1
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
2
|
Vogel AD, Kwon JH, Mitta A, Sherard C, Brockbank KGM, Rajab TK. Immunogenicity of Homologous Heart Valves: Mechanisms and Future Considerations. Cardiol Rev 2024; 32:385-391. [PMID: 36688843 PMCID: PMC10363244 DOI: 10.1097/crd.0000000000000519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pediatric valvar heart disease continues to be a topic of interest due to the common and severe clinical manifestations. Problems with heart valve replacement, including lack of adaptive valve growth and accelerated structural valve degeneration, mandate morbid reoperations to serially replace valve implants. Homologous or homograft heart valves are a compelling option for valve replacement in the pediatric population but are susceptible to structural valve degeneration. The immunogenicity of homologous heart valves is not fully understood, and mechanisms explaining how implanted heart valves are attacked are unclear. It has been demonstrated that preservation methods determine homograft cell viability and there may be a direct correlation between increased cellular viability and a higher immune response. This consists of an early increase in human leukocyte antigen (HLA)-class I and II antibodies over days to months posthomograft implantation, followed by the sustained increase in HLA-class II antibodies for years after implantation. Cytotoxic T lymphocytes and T-helper lymphocytes specific to both HLA classes can infiltrate tissue almost immediately after implantation. Furthermore, increased HLA-class II mismatches result in an increased cell-mediated response and an accelerated rate of structural valve degeneration especially in younger patients. Further long-term clinical studies should be completed investigating the immunological mechanisms of heart valve rejection and their relation to structural valve degeneration as well as testing of immunosuppressant therapies to determine the needed immunosuppression for homologous heart valve implantation.
Collapse
Affiliation(s)
- Andrew D Vogel
- From the Department of Surgery, Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Alabama College of Osteopathic Medicine, Dothan, AL
| | - Jennie H Kwon
- From the Department of Surgery, Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Alekhya Mitta
- From the Department of Surgery, Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
- Department of Surgery, School of Medicine, University of South Carolina, Columbia, SC
| | - Curry Sherard
- From the Department of Surgery, Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC
| | - Kelvin G M Brockbank
- Department of Surgery, Tissue Testing Technologies LLC, North Charleston, SC
- Department of Bioengineering, Clemson University, Charleston, SC
| | - Taufiek Konrad Rajab
- From the Department of Surgery, Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
3
|
Abusara Z, Moo EK, Haider I, Timmermann C, Miller S, Timmermann S, Herzog W. Functional Assessment of Human Articular Cartilage Using Second Harmonic Generation (SHG) Imaging: A Feasibility Study. Ann Biomed Eng 2024; 52:1009-1020. [PMID: 38240956 DOI: 10.1007/s10439-023-03437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/26/2023] [Indexed: 03/16/2024]
Abstract
Many arthroscopic tools developed for knee joint assessment are contact-based, which is challenging for in vivo application in narrow joint spaces. Second harmonic generation (SHG) laser imaging is a non-invasive and non-contact method, thus presenting an attractive alternative. However, the association between SHG-based measures and cartilage quality has not been established systematically. Here, we investigated the feasibility of using image-based measures derived from SHG microscopy for objective evaluation of cartilage quality as assessed by mechanical testing. Human tibial plateaus harvested from nine patients were used. Cartilage mechanical properties were determined using indentation stiffness (Einst) and streaming potential-based quantitative parameters (QP). The correspondence of the cartilage electromechanical properties (Einst and QP) and the image-based measures derived from SHG imaging, tissue thickness and cell viability were evaluated using correlation and logistic regression analyses. The SHG-related parameters included the newly developed volumetric fraction of organised collagenous network (Φcol) and the coefficient of variation of the SHG intensity (CVSHG). We found that Φcol correlated strongly with Einst and QP (ρ = 0.97 and - 0.89, respectively). CVSHG also correlated, albeit weakly, with QP and Einst, (|ρ| = 0.52-0.58). Einst and Φcol were the most sensitive predictors of cartilage quality whereas CVSHG only showed moderate sensitivity. Cell viability and tissue thickness, often used as measures of cartilage health, predicted the cartilage quality poorly. We present a simple, objective, yet effective image-based approach for assessment of cartilage quality. Φcol correlated strongly with electromechanical properties of cartilage and could fuel the continuous development of SHG-based arthroscopy.
Collapse
Affiliation(s)
- Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Eng Kuan Moo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, Canada
| | - Ifaz Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Claire Timmermann
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Sue Miller
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Canada
- Taylor Institute for Teaching and Learning, University of Calgary, Calgary, Canada
| | - Scott Timmermann
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Peters MC, Kruithof BPT, Bouten CVC, Voets IK, van den Bogaerdt A, Goumans MJ, van Wijk A. Preservation of human heart valves for replacement in children with heart valve disease: past, present and future. Cell Tissue Bank 2024; 25:67-85. [PMID: 36725733 PMCID: PMC10902036 DOI: 10.1007/s10561-023-10076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Valvular heart disease affects 30% of the new-borns with congenital heart disease. Valve replacement of semilunar valves by mechanical, bioprosthetic or donor allograft valves is the main treatment approach. However, none of the replacements provides a viable valve that can grow and/or adapt with the growth of the child leading to re-operation throughout life. In this study, we review the impact of donor valve preservation on moving towards a more viable valve alternative for valve replacements in children or young adults.
Collapse
Affiliation(s)
- M C Peters
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands.
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - B P T Kruithof
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - I K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - A van den Bogaerdt
- Heart Valve Department, ETB-BISLIFE Multi Tissue Center, 2333 BD, Beverwijk, The Netherlands
| | - M J Goumans
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - A van Wijk
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
5
|
Axelsson I, Gustafsson A, Isaksson H, Nilsson J, Malm T. Impact of storage time prior to cryopreservation on mechanical properties of aortic homografts. Cell Tissue Bank 2024; 25:27-37. [PMID: 36843158 PMCID: PMC10902001 DOI: 10.1007/s10561-023-10079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/04/2023] [Indexed: 02/28/2023]
Abstract
Optimal time spans in homograft procurement are still debatable among tissue banks and needs to be further investigated. Cell viability decreases at longer preparation intervals, but the effect on collagen and elastic fibers has not been investigated to the same extent. These fibers are of importance to the homograft elasticity and strength. The objective of this study was to analyze the mechanical properties of homograft tissue at different time spans in the procurement process. Ten aortic homografts were collected at the Tissue Bank in Lund. Twelve samples were obtained from each homograft, cryopreserved in groups of three after 2-4 days, 7-9 days, 28-30 days, and 60-62 days in antibiotic decontamination. Mechanical testing was performed with uniaxial tensile tests, calculating elastic modulus, yield stress and energy at yield stress. Two randomly selected samples were assessed with light microscopy. Procurement generated a total of 120 samples, with 30 samples in each time group. Elastic modulus and yield stress was significantly higher in samples cryopreserved after 2-4 days (2.7 MPa (2.5-5.0) and 0.78 MPa (0.68-1.0)) compared to 7-9 days (2.2 MPa (2.0-2.6) and 0.53 MPa (0.46-0.69)), p = 0.008 and 0.011 respectively. Light microscopy did not show any difference in collagen and elastin at different time spans. There was a significant decrease in elastic modulus and yield stress after 7 days of decontamination at 4 °C compared to 2-4 days. This could indicate some deterioration of elastin and collagen at longer decontamination intervals. Clinical significance of these findings remains to be clarified.
Collapse
Affiliation(s)
- Ida Axelsson
- Tissue Bank Lund, Baravägen 37, 22242, Lund, Sweden.
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden.
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden.
| | - Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Johan Nilsson
- Department of Cardiothoracic Surgery, Skane University Hospital, Lund, Sweden
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden
- Department of Translational Medicine, Artificial Intelligence and Bioinformatics in Cardiothoracic Sciences, Lund University, Lund, Sweden
| | - Torsten Malm
- Tissue Bank Lund, Baravägen 37, 22242, Lund, Sweden
- Department of Clinical Science, Cardiothoracic Surgery, Lund University, Lund, Sweden
- Pediatric Cardiac Surgery Unit, Children's Hospital, Skane University Hospital, Lund, Sweden
| |
Collapse
|
6
|
Freitas-Ribeiro S, Reis RL, Pirraco RP. Long-term and short-term preservation strategies for tissue engineering and regenerative medicine products: state of the art and emerging trends. PNAS NEXUS 2022; 1:pgac212. [PMID: 36714838 PMCID: PMC9802477 DOI: 10.1093/pnasnexus/pgac212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
There is an ever-growing need of human tissues and organs for transplantation. However, the availability of such tissues and organs is insufficient by a large margin, which is a huge medical and societal problem. Tissue engineering and regenerative medicine (TERM) represent potential solutions to this issue and have therefore been attracting increased interest from researchers and clinicians alike. But the successful large-scale clinical deployment of TERM products critically depends on the development of efficient preservation methodologies. The existing preservation approaches such as slow freezing, vitrification, dry state preservation, and hypothermic and normothermic storage all have issues that somehow limit the biomedical applications of TERM products. In this review, the principles and application of these approaches will be summarized, highlighting their advantages and limitations in the context of TERM products preservation.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | - Rui L Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal,ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Barco GMR, Portugal
| | | |
Collapse
|
7
|
Impact of Three Different Processing Techniques on the Strength and Structure of Juvenile Ovine Pulmonary Homografts. Polymers (Basel) 2022; 14:polym14153036. [PMID: 35894000 PMCID: PMC9332750 DOI: 10.3390/polym14153036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
Homografts are routinely stored by cryopreservation; however, donor cells and remnants contribute to immunogenicity. Although decellularization strategies can address immunogenicity, additional fixation might be required to maintain strength. This study investigated the effect of cryopreservation, decellularization, and decellularization with additional glutaraldhyde fixation on the strength and structure of ovine pulmonary homografts harvested 48 h post-mortem. Cells and cellular remnants were present for the cryopreserved group, while the decellularized groups were acellular. The decellularized group had large interfibrillar spaces in the extracellular matrix with uniform collagen distribution, while the additional fixation led to the collagen network becoming dense and compacted. The collagen of the cryopreserved group was collapsed and appeared disrupted and fractured. There were no significant differences in strength and elasticity between the groups. Compared to cryopreservation, decellularization without fixation can be considered an alternative processing technique to maintain a well-organized collagen matrix and tissue strength of homografts.
