1
|
Faure E, Busso N, Nasi S. Roles of Lysyl oxidases (LOX(L)) in pathologic calcification. Biomed Pharmacother 2024; 181:117719. [PMID: 39603039 DOI: 10.1016/j.biopha.2024.117719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Calcification of tissues involves the formation and deposition of calcium-containing crystals in the extracellular matrix (ECM). While this process is normal in bones, it becomes pathological when it occurs in cardiovascular and musculoskeletal soft tissues. Pathological calcification (PC) triggers detrimental pathways such as inflammation and oxidative stress, contributing to tissue damage and dysregulated tissue biomechanics, ultimately leading to severe complications and even death. The underlying mechanisms of PC remain elusive. Emerging evidence suggests a significant role of lysyl oxidases (LOX(L)) in PC. LOX(L) are a group of five enzymes involved in collagen cross-linking and ECM maturation. Beyond their classical role in bone mineralization, recent investigations propose new non-classical roles for LOX(L) that could be relevant in PC. In this review, we analyzed and summarized the functions of LOX(L) in cardiovascular and musculoskeletal PC, highlighting their deleterious roles in most studies. To date, specific inhibitors targeting LOX(L) isoforms are under development. New therapeutic tools targeting LOX(L) are warranted in PC and must avoid adverse effects on physiological bone mineralization.
Collapse
Affiliation(s)
- Elodie Faure
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Zhang J, Yang Z, Zhang C, Gao S, Liu Y, Li Y, He S, Yao J, Du J, You B, Han Y. PALMD haploinsufficiency aggravates extracellular matrix remodeling in vascular smooth muscle cells and promotes calcification. Am J Physiol Cell Physiol 2024; 327:C1012-C1022. [PMID: 39246140 DOI: 10.1152/ajpcell.00217.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Reduced PALMD expression is strongly associated with the development of calcified aortic valve stenosis; however, the role of PALMD in vascular calcification remains unknown. Calcified arteries were collected from mice to detect PALMD expression. Heterozygous Palmd knockout (Palmd+/-) mice were established to explore the role of PALMD in subtotal nephrectomy-induced vascular calcification. RNA sequencing was applied to detect molecular changes in aortas from Palmd+/- mice. Primary Palmd+/- vascular smooth muscle cells (VSMCs) or PALMD-silenced VSMCs by short interfering RNA were used to analyze PALMD function in phenotypic changes and calcification. PALMD haploinsufficiency aggravated subtotal nephrectomy-induced vascular calcification. RNA sequencing analysis showed that loss of PALMD disturbed the synthesis and degradation of the extracellular matrix (ECM) in aortas, including collagens and matrix metalloproteinases (Col6a6, Mmp2, Mmp9, etc.). In vitro experiments revealed that PALMD-deficient VSMCs were more susceptible to high phosphate-induced calcification. Downregulation of SMAD6 expression and increased levels of p-SMAD2 were detected in Palmd+/- VSMCs, suggesting that transforming growth factor-β signaling may be involved in PALMD haploinsufficiency-induced vascular calcification. Our data revealed that PALMD haploinsufficiency causes ECM dysregulation in VSMCs and aggravates vascular calcification. Our findings suggest that reduced PALMD expression is also linked to vascular calcification, and PALMD may be a potential therapeutic target for this disease. NEW & NOTEWORTHY We found that PALMD haploinsufficiency causes extracellular matrix dysregulation, reduced PALMD expression links to vascular calcification, and PALMD mutations may lead to the risk of both calcific aortic valve stenosis and vascular calcification.
