1
|
Liu G, Yu X, Cui C, Li X, Wang T, Palade PT, Mehta JL, Wang X. The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism. Acta Physiol (Oxf) 2025; 241:e14272. [PMID: 39797523 DOI: 10.1111/apha.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD. However, the broader clinical impacts of PCSK9 functions beyond cholesterol metabolism, including both desired and undesired effects from therapeutic PCSK9 inhibition, underscore the urgent necessity to elucidate the underlying mechanisms. Recent studies have shown that local PCSK9 in the vascular system can interact with other receptors such as CD36, LRP-1, and ABCA1. This provides new evidence supporting the potential contribution of PCSK9 to CVD through LDLR-independent signaling pathways. Therefore, this review aimed to outline the diverse effects of PCSK9 on CVD and discuss the underlying mechanisms in non-cholesterol-related processes, which will provide a rational basis for its long-term pharmacological inhibition in the clinic.
Collapse
Affiliation(s)
- Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Xiatian Yu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| |
Collapse
|
2
|
Jiang H, Li L, Zhang X, He J, Chen C, Sun R, Chen Y, Xia L, Wen L, Chen Y, Liu J, Zhang L, Lv W. Novel insights into the association between genetically proxied inhibition of proprotein convertase subtilisin/kexin type 9 and risk of sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:2417-2425. [PMID: 39254080 PMCID: PMC11634518 DOI: 10.1002/jcsm.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The effects of lipid-lowering drugs [including statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors] on hyperlipidaemia have been established. Some may have treatment effects beyond their reported properties, offering potential opportunities for drug repurposing. Epidemiological studies have reported conflicting findings on the relationship between lipid-lowering medication use and sarcopenia risk. METHODS We performed a two-sample Mendelian randomization (MR) study to investigate the causal association between the use of genetically proxied lipid-lowering drugs (including statins, ezetimibe, and PCSK9 inhibitors, which use low-density lipoprotein as a biomarker), and sarcopenia risk. The inverse-variance weighting method was used with pleiotropy-robust methods (MR-Egger regression and weighted median) and colocalization as sensitivity analyses. RESULTS According to the positive control analysis, genetically proxied inhibition in lipid-lowering drug targets was associated with a lower risk of coronary heart disease [PCSK9 (OR, 0.67; 95% CI, 0.61 to 0.72; P = 7.7E-21); 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR; OR, 0.68; 95% CI, 0.57 to 0.82; P = 4.6E-05), and Niemann-Pick C1-like 1 (NPC1L1; OR, 0.53; 95% CI, 0.40 to 0.69; P = 3.3E-06)], consistent with drug mechanistic actions and previous trial evidence. Genetically proxied inhibition of PCSK9 (beta, -0.040; 95% CI, -0.068 to -0.012; P = 0.005) and circulating PCSK9 levels (beta, -0.019; 95% CI, -0.033 to -0.005; P = 0.006) were associated with reduced appendicular lean mass (ALM) with concordant estimates in terms of direction and magnitude. Validation analyses using a second instrument for PCSK9 yielded consistent results in terms of direction and magnitude [(PCSK9 to ALM; beta, -0.052; 95% CI, -0.074 to -0.032; P = 7.1E-7); (PCSK9 protein to ALM; beta, -0.060; 95% CI, -0.106 to -0.014; P = 0.010)]. Genetically proxied inhibition of PCSK9 gene expression in the liver may be associated with reduced ALM (beta, -0.013; 95% CI, -0.035 to 0.009; P = 0.25), consistent with the results of PCSK9 drug-target and PCSK9 protein MR analyses, but the magnitude was less precise. No robust association was found between HMGCR inhibition (beta, 0.048; 95% CI, -0.015 to 0.110; P = 0.14) or NPC1L1 (beta, 0.035; 95% CI, -0.074 to 0.144; P = 0.53) inhibition and ALM, and validation and sensitivity MR analyses showed consistent estimates. CONCLUSIONS This MR study suggested that PCSK9 is involved in sarcopenia pathogenesis and that its inhibition is associated with reduced ALM. These findings potentially pave the way for future studies that may allow personalized selection of lipid-lowering drugs for those at risk of sarcopenia.