Collapse
|
8
|
Characterization of Cryopreserved Canine Amniotic Membrane. MEMBRANES 2021; 11:membranes11110824. [PMID: 34832052 PMCID: PMC8624976 DOI: 10.3390/membranes11110824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Amniotic membrane is an effective corneal reconstruction material in veterinary surgery. Cryopreserved amniotic membrane is widely used in practice. Properties of cryopreserved canine amniotic membranes are currently not well studied. This study aimed to compare three properties between canine amniotic membranes cryopreserved for 7 days and 30 days, including tensile strength, transparency, and cell viability. After their respective cryopreservation time, stress-strain curves of the cryopreserved membranes' tensile strength were assessed using a universal testing machine. Both groups produced J-shaped stress-strain curves with statistically comparable parameters, including maximum stress, strain, and Young's modulus. The percentage of cell viability was observed by trypan blue staining under a light microscope. Membrane transparency was tested with a spectrophotometer. Transparency tests showed high levels of light transmission and low haze, with no statistical difference between groups. Cell viability was statistically lower in the 30-day cryopreserved group. Tensile strength and transparency of cryopreserved CAM were not significantly impeded for up to 30 days. For CAM to be used as an alternative corneal transplant material in veterinary and regenerative medicine, further research on cell biology, biomechanical properties of the membrane, and cell viability should be conducted.
Collapse
|
9
|
Gharenaz NM, Movahedin M, Mazaheri Z. Comparison of two methods for prolong storage of decellularized mouse whole testis for tissue engineering application: An experimental study. Int J Reprod Biomed 2021; 19:321-332. [PMID: 33997591 PMCID: PMC8106816 DOI: 10.18502/ijrm.v19i4.9058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/04/2020] [Accepted: 09/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Biological scaffolds are derived by the decellularization of tissues or organs. Various biological scaffolds, such as scaffolds for the liver, lung, esophagus, dermis, and human testicles, have been produced. Their application in tissue engineering has created the need for cryopreservation processes to store these scaffolds. Objective The aim was to compare the two methods for prolong storage testicular scaffolds. Materials and Methods In this experimental study, 20 male NMRI mice (8 wk) were sacrificed and their testes were removed and treated with 0.5% sodium dodecyl sulfate followed by Triton X-100 0.5%. The efficiency of decellularization was determined by histology and DNA quantification. Testicular scaffolds were stored in phosphate-buffered saline solution at 4°C or cryopreserved by programmed slow freezing followed by storage in liquid nitrogen. Masson's trichrome staining, Alcian blue staining and immunohistochemistry, collagen assay, and glycosaminoglycan assay were done prior to and after six months of storage under each condition. Results Hematoxylin-eosin staining showed no remnant cells after the completion of decellularization. DNA content analysis indicated that approximately 98% of the DNA was removed from the tissue (p = 0.02). Histological evaluation confirmed the preservation of extracellular matrix components in the fresh and frozen-thawed scaffolds. Extracellular matrix components were decreased by 4°C-stored scaffolds. Cytotoxicity tests with mouse embryonic fibroblast showed that the scaffolds were biocompatible and did not have a harmful effect on the proliferation of mouse embryonic fibroblast cells. Conclusion Our results demonstrated the superiority of the slow freezing method for prolong storage of testicular scaffolds.
Collapse
Affiliation(s)
- Nasrin Majidi Gharenaz
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Anatomical Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
10
|
Cunnane CV, Croghan SM, Walsh MT, Cunnane EM, Davis NF, Flood HD, Mulvihill JJE. Cryopreservation of porcine urethral tissue: Storage at -20°C preserves the mechanical, failure and geometrical properties. J Mech Behav Biomed Mater 2021; 119:104516. [PMID: 33932753 DOI: 10.1016/j.jmbbm.2021.104516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Cryopreservation is required to preserve the native properties of tissue for prolonged periods of time. In this study, we evaluate the impact that 4 different cryopreservation protocols have on porcine urethral tissue, to identify a protocol that best preserves the native properties of the tissue. The cryopreservation protocols include storage in cryoprotective agents at -20 °C and -80 °C with a slow, gradual, and fast reduction in temperature. To evaluate the effects of cryopreservation, the tissue is mechanically characterised in uniaxial tension and the mechanical properties, failure mechanics, and tissue dimensions are compared fresh and following cryopreservation. The mechanical response of the tissue is altered following cryopreservation, yet the elastic modulus from the high stress, linear region of the Cauchy stress - stretch curves is unaffected by the freezing process. To further investigate the change in mechanical response following cryopreservation, the stretch at different tensile stress values was evaluated, which revealed that storage at -20 °C is the only protocol that does not significantly alter the mechanical properties of the tissue compared to the fresh samples. Conversely, the ultimate tensile strength and the stretch at failure were relatively unaffected by the freezing process, regardless of the cryopreservation protocol. However, there were alterations to the tissue dimensions following cryopreservation that were significantly different from the fresh samples for the tissue stored at -80 °C. Therefore, any study intent on preserving the mechanical, failure, and geometric properties of urethral tissue during cryopreservation should do so by freezing samples at -20 °C, as storage at -80 °C is shown here to significantly alter the tissue properties.
Collapse
Affiliation(s)
- Connor V Cunnane
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | | | - Michael T Walsh
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Niall F Davis
- Department of Urology, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Hugh D Flood
- Class Medical Limited, Unit 1 D, Annacotty Business Park, Co. Limerick, Ireland
| | - John J E Mulvihill
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
11
|
Tas RP, Sampaio-Pinto V, Wennekes T, van Laake LW, Voets IK. From the freezer to the clinic: Antifreeze proteins in the preservation of cells, tissues, and organs. EMBO Rep 2021; 22:e52162. [PMID: 33586846 PMCID: PMC7926221 DOI: 10.15252/embr.202052162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Roderick P Tas
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven, The Netherlands
| | - Vasco Sampaio-Pinto
- Department of Cardiology and Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Linda W van Laake
- Department of Cardiology and Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven, The Netherlands
| |
Collapse
|
12
|
Biermann AC, Marzi J, Brauchle E, Wichmann JL, Arendt CT, Puntmann V, Nagel E, Abdelaziz S, Winter AG, Brockbank KGM, Layland S, Schenke-Layland K, Stock UA. Improved long-term durability of allogeneic heart valves in the orthotopic sheep model. Eur J Cardiothorac Surg 2020; 55:484-493. [PMID: 30165639 DOI: 10.1093/ejcts/ezy292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Frozen cryopreservation (FC) with the vapour phase of liquid nitrogen storage (-135°C) is a standard biobank technique to preserve allogeneic heart valves to enable a preferable allograft valve replacement in clinical settings. However, their long-term function is limited by immune responses, inflammation and structural degeneration. Ice-free cryopreserved (IFC) valves with warmer storage possibilities at -80°C showed better matrix preservation and decreased immunological response in preliminary short-term in vivo studies. Our study aimed to assess the prolonged performance of IFC allografts in an orthotopic pulmonary sheep model. METHODS FC (n = 6) and IFC (n = 6) allografts were transplanted into juvenile Merino sheep. After 12 months of implantation, functionality testing via 2-dimensional echocardiography and histological analyses was performed. In addition, multiphoton autofluorescence imaging and Raman microspectroscopy analysis were applied to qualitatively and quantitatively assess the matrix integrity of the leaflets. RESULTS Six animals from the FC group and 5 animals from the IFC group were included in the analysis. Histological explant analysis showed early inflammation in the FC valves, whereas sustainable, fully functional, devitalized acellular IFC grafts were obtained. IFC valves showed excellent haemodynamic data with fewer gradients, no pulmonary regurgitation, no calcification and acellularity. Structural remodelling of the leaflet matrix structure was only detected in FC-treated tissue, whereas IFC valves maintained matrix integrity comparable to that of native controls. The collagen crimp period and amplitude and elastin structure were significantly different in the FC valve cusps compared to IFC and native cusps. Collagen fibres in the FC valves were less aligned and straightened. CONCLUSIONS IFC heart valves with good haemodynamic function, reduced immunogenicity and preserved matrix structures have the potential to overcome the known limitations of the clinically applied FC valve.