Collapse
Affiliation(s)
- Jichao Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Zhao Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingkai Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Songyuan He
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Yao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingchun Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
3
|
Stoyell-Conti FF, Suresh Kumar M, Zigmond ZM, Rojas MG, Santos Falcon N, Martinez L, Vazquez-Padron RI. Gene inactivation of lysyl oxidase in smooth muscle cells reduces atherosclerosis burden and plaque calcification in hyperlipidemic mice. Atherosclerosis 2024; 397:118582. [PMID: 39260002 PMCID: PMC11465391 DOI: 10.1016/j.atherosclerosis.2024.118582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIMS Lysyl oxidase (LOX) catalyzes the crosslinking of collagen and elastin to maintain tensile strength and structural integrity of the vasculature. Excessive LOX activity increases vascular stiffness and the severity of occlusive diseases. Herein, we investigated the mechanisms by which LOX controls atherogenesis and osteogenic differentiation of vascular smooth muscle cells (SMC) in hyperlipidemic mice. METHODS Gene inactivation of Lox in SMC was achieved in conditional knockout mice after tamoxifen injections. Atherosclerosis burden and vascular calcification were assessed in hyperlipidemic conditional [Loxf/fMyh11-CreERT2ApoE-/-] and sibling control mice [Loxwt/wtMyh11-CreERT2ApoE-/-]. Mechanistic studies were performed with primary aortic SMC from Lox mutant and wild type mice. RESULTS Inactivation of Lox in SMCs decreased > 70 % its RNA expression and protein level in the aortic wall and significantly reduced LOX activity without compromising vascular structure and function. Moreover, LOX deficiency protected mice against atherosclerotic burden (13 ± 2 versus 23 ± 1 %, p < 0.01) and plaque calcification (5 ± 0.4 versus 11.8 ± 3 %, p < 0.05) compared to sibling controls. Interestingly, gene inactivation of Lox in SMCs preserved the contractile phenotype of vascular SMC under hyperlipidemic conditions as demonstrated by single-cell RNA sequencing and immunofluorescence. Mechanistically, the absence of LOX in SMC prevented excessive collagen crosslinking and the subsequent activation of the pro-osteogenic FAK/β-catenin signaling axis. CONCLUSIONS Lox inactivation in SMC protects mice against atherosclerosis and plaque calcification by reducing SMC modulation and FAK/β-catenin signaling.
Collapse
MESH Headings
- Animals
- Protein-Lysine 6-Oxidase/metabolism
- Protein-Lysine 6-Oxidase/genetics
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/enzymology
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Vascular Calcification/enzymology
- Vascular Calcification/prevention & control
- Vascular Calcification/metabolism
- Plaque, Atherosclerotic
- Hyperlipidemias/genetics
- Hyperlipidemias/enzymology
- Hyperlipidemias/complications
- Hyperlipidemias/metabolism
- Disease Models, Animal
- Mice, Knockout
- Mice
- Osteogenesis
- Cells, Cultured
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Aortic Diseases/prevention & control
- Aortic Diseases/metabolism
- Aorta/pathology
- Aorta/enzymology
- Aorta/metabolism
- Male
- Mice, Inbred C57BL
- beta Catenin/metabolism
- Signal Transduction
- Extracellular Matrix Proteins
Collapse
Affiliation(s)
- Filipe F Stoyell-Conti
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maya Suresh Kumar
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Miguel G Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|
4
|
Huang J, Hao J, Wang P, Xu Y. The Role of Mitochondrial Dysfunction in CKD-Related Vascular Calcification: From Mechanisms to Therapeutics. Kidney Int Rep 2024; 9:2596-2607. [PMID: 39291213 PMCID: PMC11403042 DOI: 10.1016/j.ekir.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 09/19/2024] Open
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and is closely associated with cardiovascular events. The transdifferentiation of vascular smooth muscles (VSMCs) into an osteogenic phenotype is hypothesized to be the primary cause underlying VC. However, there is currently no effective clinical treatment for VC. Growing evidence suggests that mitochondrial dysfunction accelerates the osteogenic differentiation of VSMCs and VC via multiple mechanisms. Therefore, elucidating the relationship between the osteogenic differentiation of VSMCs and mitochondrial dysfunction may assist in improving VC-related adverse clinical outcomes in patients with CKD. This review aimed to summarize the role of mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and metabolic reprogramming, as well as mitochondria-associated oxidative stress (OS) and senescence in VC in patients with CKD to offer valuable insights into the clinical treatment of VC.