Collapse
Affiliation(s)
- Hongyan Jiang
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Lulu Li
- Department of Emergency Medicine, The First Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
| | - Xue Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
| | - Jia He
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Chuanhuai Chen
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Ruimin Sun
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Ying Chen
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Lijuan Xia
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Lei Wen
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Yunxiang Chen
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Junxiu Liu
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Lijiang Zhang
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| | - Wanqiang Lv
- Center of Safety Evaluation and Research, Key Laboratory of Drug Safety Evaluation and Research of Zhejiang ProvinceHangzhou Medical CollegeZhejiangChina
| |
Collapse
|
3
|
Davaine JM, Denimal D, Treca P, Francon H, Phan F, Hartemann A, Bourron O. Medial arterial calcification of the lower limbs in diabetes: Time for awareness? A short narrative review. DIABETES & METABOLISM 2024; 51:101586. [PMID: 39521119 DOI: 10.1016/j.diabet.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
In patients with diabetes, peripheral arterial disease, particularly below the knee, is associated with medial arterial calcification. This is a frequent and potentially serious complication, affecting all types of diabetes. In recent years, our understanding of the pathophysiology and clinical significance of medial arterial calcification has improved considerably. Here, we offer a short narrative review of the epidemiology, clinical consequences, and pathophysiology of this complication. Now that medial arterial calcification of the lower limbs is better understood, we also focus on the prospect of treatments targeting arterial calcification.
Collapse
Affiliation(s)
- Jean-Michel Davaine
- Sorbonne Université, Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Vascular Surgery, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Damien Denimal
- INSERM U1231, Center for Translational and Molecular Medicine, Dijon, France; Dijon Bourgogne University Hospital, Department of Clinical Biochemistry, Dijon, France
| | - Pauline Treca
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France
| | - Hugo Francon
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France
| | - Franck Phan
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France
| | - Agnès Hartemann
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France
| | - Olivier Bourron
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France.
| |
Collapse
|
4
|
Chong S, Mu G, Cen X, Xiang Q, Cui Y. Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 2024; 53:57. [PMID: 38757360 PMCID: PMC11093556 DOI: 10.3892/ijmm.2024.5381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
Collapse
Affiliation(s)
- Shan Chong
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Guangyan Mu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
5
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
6
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Ruscica M, Macchi C, Giuliani A, Rizzuto AS, Ramini D, Sbriscia M, Carugo S, Bonfigli AR, Corsini A, Olivieri F, Sabbatinelli J. Circulating PCSK9 as a prognostic biomarker of cardiovascular events in individuals with type 2 diabetes: evidence from a 16.8-year follow-up study. Cardiovasc Diabetol 2023; 22:222. [PMID: 37620933 PMCID: PMC10464486 DOI: 10.1186/s12933-023-01948-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality, being twofold to fourfold more common in patients with type 2 diabetes mellitus (T2DM) than in individuals without diabetes. However, despite this decade-old knowledge, the identification of a specific prognostic risk biomarker remains particularly challenging. METHODS Taking advantage of a large sample of Caucasian patients (n = 529) with a diagnosis of T2DM followed for a median of 16.8 years, the present study was aimed at testing the hypothesis that fasting serum proprotein convertase subtilisin/kexin type 9 (PCSK9) levels could be prognostic for major adverse cardiovascular events (MACE) and all-cause mortality. RESULTS Median levels of PCSK9 were 259.8 ng/mL, being higher in women compared to men and increasing even more in the presence of a complication (e.g., diabetic kidney disease). PCSK9 positively correlated with markers of blood glucose homeostasis (e.g., HbA1c, fasting insulin and HOMA-IR) and the atherogenic lipid profile (e.g., non-HDL-C, apoB and remnant cholesterol). Serum PCSK9 predicted new-onset of MACE, either fatal or non-fatal, only in women (Odds Ratio: 2.26, 95% CI 1.12-4.58) and all-cause mortality only in men (Hazard Ratio: 1.79, 95% CI 1.13-2.82). CONCLUSIONS Considering that up to two-thirds of individuals with T2DM develop ASCVD in their lifetime, the assessment of circulating PCSK9 levels can be envisioned within the context of a biomarker-based strategy of risk stratification. However, the sex difference found highlights an urgent need to develop sex-specific risk assessment strategies. TRIAL REGISTRATION It is a retrospective study.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | | | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Matilde Sbriscia
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria Delle Marche, Ancona, Italy.