Collapse
Affiliation(s)
- Anna Christina Biermann
- Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department of Cardiothoracic Surgery, Royal Brompton and Harefield Foundation Trust, Harefield, UK.,Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Julia Marzi
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Eva Brauchle
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Julian Lukas Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christophe Theo Arendt
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Valentina Puntmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Eike Nagel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sherif Abdelaziz
- Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Andreas Gerhard Winter
- Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Kelvin Gordon Mashader Brockbank
- Tissue Testing Technologies LLC, North Charleston, SC, USA.,Department of Bioengineering, Clemson University, North Charleston, SC, USA
| | - Shannon Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tuebingen, Tuebingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Natural and Medical Sciences Institute at the University of Tuebingen (NMI), Reutlingen, Germany
| | - Ulrich Alfred Stock
- Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department of Cardiothoracic Surgery, Royal Brompton and Harefield Foundation Trust, Harefield, UK.,Faculty of Medicine, Imperial College London, London, UK.,Magdi Yacoube Institute, Heart Science Center, Harefield, UK
| |
Collapse
|
13
|
Dal Sasso E, Menabò R, Agrillo D, Arrigoni G, Franchin C, Giraudo C, Filippi A, Borile G, Ascione G, Zanella F, Fabozzo A, Motta R, Romanato F, Di Lisa F, Iop L, Gerosa G. RegenHeart: A Time-Effective, Low-Concentration, Detergent-Based Method Aiming for Conservative Decellularization of the Whole Heart Organ. ACS Biomater Sci Eng 2020; 6:5493-5506. [PMID: 33320567 PMCID: PMC8011801 DOI: 10.1021/acsbiomaterials.0c00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Heart
failure is the worst outcome of all cardiovascular diseases
and still represents nowadays the leading cause of mortality with
no effective clinical treatments, apart from organ transplantation
with allogeneic or artificial substitutes. Although applied as the
gold standard, allogeneic heart transplantation cannot be considered
a permanent clinical answer because of several drawbacks, as the side
effects of administered immunosuppressive therapies. For the increasing
number of heart failure patients, a biological cardiac substitute
based on a decellularized organ and autologous cells might be the
lifelong, biocompatible solution free from the need for immunosuppression
regimen. A novel decellularization method is here proposed and tested
on rat hearts in order to reduce the concentration and incubation
time with cytotoxic detergents needed to render acellular these organs.
By protease inhibition, antioxidation, and excitation–contraction
uncoupling in simultaneous perfusion/submersion modality, a strongly
limited exposure to detergents was sufficient to generate very well-preserved
acellular hearts with unaltered extracellular matrix macro- and microarchitecture,
as well as bioactivity.
Collapse
Affiliation(s)
- Eleonora Dal Sasso
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy
| | - Roberta Menabò
- Institute of Neuroscience, National Research Council (CNR), Padua 35127, Italy.,Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - Davide Agrillo
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - Chiara Giraudo
- Department of Medicine, University of Padua, Padua 35122, Italy.,L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy
| | - Andrea Filippi
- Department of Physics and Astronomy 'G. Galilei', University of Padua, Padua 35122, Italy.,Fondazione Bruno Kessler, Trento 38123, Italy.,Institute of Pediatric Research 'Città della Speranza', Padua 35127, Italy
| | - Giulia Borile
- Department of Physics and Astronomy 'G. Galilei', University of Padua, Padua 35122, Italy.,Institute of Pediatric Research 'Città della Speranza', Padua 35127, Italy
| | - Guido Ascione
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy
| | - Fabio Zanella
- Cardiac Surgery Unit, University Hospital of Padua, Padua 35128, Italy
| | - Assunta Fabozzo
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy.,Cardiac Surgery Unit, University Hospital of Padua, Padua 35128, Italy
| | - Raffaella Motta
- Department of Medicine, University of Padua, Padua 35122, Italy
| | - Filippo Romanato
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy.,Department of Physics and Astronomy 'G. Galilei', University of Padua, Padua 35122, Italy.,Institute of Pediatric Research 'Città della Speranza', Padua 35127, Italy
| | - Fabio Di Lisa
- Institute of Neuroscience, National Research Council (CNR), Padua 35127, Italy.,Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - Laura Iop
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy.,L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy
| | - Gino Gerosa
- Cardiovascular Regenerative Medicine, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua 35128, Italy.,L.I.F.E.L.A.B. Program, Consorzio per la Ricerca sanitaria (CORIS), Veneto Region, Padua 35128, Italy.,Cardiac Surgery Unit, University Hospital of Padua, Padua 35128, Italy
| |
Collapse
|
14
|
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 2020; 18:92-116. [PMID: 32908285 DOI: 10.1038/s41569-020-0422-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.
Collapse
|
15
|
Calcification Assessment of Bioprosthetic Heart Valve Tissues Using an ImprovedIn VitroModel. IEEE Trans Biomed Eng 2020; 67:2453-2461. [DOI: 10.1109/tbme.2019.2963043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Wollmann LC, Suss PH, Kraft L, Ribeiro VS, Noronha L, da Costa FDA, Tuon FF. Histological and Biomechanical Characteristics of Human Decellularized Allograft Heart Valves After Eighteen Months of Storage in Saline Solution. Biopreserv Biobank 2020; 18:90-101. [PMID: 31990593 DOI: 10.1089/bio.2019.0106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: The best storage preservation method for maintaining the quality and safety of human decellularized allograft heart valves is yet to be established. Objective: The aim of the present study was to evaluate the stability in terms of extracellular matrix (ECM) integrity of human heart valve allografts decellularized using sodium dodecyl sulfate-ethylenediaminetetraacetic acid (SDS-EDTA) and stored for 6, 12, and 18 months. Methods: A total of 70 decellularized aortic and pulmonary valves were analyzed across different storage times (0, 6, 12, and 18 months) for solution pH measurements, histological findings, cytotoxicity assay results, biomechanical test results, and microbiological suitability test results. Continuous data were analyzed using one-way analysis of variance comparing the follow-up times. Results: The pH of the stock solution did not change during the different time points, and no microbial growth occurred up to 18 months. Histological analysis showed that the decellularized allografts did not present deleterious outcomes or signs of structural degeneration in the ECM up to 12 months. The biomechanical properties showed changes over time in different aspects. Allografts stored for 18 months presented lower tensile strength and elasticity than those stored for 12 months (p < 0.05). The microbiological suitability test suggested no residual antimicrobial effects. Conclusion: Changes in the structure and functionality of SDS-EDTA decellularized heart valve allografts occur after 12 months of storage.
Collapse
Affiliation(s)
- Luciana Cristina Wollmann
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.,Tissue Bank, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paula Hansen Suss
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Leticia Kraft
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Lúcia Noronha
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.,Experimental Pathology Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Francisco Diniz Affonso da Costa
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.,Tissue Bank, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Felipe Francisco Tuon
- School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.,Tissue Bank, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Salinas SD, Clark MM, Amini R. The effects of -80 °C short-term storage on the mechanical response of tricuspid valve leaflets. J Biomech 2020; 98:109462. [PMID: 31718820 DOI: 10.1016/j.jbiomech.2019.109462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
Mechanical testing of soft tissues would ideally rely on using fresh specimens. In the event that fresh tissues are not readily available, alternative measures, such as storing fresh specimens at -80 °C, could be considered. Previous studies have shown that changes in the mechanical properties of the tissues due to freezing could be tissue-dependent. Prior to our study, however, such information was not available for the tricuspid valve leaflets. As such, for the first time, we examined whether fresh porcine specimens tested in a biaxial tensile machine would offer comparable results after being frozen at -80 °C. The stress-strain response of the tricuspid valve leaflets displayed no major deviation of the post-frozen leaflets as compared to fresh leaflets. We further compared the radial and circumferential strains as an indicator of deformation at similar stress states in fresh and thawed tissues, and we did not find any significant differences. Ice formation within the extra cellular matrix may modify the collagen fiber configuration, resulting in a slight change in the mechanical response. Nevertheless, our results indicated such a small deviation was negligible, thus enabling the possibility of using frozen porcine tricuspid valve specimens for future research.
Collapse
Affiliation(s)
- Samuel D Salinas
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States.
| | - Margaret M Clark
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States.
| | - Rouzbeh Amini
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States.
| |
Collapse
|
18
|
Vasudevan B, Chang Q, Wang B, Huang S, Sui Y, Zhu W, Fan Q, Song Y. Effect of intracellular uptake of nanoparticle-encapsulated trehalose on the hemocompatibility of allogeneic valves in the VS83 vitrification protocol. Nanobiomedicine (Rij) 2020; 7:1849543520983173. [PMID: 33447299 PMCID: PMC7780325 DOI: 10.1177/1849543520983173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Trehalose is a disaccharide molecule consisting of two molecules of glucose. Industrially, trehalose is derived from corn starch and utilized as a drug. This study aims to examine whether the integration of nanoparticle-encapsulated trehalose to the Ice-Free Cryopreservation (IFC) method for preserving heart valves has better cell viability, benefits to protect the extracellular matrix (ECM), and reduce immune response after storage. For the experiment to be carried out, we obtained materials, and the procedures were carried out in the following manner. The initial step was the preparation of hydroxyapatite nanoparticles, followed by precipitation to acquire Apatite colloidal suspensions. Animals were obtained, and their tissue isolation and grouping were done ethically. All samples were then divided into four groups, Control group, Conventional Frozen Cryopreservation (CFC) group, IFC group, and IFC + T (IFC with the addition of 0.2 M nanoparticle-encapsulated Trehalose) group. Histological analysis was carried out via H&E staining, ECM components were stained with Modified Weigert staining, and the Gomori Ammonia method was used to stain reticular fibers. Alamar Blue assay was utilized to assess cell viability. Hemocompatibility was evaluated, and samples were processed for immunohistochemistry (TNFα and IL-10). Hemocompatibility was quantified using Terminal Complement Complex (TCC) and Neutrophil elastase (NE) as an indicator. The results of the H&E staining revealed less formation of extracellular ice crystals and intracellular vacuoles in the IFC + T group compared with all other groups. The CFC group's cell viability showed better viability than the IFC group, but the highest viability was exhibited in the IFC + T group (70.96 ± 2.53, P < 0.0001, n = 6). In immunohistochemistry, TNFα levels were lowest in both IFC and IFC + T group, and IL-10 expression had significantly reduced in IFC and IFC + T group. The results suggested that the nanoparticle encapsulated trehalose did not show significant hemocompatibility issues on the cryopreserved heart valves.