Collapse
Affiliation(s)
- Junmin Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yongzhi Xu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Siracusa C, Carino A, Carabetta N, Manica M, Sabatino J, Cianflone E, Leo I, Strangio A, Torella D, De Rosa S. Mechanisms of Cardiovascular Calcification and Experimental Models: Impact of Vitamin K Antagonists. J Clin Med 2024; 13:1405. [PMID: 38592207 PMCID: PMC10932386 DOI: 10.3390/jcm13051405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Cardiovascular calcification is a multifactorial and complex process involving an array of molecular mechanisms eventually leading to calcium deposition within the arterial walls. This process increases arterial stiffness, decreases elasticity, influences shear stress events and is related to an increased risk of morbidity and mortality associated with cardiovascular disease. In numerous in vivo and in vitro models, warfarin therapy has been shown to cause vascular calcification in the arterial wall. However, the exact mechanisms of calcification formation with warfarin remain largely unknown, although several molecular pathways have been identified. Circulating miRNA have been evaluated as biomarkers for a wide range of cardiovascular diseases, but their exact role in cardiovascular calcification is limited. This review aims to describe the current state-of-the-art research on the impact of warfarin treatment on the development of vascular calcification and to highlight potential molecular targets, including microRNA, within the implicated pathways.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Annarita Carino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Marzia Manica
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| |
Collapse
|
6
|
Bernabei I, Faure E, Romani M, Wegrzyn J, Brinckmann J, Chobaz V, So A, Hugle T, Busso N, Nasi S. Inhibiting Lysyl Oxidases prevents pathologic cartilage calcification. Biomed Pharmacother 2024; 171:116075. [PMID: 38183742 DOI: 10.1016/j.biopha.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Lysyl oxidases (LOX(L)) are enzymes that catalyze the formation of cross-links in collagen and elastin fibers during physiologic calcification of bone. However, it remains unknown whether they may promote pathologic calcification of articular cartilage, an important hallmark of debilitating arthropathies. Here, we have studied the possible roles of LOX(L) in cartilage calcification, related and not related to their cross-linking activity. We first demonstrated that inhibition of LOX(L) by β-aminoproprionitrile (BAPN) significantly reduced calcification in murine and human chondrocytes, and in joint of meniscectomized mice. These BAPN's effects on calcification were accounted for by different LOX(L) roles. Firstly, reduced LOX(L)-mediated extracellular matrix cross-links downregulated Anx5, Pit1 and Pit2 calcification genes. Secondly, BAPN reduced collagen fibrotic markers Col1 and Col3. Additionally, LOX(L) inhibition blocked chondrocytes hypertrophic differentiation (Runx2 and COL10), pro-inflammatory IL-6 release and reactive oxygen species (ROS) production, all triggers of chondrocyte calcification. Through unbiased transcriptomic analysis we confirmed a positive correlation between LOX(L) genes and genes for calcification, hypertrophy and extracellular matrix catabolism. This association was conserved throughout species (mouse, human) and tissues that can undergo pathologic calcification (kidney, arteries, skin). Overall, LOX(L) play a critical role in the process of chondrocyte calcification and may be therapeutic targets to treat cartilage calcification in arthropathies.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland
| | - Elodie Faure
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland
| | - Mario Romani
- Aging and Bone Metabolism Laboratory, Service of Geriatric Medicine & Geriatric Rehabilitation, Department of Medicine, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland
| | - Julien Wegrzyn
- Department of Orthopedic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürgen Brinckmann
- Department of Dermatology and Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Véronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland
| | - Thomas Hugle
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland.
