1
|
Bulbul Z, El Rassi I, Hamade R, Tamim H, Bitar F. Three-dimensional printing of mitral valve models using echocardiographic data improves the knowledge of cardiology fellow physicians in training. Front Cardiovasc Med 2023; 10:1307994. [PMID: 38124899 PMCID: PMC10731368 DOI: 10.3389/fcvm.2023.1307994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Background High fidelity three-dimensional Mitral valve models (3D MVM) printed from echocardiography are currently being used in preparation for surgical repair. Aim We hypothesize that printed 3DMVM could have relevance to cardiologists in training by improving their understanding of normal anatomy and pathology. Methods Sixteen fellow physicians in pediatric and adult cardiology training were recruited. 3D echocardiography (3DE) video clips of six mitral valves (one normal and five pathological) were displayed and the fellows were asked to name the prolapsing segments in each. Following that, three still images of 3D MVMs in different projections: enface, profile and tilted corresponding to the same MVs seen in the clip were presented on a screen. Participating physicians were presented with a comprehensive questionnaire aimed at assessing whether the 3D MVM has improved their understanding of valvular anatomy. Finally, a printed 3D MVM of each of the valves was handed out, and the same questionnaire was re-administered to identify any further improvement in the participants' perception of the anatomy. Results The correct diagnosis using the echocardiography video clip of the Mitral valve was attained by 45% of the study participants. Both pediatric and adult trainees, regardless of the year of training demonstrated improved understanding of the anatomy of MV after observing the corresponding model image. Significant improvement in their understanding was noted after participants had seen and physically examined the printed model. Conclusion Printed 3D MVM has a beneficial impact on the cardiology trainees' understanding of MV anatomy and pathology compared to 3DE images.
Collapse
Affiliation(s)
- Ziad Bulbul
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Issam El Rassi
- Pediatric Cardiac Surgery, Al Jalila Hospital, Dubai, United Arab Emirates
| | - Ramsey Hamade
- Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon
| | - Hani Tamim
- Department of Biostatistics, American University of Beirut, Beirut, Lebanon
| | - Fadi Bitar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Bharucha AH, Moore J, Carnahan P, MacCarthy P, Monaghan MJ, Baghai M, Deshpande R, Byrne J, Dworakowski R, Eskandari M. Three-dimensional printing in modelling mitral valve interventions. Echo Res Pract 2023; 10:12. [PMID: 37528494 PMCID: PMC10394816 DOI: 10.1186/s44156-023-00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Mitral interventions remain technically challenging owing to the anatomical complexity and heterogeneity of mitral pathologies. As such, multi-disciplinary pre-procedural planning assisted by advanced cardiac imaging is pivotal to successful outcomes. Modern imaging techniques offer accurate 3D renderings of cardiac anatomy; however, users are required to derive a spatial understanding of complex mitral pathologies from a 2D projection thus generating an 'imaging gap' which limits procedural planning. Physical mitral modelling using 3D printing has the potential to bridge this gap and is increasingly being employed in conjunction with other transformative technologies to assess feasibility of intervention, direct prosthesis choice and avoid complications. Such platforms have also shown value in training and patient education. Despite important limitations, the pace of innovation and synergistic integration with other technologies is likely to ensure that 3D printing assumes a central role in the journey towards delivering personalised care for patients undergoing mitral valve interventions.
Collapse
Affiliation(s)
- Apurva H Bharucha
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - John Moore
- Robarts Research Institute, Western University, London, ON, Canada
| | - Patrick Carnahan
- Robarts Research Institute, Western University, London, ON, Canada
| | - Philip MacCarthy
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Mark J Monaghan
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Max Baghai
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Ranjit Deshpande
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Jonathan Byrne
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Rafal Dworakowski
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Mehdi Eskandari
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
3
|
Mao Y, Liu Y, Zhai M, Yang J. Application of and Prospects for 3-Dimensional Printing in Transcatheter Mitral Valve Interventions. Rev Cardiovasc Med 2023; 24:61. [PMID: 39077424 PMCID: PMC11273148 DOI: 10.31083/j.rcm2402061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 07/31/2024] Open
Abstract
Mitral valve (MV) disease is one of the most common valvular diseases that endangers health status. A variety of catheter-based interventions have been developed to treat MV disease. The special anatomical structures of the MV complex increase the difficulty of interventional surgery, and the incidence of perioperative complications remains high. With the continuous development of cardiovascular 3-dimensional (3D) printing technology and of multidisciplinary cooperation, 3D printing for transcatheter mitral valve interventions (TMVI) has become a revolutionary technology to promote innovation and improve the success rate. Patient-specific 3D printed models have been used in measuring sizes and predicting perioperative complications before TMVI. By simulating a bench test and using multi-material printing, surgeons may learn how the device interacts with the specific anatomical structures of the MV. This review summarizes relevant cutting-edge publications in this field and illustrates the application of 3D printing in TMVI with examples. In addition, we discuss the limitations and future directions of 3D printing in TMVI. Clinical Trial Registration ClinicalTrials.gov Protocol Registration System (NCT02917980).
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Lasso A, Herz C, Nam H, Cianciulli A, Pieper S, Drouin S, Pinter C, St-Onge S, Vigil C, Ching S, Sunderland K, Fichtinger G, Kikinis R, Jolley MA. SlicerHeart: An open-source computing platform for cardiac image analysis and modeling. Front Cardiovasc Med 2022; 9:886549. [PMID: 36148054 PMCID: PMC9485637 DOI: 10.3389/fcvm.2022.886549] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular disease is a significant cause of morbidity and mortality in the developed world. 3D imaging of the heart's structure is critical to the understanding and treatment of cardiovascular disease. However, open-source tools for image analysis of cardiac images, particularly 3D echocardiographic (3DE) data, are limited. We describe the rationale, development, implementation, and application of SlicerHeart, a cardiac-focused toolkit for image analysis built upon 3D Slicer, an open-source image computing platform. We designed and implemented multiple Python scripted modules within 3D Slicer to import, register, and view 3DE data, including new code to volume render and crop 3DE. In addition, we developed dedicated workflows for the modeling and quantitative analysis of multi-modality image-derived heart models, including heart valves. Finally, we created and integrated new functionality to facilitate the planning of cardiac interventions and surgery. We demonstrate application of SlicerHeart to a diverse range of cardiovascular modeling and simulation including volume rendering of 3DE images, mitral valve modeling, transcatheter device modeling, and planning of complex surgical intervention such as cardiac baffle creation. SlicerHeart is an evolving open-source image processing platform based on 3D Slicer initiated to support the investigation and treatment of congenital heart disease. The technology in SlicerHeart provides a robust foundation for 3D image-based investigation in cardiovascular medicine.