Collapse
Affiliation(s)
| | - Qing Chang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Bin Wang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Siyang Huang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yulong Sui
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Qing Fan
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yisheng Song
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Becker M, Schneider M, Stamm C, Seifert M. A Polymorphonuclear Leukocyte Assay to Assess Implant Immunocompatibility. Tissue Eng Part C Methods 2019; 25:500-511. [PMID: 31337288 DOI: 10.1089/ten.tec.2019.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT Polymorphonuclear leukocytes (PMNs) are essential in the first infection and host-versus-graft reactions. Strategies for adequate and standardized assays to test PMN activation by diverse types of matrices such as cardiovascular implants are urgently needed. To overcome this limitation, we established a straightforward PMN activation assay and validated lipopolysaccharide (LPS) as a reliable PMN activator that induces defined changes in surface marker expression and cytokine release. Biological "proof-of-principle" matrices demonstrated the feasibility of this PMN assay. Overall, this assay provides an instrument conducting an initial immunological assessment of biological implants prior their clinical application.
Collapse
Affiliation(s)
- Matthias Becker
- 1Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Maria Schneider
- 1Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,2Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christof Stamm
- 2Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,3German Heart Center Berlin (DHZB), Berlin, Germany
| | - Martina Seifert
- 1Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,2Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability. Acta Biomater 2019; 84:208-221. [PMID: 30342283 DOI: 10.1016/j.actbio.2018.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Decellularized biological scaffolds hold great promise in cardiovascular surgery. In order to ensure off-the-shelf availability, routine use of decellularized scaffolds requires tissue banking. In this study, the suitability of cryopreservation, vitrification and freeze-drying for the preservation of decellularized bovine pericardial (DBP) scaffolds was evaluated. Cryopreservation was conducted using 10% DMSO and slow-rate freezing. Vitrification was performed using vitrification solution (VS83) and rapid cooling. Freeze-drying was done using a programmable freeze-dryer and sucrose as lyoprotectant. The impact of the preservation methods on the DBP extracellular matrix structure, integrity and composition was assessed using histology, biomechanical testing, spectroscopic and thermal analysis, and biochemistry. In addition, the cytocompatibility of the preserved scaffolds was also assessed. All preservation methods were found to be suitable to preserve the extracellular matrix structure and its components, with no apparent signs of collagen deterioration or denaturation, or loss of elastin and glycosaminoglycans. Biomechanical testing, however, showed that the cryopreserved DBP displayed a loss of extensibility compared to vitrified or freeze-dried scaffolds, which both displayed similar biomechanical behavior compared to non-preserved control scaffolds. In conclusion, cryopreservation altered the biomechanical behavior of the DBP scaffolds, which might lead to graft dysfunction in vivo. In contrast to cryopreservation and vitrification, freeze-drying is performed with non-toxic protective agents and does not require storage at ultra-low temperatures, thus allowing for a cost-effective and easy storage and transport. Due to these advantages, freeze-drying is a preferable method for the preservation of decellularized pericardium. STATEMENT OF SIGNIFICANCE: Clinical use of DBP scaffolds for surgical reconstructions or substitutions requires development of a preservation technology that does not alter scaffold properties during long-term storage. Conclusive investigation on adverse impacts of the preservation methods on DBP matrix integrity is still missing. This work is aiming to close this gap by studying three potential preservation technologies, cryopreservation, vitrification and freeze-drying, in order to achieve the off-the-shelf availability of DBP patches for clinical application. Furthermore, it provides novel insights for dry-preservation of decellularized xenogeneic scaffolds that can be used in the routine clinical cardiovascular practice, allowing the surgeon the opportunity to choose an ideal implant matching with the needs of each patient.
Collapse
|
21
|
Marzi J, Biermann AC, Brauchle EM, Brockbank KGM, Stock UA, Schenke-Layland K. Marker-Independent In Situ Quantitative Assessment of Residual Cryoprotectants in Cardiac Tissues. Anal Chem 2019; 91:2266-2272. [DOI: 10.1021/acs.analchem.8b04861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia Marzi
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Anna C. Biermann
- Department for Thoracic and Cardiovascular Surgery, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield Foundation Trust; Harefield UB96JH, United Kingdom
| | - Eva M. Brauchle
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, 72770 Reutlingen, Germany
| | - Kelvin G. M. Brockbank
- Tissue Testing Technologies LLC., North Charleston, South Carolina 20406, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Ulrich A. Stock
- Department for Thoracic and Cardiovascular Surgery, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield Foundation Trust; Harefield UB96JH, United Kingdom
- Imperial College London, London SW72AZ, United Kingdom
- Magdi Yacoub Institute, Harefield UB96JH, United Kingdom
| | - Katja Schenke-Layland
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, 72770 Reutlingen, Germany
- Department of Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nat Commun 2018; 9:4286. [PMID: 30327457 PMCID: PMC6191423 DOI: 10.1038/s41467-018-06385-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes. Combining decellularised scaffolds with patient-derived cells holds promise for bioengineering of functional tissues. Here the authors develop a two-stage approach to engineer an oesophageal graft that retains the structural organisation of native oesophagus.
Collapse
|
23
|
Bester D, Botes L, van den Heever JJ, Kotze H, Dohmen P, Pomar JL, Smit FE. Cadaver donation: structural integrity of pulmonary homografts harvested 48 h post mortem in the juvenile ovine model. Cell Tissue Bank 2018; 19:743-754. [PMID: 30311023 DOI: 10.1007/s10561-018-9729-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/05/2018] [Indexed: 12/01/2022]
Abstract
Cryopreserved pulmonary homograft (CPH) implantation remains the gold standard for reconstruction of the right ventricular outflow tract (RVOT). Harvesting homografts < 24-h post mortem is the international norm, thereby largely excluding cadaveric donors. This study examines the structural integrity and stability of ovine pulmonary homografts harvested after a 48-h post mortem period, cryopreserved and then implanted for up to 180 days. Fifteen ovine pulmonary homografts were harvested 48-h post mortem and cryopreserved. Five CPH served as a control group (group 1; n = 5). CPH were implanted in the RVOT of juvenile sheep and explanted after 14 days (group 2; n = 5) and 180 days (group 3; n = 5). Leaflet integrity was evaluated by strength analysis, using tensile strength (TS), Young's modulus (YM) and thermal denaturation temperature (Td), and morphology, including haematoxylin and eosin (H&E), Picrosirius red staining, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and von Kossa stains. Echocardiography confirmed normal function in all implants. In explants, no reduction in TS, YM or Td could be demonstrated and H&E showed mostly acellular leaflet tissue with no difference on Picrosirius red. TEM demonstrated consistent collagen disruption after cryopreservation in all three groups, with no morphological deterioration during the study period. von Kossa stains showed mild calcification in group 3. No deterioration of structural integrity could be demonstrated using strength or morphological evaluations between the controls and implant groups over the study period. Extending the post mortem harvesting time of homografts beyond 24 h did not appear to negatively affect the long-term performance of such transplanted valves in this study.
Collapse
Affiliation(s)
- Dreyer Bester
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), P.O. Box 339, (Internal Box G32), Bloemfontein, 9300, South Africa
| | - Lezelle Botes
- Department of Health Sciences, Central University of Technology, Free State (CUT), Private Bag X20539, Bloemfontein, 9300, South Africa.
| | - Johannes Jacobus van den Heever
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), P.O. Box 339, (Internal Box G32), Bloemfontein, 9300, South Africa
| | - Harry Kotze
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), P.O. Box 339, (Internal Box G32), Bloemfontein, 9300, South Africa
| | - Pascal Dohmen
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), P.O. Box 339, (Internal Box G32), Bloemfontein, 9300, South Africa.,Department of Cardiac Surgery, Heart Centre Rostock, University of Rostock, 18107, Rostock, Germany
| | - Jose Luis Pomar
- Department of Cardiovascular Surgery, Hospital Clinico de Barcelona, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Francis Edwin Smit
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), P.O. Box 339, (Internal Box G32), Bloemfontein, 9300, South Africa
| |
Collapse
|
24
|
Vásquez-Rivera A, Oldenhof H, Dipresa D, Goecke T, Kouvaka A, Will F, Haverich A, Korossis S, Hilfiker A, Wolkers WF. Use of sucrose to diminish pore formation in freeze-dried heart valves. Sci Rep 2018; 8:12982. [PMID: 30154529 PMCID: PMC6113295 DOI: 10.1038/s41598-018-31388-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
Freeze-dried storage of decellularized heart valves provides easy storage and transport for clinical use. Freeze-drying without protectants, however, results in a disrupted histoarchitecture after rehydration. In this study, heart valves were incubated in solutions of various sucrose concentrations and subsequently freeze-dried. Porosity of rehydrated valves was determined from histological images. In the absence of sucrose, freeze-dried valves were shown to have pores after rehydration in the cusp, artery and muscle sections. Use of sucrose reduced pore formation in a dose-dependent manner, and pretreatment of the valves in a 40% (w/v) sucrose solution prior to freeze-drying was found to be sufficient to completely diminish pore formation. The presence of pores in freeze-dried valves was found to coincide with altered biomechanical characteristics, whereas biomechanical parameters of valves freeze-dried with enough sucrose were not significantly different from those of valves not exposed to freeze-drying. Multiphoton imaging, Fourier transform infrared spectroscopy, and differential scanning calorimetry studies revealed that matrix proteins (i.e. collagen and elastin) were not affected by freeze-drying.