| |
Collapse
|
7
|
Liu A, Chen Z, Li X, Xie C, Chen Y, Su X, Chen Y, Zhang M, Chen J, Yang T, Shen J, Huang H. C5a-C5aR1 induces endoplasmic reticulum stress to accelerate vascular calcification via PERK-eIF2α-ATF4-CREB3L1 pathway. Cardiovasc Res 2023; 119:2563-2578. [PMID: 37603848 DOI: 10.1093/cvr/cvad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 08/23/2023] Open
Abstract
AIMS Vascular calcification (VC) predicts the morbidity and mortality in cardiovascular diseases. Vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation is the crucial pathological basis for VC. To date, the molecular pathogenesis is still largely unclear. Notably, C5a-C5aR1 contributes to the development of cardiovascular diseases, and its closely related to physiological bone mineralization which is similar to VSMCs osteogenic transdifferentiation. However, the role and underlying mechanisms of C5a-C5aR1 in VC remain unexplored. METHODS AND RESULTS A cross-sectional clinical study was utilized to examine the association between C5a and VC. Chronic kidney diseases mice and calcifying VSMCs models were established to investigate the effect of C5a-C5aR1 in VC, evaluated by changes in calcium deposition and osteogenic markers. The cross-sectional study identified that high level of C5a was associated with increased risk of VC. C5a dose-responsively accelerated VSMCs osteogenic transdifferentiation accompanying with increased the expression of C5aR1. Meanwhile, the antagonists of C5aR1, PMX 53, reduced calcium deposition, and osteogenic transdifferentiation both in vivo and in vitro. Mechanistically, C5a-C5aR1 induced endoplasmic reticulum (ER) stress and then activated PERK-eIF2α-ATF4 pathway to accelerated VSMCs osteogenic transdifferentiation. In addition, cAMP-response element-binding protein 3-like 1 (CREB3L1) was a key downstream mediator of PERK-eIF2α-ATF4 pathway which accelerated VSMCs osteogenic transdifferentiation by promoting the expression of COL1α1. CONCLUSIONS High level of C5a was associated with increased risk of VC, and it accelerated VC by activating the receptor C5aR1. PERK-eIF2α-ATF4-CREB3L1 pathway of ER stress was activated by C5a-C5aR1, hence promoting VSMCs osteogenic transdifferentiation. Targeting C5 or C5aR1 may be an appealing therapeutic target for VC.
Collapse
Affiliation(s)
- Aiting Liu
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| | - Zhenwei Chen
- Department of Nephrology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Xiaoxue Li
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| | - Chen Xie
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| | - Yanlian Chen
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| | - Xiaoyan Su
- Department of Nephropathy, Tungwah Hospital of Sun Yat-Sen University, Dongguan, 523000, China
| | - Ying Chen
- Department of Nephropathy, Tungwah Hospital of Sun Yat-Sen University, Dongguan, 523000, China
| | - Mengbi Zhang
- Department of Nephropathy, Tungwah Hospital of Sun Yat-Sen University, Dongguan, 523000, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Tiecheng Yang
- Department of Nephrology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
| | - Hui Huang
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, The Eighth Affiliated Hospital of Sun Yat-sen University, Shennan Middle Rd, Shenzhen, 518000, China
| |
Collapse
|
8
|
Ballester-Servera C, Alonso J, Cañes L, Vázquez-Sufuentes P, Puertas-Umbert L, Fernández-Celis A, Taurón M, Rodríguez-Sinovas A, López-Andrés N, Rodríguez C, Martínez-González J. Lysyl oxidase-dependent extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease. Biomed Pharmacother 2023; 167:115469. [PMID: 37729730 DOI: 10.1016/j.biopha.2023.115469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Extracellular matrix (ECM) is an active player in cardiovascular calcification (CVC), a major public health issue with an unmet need for effective therapies. Lysyl oxidase (LOX) conditions ECM biomechanical properties; thus, we hypothesized that LOX might impact on mineral deposition in calcific aortic valve disease (CAVD) and atherosclerosis. LOX was upregulated in calcified valves from two cohorts of CAVD patients. Strong LOX immunostaining was detected surrounding calcified foci in calcified human valves and atherosclerotic lesions colocalizing with RUNX2 on valvular interstitial cells (VICs) or vascular smooth muscle cells (VSMCs). Both LOX secretion and organized collagen deposition were enhanced in calcifying VICs exposed to osteogenic media. β-aminopropionitrile (BAPN), an inhibitor of LOX, attenuated collagen deposition and calcification. VICs seeded onto decellularized matrices from BAPN-treated VICs calcified less than cells cultured onto control scaffolds; instead, VICs exposed to conditioned media from cells over-expressing LOX or cultured onto LOX-crosslinked matrices calcified more. Atherosclerosis was induced in WT and transgenic mice that overexpress LOX in VSMC (TgLOXVSMC) by AAV-PCSK9D374Y injection and high-fat feeding. In atherosclerosis-challenged TgLOXVSMC mice both atherosclerosis burden and calcification assessed by near-infrared fluorescence (NIRF) imaging were higher than in WT mice. These animals also exhibited larger calcified areas in atherosclerotic lesions from aortic arches and brachiocephalic arteries. Moreover, LOX transgenesis exacerbated plaque inflammation, and increased VSMC cellularity, the rate of RUNX2-positive cells and both connective tissue content and collagen cross-linking. Our findings highlight the relevance of LOX in CVC and postulate this enzyme as a potential therapeutic target for CVC.