| |
Collapse
|
8
|
Gianazza E, Macchi C, Banfi C, Ruscica M. Proteomics and Lipidomics to unveil the contribution of PCSK9 beyond cholesterol lowering: a narrative review. Front Cardiovasc Med 2023; 10:1191303. [PMID: 37378405 PMCID: PMC10291627 DOI: 10.3389/fcvm.2023.1191303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of the low-density lipoprotein receptor (LDLR), can play a direct role in atheroma development. Although advances in the understandings of genetic PCSK9 polymorphisms have enabled to reveal the role of PCSK9 in the complex pathophysiology of cardiovascular diseases (CVDs), increasing lines of evidence support non-cholesterol-related processes mediated by PCSK9. Owing to major improvements in mass spectrometry-based technologies, multimarker proteomic and lipidomic panels hold the promise to identify novel lipids and proteins potentially related to PCSK9. Within this context, this narrative review aims to provide an overview of the most significant proteomics and lipidomics studies related to PCSK9 effects beyond cholesterol lowering. These approaches have enabled to unveil non-common targets of PCSK9, potentially leading to the development of novel statistical models for CVD risk prediction. Finally, in the era of precision medicine, we have reported the impact of PCSK9 on extracellular vesicles (EVs) composition, an effect that could contribute to an increased prothrombotic status in CVD patients. The possibility to modulate EVs release and cargo could help counteract the development and progression of the atherosclerotic process.
Collapse
Affiliation(s)
- Erica Gianazza
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Neels JG, Leftheriotis G, Chinetti G. Atherosclerosis Calcification: Focus on Lipoproteins. Metabolites 2023; 13:metabo13030457. [PMID: 36984897 PMCID: PMC10056669 DOI: 10.3390/metabo13030457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids in the vessel wall, leading to the formation of an atheroma and eventually to the development of vascular calcification (VC). Lipoproteins play a central role in the development of atherosclerosis and VC. Both low- and very low-density lipoproteins (LDL and VLDL) and lipoprotein (a) (Lp(a)) stimulate, while high-density lipoproteins (HDL) reduce VC. Apolipoproteins, the protein component of lipoproteins, influence the development of VC in multiple ways. Apolipoprotein AI (apoAI), the main protein component of HDL, has anti-calcific properties, while apoB and apoCIII, the main protein components of LDL and VLDL, respectively, promote VC. The role of lipoproteins in VC is also related to their metabolism and modifications. Oxidized LDL (OxLDL) are more pro-calcific than native LDL. Oxidation also converts HDL from anti- to pro-calcific. Additionally, enzymes such as autotaxin (ATX) and proprotein convertase subtilisin/kexin type 9 (PCSK9), involved in lipoprotein metabolism, have a stimulatory role in VC. In summary, a better understanding of the mechanisms by which lipoproteins and apolipoproteins contribute to VC will be crucial in the development of effective preventive and therapeutic strategies for VC and its associated cardiovascular disease.
Collapse
Affiliation(s)
- Jaap G Neels
- Université Côte d'Azur, INSERM, C3M, 06200 Nice, France
| | | | - Giulia Chinetti
- Université Côte d'Azur, CHU, INSERM, C3M, 06200 Nice, France
| |
Collapse
|
10
|
Schmid JA. PCSK9 inhibition might increase endothelial inflammation. Atherosclerosis 2022; 362:26-28. [PMID: 36396485 DOI: 10.1016/j.atherosclerosis.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
11
|
Greco MF, Rizzuto AS, Zarà M, Cafora M, Favero C, Solazzo G, Giusti I, Adorni MP, Zimetti F, Dolo V, Banfi C, Ferri N, Sirtori CR, Corsini A, Barbieri SS, Pistocchi A, Bollati V, Macchi C, Ruscica M. PCSK9 Confers Inflammatory Properties to Extracellular Vesicles Released by Vascular Smooth Muscle Cells. Int J Mol Sci 2022; 23:13065. [PMID: 36361853 PMCID: PMC9655172 DOI: 10.3390/ijms232113065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 10/20/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are key participants in both early- and late-stage atherosclerosis and influence neighbouring cells possibly by means of bioactive molecules, some of which are packed into extracellular vesicles (EVs). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is expressed and secreted by VSMCs. This study aimed to unravel the role of PCSK9 on VSMCs-derived EVs in terms of content and functionality. EVs were isolated from human VSMCs overexpressing human PCSK9 (VSMCPCSK9-EVs) and tested on endothelial cells, monocytes, macrophages and in a model of zebrafish embryos. Compared to EVs released from wild-type VSMCs, VSMCPCSK9-EVs caused a rise in the expression of adhesion molecules in endothelial cells and of pro-inflammatory cytokines in monocytes. These acquired an increased migratory capacity, a reduced oxidative phosphorylation and secreted proteins involved in immune response and immune effector processes. Concerning macrophages, VSMCPCSK9-EVs enhanced inflammatory milieu and uptake of oxidized low-density lipoproteins, whereas the migratory capacity was reduced. When injected into zebrafish embryos, VSMCPCSK9-EVs favoured the recruitment of macrophages toward the site of injection. The results of the present study provide evidence that PCSK9 plays an inflammatory role by means of EVs, at least by those derived from smooth muscle cells of vascular origin.