Collapse
Affiliation(s)
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniele Dipresa
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Artemis Kouvaka
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Fabian Will
- LLS ROWIAK LaserLabSolutions, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Willem F Wolkers
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
25
|
Vitrification of aortic valve homografts suppresses NLRP3 inflammasome activation and alleviates the inflammatory response after transplantation. Cryobiology 2018; 82:130-136. [PMID: 29571631 DOI: 10.1016/j.cryobiol.2018.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 11/24/2022]
|
26
|
Motoike S, Kajiya M, Komatsu N, Takewaki M, Horikoshi S, Matsuda S, Ouhara K, Iwata T, Takeda K, Fujita T, Kurihara H. Cryopreserved clumps of mesenchymal stem cell/extracellular matrix complexes retain osteogenic capacity and induce bone regeneration. Stem Cell Res Ther 2018; 9:73. [PMID: 29562931 PMCID: PMC5863484 DOI: 10.1186/s13287-018-0826-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) cultured clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. C-MSCs can regulate cellular functions in vitro and can be grafted into a defect site without an artificial scaffold to induce bone regeneration. Long-term cryopreservation of C-MSCs, which can enable them to serve as a ready-to-use cell preparation, may be helpful in developing beneficial cell therapy for bone regeneration. Therefore, the aim of this study was to investigate the effect of cryopreservation on C-MSCs. METHODS MSCs isolated from rat femurs were cultured in growth medium supplemented with ascorbic acid. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The sheet was rolled to make a round clumps of cells. The C-MSCs were cryopreserved in cryomedium including 10% dimethyl sulfoxide. RESULTS Cryopreserved C-MSCs retained their 3D structure and did not exhibit a decrease in cell viability. In addition, stem cell marker expression levels and the osteogenic differentiation properties of C-MSCs were not reduced by cryopreservation. However, C-MSCs pretreated with collagenase before cryopreservation showed a lower level of type I collagen and could not retain their 3D structure, and their rates of cell death increased during cryopreservation. Both C-MSC and cryopreserved C-MSC transplantation into rat calvarial defects induced successful bone regeneration. CONCLUSION These data indicate that cryopreservation does not reduce the biological properties of C-MSCs because of its abundant type I collagen. More specifically, cryopreserved C-MSCs could be applicable for novel bone regenerative therapies.
Collapse
Affiliation(s)
- Souta Motoike
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan.
| | - Nao Komatsu
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Manabu Takewaki
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
27
|
Goecke T, Theodoridis K, Tudorache I, Ciubotaru A, Cebotari S, Ramm R, Höffler K, Sarikouch S, Vásquez Rivera A, Haverich A, Wolkers WF, Hilfiker A. In vivo performance of freeze-dried decellularized pulmonary heart valve allo- and xenografts orthotopically implanted into juvenile sheep. Acta Biomater 2018; 68:41-52. [PMID: 29191508 DOI: 10.1016/j.actbio.2017.11.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022]
Abstract
The decellularization of biological tissues decreases immunogenicity, allows repopulation with cells, and may lead to improved long-term performance after implantation. Freeze drying these tissues would ensure off-the-shelf availability, save storage costs, and facilitates easy transport. This study evaluates the in vivo performance of freeze-dried decellularized heart valves in juvenile sheep. TritonX-100 and sodium dodecylsulfate decellularized ovine and porcine pulmonary valves (PV) were freeze-dried in a lyoprotectant sucrose solution. After rehydration for 24 h, valves were implanted into the PV position in sheep as allografts (fdOPV) and xenografts (fdPPV), while fresh dezellularized ovine grafts (frOPV) were implanted as controls. Functional assessment was performed by transesophageal echocardiography at implantation and at explantation six months later. Explanted grafts were analysed histologically to assess the matrix, and immunofluorescence stains were used to identify the repopulating cells. Although the graft diameters and orifice areas increased, good function was maintained, except for one insufficient, strongly deteriorated frOPV. Cells which were positive for either endothelial or interstitial markers were found in all grafts. In fdPPV, immune-reactive cells were also found. Our findings suggest that freeze-drying does not alter the early hemodynamic performance and repopulation potential of decellularized grafts in vivo, even in the challenging xenogeneic situation. Despite evidence of an immunological reaction for the xenogenic valves, good early functionalities were achieved. STATEMENT OF SIGNIFICANCE Decellularized allogeneic heart valves show excellent results as evident from large animal experiments and clinical trials. However, a long-term storing method is needed for an optimal use of this limited resource in the clinical setting, where an optimized matching of graft and recipient is requested. As demonstrated in this study, freeze-dried and freshly decellularized grafts reveal equally good results after implantation in the juvenile sheep concerning function and repopulation with recipients' cells. Thus, freeze-drying arises as a promising method to extend the shelf-life of valvular grafts compared to those stored in antibiotic-solution as currently practised.
Collapse
Affiliation(s)
- Tobias Goecke
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Karolina Theodoridis
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Igor Tudorache
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Anatol Ciubotaru
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Serghei Cebotari
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Klaus Höffler
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Samir Sarikouch
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | - Axel Haverich
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Willem F Wolkers
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
28
|
Schneider M, Stamm C, Brockbank KGM, Stock UA, Seifert M. The choice of cryopreservation method affects immune compatibility of human cardiovascular matrices. Sci Rep 2017; 7:17027. [PMID: 29208929 PMCID: PMC5717054 DOI: 10.1038/s41598-017-17288-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Conventional frozen cryopreservation (CFC) is currently the gold standard for cardiovascular allograft preservation. However, inflammation and structural deterioration limit transplant durability. Ice-free cryopreservation (IFC) already demonstrated matrix structure preservation combined with attenuated immune responses. In this study, we aim to explore the mechanisms of this diminished immunogenicity in vitro. First, we characterized factors released by human aortic tissue after CFC and IFC. Secondly, we analyzed co-cultures with human peripheral blood mononuclear cells, purified monocytes, T cells and monocyte-derived macrophages to examine functional immune effects triggered by the tissue or released cues. IFC tissue exhibited significantly lower metabolic activity and release of pro-inflammatory cytokines than CFC tissue, but surprisingly, more active transforming growth factor β. Due to reduced cytokine release by IFC tissue, less monocyte and T cell migration was detected in a chemotaxis system. Moreover, only cues from CFC tissue but not from IFC tissue amplified αCD3 triggered T cell proliferation. In a specifically designed macrophage-tissue assay, we could show that macrophages did not upregulate M1 polarization markers (CD80 or HLA-DR) on either tissue type. In conclusion, IFC selectively modulates tissue characteristics and thereby attenuates immune cell attraction and activation. Therefore, IFC treatment creates improved opportunities for cardiovascular graft preservation.
Collapse
Affiliation(s)
- Maria Schneider
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Heart Center (DHZB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kelvin G M Brockbank
- Tissue Testing Technologies LLC, North Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Ulrich A Stock
- Royal Brompton and Harefield NHS Trust Imperial College London, London, UK
| | - Martina Seifert
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
29
|
Urbani L, Maghsoudlou P, Milan A, Menikou M, Hagen CK, Totonelli G, Camilli C, Eaton S, Burns A, Olivo A, De Coppi P. Long-term cryopreservation of decellularised oesophagi for tissue engineering clinical application. PLoS One 2017; 12:e0179341. [PMID: 28599006 PMCID: PMC5466304 DOI: 10.1371/journal.pone.0179341] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Oesophageal tissue engineering is a therapeutic alternative when oesophageal replacement is required. Decellularised scaffolds are ideal as they are derived from tissue-specific extracellular matrix and are non-immunogenic. However, appropriate preservation may significantly affect scaffold behaviour. Here we aim to prove that an effective method for short- and long-term preservation can be applied to tissue engineered products allowing their translation to clinical application. Rabbit oesophagi were decellularised using the detergent-enzymatic treatment (DET), a combination of deionised water, sodium deoxycholate and DNase-I. Samples were stored in phosphate-buffered saline solution at 4°C (4°C) or slow cooled in medium with 10% Me2SO at -1°C/min followed by storage in liquid nitrogen (SCM). Structural and functional analyses were performed prior to and after 2 and 4 weeks and 3 and 6 months of storage under each condition. Efficient decellularisation was achieved after 2 cycles of DET as determined with histology and DNA quantification, with preservation of the ECM. Only the SCM method, commonly used for cell storage, maintained the architecture and biomechanical properties of the scaffold up to 6 months. On the contrary, 4°C method was effective for short-term storage but led to a progressive distortion and degradation of the tissue architecture at the following time points. Efficient storage allows a timely use of decellularised oesophagi, essential for clinical translation. Here we describe that slow cooling with cryoprotectant solution in liquid nitrogen vapour leads to reliable long-term storage of decellularised oesophageal scaffolds for tissue engineering purposes.