Collapse
Affiliation(s)
- Andras Lasso
- Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON, Canada
| | - Christian Herz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hannah Nam
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Alana Cianciulli
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Simon Drouin
- Software and Information Technology Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | | | - Samuelle St-Onge
- Software and Information Technology Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | - Chad Vigil
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kyle Sunderland
- Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON, Canada
| | - Gabor Fichtinger
- Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON, Canada
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthew A. Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States,Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States,*Correspondence: Matthew A. Jolley
| |
Collapse
|
5
|
Adabifirouzjaei F, Hsiao A, DeMaria AN. Mitral Valve Prolapse-The Role of Cardiac Imaging Modalities. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2022; 6:100024. [PMID: 37273735 PMCID: PMC10236887 DOI: 10.1016/j.shj.2022.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 06/06/2023]
Abstract
Mitral valve prolapse (MVP) is the most common nonischemic mitral regurgitation etiology and mitral abnormality requiring surgery in the Western world. There is an increasing awareness that pathological findings in MVP are not confined to the valve tissue; rather, it is a complex disease, involving the mitral valve apparatus, cardiac hemodynamics, and cardiac structure. Imaging has played a fundamental role in the understanding of the diagnosis, prevalence, and consequences of MVP. The diagnosis of MVP by imaging is based upon demonstrating valve leaflets ascending into the left atrium through the saddle-shaped annulus. Transthoracic and transesophageal echocardiography are the primary modalities in the diagnosis and assessment of MVP patients and must include careful assessment of the leaflets, annulus, chords, and papillary muscles. High-spatial-resolution imaging modalities such as cardiac magnetic resonance images and cardiac computed tomography play a secondary role in this regard and can demonstrate the anatomical relation between the mitral valve annulus and leaflet excursion for appropriate diagnosis. Ongoing development of new methods of cardiac imaging can help us to accurately understand the mechanism, diagnose the disease, develop an appropriate treatment plan, and estimate the risk for sudden death. Recently, several new observations with respect to prolapse have been derived from cardiac imaging including three-dimensional echocardiography and tissue-Doppler imaging. The aim of this article is to present these new imaging-derived insights for the diagnosis, risk assessment, treatment, and follow-up of patients with MVP.
Collapse
Affiliation(s)
- Fatemeh Adabifirouzjaei
- Department of Cardiology, Sulpizio Cardiovascular Center, University of California San Diego, San Diego, California, USA
| | - Albert Hsiao
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Anthony N. DeMaria
- Department of Cardiology, Sulpizio Cardiovascular Center, University of California San Diego, San Diego, California, USA
| |
Collapse
|
6
|
Comparison of blood pool and myocardial 3D printing in the diagnosis of types of congenital heart disease. Sci Rep 2022; 12:7136. [PMID: 35505074 PMCID: PMC9065034 DOI: 10.1038/s41598-022-11294-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
The study aimed to evaluate the effectiveness of blood pool and myocardial models made by stereolithography in the diagnosis of different types of congenital heart disease (CHD). Two modeling methods were applied in the diagnosis of 8 cases, and two control groups consisting of experts and students diagnosed the cases using echocardiography with computed tomography, blood pool models, and myocardial models. The importance, suitability, and simulation degree of different models were analyzed. The average diagnostic rate before and after 3D printing was used was 88.75% and 95.9% (P = 0.001) in the expert group and 60% and 91.6% (P = 0.000) in the student group, respectively. 3D printing was considered to be more important for the diagnosis of complex CHDs (very important; average, 87.8%) than simple CHDs (very important; average, 30.8%) (P = 0.000). Myocardial models were considered most realistic regarding the structure of the heart (average, 92.5%). In cases of congenital corrected transposition of great arteries, Williams syndrome, coronary artery fistula, tetralogy of Fallot, patent ductus arteriosus, and coarctation of the aorta, blood pool models were considered more effective (average, 92.1%), while in cases of double outlet right ventricle and ventricular septal defect, myocardial models were considered optimal (average, 80%).
Collapse
|
7
|
Illi J, Bernhard B, Nguyen C, Pilgrim T, Praz F, Gloeckler M, Windecker S, Haeberlin A, Gräni C. Translating Imaging Into 3D Printed Cardiovascular Phantoms. JACC Basic Transl Sci 2022; 7:1050-1062. [PMID: 36337920 PMCID: PMC9626905 DOI: 10.1016/j.jacbts.2022.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
3D printed patient specific phantoms can visualize complex cardiovascular anatomy Common imaging modalities for 3D printing are CCT and CMR Material jetting/PolyJet and stereolithography are widely used printing techniques Standardized validation is warranted to compare different 3D printing technologies
Translation of imaging into 3-dimensional (3D) printed patient-specific phantoms (3DPSPs) can help visualize complex cardiovascular anatomy and enable tailoring of therapy. The aim of this paper is to review the entire process of phantom production, including imaging, materials, 3D printing technologies, and the validation of 3DPSPs. A systematic review of published research was conducted using Embase and MEDLINE, including studies that investigated 3DPSPs in cardiovascular medicine. Among 2,534 screened papers, 212 fulfilled inclusion criteria and described 3DPSPs as a valuable adjunct for planning and guiding interventions (n = 108 [51%]), simulation of physiological or pathological conditions (n = 19 [9%]), teaching of health care professionals (n = 23 [11%]), patient education (n = 3 [1.4%]), outcome prediction (n = 6 [2.8%]), or other purposes (n = 53 [25%]). The most common imaging modalities to enable 3D printing were cardiac computed tomography (n = 131 [61.8%]) and cardiac magnetic resonance (n = 26 [12.3%]). The printing process was conducted mostly by material jetting (n = 54 [25.5%]) or stereolithography (n = 43 [20.3%]). The 10 largest studies that evaluated the geometric accuracy of 3DPSPs described a mean bias <±1 mm; however, the validation process was very heterogeneous among the studies. Three-dimensional printed patient-specific phantoms are highly accurate, used for teaching, and applied to guide cardiovascular therapy. Systematic comparison of imaging and printing modalities following a standardized validation process is warranted to allow conclusions on the optimal production process of 3DPSPs in the field of cardiovascular medicine.