Collapse
Affiliation(s)
- Maria Francesca Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alessandra Stefania Rizzuto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 20133 Milan, Italy
| | - Marco Cafora
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Favero
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giulia Solazzo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Maria Pia Adorni
- Unit of Neuroscience, Department of Medicine and Surgery, Università degli Studi di Parma, 43124 Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, Università degli Studi di Parma, 43124 Parma, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 20133 Milan, Italy
| | - Nicola Ferri
- Department of Medicine, Università degli Studi di Padova, 35100 Padua, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Stella Barbieri
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 20133 Milan, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational, Università degli Studi di Milano, L.I.T.A., 20133 Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Lipids and lipoproteins have long been known to contribute to atherosclerosis and cardiovascular calcification. One theme of recent work is the study of lipoprotein (a) [Lp(a)], a lipoprotein particle similar to LDL-cholesterol that carries a long apoprotein tail and most of the circulating oxidized phospholipids. RECENT FINDINGS In-vitro studies show that Lp(a) stimulates osteoblastic differentiation and mineralization of vascular smooth muscle cells, while the association of Lp(a) with coronary artery calcification continues to have varying results, possibly because of the widely varying threshold levels of Lp(a) chosen for association analyses. Another emerging area in the field of cardiovascular calcification is pathological endothelial-to-mesenchymal transition (EndMT), the process whereby endothelial cell transition into multipotent mesenchymal cells, some of which differentiate into osteochondrogenic cells and mineralize. The effects of lipids and lipoproteins on EndMT suggest that they modulate cardiovascular calcification through multiple mechanisms. There are also emerging trends in imaging of calcific vasculopathy, including: intravascular optical coherence tomography for quantifying plaque characteristics, PET with a radiolabeled NaF tracer, with either CT or MRI to detect coronary plaque vulnerability. SUMMARY Recent work in this field includes studies of Lp(a), EndMT, and new imaging techniques.
Collapse
Affiliation(s)
- Jeffrey J Hsu
- Department of Medicine
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Yin Tintut
- Department of Medicine
- Department of Physiology
- Department of Orthopaedic Surgery
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Linda L Demer
- Department of Medicine
- Department of Physiology
- Department of Bioengineering, University of California
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
13
|
Suur BE, Chemaly M, Lindquist Liljeqvist M, Djordjevic D, Stenemo M, Bergman O, Karlöf E, Lengquist M, Odeberg J, Hurt-Camejo E, Eriksson P, Ketelhuth DF, Roy J, Hedin U, Nyberg M, Matic L. Therapeutic potential of the Proprotein Convertase Subtilisin/Kexin family in vascular disease. Front Pharmacol 2022; 13:988561. [PMID: 36188622 PMCID: PMC9520287 DOI: 10.3389/fphar.2022.988561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Proprotein convertase subtilisin/kexins (PCSKs) constitute a family of nine related proteases: PCSK1-7, MBTPS1, and PCSK9. Apart from PCSK9, little is known about PCSKs in cardiovascular disease. Here, we aimed to investigate the expression landscape and druggability potential of the entire PCSK family for CVD. We applied an integrative approach, combining genetic, transcriptomic and proteomic data from three vascular biobanks comprising carotid atherosclerosis, thoracic and abdominal aneurysms, with patient clinical parameters and immunohistochemistry of vascular biopsies. Apart from PCSK4, all PCSK family members lie in genetic regions containing variants associated with human cardiovascular traits. Transcriptomic analyses revealed that FURIN, PCSK5, MBTPS1 were downregulated, while PCSK6/7 were upregulated in plaques vs. control arteries. In abdominal aneurysms, FURIN, PCSK5, PCSK7, MBTPS1 were downregulated, while PCSK6 was enriched in diseased media. In thoracic aneurysms, only FURIN was significantly upregulated. Network analyses of the upstream and downstream pathways related to PCSKs were performed on the omics data from vascular biopsies, revealing mechanistic relationships between this protein family and disease. Cell type correlation analyses and immunohistochemistry showed that PCSK transcripts and protein levels parallel each other, except for PCSK9 where transcript was not detected, while protein was abundant in vascular biopsies. Correlations to clinical parameters revealed a positive association between FURIN plaque levels and serum LDL, while PCSK6 was negatively associated with Hb. PCSK5/6/7 were all positively associated with adverse cardiovascular events. Our results show that PCSK6 is abundant in plaques and abdominal aneurysms, while FURIN upregulation is characteristic for thoracic aneurysms. PCSK9 protein, but not the transcript, was present in vascular lesions, suggesting its accumulation from circulation. Integrating our results lead to the development of a novel ‘molecular’ 5D framework. Here, we conducted the first integrative study of the proprotein convertase family in this context. Our results using this translational pipeline, revealed primarily PCSK6, followed by PCSK5, PCSK7 and FURIN, as proprotein convertases with the highest novel therapeutic potential.