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Paula Vázquez-Sufuentes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Lídia Puertas-Umbert
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, IdiSNA, UPNA, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | - Manel Taurón
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Departamento de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau-Universitat Autònoma de Barcelona (HSCSP-UAB), Barcelona, Spain
| | - Antonio Rodríguez-Sinovas
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, IdiSNA, UPNA, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, Spain.
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.
| |
Collapse
|
9
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
10
|
Bernabei I, Hansen U, Ehirchiou D, Brinckmann J, Chobaz V, Busso N, Nasi S. CD11b Deficiency Favors Cartilage Calcification via Increased Matrix Vesicles, Apoptosis, and Lysyl Oxidase Activity. Int J Mol Sci 2023; 24:ijms24119776. [PMID: 37298730 DOI: 10.3390/ijms24119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Pathological cartilage calcification is a hallmark feature of osteoarthritis, a common degenerative joint disease, characterized by cartilage damage, progressively causing pain and loss of movement. The integrin subunit CD11b was shown to play a protective role against cartilage calcification in a mouse model of surgery-induced OA. Here, we investigated the possible mechanism by which CD11b deficiency could favor cartilage calcification by using naïve mice. First, we found by transmission electron microscopy (TEM) that CD11b KO cartilage from young mice presented early calcification spots compared with WT. CD11b KO cartilage from old mice showed progression of calcification areas. Mechanistically, we found more calcification-competent matrix vesicles and more apoptosis in both cartilage and chondrocytes isolated from CD11b-deficient mice. Additionally, the extracellular matrix from cartilage lacking the integrin was dysregulated with increased collagen fibrils with smaller diameters. Moreover, we revealed by TEM that CD11b KO cartilage had increased expression of lysyl oxidase (LOX), the enzyme that catalyzes matrix crosslinks. We confirmed this in murine primary CD11b KO chondrocytes, where Lox gene expression and crosslinking activity were increased. Overall, our results suggest that CD11b integrin regulates cartilage calcification through reduced MV release, apoptosis, LOX activity, and matrix crosslinking. As such, CD11b activation might be a key pathway for maintaining cartilage integrity.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital of Münster, 48149 Münster, Germany
| | - Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Jürgen Brinckmann
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Veronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| |
Collapse
|
11
|
Duan Y, Peng Z, Zhong S, Zhou P, Huang H, Li J, He Z. VX-765 ameliorates CKD VSMC calcification by regulating STAT3 activation. Eur J Pharmacol 2023; 945:175610. [PMID: 36858340 DOI: 10.1016/j.ejphar.2023.175610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Recent clinical evidences show that caspase-1 inhibitor-VX-765 attenuates atherosclerosis in ApoE deficient mice. However, there is rarely information about the effect of VX-765 on hyperphosphatemia-induced vascular smooth muscle cells (VSMCs) calcification or vascular calcification in chronic kidney disease (CKD) rats. Here we investigate the effect of VX-765 on vascular calcification in uremia circumstances. METHODS Hyperphosphatemia-induced VSMC calcification were evaluated by Alizarin Red S. Aortas from CKD rats which were gavaged with VX-765 were examined for calcification signal using micro-CT. Levels of NLRP3, caspase-1, and GSDMD were measured by quantitative real-time PCR, western blotting, immunofluorescence assay, and immunohistochemistry. RESULTS We demonstrated for the first time that the levels of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 were up-regulated in hyperphosphatemia-induced calcifying VSMCs. Blockade of caspase-1 activation by VX-765 inhibited pyroptosis-related molecules and VSMC calcification in a concentration-dependent manner in vitro. Further analysis of aortas from calcified CKD rats showed an up-regulation of caspase-1 and GSDMD expression compared with those non-calcified vascular tissue from control rats or with those decreased-calcified vascular tissue from CKD rats treated with 50 mg/kg/d, which indicated that pyroptotic indicators were tightly correlated with CKD arterial calcification. In vitro studies further demonstrated that VX-765 ameliorated hyperphosphatemia-induced VSMCs calcification through inhibiting the STAT3 activation. CONCLUSIONS Our findings indicated that VX-765 could inhibit hyperphosphatemia-induced calcifying VSMCs and ameliorate vascular calcification in CKD rats. VX-765 might be a potential treatment strategy for CKD vascular calcification.