Collapse
|
8
|
Yang Y, Wang H, Song H, Hu X, Hu R, Cao S, Guo J, Zhou Q. A soft functional mitral valve model prepared by three-dimensional printing as an aid for an advanced mitral valve operation. Eur J Cardiothorac Surg 2022; 61:877-885. [PMID: 35134168 DOI: 10.1093/ejcts/ezab519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The goal of this study was to build a soft mitral valve (MV) model for surgical simulation to aid with an advanced MV operation. METHODS Soft three-dimensional models of the MV were constructed by the mould-modelling method using silicone. The properties of the material used were tested and compared with those of the valve tissue. Then, the accuracy of the three-dimensional model was assessed from the perspectives of the pathological and morphological parameters. Thereafter, surgical simulation of MV repair, closure of the perforation and transcatheter MV replacement were simulated using our model. Two experienced surgeons were invited to perform and evaluate the fidelity and softness of the model. Morphological changes in the MV and the potential compression of the device on surrounding cardiac tissue were also measured after simulation. RESULTS The soft MV model was successfully constructed by the mould-modelling method. The property of the material used was closer to that of valve tissue than to that of the rigid model. In addition, the pathological details and morphological measurements of the three-dimensional model were consistent with the surgical findings. The simulated surgical procedure was successful using our model. Morphological changes, including the ratio of the leaflet/annulus area and the coaptation depth, were closely correlated with the regurgitation left after MV repair, which might be an indicator of the surgical effects. The results of this study demonstrated the great advantages of our constructed soft model in exploring the interaction of the device with the surrounding tissue. These advantages were not obtained using the rigid model in a previous study. CONCLUSIONS The soft MV model was successfully constructed using the mould-modelling method, and its physical properties were similar to those of heart tissue. In addition, the constructed model exhibited great advantages in surgical simulation and clinical application compared with the anatomical model.
Collapse
Affiliation(s)
- Yuanting Yang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongning Song
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Bertolini M, Rossoni M, Colombo G. Operative Workflow from CT to 3D Printing of the Heart: Opportunities and Challenges. Bioengineering (Basel) 2021; 8:bioengineering8100130. [PMID: 34677203 PMCID: PMC8533410 DOI: 10.3390/bioengineering8100130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023] Open
Abstract
Medical images do not provide a natural visualization of 3D anatomical structures, while 3D digital models are able to solve this problem. Interesting applications based on these models can be found in the cardiovascular field. The generation of a good-quality anatomical model of the heart is one of the most complex tasks in this context. Its 3D representation has the potential to provide detailed spatial information concerning the heart’s structure, also offering the opportunity for further investigations if combined with additive manufacturing. When investigated, the adaption of printed models turned out to be beneficial in complex surgical procedure planning, for training, education and medical communication. In this paper, we will illustrate the difficulties that may be encountered in the workflow from a stack of Computed Tomography (CT) to the hand-held printed heart model. An important goal will consist in the realization of a heart model that can take into account real wall thickness variability. Stereolithography printing technology will be exploited with a commercial rigid resin. A flexible material will be tested too, but results will not be so satisfactory. As a preliminary validation of this kind of approach, print accuracy will be evaluated by directly comparing 3D scanner acquisitions to the original Standard Tessellation Language (STL) files.
Collapse
|
10
|
Jin Z, Li Y, Yu K, Liu L, Fu J, Yao X, Zhang A, He Y. 3D Printing of Physical Organ Models: Recent Developments and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101394. [PMID: 34240580 PMCID: PMC8425903 DOI: 10.1002/advs.202101394] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Indexed: 05/05/2023]
Abstract
Physical organ models are the objects that replicate the patient-specific anatomy and have played important roles in modern medical diagnosis and disease treatment. 3D printing, as a powerful multi-function manufacturing technology, breaks the limitations of traditional methods and provides a great potential for manufacturing organ models. However, the clinical application of organ model is still in small scale, facing the challenges including high cost, poor mimicking performance and insufficient accuracy. In this review, the mainstream 3D printing technologies are introduced, and the existing manufacturing methods are divided into "directly printing" and "indirectly printing", with an emphasis on choosing suitable techniques and materials. This review also summarizes the ideas to address these challenges and focuses on three points: 1) what are the characteristics and requirements of organ models in different application scenarios, 2) how to choose the suitable 3D printing methods and materials according to different application categories, and 3) how to reduce the cost of organ models and make the process simple and convenient. Moreover, the state-of-the-art in organ models are summarized and the contribution of 3D printed organ models to various surgical procedures is highlighted. Finally, current limitations, evaluation criteria and future perspectives for this emerging area are discussed.