Collapse
Affiliation(s)
- Luca Urbani
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- * E-mail: (LU); (PDC)
| | | | - Anna Milan
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Maria Menikou
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Charlotte Klara Hagen
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Giorgia Totonelli
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Carlotta Camilli
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Alan Burns
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- * E-mail: (LU); (PDC)
| |
Collapse
|
30
|
Högerle BA, Schneider M, Sudrow K, Souidi N, Stolk M, Werner I, Biermann A, Brockbank KG, Stock UA, Seifert M. Effects on human heart valve immunogenicity
in vitro
by high concentration cryoprotectant treatment. J Tissue Eng Regen Med 2017; 12:e1046-e1055. [DOI: 10.1002/term.2426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Benjamin A. Högerle
- Department for Thoracic and Cardiovascular SurgeryJohann Wolfgang Goethe University Frankfurt am Main Germany
| | - Maria Schneider
- Institute of Medical ImmunologyCharité Universitätsmedizin Berlin Germany
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)Charité Universitätsmedizin Berlin Germany
| | - Katrin Sudrow
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)Charité Universitätsmedizin Berlin Germany
| | - Naima Souidi
- Institute of Medical ImmunologyCharité Universitätsmedizin Berlin Germany
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)Charité Universitätsmedizin Berlin Germany
| | - Meaghan Stolk
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)Charité Universitätsmedizin Berlin Germany
| | - Isabella Werner
- Department for Thoracic and Cardiovascular SurgeryJohann Wolfgang Goethe University Frankfurt am Main Germany
| | - Anna Biermann
- Department for Thoracic and Cardiovascular SurgeryJohann Wolfgang Goethe University Frankfurt am Main Germany
| | - Kelvin G.M. Brockbank
- Tissue Testing Technologies LLC North Charleston SC USA
- Department of BioengineeringClemson University SC USA
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina Charleston SC USA
| | - Ulrich A. Stock
- Department for Thoracic and Cardiovascular SurgeryJohann Wolfgang Goethe University Frankfurt am Main Germany
| | - Martina Seifert
- Institute of Medical ImmunologyCharité Universitätsmedizin Berlin Germany
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)Charité Universitätsmedizin Berlin Germany
| |
Collapse
|
31
|
Lisy M, Kalender G, Schenke-Layland K, Brockbank KG, Biermann A, Stock UA. Allograft Heart Valves: Current Aspects and Future Applications. Biopreserv Biobank 2017; 15:148-157. [DOI: 10.1089/bio.2016.0070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Milan Lisy
- Department of General, Visceral, Thoracic and Vascular Surgery, Frankfurt-Höchst City Hospital, Frankfurt am Main, Germany
| | - Guenay Kalender
- Department of General, Visceral, Thoracic and Vascular Surgery, Frankfurt-Höchst City Hospital, Frankfurt am Main, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering, Stuttgart, Germany
- Department of Women's Health, Research Institute for Women's Health, University Tuebingen, Tuebingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Kelvin G.M. Brockbank
- Tissue Testing Technologies LLC, North Charleston, South Carolina
- Department of Bioengineering, Clemson University, Clemson, South Carolina
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, South Carolina
| | - Anna Biermann
- Department of Thoracic, Cardiac and Thoracic Vascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Ulrich Alfred Stock
- Department of Thoracic, Cardiac and Thoracic Vascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Gallo M, Bonetti A, Poser H, Naso F, Bottio T, Bianco R, Paolin A, Franci P, Busetto R, Frigo AC, Buratto E, Spina M, Marchini M, Ortolani F, Iop L, Gerosa G. Decellularized aortic conduits: could their cryopreservation affect post-implantation outcomes? A morpho-functional study on porcine homografts. Heart Vessels 2016; 31:1862-1873. [PMID: 27115146 DOI: 10.1007/s00380-016-0839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/15/2016] [Indexed: 12/30/2022]
Abstract
Decellularized porcine aortic valve conduits (AVCs) implanted in a Vietnamese Pig (VP) experimental animal model were matched against decellularized and then cryopreserved AVCs to assess the effect of cryopreservation on graft hemodynamic performance and propensity to in vivo repopulation by host's cells. VPs (n = 12) underwent right ventricular outflow tract substitution using AVC allografts and were studied for 15-month follow-up. VPs were randomized into two groups, receiving AVCs treated with decellularization alone (D; n = 6) or decellularization/cryopreservation (DC; n = 6), respectively. Serial echocardiography was carried out to follow up hemodynamic function. All explanted AVCs were processed for light and electron microscopy. No signs of dilatation, progressive stenosis, regurgitation, and macroscopic calcification were echocardiographically observed in both D and DC groups. Explanted D grafts exhibited near-normal features, whereas the presence of calcification, inflammatory infiltrates, and disarray of elastic lamellae occurred in some DC grafts. In the unaltered regions of AVCs from both groups, almost complete re-endothelialization was observed for both valve cusps and aorta walls. In addition, side-by-side repopulation by recipient's fibroblasts, myofibroblasts, and smooth muscle cells was paralleled by ongoing tissue remodeling, as revealed by the ultrastructural identification of typical canals of collagen fibrillogenesis and elastogenesis-related features. Incipient neo-vascularization and re-innervation of medial and adventitial tunicae of grafted aortic walls were also detected for both D and DC groups. Cryopreservation did not affect post-implantation AVC hemodynamic behavior and was topically propensive to cell repopulation and tissue renewal, although graft deterioration including calcification was present in several areas. Thus, these preliminary data provide essential information on feasibility of decellularization and cryopreservation coupling in the perspective of treatment optimization and subsequent clinical trials using similarly treated human allografts as innovative heart valve substitutes.
Collapse
Affiliation(s)
- Michele Gallo
- Division of Cardiac Surgery, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | - Antonella Bonetti
- Department of Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Helen Poser
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, Italy
| | - Filippo Naso
- Division of Cardiac Surgery, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Tomaso Bottio
- Division of Cardiac Surgery, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Roberto Bianco
- Division of Cardiac Surgery, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Adolfo Paolin
- Tissue Bank of Veneto Region, Treviso Regional Hospital, Treviso, Italy
| | - Paolo Franci
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, Italy
| | - Roberto Busetto
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, Italy
| | - Anna Chiara Frigo
- Department of Cardiac, Thoracic and Vascular Sciences, Biostatistics, Epidemiology and Public Health Unit, University of Padua, Padua, Italy
| | - Edward Buratto
- Department of Cardiothoracic Surgery, Royal Children's Hospital, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Michele Spina
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Maurizio Marchini
- Department of Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Fulvia Ortolani
- Department of Experimental and Clinical Medicine, University of Udine, Udine, Italy
| | - Laura Iop
- Division of Cardiac Surgery, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.,Cardiovascular Regenerative Medicine, Venetian Institute of Molecular Medicine (VIMM), Biomedical Campus Pietro d'Abano, Padua, Italy
| | - Gino Gerosa
- Division of Cardiac Surgery, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.,Cardiovascular Regenerative Medicine, Venetian Institute of Molecular Medicine (VIMM), Biomedical Campus Pietro d'Abano, Padua, Italy
| |
Collapse
|
33
|
Monaghan MG, Kroll S, Brucker SY, Schenke-Layland K. Enabling Multiphoton and Second Harmonic Generation Imaging in Paraffin-Embedded and Histologically Stained Sections. Tissue Eng Part C Methods 2016; 22:517-23. [PMID: 27018844 PMCID: PMC4922008 DOI: 10.1089/ten.tec.2016.0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nonlinear microscopy, namely multiphoton imaging and second harmonic generation (SHG), is an established noninvasive technique useful for the imaging of extracellular matrix (ECM). Typically, measurements are performed in vivo on freshly excised tissues or biopsies. In this article, we describe the effect of rehydrating paraffin-embedded sections on multiphoton and SHG emission signals and the acquisition of nonlinear images from hematoxylin and eosin (H&E)-stained sections before and after a destaining protocol. Our results reveal that bringing tissue sections to a physiological state yields a significant improvement in nonlinear signals, particularly in SHG. Additionally, the destaining of sections previously processed with H&E staining significantly improves their SHG emission signals during imaging, thereby allowing sufficient analysis of collagen in these sections. These results are important for researchers and pathologists to obtain additional information from paraffin-embedded tissues and archived samples to perform retrospective analysis of the ECM or gain additional information from rare samples.
Collapse
Affiliation(s)
- Michael G Monaghan
- 1 Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen , Tübingen, Germany
| | - Sebastian Kroll
- 1 Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen , Tübingen, Germany
| | - Sara Y Brucker
- 1 Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen , Tübingen, Germany
| | - Katja Schenke-Layland
- 1 Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen , Tübingen, Germany .,2 Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany .,3 Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California , Los Angeles, California
| |
Collapse
|
34
|
Hinderer S, Brauchle E, Schenke-Layland K. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2015; 4:2326-41. [PMID: 25778713 PMCID: PMC4745029 DOI: 10.1002/adhm.201400762] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Indexed: 12/27/2022]
Abstract
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted.
Collapse
Affiliation(s)
- Svenja Hinderer
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
| | - Eva Brauchle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Nobelstrasse 12, Stuttgart, 70569, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at the, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
35
|
Guided tissue regeneration in heart valve replacement: from preclinical research to first-in-human trials. BIOMED RESEARCH INTERNATIONAL 2015; 2015:432901. [PMID: 26495295 PMCID: PMC4606187 DOI: 10.1155/2015/432901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022]
Abstract
Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient's cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation to the somatic growth of the patient. With such a viability, tissue-guided regenerated conduits can be delivered as off-the-shelf biodevices and possess all the potentialities for a long-lasting resolution of the dramatic inconvenience of heart valve diseases, both in children and in the elderly. A review on preclinical and clinical investigations of this therapeutic concept is provided with evaluation of the issues still to be well deliberated for an effective and safe in-human application.
Collapse
|
36
|
Shahmansouri N, Cartier R, Mongrain R. Characterization of the toughness and elastic properties of fresh and cryopreserved arteries. J Biomech 2015; 48:2205-9. [PMID: 25911252 DOI: 10.1016/j.jbiomech.2015.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
Surgical interventions are used to manage severe complications of heart valve diseases and to prevent the eventual rupture of an aortic aneurysm. Soft-tissue allografts, xenografts, and prosthetic grafts are used in these interventions; however, there are pre-surgical difficulties and post-surgical complications in using these grafts. One of these is the rupture potential of cryopreserved allografts at the time of transplantation and/or after the thawing process for the cryopreserved tissue. Moreover, a number of clinical observations report the patency of prosthetic grafts and aneurysm of cryopreserved allografts after the transplantation. This work aims to study the effect of cryopreservation on the resistance of arterial tissue to crack growth and propagation; we examined the biomechanical parameters which could be used in designing more efficient prosthetic grafts. Investigation of the toughness properties can also be helpful to understand the failure mechanisms of pathological arterial tissues. The toughness and biaxial tensile properties of the post-cryopreserved and fresh arteries have been examined.