Collapse
Affiliation(s)
- Yingjie Duan
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhong Peng
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhu Zhong
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Peng Zhou
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Hong Huang
- The First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jianlong Li
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Zhangxiu He
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
12
|
Role of Collagen in Vascular Calcification. J Cardiovasc Pharmacol 2022; 80:769-778. [PMID: 35998017 DOI: 10.1097/fjc.0000000000001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Vascular calcification is a pathological process characterized by ectopic calcification of the vascular wall. Medial calcifications are most often associated with kidney disease, diabetes, hypertension, and advanced age. Intimal calcifications are associated with atherosclerosis. Collagen can regulate mineralization by binding to apatite minerals and promoting their deposition, binding to collagen receptors to initiate signal transduction, and inducing cell transdifferentiation. In the process of vascular calcification, type I collagen is not only the scaffold for mineral deposition but also a signal entity, guiding the distribution, aggregation, and nucleation of vesicles and promoting the transformation of vascular smooth muscle cells into osteochondral-like cells. In recent years, collagen has been shown to affect vascular calcification through collagen disc-domain receptors, matrix vesicles, and transdifferentiation of vascular smooth muscle cells.
Collapse
|
13
|
Chen C, Wu Y, Lu HL, Liu K, Qin X. Identification of potential biomarkers of vascular calcification using bioinformatics analysis and validation in vivo. PeerJ 2022; 10:e13138. [PMID: 35313524 PMCID: PMC8934046 DOI: 10.7717/peerj.13138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we know poorly about the molecular mechanisms and effective therapeutic approaches of VC. Methods The VC dataset, GSE146638, was downloaded from the Gene Expression Omnibus (GEO) database. Using the edgeR package to screen Differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to find pathways affecting VC. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on the DEGs. Meanwhile, using the String database and Cytoscape software to construct protein-protein interaction (PPI) networks and identify hub genes with the highest module scores. Correlation analysis was performed for hub genes. Receiver operating characteristic (ROC) curves, expression level analysis, GSEA, and subcellular localization were performed for each hub gene. Expression of hub genes in normal and calcified vascular tissues was verified by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC) experiments. The hub gene-related miRNA-mRNA and TF-mRNA networks were constructed and functionally enriched for analysis. Finally, the DGIdb database was utilized to search for alternative drugs targeting VC hub genes. Results By comparing the genes with normal vessels, there were 64 DEGs in mildly calcified vessels and 650 DEGs in severely calcified vessels. Spp1, Sost, Col1a1, Fn1, and Ibsp were central in the progression of the entire VC by the MCODE plug-in. These hub genes are primarily enriched in ossification, extracellular matrix, and ECM-receptor interactions. Expression level results showed that Spp1, Sost, Ibsp, and Fn1 were significantly highly expressed in VC, and Col1a1 was incredibly low. RT-qPCR and IHC validation results were consistent with bioinformatic analysis. We found multiple pathways of hub genes acting in VC and identified 16 targeting drugs. Conclusions This study perfected the molecular regulatory mechanism of VC. Our results indicated that Spp1, Sost, Col1a1, Fn1, and Ibsp could be potential novel biomarkers for VC and promising therapeutic targets.
Collapse
Affiliation(s)
- Chuanzhen Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Hai-lin Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Kai Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
14
|
Mihaila RG. Warfarin involvement, in comparison to NOACs, in the development of systemic atherosclerosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022; 166:150-154. [DOI: 10.5507/bp.2022.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
|