Collapse
Affiliation(s)
- Zhongboyu Jin
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Linxiang Liu
- Zhejiang University HospitalZhejiang UniversityHangzhouZhejiang310027China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xinhua Yao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Aiguo Zhang
- Department of OrthopedicsWuxi Children's Hospital affiliated to Nanjing Medical UniversityWuxiJiangsu214023China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of Materials Processing and MoldZhengzhou UniversityZhengzhou450002China
| |
Collapse
|
11
|
Mowers KL, Fullerton JB, Hicks D, Singh GK, Johnson MC, Anwar S. 3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease. Pediatr Cardiol 2021; 42:131-141. [PMID: 33083888 DOI: 10.1007/s00246-020-02462-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/16/2020] [Indexed: 01/22/2023]
Abstract
Cardiac 3D printing is mainly performed from magnetic resonance imaging (MRI) and computed tomography (CT) 3D datasets, though anatomic detail of atrioventricular (AV) valves may be limited. 3D echo provides excellent visualization of AV valves. Thus, we tested the feasibility and accuracy of 3D printing from 3D echo in this pilot series of subjects with congenital heart disease (CHD), with a focus on valve anatomy. Five subjects with CHD were identified. 3D echo data were converted to 3D printable files and printed in collaboration with 3D Systems Healthcare (Golden, Colorado). A novel technique for valve modeling was utilized using commercially available software. Two readers (KM, SA) independently measured valve structures from 3D models and compared to source echo images. 3D printing was feasible for all cases. Table 1 shows measurements comparing 2D echo to 3D models. Bland Altman analysis showed close agreement and no significant bias between 2D and digital 3D models (mean difference 0.0, 95% CI 1.1 to - 1.1) or 2D vs printed 3D models, though with wider limits of agreement (mean difference - 0.3, 95% CI 1.9 to - 2.6). Accuracy of 3D models compared to 2D was within < 0.5 mm. This pilot study shows 3D echo datasets can be used to reliably print AV and semilunar valve structures in CHD. The 3D models are highly accurate compared to the source echo images. This is a novel and value-added technique that adds incremental information on cardiac anatomy over current methods.
Collapse
Affiliation(s)
- K L Mowers
- Division of Cardiology, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - D Hicks
- Division of Cardiology, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - G K Singh
- Division of Cardiology, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - M C Johnson
- Division of Cardiology, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - S Anwar
- School of Medicine, University of California, 1975 4th Street Second Floor, Room# A2421, UCSF Box 4029, San Francisco, CA, 94143, USA.
| |
Collapse
|
12
|
Wang H, Song H, Yang Y, Cao Q, Hu Y, Chen J, Guo J, Wang Y, Jia D, Cao S, Zhou Q. Three-dimensional printing for cardiovascular diseases: from anatomical modeling to dynamic functionality. Biomed Eng Online 2020; 19:76. [PMID: 33028306 PMCID: PMC7542711 DOI: 10.1186/s12938-020-00822-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) printing is widely used in medicine. Most research remains focused on forming rigid anatomical models, but moving from static models to dynamic functionality could greatly aid preoperative surgical planning. This work reviews literature on dynamic 3D heart models made of flexible materials for use with a mock circulatory system. Such models allow simulation of surgical procedures under mock physiological conditions, and are; therefore, potentially very useful to clinical practice. For example, anatomical models of mitral regurgitation could provide a better display of lesion area, while dynamic 3D models could further simulate in vitro hemodynamics. Dynamic 3D models could also be used in setting standards for certain parameters for function evaluation, such as flow reserve fraction in coronary heart disease. As a bridge between medical image and clinical aid, 3D printing is now gradually changing the traditional pattern of diagnosis and treatment.
Collapse
Affiliation(s)
- Hao Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongning Song
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanting Yang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yugang Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinling Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Juan Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yijia Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan Jia
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
13
|
Ali A, Ballard DH, Althobaity W, Christensen A, Geritano M, Ho M, Liacouras P, Matsumoto J, Morris J, Ryan J, Shorti R, Wake N, Rybicki FJ, Sheikh A. Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: adult cardiac conditions. 3D Print Med 2020; 6:24. [PMID: 32965536 PMCID: PMC7510265 DOI: 10.1186/s41205-020-00078-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Medical 3D printing as a component of care for adults with cardiovascular diseases has expanded dramatically. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness criteria for adult cardiac 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with a number of adult cardiac indications, physiologic, and pathologic processes. Each study was vetted by the authors and graded according to published guidelines. RESULTS Evidence-based appropriateness guidelines are provided for the following areas in adult cardiac care; cardiac fundamentals, perioperative and intraoperative care, coronary disease and ischemic heart disease, complications of myocardial infarction, valve disease, cardiac arrhythmias, cardiac neoplasm, cardiac transplant and mechanical circulatory support, heart failure, preventative cardiology, cardiac and pericardial disease and cardiac trauma. CONCLUSIONS Adoption of common clinical standards regarding appropriate use, information and material management, and quality control are needed to ensure the greatest possible clinical benefit from 3D printing. This consensus guideline document, created by the members of the RSNA 3D printing Special Interest Group, will provide a reference for clinical standards of 3D printing for adult cardiac indications.
Collapse
Affiliation(s)
- Arafat Ali
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Waleed Althobaity
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - Michelle Ho
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Jane Matsumoto
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Justin Ryan
- Rady Children's Hospital, San Diego, CA, USA
| | - Rami Shorti
- Intermountain Healthcare, South Jordan, UT, USA
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
14
|
Ferrari E, Gallo M, Wang C, Zhang L, Taramasso M, Maisano F, Pirelli L, Berdajs D, von Segesser LK. Three-dimensional printing in adult cardiovascular medicine for surgical and transcatheter procedural planning, teaching and technological innovation. Interact Cardiovasc Thorac Surg 2020; 30:203-214. [PMID: 31633170 DOI: 10.1093/icvts/ivz250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D)-printing technologies in cardiovascular surgery have provided a new way to tailor surgical and percutaneous treatments. Digital information from standard cardiac imaging is integrated into physical 3D models for an accurate spatial visualization of anatomical details. We reviewed the available literature and analysed the different printing technologies, the required procedural steps for 3D prototyping, the used cardiac imaging, the available materials and the clinical implications. We have highlighted different materials used to replicate aortic and mitral valves, vessels and myocardial properties. 3D printing allows a heuristic approach to investigate complex cardiovascular diseases, and it is a unique patient-specific technology providing enhanced understanding and tactile representation of cardiovascular anatomies for the procedural planning and decision-making process. 3D printing may also be used for medical education and surgical/transcatheter training. Communication between doctors and patients can also benefit from 3D models by improving the patient understanding of pathologies. Furthermore, medical device development and testing can be performed with rapid 3D prototyping. Additionally, widespread application of 3D printing in the cardiovascular field combined with tissue engineering will pave the way to 3D-bioprinted tissues for regenerative medicinal applications and 3D-printed organs.