Collapse
Affiliation(s)
- Nastaran Shahmansouri
- Department of Mechanical Engineering, McGill University, Montréal, Québec, Canada H3A 0C3; Montreal Heart Institute, Montréal, Québec, Canada H1T 1C
| | | | - Rosaire Mongrain
- Department of Mechanical Engineering, McGill University, Montréal, Québec, Canada H3A 0C3; Montreal Heart Institute, Montréal, Québec, Canada H1T 1C.
| |
Collapse
|
37
|
Wang S, Oldenhof H, Goecke T, Ramm R, Harder M, Haverich A, Hilfiker A, Wolkers WF. Sucrose Diffusion in Decellularized Heart Valves for Freeze-Drying. Tissue Eng Part C Methods 2015; 21:922-31. [PMID: 25809201 DOI: 10.1089/ten.tec.2014.0681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Decellularized heart valves can be used as starter matrix implants for heart valve replacement therapies in terms of guided tissue regeneration. Decellularized matrices ideally need to be long-term storable to assure off-the-shelf availability. Freeze-drying is an attractive preservation method, allowing storage at room temperature in a dried state. However, the two inherent processing steps, freezing and drying, can cause severe damage to extracellular matrix (ECM) proteins and the overall tissue histoarchitecture and thus impair biomechanical characteristics of resulting matrices. Freeze-drying therefore requires a lyoprotective agent that stabilizes endogenous structural proteins during both substeps and that forms a protective glassy state at room temperature. To estimate incubation times needed to infiltrate decellularized heart valves with the lyoprotectant sucrose, temperature-dependent diffusion studies were done using Fourier transform infrared spectroscopy. Glycerol, a cryoprotective agent, was studied for comparison. Diffusion of both protectants was found to exhibit Arrhenius behavior. The activation energies of sucrose and glycerol diffusion were found to be 15.9 and 37.7 kJ·mol(-1), respectively. It was estimated that 4 h of incubation at 37°C is sufficient to infiltrate heart valves with sucrose before freeze-drying. Application of a 5% sucrose solution was shown to stabilize acellular valve scaffolds during freeze-drying. Such freeze-dried tissues, however, displayed pores, which were attributed to ice crystal damage, whereas vacuum-dried scaffolds in comparison revealed no pores after drying and rehydration. Exposure to a hygroscopic sucrose solution (80%) before freeze-drying was shown to be an effective method to diminish pore formation in freeze-dried ECMs: matrix structures closely resembled those of control samples that were not freeze-dried. Heart valve matrices were shown to be in a glassy state after drying, suggesting that they can be stored at room temperature.
Collapse
Affiliation(s)
- Shangping Wang
- 1 Institute of Multiphase Processes, Leibniz Universität Hannover , Hannover, Germany
| | - Harriëtte Oldenhof
- 2 Clinic for Horses-Unit for Reproductive Medicine, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Tobias Goecke
- 3 Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School , Hannover, Germany
| | - Robert Ramm
- 3 Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School , Hannover, Germany
| | | | - Axel Haverich
- 3 Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School , Hannover, Germany
| | - Andres Hilfiker
- 3 Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School , Hannover, Germany
| | | |
Collapse
|
38
|
Huber AJT, Brockbank KGM, Aberle T, Schleicher M, Chen ZZ, Greene ED, Lisy M, Stock UA. Development of a simplified ice-free cryopreservation method for heart valves employing VS83, an 83% cryoprotectant formulation. Biopreserv Biobank 2015; 10:479-84. [PMID: 24845133 DOI: 10.1089/bio.2012.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously demonstrated storage of ice-free cryopreserved heart valves at -80°C without the need for liquid nitrogen, with the aims of decreasing manufacturing costs and reducing employee safety hazards. The objectives of the present study were a further simplification of the ice-free cryopreservation method and characterization of tissue viability. Porcine pulmonary heart valves were permeated with an 83% cryoprotectant solution (VS83) followed by rapid cooling and storage at -80°C. The cryoprotectants were added and removed in either single or multiple steps. Fresh untreated frozen controls employing 10% dimethylsulfoxide and controlled rate freezing to -80°C, and storage in vapor phase nitrogen were also performed. After rewarming and washing, cryopreserved leaflets were compared with fresh controls using the resazurin reduction metabolism assay. Comparison of valve tissues in which the cryoprotectants were added and removed in either single or multiple steps demonstrated similar viability results for the muscle, conduit, and leaflet components. The ice-free cryopreserved conduit and leaflet components were significantly less viable than either fresh or frozen tissues. The muscle component, although less viable, was not significantly different. The changes in tissue viability were a function of cryoprotectant exposure, and resulting cytotoxicity, not temperature reduction during storage. TUNEL staining showed that ice-free cryopreservation did not induce significant amounts of apoptosis, suggesting that necrosis is the predominant cell death pathway in ice-free cryopreserved heart valves. There was very little difference in cell viability when the cryoprotectants were added and removed in a single step versus multiple steps. Ice-free cryopreserved valve tissues demonstrated very low viability compared with controls. These results support further simplification of the ice-free cryopreservation method.
Collapse
Affiliation(s)
- Agnes J T Huber
- 1 Department of Thoracic, Cardiac and Vascular Surgery, University Hospital , Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Application of the original vitrification protocol used for pieces of heart valves to intact heart valves has evolved over time. Ice-free cryopreservation by Protocol 1 using VS55 is limited to small samples where relatively rapid cooling and warming rates are possible. VS55 cryopreservation typically provides extracellular matrix preservation with approximately 80 % cell viability and tissue function compared with fresh untreated tissues. In contrast, ice-free cryopreservation using VS83, Protocols 2 and 3, has several advantages over conventional cryopreservation methods and VS55 preservation, including long-term preservation capability at -80 °C; better matrix preservation than freezing with retention of material properties; very low cell viability, reducing the risks of an immune reaction in vivo; reduced risks of microbial contamination associated with use of liquid nitrogen; improved in vivo functions; no significant recipient allogeneic immune response; simplified manufacturing process; increased operator safety because liquid nitrogen is not used; and reduced manufacturing costs.
Collapse
Affiliation(s)
- Kelvin G M Brockbank
- Cell & Tissue Systems, Inc., 2231 Technical Parkway, Suite A, North Charleston, SC, 29406, USA,
| | | | | | | |
Collapse
|
40
|
Xeno-immunogenicity of ice-free cryopreserved porcine leaflets. J Surg Res 2014; 193:933-41. [PMID: 25454969 DOI: 10.1016/j.jss.2014.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Undesirable processes of inflammation, calcification, or immune-mediated reactions are limiting factors in long-term survival of heart valves in patients. In this study, we target the modulatory effects of ice-free cryopreservation (IFC) of xenogeneic heart valve leaflet matrices, without decellularization, on the adaptive human immune responses in vitro. METHODS We tested porcine leaflet matrices from fresh untreated, conventionally cryopreserved (CFC), and IFC pulmonary valves by culturing them with human blood mononuclear cells for 5 d in vitro. No other tissue treatment protocols to modify possible immune responses were used. Matrices alone or in addition with a low-dose second stimulus were analyzed for induction of proliferation and cytokine release by flow cytometry-based techniques. Evaluation of the α-Gal epitope expression was performed by immunohistochemistry with fluorochrome-labeled B4 isolectin. RESULTS None of the tested leaflet treatment groups directly triggered the proliferation of immune cells. But when tested in combination with a second trigger by anti-CD3, IFC valves showed significantly reduced proliferation of T cells, especially effector memory T cells, in comparison with fresh or CFC tissue. Moreover, the cytokine levels for interferon-γ (IFNγ), tumor necrosis factor α, and interleukin-10 were reduced for the IFC-treated group being significantly different compared with the CFC group. However, no difference between treatment groups in the expression of the α-Gal antigen was observed. CONCLUSIONS IFC of xenogeneic tissue might be an appropriate treatment method or processing step to prevent responses of the adaptive immune system.
Collapse
|
41
|
|
42
|
Neumann A, Sarikouch S, Breymann T, Cebotari S, Boethig D, Horke A, Beerbaum P, Westhoff-Bleck M, Bertram H, Ono M, Tudorache I, Haverich A, Beutel G. Early systemic cellular immune response in children and young adults receiving decellularized fresh allografts for pulmonary valve replacement. Tissue Eng Part A 2014; 20:1003-11. [PMID: 24138470 DOI: 10.1089/ten.tea.2013.0316] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES The longevity of homografts is determined by the activation of the recipients' immune system resulting from allogenic antigen exposition. Fresh decellularized pulmonary homografts (DPH) have shown promising early results in pulmonary valve replacement in children and young adults and could potentially avoid significant activation of the immune system, as more than 99% of the donor DNA is removed during the decellularization process. While the humoral immune response to decellularized allografts has been studied, detailed information on the more significant cellular immune response is currently lacking. METHODS AND RESULTS Peripheral blood samples were obtained from patients undergoing pulmonary valve replacement with DPH before, after, and for approximately 3 years after implantation. Absolute counts and percentages of mature T- (CD3(+)), B- (CD19(+)), and natural killer- (CD16(+)/CD56(+)) cells, as well as T helper- (CD4(+)) and cytotoxic T-cell- (CD8(+)) subsets, were determined by fluorescence-activated cell sorting (FACS). Between May 2009 and September 2013, 199 blood samples taken from 47 patients with a mean age at DPH implantation of 16.6±10.8 years were analyzed. The hemodynamic performance of DPH was excellent in all but one patient, and no valve-related deaths or conduit explantations were observed. The short-term follow up revealed a significant postoperative decrease in cell counts of most subtypes with reconstitution after 3 months. Continued assessment did not show any significant deviations in cell counts from their baseline values. CONCLUSION The absence of cellular immune response in patients receiving DPH supports the concept that decellularization can provide a basis for autologous regeneration.
