, and miR-100 alleviated ox-LDL-induced VEC injury by targeting TNFAIP8. Our data suggested that circ_0004104 promoted ox-LDL-induced VEC injury by the miR-100/TNFAIP8 axis, indicating that circ_0004104 might be a potential biomarker for CAD treatment.
Collapse
|
12
|
Sun Y, Huang S, Wan C, Ruan Q, Xie X, Wei D, Li G, Lin S, Li H, Wu S. Knockdown of lncRNA ENST00000609755.1 Confers Protection Against Early oxLDL-Induced Coronary Heart Disease. Front Cardiovasc Med 2021; 8:650212. [PMID: 34095248 PMCID: PMC8175657 DOI: 10.3389/fcvm.2021.650212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background: This study investigated the association between long non-coding RNAs (lncRNAs) and coronary heart disease (CHD) and further elucidated the potential biological roles of lncRNAs in CHD pathogenesis. Methods: A case-control study (590 patients and 590 controls) was conducted from February 2017 and March 2019 in Fuzhou, China. Environmental factors were investigated using questionnaires and physical examinations. Five representative lncRNAs were screened using lncRNA microarray (peripheral blood in 5 cases and 5 controls) and further verified by quantitative real-time polymerase chain reaction (peripheral blood leukocyte in 100 cases and 100 controls). Oxidized low-density lipoprotein (oxLDL) was used to induce a human coronary artery endothelial cell (HCAECs) injury model, and loss of function was used to elucidate the role of lncRNA ENST00000609755.1 (lnc-MICALL2-2) in oxLDL-induced HCAECs injury. Results: A total of 320 lncRNAs were found dysregulated in CHD patients (fold change> 2, p < 0.05). The results of a discovery microarray, population verification and HCAEC experiments suggested the lnc-MICALL2-2 is upregulated in CHD subjects and in an oxLDL-induced HCAECs injury model. Conversely, lnc-MICALL2-2 inhibition in vitro attenuated the effects of oxLDL on HCAECs morphology, proliferation, and apoptosis. Conclusion: Elevated expression of lnc-MICALL2-2 is an independent risk factor for CHD, and knockdown subsequently confers protection against early pathological processes of oxLDL-induced CHD.
Collapse
Affiliation(s)
- Yi Sun
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shuna Huang
- Department of Clinical Research and Translation Center Office, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chunyu Wan
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qishuang Ruan
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxu Xie
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Donghong Wei
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Guobo Li
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shaowei Lin
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huangyuan Li
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Siying Wu
- School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Genetic deficiency of Phactr1 promotes atherosclerosis development via facilitating M1 macrophage polarization and foam cell formation. Clin Sci (Lond) 2021; 134:2353-2368. [PMID: 32857129 DOI: 10.1042/cs20191241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Genetic variants in phosphatase and actin regulator-1 (Phactr1) are reported to be associated with arteriosclerotic cardiovascular disease (ASCVD). However, the function of Phactr1 in atherosclerosis remains unclear. Patients with acute coronary syndrome (ACS) who underwent coronary angiography and optical coherence tomography (OCT) were enrolled and divided into non-ST segment elevation (NST-ACS) group and ST-ACS group. The expression of Phactr1 on monocytes was higher in NST-ACS and ST-ACS groups as compared with control group. Furthermore, NST-ACS patients who have more vulnerable features including thin-cap fibroatheroma (TCFA) and large lipid area showed higher levels of Phactr1 on monocytes than those with stable plaques. Through mouse models of atherosclerosis, Phactr1-/-Apoe-/- mice (double knockout mice, DKO) developed more severe atherosclerotic plaques, recruiting more macrophages into subendothelium and having elevated levels of proinflammatory cytokines in plaques. Similarly, Apoe knockout mice (Apoe-/-) receiving DKO bone marrow (BM) exhibited elevated plaque burden compared with Apoe-/- mice receiving Apoe-/- BM, indicating the protective effect of Phactr1 in hematopoietic cells. We found that depletion of Phactr1 in BM-derived macrophages (BMDMs) tended to differentiate into M1 phenotype, produced more proatherogenic cytokines and eventually converted into foam cells driven by oxidized low-density lipoprotein (ox-LDL). Mechanistically, Phactr1 activated CREB signaling via directly binding to CREB, up-regulating CREB phosphorylation and inducing KLF4 expression. Finally, overexpression of KLF4 partly rescued the excessive inflammation response and foam cell formation induced by deficiency of Phactr1. In conclusion, our study demonstrates that elevated Phactr1 in monocytes is a promising biomarker for vulnerable plaques, while increased Phactr1 attenuates atherosclerotic development via activation of CREB and M2 macrophage differentiation.