Collapse
Affiliation(s)
- Enrico Ferrari
- Cardiovascular Surgery, Cardiocentro Ticino, Lugano, Switzerland
| | - Michele Gallo
- Cardiovascular Surgery, Cardiocentro Ticino, Lugano, Switzerland
| | | | - Lei Zhang
- Cardiovascular Surgery, Nanjing Jinling Hospital, Nanjing, China
| | | | - Francesco Maisano
- Cardiovascular Surgery, Zurich University Hospital, Zurich, Switzerland
| | - Luigi Pirelli
- Cardiothoracic Surgery, Lenox Hill Heart and Vascular Institute, New York, NY, USA
| | - Denis Berdajs
- Cardiovascular Surgery, Basel University Hospital, Basel, Switzerland
| | - Ludwig Karl von Segesser
- Department of Surgery, Cardiovascular Research Unit, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
15
|
Bezek LB, Cauchi MP, De Vita R, Foerst JR, Williams CB. 3D printing tissue-mimicking materials for realistic transseptal puncture models. J Mech Behav Biomed Mater 2020; 110:103971. [PMID: 32763836 DOI: 10.1016/j.jmbbm.2020.103971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
Applications of additive manufacturing (commonly referred to as 3D printing) in direct fabrication of models for pre-surgical planning, functional testing, and medical training are on the rise. However, one current limitation to the accuracy of models for cardiovascular procedural training is a lack of printable materials that accurately mimic human tissue. Most of the available elastomeric materials lack mechanical properties representative of human tissues. To address the gap, the authors explore the multi-material capability of material jetting additive manufacturing to combine non-curing and photo-curing inks to achieve material properties that more closely replicate human tissues. The authors explore the impact of relative material concentration on tissue-relevant properties from puncture and tensile testing under submerged conditions. Further, the authors demonstrate the ability to mimic the mechanical properties of the fossa ovalis, which proves beneficial for accurately simulating transseptal punctures. A fossa ovalis mimic was printed and assembled within a full patient-specific heart model for validation, where it exhibited accuracy in both mechanical properties and geometry. The explored material combination provides the opportunity to fabricate future medical models that are more realistic and better suited for pre-surgical planning and medical student training. This will ultimately guide safer, more efficient practices.
Collapse
Affiliation(s)
- Lindsey B Bezek
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Raffaella De Vita
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jason R Foerst
- Section of Interventional and Structural Cardiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | | |
Collapse
|
16
|
Wang C, Zhang L, Qin T, Xi Z, Sun L, Wu H, Li D. 3D printing in adult cardiovascular surgery and interventions: a systematic review. J Thorac Dis 2020; 12:3227-3237. [PMID: 32642244 PMCID: PMC7330795 DOI: 10.21037/jtd-20-455] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
3D printing in adult cardiac and vascular surgery has been evaluated over the last 10 years, and all of the available literature reports benefits from the use of 3D models. In the present study, we analyzed the current applications of 3D printing for adult cardiovascular disease treated with surgical or catheter-based interventions, including the clinical medical simulation of physiological or pathology conducted with 3D printing in this field. A search of PubMed and MEDLINE databases were supplemented by searching through bibliographies of key articles. Thereafter, data on demographic, clinical scenarios and application, imaging modality, purposes of using with 3D printing, outcomes and follow-up were extracted. A total of 43 articles were deemed eligible and included. 296 patients (mean age: 65.4±14.2 years; male, 58.2%) received 3D printing for cardiac and vascular surgery or conditions [percutaneous left atrial appendage occlusion (LAAO), TAVR, mitral valve disease, aortic valve replacement, coronary artery abnormality, HOCM, aortic aneurysm and aortic dissection, Kommerell's diverticulum, primary cardiac tumor and ventricular aneurysm]. Eight papers reported the utility of 3D printing in the medical simulator and training fields. Most studies were conducted starting in 2014. Twenty-six was case report. The major scenario used with 3D printing technology was LAAO (50.3%) and followed by TAVR (17.6%). CT and echocardiography were two main imaging techniques that were used to generate 3D-printed heart models. All studies showed that 3D-printed models were helpful for preoperative planning, orientation, and medical teaching. The important finding is that 3D printing provides a unique patient-specific method to assess complex anatomy and is helpful for intraoperative orientation, decision-making, creating functional models, and teaching adult cardiac and vascular surgery, including catheter-based heart surgery.
Collapse
Affiliation(s)
- Changtian Wang
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Tao Qin
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Zhilong Xi
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Lei Sun
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Haiwei Wu
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Demin Li
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| |
Collapse
|
17
|
Hung KS, Paulsen MJ, Wang H, Hironaka C, Woo YJ. Custom Patient-Specific Three-Dimensional Printed Mitral Valve Models for Pre-Operative Patient Education Enhance Patient Satisfaction and Understanding. J Med Device 2019. [DOI: 10.1115/1.4043737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In recent years, advances in medical imaging and three-dimensional (3D) additive manufacturing techniques have increased the use of 3D-printed anatomical models for surgical planning, device design and testing, customization of prostheses, and medical education. Using 3D-printing technology, we generated patient-specific models of mitral valves from their pre-operative cardiac imaging data and utilized these custom models to educate patients about their anatomy, disease, and treatment. Clinical 3D transthoracic and transesophageal echocardiography images were acquired from patients referred for mitral valve repair surgery and segmented using 3D modeling software. Patient-specific mitral valves were 3D-printed using a flexible polymer material to mimic the precise geometry and tissue texture of the relevant anatomy. 3D models were presented to patients at their pre-operative clinic visit and patient education was performed using either the 3D model or the standard anatomic illustrations. Afterward, patients completed questionnaires assessing knowledge and satisfaction. Responses were calculated based on a 1–5 Likert scale and analyzed using a nonparametric Mann–Whitney test. Twelve patients were presented with a patient-specific 3D-printed mitral valve model in addition to standard education materials and twelve patients were presented with only standard educational materials. The mean survey scores were 64.2 (±1.7) and 60.1 (±5.9), respectively (p = 0.008). The use of patient-specific anatomical models positively impacts patient education and satisfaction, and is a feasible method to open new opportunities in precision medicine.