Collapse
Affiliation(s)
- Anneke Neumann
- 1 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
König K, Uchugonova A, Breunig HG. High-resolution multiphoton cryomicroscopy. Methods 2013; 66:230-6. [PMID: 23867337 DOI: 10.1016/j.ymeth.2013.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022] Open
Abstract
An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers.
Collapse
Affiliation(s)
- Karsten König
- JenLab GmbH, Schillerstrasse 1, 07745 Jena, Germany; Department of Biophotonics and Laser Technology, Saarland University, Campus A5.1, 66123 Saarbrücken, Germany.
| | - Aisada Uchugonova
- Department of Biophotonics and Laser Technology, Saarland University, Campus A5.1, 66123 Saarbrücken, Germany
| | - Hans Georg Breunig
- JenLab GmbH, Schillerstrasse 1, 07745 Jena, Germany; Department of Biophotonics and Laser Technology, Saarland University, Campus A5.1, 66123 Saarbrücken, Germany
| |
Collapse
|
44
|
Xu Z, Ozcelikkale A, Kim YL, Han B. Spatiotemporal Characterization of Extracellular Matrix Microstructures in Engineered Tissue: A Whole-Field Spectroscopic Imaging Approach. J Nanotechnol Eng Med 2013; 4:110051-110059. [PMID: 23908694 DOI: 10.1115/1.4024130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Quality and functionality of engineered tissues are closely related to the microstructures and integrity of their extracellular matrix (ECM). However, currently available methods for characterizing ECM structures are often labor-intensive, destructive, and limited to a small fraction of the total area. These methods are also inappropriate for assessing temporal variations in ECM structures. In this study, to overcome these limitations and challenges, we propose an elastic light scattering approach to spatiotemporally assess ECM microstructures in a relatively large area in a nondestructive manner. To demonstrate its feasibility, we analyze spectroscopic imaging data obtained from acellular collagen scaffolds and dermal equivalents as model ECM structures. For spatial characterization, acellular scaffolds are examined after a freeze/thaw process mimicking a cryopreservation procedure to quantify freezing-induced structural changes in the collagen matrix. We further analyze spatial and temporal changes in ECM structures during cell-driven compaction in dermal equivalents. The results show that spectral dependence of light elastically backscattered from engineered tissue is sensitively associated with alterations in ECM microstructures. In particular, a spectral decay rate over the wavelength can serve as an indicator for the pore size changes in ECM structures, which are at nanometer scale. A decrease in the spectral decay rate suggests enlarged pore sizes of ECM structures. The combination of this approach with a whole-field imaging platform further allows visualization of spatial heterogeneity of EMC microstructures in engineered tissues. This demonstrates the feasibility of the proposed method that nano- and micrometer scale alteration of the ECM structure can be detected and visualized at a whole-field level. Thus, we envision that this spectroscopic imaging approach could potentially serve as an effective characterization tool to nondestructively, accurately, and rapidly quantify ECM microstructures in engineered tissue in a large area.
Collapse
Affiliation(s)
- Zhengbin Xu
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, IN 47907
| | | | | | | |
Collapse
|
45
|
Ko ACT, Ridsdale A, Mostaço-Guidolin LB, Major A, Stolow A, Sowa MG. Nonlinear optical microscopy in decoding arterial diseases. Biophys Rev 2012; 4:323-334. [PMID: 28510209 PMCID: PMC5425695 DOI: 10.1007/s12551-012-0077-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/12/2012] [Indexed: 11/30/2022] Open
Abstract
Pathological understanding of arterial diseases is mainly attributable to histological observations based on conventional tissue staining protocols. The emerging development of nonlinear optical microscopy (NLOM), particularly in second-harmonic generation, two-photon excited fluorescence and coherent Raman scattering, provides a new venue to visualize pathological changes in the extracellular matrix caused by atherosclerosis progression. These techniques in general require minimal tissue preparation and offer rapid three-dimensional imaging. The capability of label-free microscopic imaging enables disease impact to be studied directly on the bulk artery tissue, thus minimally perturbing the sample. In this review, we look at recent progress in applications related to arterial disease imaging using various forms of NLOM.
Collapse
Affiliation(s)
- Alex C-T Ko
- National Research Council Canada, Institute for Biodiagnostics, 435 Ellice Avenue, Winnipeg, Manitoba, Canada, R3B 1Y6.
| | - Andrew Ridsdale
- National Research Council Canada, Steacie Institute for Molecular Sciences, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6
| | - Leila B Mostaço-Guidolin
- Department of Electrical and Computer Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, Manitoba, Canada, R3T 5V6
| | - Arkady Major
- Department of Electrical and Computer Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, Manitoba, Canada, R3T 5V6
| | - Albert Stolow
- National Research Council Canada, Steacie Institute for Molecular Sciences, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6
| | - Michael G Sowa
- National Research Council Canada, Institute for Biodiagnostics, 435 Ellice Avenue, Winnipeg, Manitoba, Canada, R3B 1Y6
| |
Collapse
|
46
|
Votteler M, Layland SL, Lill G, Brockbank KGM, Horke A, Schenke-Layland K. RNA isolation from fetal and adult human tissues for transcriptional profiling. Biotechnol J 2012; 8:338-44. [DOI: 10.1002/biot.201200164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/10/2012] [Accepted: 10/16/2012] [Indexed: 12/17/2022]
|
47
|
Characterizing the collagen fiber orientation in pericardial leaflets under mechanical loading conditions. Ann Biomed Eng 2012. [PMID: 23180029 DOI: 10.1007/s10439-012-0696-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves' behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space.
Collapse
|
48
|
Thermomechanical analysis of freezing-induced cell-fluid-matrix interactions in engineered tissues. J Mech Behav Biomed Mater 2012; 18:67-80. [PMID: 23246556 DOI: 10.1016/j.jmbbm.2012.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/06/2012] [Accepted: 10/11/2012] [Indexed: 11/22/2022]
Abstract
Successful cryopreservation of functional engineered tissues (ETs) is significant to tissue engineering and regenerative medicine, but it is extremely challenging to develop a successful protocol because the effects of cryopreservation parameters on the post-thaw functionality of ETs are not well understood. Particularly, the effects on the microstructure of their extracellular matrix (ECM) have not been well studied, which determines many functional properties of the ETs. In this study, we investigated the effects of two key cryopreservation parameters--(i) freezing temperature and corresponding cooling rate; and (ii) the concentration of cryoprotective agent (CPA) on the ECM microstructure as well as the cellular viability. Using dermal equivalent as a model ET and DMSO as a model CPA, freezing-induced spatiotemporal deformation and post-thaw ECM microstructure of ETs was characterized while varying the freezing temperature and DMSO concentrations. The spatial distribution of cellular viability and the cellular actin cytoskeleton was also examined. The results showed that the tissue dilatation increased significantly with reduced freezing temperature (i.e., rapid freezing). A maximum limit of tissue deformation was observed for preservation of ECM microstructure, cell viability and cell-matrix adhesion. The dilatation decreased with the use of DMSO, and a freezing temperature dependent threshold concentration of DMSO was observed. The threshold DMSO concentration increased with lowering freezing temperature. In addition, an analysis was performed to delineate thermodynamic and mechanical components of freezing-induced tissue deformation. The results are discussed to establish a mechanistic understanding of freezing-induced cell-fluid-matrix interaction and phase change behavior within ETs in order to improve cryopreservation of ETs.
Collapse
|
49
|
Rendal-Vázquez ME, San Luis Verdes A, Pombo Otero J, Segura Iglesias R, Domenech García N, Andión Núñez C. Anatomopathological and Immunohistochemical Study of Explanted Cryopreserved Arteries. Ann Vasc Surg 2012; 26:720-8. [DOI: 10.1016/j.avsg.2011.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 09/20/2011] [Accepted: 11/04/2011] [Indexed: 11/25/2022]
|
50
|
Converse GL, Armstrong M, Quinn RW, Buse EE, Cromwell ML, Moriarty SJ, Lofland GK, Hilbert SL, Hopkins RA. Effects of cryopreservation, decellularization and novel extracellular matrix conditioning on the quasi-static and time-dependent properties of the pulmonary valve leaflet. Acta Biomater 2012; 8:2722-9. [PMID: 22484150 DOI: 10.1016/j.actbio.2012.03.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/28/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
Decellularized allografts offer potential as heart valve substitutes and scaffolds for cell seeding. The effects of decellularization on the quasi-static and time-dependent mechanical behavior of the pulmonary valve leaflet under biaxial loading conditions have not previously been reported in the literature. In the current study, the stress-strain, relaxation and creep behaviors of the ovine pulmonary valve leaflet were investigated under planar-biaxial loading conditions to determine the effects of decellularization and a novel post-decellularization extracellular matrix (ECM) conditioning process. As expected, decellularization resulted in increased stretch along the loading axes. A reduction in relaxation was observed following decellularization. This was accompanied by a reduction in glycosaminoglycan (GAG) content. Based on previous implant studies, these changes may be of little functional consequence in the short term; however, the long term effects of decreased relaxation and GAG content remain unknown. Some restoration of relaxation was observed following ECM conditioning, especially in the circumferential specimen direction, which may help mitigate any detrimental effects due to decellularization. Regardless of processing, creep under biaxial loading was negligible.
Collapse
Affiliation(s)
- Gabriel L Converse
- Cardiac Surgery Research Laboratories of the Ward Family Center for Congenital Heart Disease, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|