Collapse
Affiliation(s)
- Bianca E. Suur
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Melody Chemaly
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Djordje Djordjevic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Markus Stenemo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Otto Bergman
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Karlöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jacob Odeberg
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Proteomics, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Eva Hurt-Camejo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Biopharmaceutical R&D, AstraZeneca, Mölndal, Sweden
| | - Per Eriksson
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel F.J. Ketelhuth
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Michael Nyberg
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Ljubica Matic,
| |
Collapse
|
14
|
Cimaglia P, Fortini F, Vieceli Dalla Sega F, Cardelli LS, Massafra RF, Morelli C, Trichilo M, Ferrari R, Rizzo P, Campo G. Relationship between PCSK9 and endothelial function in patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis 2022; 32:2105-2111. [PMID: 35915019 DOI: 10.1016/j.numecd.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS While the role of PCSK9 in lipid metabolism is well established, its link with endothelial function is less clear. The aim of the present study is to evaluate the relationship between PCSK9 and endothelial dysfunction in the setting of acute myocardial infarction. METHODS AND RESULTS To this purpose, we analyzed the serum of 74 patients with ST-elevation myocardial infarction (STEMI) at the time of admission and after 5 days. Endothelial dysfunction was evaluated as rate of apoptosis (AR) of human umbilical vein endothelial cells incubated with patients' serum. There was a good correlation between PCSK9 and the apoptosis rate values, both at baseline (r = 0.649) and 5-day (r = 0.648). In the 5 days after STEMI, PCSK9 increased significantly (242-327 ng/ml, p < 0.001), while AR did not (p = 0.491). Overall, 21 (28%) patients showed a reduction of PCSK9, and they had a significantly higher decrease of AR as compared to others (-13.87 vs 5.8%, p = 0.002). At the univariable analysis, the 5-day change of PCSK9 resulted to be the only variable associated with the 5-day change of the apoptosis rate (beta 0.217, 95%CI 0.091-0.344, p = 0.001). CONCLUSION The variation of endothelial function and PCKS9 in the first days after an acute myocardial infarction are related. Further validation and research are necessary to confirm our findings. CLINICAL TRIAL NCT02438085.
Collapse
Affiliation(s)
- Paolo Cimaglia
- Maria Cecilia Hospital, GVM Care and Research, via Corriera 1, 48033, Cotignola RA, Italy.