Collapse
|
14
|
Kibel A, Lukinac AM, Dambic V, Juric I, Selthofer-Relatic K. Oxidative Stress in Ischemic Heart Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6627144. [PMID: 33456670 PMCID: PMC7785350 DOI: 10.1155/2020/6627144] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
One of the novel interesting topics in the study of cardiovascular disease is the role of the oxidation system, since inflammation and oxidative stress are known to lead to cardiovascular diseases, their progression and complications. During decades of research, many complex interactions between agents of oxidative stress, oxidation, and antioxidant systems have been elucidated, and numerous important pathophysiological links to na number of disorders and diseases have been established. This review article will present the most relevant knowledge linking oxidative stress to vascular dysfunction and disease. The review will focus on the role of oxidative stress in endotheleial dysfunction, atherosclerosis, and other pathogenetic processes and mechanisms that contribute to the development of ischemic heart disease.
Collapse
Affiliation(s)
- Aleksandar Kibel
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Ana Marija Lukinac
- Department of Rheumatology and Clinical Immunology, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Vedran Dambic
- Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
- Department for Emergency Medical Services of the Osijek-Baranja county, Osijek, Croatia
| | - Iva Juric
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatic
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| |
Collapse
|
15
|
Ghose S, Ghosh S, Tanwar VS, Tolani P, Kutum R, Sharma A, Bhardwaj N, Shamsudheen K, Verma A, Jayarajan R, Dash D, Sivasubbu S, Scaria V, Seth S, Sengupta S. Investigating Coronary Artery Disease methylome through targeted bisulfite sequencing. Gene 2019; 721:144107. [DOI: 10.1016/j.gene.2019.144107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023]
|
16
|
The Role of Oxidative Stress in Common Risk Factors and Mechanisms of Cardio-Cerebrovascular Ischemia and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2491927. [PMID: 32148646 PMCID: PMC7044480 DOI: 10.1155/2019/2491927] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The public health sector faces a huge challenge as a result of the high prevalence and burden of disability caused by ischemic cardio-cerebrovascular disease (CVD) and depression. Although studies have explored the underlying mechanisms and potential therapies to address conditions, there is no treatment breakthrough, especially for depression which is highly influenced by social stressors. However, accumulating evidence reveals that CVD and depression are correlated and share common risk factors, particularly obesity, diabetes, and hypertension. They also share common mechanisms, including oxidative stress (OS), inflammation and immune response, cell death signaling pathway, and microbiome-gut-brain axis. This review summarizes the relationship between ischemic CVD and depression and describes the interactions among common risk factors and mechanisms for these two diseases. In addition, we propose that OS mediates the crosstalk between these diseases. We also reveal the potential of antioxidants to ameliorate OS-related injuries.
Collapse
|
17
|
Kuveljic J, Djuric T, Stankovic A, Koncar I, Alavantic D, Zivkovic M. PHACTR1 haplotypes are associated with carotid plaque presence and affect PHACTR1 mRNA expression in carotid plaque tissue. Gene 2019; 710:273-278. [DOI: 10.1016/j.gene.2019.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/25/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
|