Collapse
Affiliation(s)
- Kay S. Hung
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Road Extension, Palo Alto, CA 94304 e-mail:
| | - Michael J. Paulsen
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Road Extension, Palo Alto, CA 94304 e-mail:
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Road Extension, Palo Alto, CA 94304 e-mail:
| | - Camille Hironaka
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Road Extension, Palo Alto, CA 94304 e-mail:
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, 870 Quarry Road Extension, Palo Alto, CA 94304 e-mail:
| |
Collapse
|
18
|
Aphram G, De Kerchove L, Mastrobuoni S, Navarra E, Solari S, Tamer S, Baert J, Poncelet A, Rubay J, Astarci P, Noirhomme P, El Khoury G. Re-repair of the failed mitral valve: insights into aetiology and surgical management. Eur J Cardiothorac Surg 2019; 54:774-780. [PMID: 29547941 DOI: 10.1093/ejcts/ezy111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/13/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Mitral valve (MV) repair is the gold standard for treatment of degenerative mitral regurgitation. A variety of surgical techniques allow surgeons to achieve a high rate of MV repair even with MV diseases of other aetiologies. However, a certain number of repairs fail over time. The aim of this study was to review our single-centre experience of MV re-repair and analyse the mode of repair failure, re-repair safety and efficiency in relation to the initial aetiology. METHODS Between 1997 and 2015, 91 patients underwent redo MV re-repair. The first MV repair was performed in our institution in 59% of cases. Follow-up information was available for 93% of our patients. The median follow-up was 56 months. RESULTS The initial aetiology was degenerative disease in 40 (44%) patients, rheumatic disease in 25 (27.5%), endocarditis in 10 (11%), ischaemic in 6 (7%), severe mitral annulus calcification in 5 (5.5%), congenital disease in 4 (4%) and unknown in 1 (1%). The mean age was 58 ± 15 years. The median delay between the 1st and 2nd repair was 49 months with 6 early re-repairs. Re-repair was urgent or emergent in 19% of cases; indications for surgery were mitral regurgitation in 48%, stenosis in 19%, endocarditis in 19%, mitral disease in 11%, ring thrombosis in 2% and systolic anterior motion in 1%. The main mechanisms of failure included technical error (30%), progression of disease (35%), new disease (29%) and unknown (6%.) Re-repair was performed through a median sternotomy in 96% of cases, and 34% of patients had concomitant procedures. Eight (9%) postoperative deaths (4 of mitral annulus calcification, 2 of endocarditis, 1 of degenerative disease, 1 of ischaemia) and 5 (6%) early failures occurred (3 of rheumatic disease, 1 of degenerative disease, 1 of a congenital condition), requiring MV replacement in 4 and new repair in 1. Overall survival at 5 and 10 years was 76% and 57%, 83% and 49% in patients with degenerative diseases and 95% and 95% in patients with rheumatic disease. Overall freedom from reoperation at 5 and 10 years was 82% and 61%, 94% and 87% with degenerative disease and 60% and 45% with rheumatic disease. CONCLUSIONS MV re-repair is feasible and has good mid-term results in patients with degenerative MV disease. Rheumatic MV disease is associated with a certain risk of failure over time; nevertheless, these patients show excellent survival after re-repair.
Collapse
Affiliation(s)
- Gaby Aphram
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Laurent De Kerchove
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Stefano Mastrobuoni
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Emiliano Navarra
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Silvia Solari
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Saadallah Tamer
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Jerome Baert
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Alain Poncelet
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Jean Rubay
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Parla Astarci
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Philippe Noirhomme
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| | - Gebrine El Khoury
- Department of Thoracic and Cardiovascular Surgery, Catholic University of Louvain, Saint Luc Hospital, Brussels, Belgium
| |
Collapse
|
19
|
Sacks M, Drach A, Lee CH, Khalighi A, Rego B, Zhang W, Ayoub S, Yoganathan A, Gorman RC, Gorman Iii JH. On the simulation of mitral valve function in health, disease, and treatment. J Biomech Eng 2019; 141:2731932. [PMID: 31004145 PMCID: PMC6611349 DOI: 10.1115/1.4043552] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/26/2019] [Indexed: 12/19/2022]
Abstract
The mitral valve (MV) is the heart valve that regulates blood ?ow between the left atrium and left ventricle (LV). In situations where the MV fails to fully cover the left atrioventricular ori?ce during systole, the resulting regurgitation causes pulmonary congestion, leading to heart failure and/or stroke. The causes of MV insuf?ciency can be either primary (e.g. myxomatous degeneration) where the valvular tissue is organically diseased, or secondary (typically inducded by ischemic cardiomyopathy) termed ischemic mitral regurgitation (IMR), is brought on by adverse LV remodeling. IMR is present in up to 40% of patients and more than doubles the probability of cardiovascular morbidity after 3.5 years. There is now agreement that adjunctive procedures are required to treat IMR caused by lea?et tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. There is thus an urgent need for cell and tissue physiologically based quantitative assessments of MV function to better design surgical solutions and associated therapies. Novel computational approaches directed towards optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We present the details of our MV modeling techniques, with an emphasis on what is known and investigated at various length scales.