| | - Francesca Fortini
- Maria Cecilia Hospital, GVM Care and Research, via Corriera 1, 48033, Cotignola RA, Italy
| | | | - Laura Sofia Cardelli
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | | | - Cristina Morelli
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Michele Trichilo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care and Research, via Corriera 1, 48033, Cotignola RA, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care and Research, via Corriera 1, 48033, Cotignola RA, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| |
Collapse
|
15
|
Impact of Alirocumab on Release Markers of Atherosclerotic Plaque Vulnerability in Patients with Mixed Hyperlipidemia and Vulnerable Atherosclerotic Plaque. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070969. [PMID: 35888688 PMCID: PMC9316765 DOI: 10.3390/medicina58070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Atherosclerosis is a disease in the pathogenesis of which plasma factors apart from elevated cholesterol levels play a keyrole. Such factors include osteopontin (OPN), osteoprotegerin (OPG), and metalloproteinases (MMPs), which are factors that may be responsible for the stabilization of atherosclerotic plaque. The aim of this study was to assess the effect of modern lipid-lowering therapy by using proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitor on the concentrations of these factors. Materials and Methods: The study included people suffering from dyslipidemia who were eligible to start alirocumab therapy. In this group, the concentrations of OPN, OPG, and MMPs were assessed before the initiation of therapy and after three months of its duration. Results: In the study, we observed a statistically significant reduction in the concentrations of OPN, OPG (p < 0.001), and metalloproteinase 2 (MMP-2) (p < 0.05) after the applied therapy. Moreover, we noticed that in the group of patients soon to start alirocumab therapy, the concentrations of these factors were higher compared to the control group (p < 0.001). Conclusions: The results of our study show that therapy with alirocumab significantly reduces the concentration of factors that affect atherosclerotic plaque vulnerability, which may explain their important role in reducing cardiovascular risk in patients undergoing this therapy.
Collapse
|
16
|
Impact of PCSK9 Inhibition on Proinflammatory Cytokines and Matrix Metalloproteinases Release in Patients with Mixed Hyperlipidemia and Vulnerable Atherosclerotic Plaque. Pharmaceuticals (Basel) 2022; 15:ph15070802. [PMID: 35890100 PMCID: PMC9324132 DOI: 10.3390/ph15070802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a disorder in which, in addition to high cholesterol levels, several plasma factors play a significant role in its development. Among these cytokines and molecules are interleukin 6 (IL-6), interleukin 18 (IL-18), tumor necrosis factor α (TNF-α), metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9), all of which may contribute to the stabilization of atherosclerotic plaque. The purpose of this study was to determine the effect of advanced lipid-lowering therapy on the levels of these determinants by utilizing proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors in patients with verified high-risk atherosclerotic plaque. Methods: The study involved patients with dyslipidemia who had the presence of unstable atherosclerotic plaque verified by ultrasonography and who were eligible to begin alirocumab treatment. The levels of IL-6, IL, 18, TNF-α, and MMPs were determined in this group before and after three months of therapy. After treatment, a statistically significant decrease in concentrations of Il-18, Il-6, TNF-α (p < 0.001) and MMP-2 (p < 0.05) was observed. Additionally, we observed that the concentrations of these markers were significantly higher in the group of patients prior to initiating therapy than in the control group. Our study’s results suggest that PCSK-9 inhibitor therapy significantly reduces the concentration of factors influencing the stability of atherosclerotic plaque, which may explain their essential importance in reducing cardiovascular risk in patients receiving this treatment.
Collapse
|
17
|
Gao F, Li YP, Ma XT, Wang ZJ, Shi DM, Zhou YJ. Effect of Alirocumab on Coronary Calcification in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:907662. [PMID: 35600486 PMCID: PMC9120536 DOI: 10.3389/fcvm.2022.907662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors have been documented with significantly reduction in LDL cholesterol levels and cardiovascular events. However, evidence regarding the impact of PCSK9 inhibitors on coronary calcification is limited. Methods Eligible patients with intermediate coronary lesions and elevated LDL cholesterol values were randomized to either alirocumab 75 mg Q2W plus statin (atorvastatin 20 mg/day or rosuvastatin 10 mg/day) therapy or standard statin therapy. Calcium score based on coronary computed tomographic angiography at baseline and follow up were compared. Results Compared with baseline levels, LDL cholesterol were significantly decreased in both groups, while the absolute reduction of LDL cholesterol levels were higher in patients treated with alirocumab (1.69 ± 0.52 vs. 0.92 ± 0.60, P < 0.0001). Additionally, patients in alirocumab group demonstrated a significant reduction of Lp(a) levels, whereas it was not observed in the standard statin group. Notably, greater increases in the percentage changes of CAC score (10.6% [6.3–23.3] vs. 2.9% [−6.7–8.3]; P < 0.0001) were observed in the statin group compared to the alirocumab group. Consistently, CAC progression was significantly lower in the alirocumab group than in the standard statin group (0.6 ± 2.2% vs. 2.7 ± 2.3%; P = 0.002). Conclusions Study indicated that administration of the PCSK9 inhibitors to statins produced significantly lower rate of CAC progression in patients with coronary artery disease. Further studies with CAC progression and their clinical outcomes are needed. Trial Registration ClinicalTrials.gov, Identifier: NCT04851769.
Collapse
|