Collapse
Affiliation(s)
- Michael Sacks
- aWillerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Chung-Hao Lee
- Department of Mechanical and Aerospace Engineering, University of Oklahoma, Norman, OK
| | - Amir Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Bruno Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Will Zhang
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Engelhardt S, Sauerzapf S, Preim B, Karck M, Wolf I, De Simone R. Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds. Int J Comput Assist Radiol Surg 2019; 14:1177-1186. [PMID: 30997636 DOI: 10.1007/s11548-019-01971-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Given the multitude of challenges surgeons face during mitral valve repair surgery, they should have a high confidence in handling of instruments and in the application of surgical techniques before they enter the operating room. Unfortunately, opportunities for surgical training of minimally invasive repair are very limited, leading to a situation where most surgeons undergo a steep learning curve while operating the first patients. METHODS In order to provide a realistic tool for surgical training, a commercial simulator was augmented by flexible patient-specific mitral valve replica. In an elaborated production pipeline, finalized after many optimization cycles, models were segmented from 3D ultrasound and then 3D-printable molds were computed automatically and printed in rigid material, the lower part being water-soluble. After silicone injection, the silicone model was dissolved from the mold and anchored in the simulator. RESULTS To our knowledge, our models are the first to comprise the full mitral valve apparatus, i.e., the annulus, leaflets, chordae tendineae and papillary muscles. Nine different valve molds were automatically created according to the proposed workflow (seven prolapsed valves and two valves with functional mitral insufficiency). From these mold geometries, 16 replica were manufactured. A material test revealed that EcoflexTM 00-30 is the most suitable material for leaflet-mimicking tissue out of seven mixtures. Production time was around 36 h per valve. Twelve surgeons performed various surgical techniques, e.g., annuloplasty, neo-chordae implantation, triangular leaflet resection, and assessed the realism of the valves very positively. CONCLUSION The standardized production process guarantees a high anatomical recapitulation of the silicone valves to the segmented models and the ultrasound data. Models are of unprecedented quality and maintain a high realism during haptic interaction with instruments and suture material.
Collapse
Affiliation(s)
- Sandy Engelhardt
- Faculty of Computer Science, University of Applied Sciences Mannheim, Mannheim, Germany. .,Faculty of Computer Science, Magdeburg University, Magdeburg, Germany.
| | - Simon Sauerzapf
- Faculty of Computer Science, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Bernhard Preim
- Faculty of Computer Science, Magdeburg University, Magdeburg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ivo Wolf
- Faculty of Computer Science, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Raffaele De Simone
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Garner KH, Singla DK. 3D modeling: a future of cardiovascular medicine. Can J Physiol Pharmacol 2019; 97:277-286. [DOI: 10.1139/cjpp-2018-0472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease resulting from atypical cardiac structures continues to be a leading health concern despite advancements in diagnostic imaging and surgical techniques. However, the ability to visualize spatial relationships using current technologies remains a challenge. Therefore, 3D modeling has gained significant interest to understand complex and atypical cardiovascular disorders. Moreover, 3D modeling can be personalized and patient-specific. 3D models have been demonstrated to aid surgical planning and simulation, enhance communication among surgeons and patients, optimize medical device design, and can be used as a potential teaching tool in medical schools. In this review, we discuss the key components needed to generate cardiac 3D models. We highlight prevalent structural conditions that have utilized 3D modeling in pre-operative planning. Furthermore, we discuss the current limitations of routine use of 3D models in the clinic as well as future directions for utilization of this technology in the cardiovascular field.
Collapse
Affiliation(s)
- Kaley H. Garner
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
22
|
Qasim M, Haq F, Kang MH, Kim JH. 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int J Nanomedicine 2019; 14:1311-1333. [PMID: 30863063 PMCID: PMC6388753 DOI: 10.2147/ijn.s189587] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Conventional tissue engineering, cell therapy, and current medical approaches were shown to be successful in reducing mortality rate and complications caused by cardiovascular diseases (CVDs). But still they have many limitations to fully manage CVDs due to complex composition of native myocardium and microvascularization. Fabrication of fully functional construct to replace infarcted area or regeneration of progenitor cells is important to address CVDs burden. Three-dimensional (3D) printed scaffolds and 3D bioprinting technique have potential to develop fully functional heart construct that can integrate with native tissues rapidly. In this review, we presented an overview of 3D printed approaches for cardiac tissue engineering, and advances in 3D bioprinting of cardiac construct and models. We also discussed role of immune modulation to promote tissue regeneration.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, South Korea,
| | - Farhan Haq
- Department of Biosciences, Comsats University, Islamabad, Pakistan
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, South Korea,
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, South Korea,
| |
Collapse
|
23
|
Tuncay V, van Ooijen PMA. 3D printing for heart valve disease: a systematic review. Eur Radiol Exp 2019; 3:9. [PMID: 30771098 PMCID: PMC6377684 DOI: 10.1186/s41747-018-0083-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/27/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Current developments showed a fast-increasing implementation and use of three-dimensional (3D) printing in medical applications. Our aim was to review the literature regarding the application of 3D printing to cardiac valve disease. METHODS A PubMed search for publications in English with the terms "3D printing" AND "cardiac valve", performed in January 2018, resulted in 64 items. After the analysis of the abstract and text, 27 remained related to the topic. From the references of these 27 papers, 7 papers were added resulting in a total of 34 papers. Of these, 5 were review papers, thus reducing the papers taken into consideration to 29. RESULTS The 29 papers showed that about a decade ago, the interest in 3D printing for this application area was emerging, but only in the past 2 to 3 years it really gained interest. Computed tomography is the most common imaging modality taken into consideration (62%), followed by ultrasound (28%), computer-generated models (computer-aided design) (7%), and magnetic resonance imaging (3%). Acrylonitrile butadiene styrene (4/14, 29%) and TangoPlus FullCure 930 (5/14, 36%) are the most used printing materials. Stereolithography (40%) and fused deposition modeling (30%) are the preferred printing techniques, while PolyJet (25%) and laser sintering (4%) are used in a minority of cases. The reported time ranges from 30 min to 3 days. The most reported application area is preoperative planning (63%), followed by training (19%), device testing (11%), and retrospective procedure evaluation (7%). CONCLUSIONS In most cases, CT datasets are used and models are printed for preoperative planning.
Collapse
Affiliation(s)
- Volkan Tuncay
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Peter M A van Ooijen
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| |
Collapse
|
24
|
Haleem A, Javaid M, Saxena A. Additive manufacturing applications in cardiology: A review. Egypt Heart J 2018; 70:433-441. [PMID: 30591768 PMCID: PMC6303383 DOI: 10.1016/j.ehj.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Additive manufacturing (AM) has emerged as a serious planning, strategy, and education tool in cardiovascular medicine. This review describes and illustrates the application, development and associated limitation of additive manufacturing in the field of cardiology by studying research papers on AM in medicine/cardiology. METHODS Relevant research papers till August 2018 were identified through Scopus and examined for strength, benefits, limitation, contribution and future potential of AM. With the help of the existing literature & bibliometric analysis, different applications of AM in cardiology are investigated. RESULTS AM creates an accurate three-dimensional anatomical model to explain, understand and prepare for complex medical procedures. A prior study of patient's 3D heart model can help doctors understand the anatomy of the individual patient, which may also be used create training modules for institutions and surgeons for medical training. CONCLUSION AM has the potential to be of immense help to the cardiologists and cardiac surgeons for intervention and surgical planning, monitoring and analysis. Additive manufacturing creates a 3D model of the heart of a specific patient in lesser time and cost. This technology is used to create and analyse 3D model before starting actual surgery on the patient. It can improve the treatment outcomes for patients, besides saving their lives. Paper summarised additive manufacturing applications particularly in the area of cardiology, especially manufacturing of a patient-specific artificial heart or its component. Model printed by this technology reduces risk, improves the quality of diagnosis and preoperative planning and also enhanced team communication. In cardiology, patient data of heart varies from patient to patient, so AM technologies efficiently produce 3D models, through converting the predesigned virtual model into a tangible object. Companies explore additive manufacturing for commercial medical applications.
Collapse
Affiliation(s)
- Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Anil Saxena
- Cardiac Pacing & Electrophysiology, Fortis Escorts, New Delhi, India
| |
Collapse
|
25
|
Daemen JHT, Heuts S, Olsthoorn JR, Maessen JG, Sardari Nia P. Mitral valve modelling and three-dimensional printing for planning and simulation of mitral valve repair. Eur J Cardiothorac Surg 2018; 55:543-551. [DOI: 10.1093/ejcts/ezy306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Jean H T Daemen
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Samuel Heuts
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht, Netherlands
| | - Jules R Olsthoorn
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht, Netherlands
| | - Peyman Sardari Nia
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht, Netherlands
| |
Collapse
|
26
|
El Sabbagh A, Eleid MF, Al-Hijji M, Anavekar NS, Holmes DR, Nkomo VT, Oderich GS, Cassivi SD, Said SM, Rihal CS, Matsumoto JM, Foley TA. The Various Applications of 3D Printing in Cardiovascular Diseases. Curr Cardiol Rep 2018; 20:47. [PMID: 29749577 DOI: 10.1007/s11886-018-0992-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW To highlight the various applications of 3D printing in cardiovascular disease and discuss its limitations and future direction. RECENT FINDINGS Use of handheld 3D printed models of cardiovascular structures has emerged as a facile modality in procedural and surgical planning as well as education and communication. Three-dimensional (3D) printing is a novel imaging modality which involves creating patient-specific models of cardiovascular structures. As percutaneous and surgical therapies evolve, spatial recognition of complex cardiovascular anatomic relationships by cardiologists and cardiovascular surgeons is imperative. Handheld 3D printed models of cardiovascular structures provide a facile and intuitive road map for procedural and surgical planning, complementing conventional imaging modalities. Moreover, 3D printed models are efficacious educational and communication tools. This review highlights the various applications of 3D printing in cardiovascular diseases and discusses its limitations and future directions.
Collapse
Affiliation(s)
- Abdallah El Sabbagh
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mackram F Eleid
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mohammed Al-Hijji
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nandan S Anavekar
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David R Holmes
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vuyisile T Nkomo
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | | | - Sameh M Said
- Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Charanjit S Rihal
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Thomas A Foley
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Anwar S, Singh GK, Miller J, Sharma M, Manning P, Billadello JJ, Eghtesady P, Woodard PK. 3D Printing is a Transformative Technology in Congenital Heart Disease. JACC Basic Transl Sci 2018; 3:294-312. [PMID: 30062215 PMCID: PMC6059001 DOI: 10.1016/j.jacbts.2017.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
Abstract
Survival in congenital heart disease has steadily improved since 1938, when Dr. Robert Gross successfully ligated for the first time a patent ductus arteriosus in a 7-year-old child. To continue the gains made over the past 80 years, transformative changes with broad impact are needed in management of congenital heart disease. Three-dimensional printing is an emerging technology that is fundamentally affecting patient care, research, trainee education, and interactions among medical teams, patients, and caregivers. This paper first reviews key clinical cases where the technology has affected patient care. It then discusses 3-dimensional printing in trainee education. Thereafter, the role of this technology in communication with multidisciplinary teams, patients, and caregivers is described. Finally, the paper reviews translational technologies on the horizon that promise to take this nascent field even further.
Collapse
Key Words
- 3D printing
- 3D, three-dimensional
- ACHD, adults with congenital heart disease
- APC, aortopulmonary collaterals
- ASD, atrial septal defect
- CHD, congenital heart disease
- CT, computed tomography
- DORV, double outlet right ventricle
- MAPCAs, multiple aortopulmonary collaterals
- MRI, magnetic resonance imaging
- OR, operating room
- VSD, ventricular septal defect
- cardiac imaging
- cardiothoracic surgery
- congenital heart disease
- simulation
Collapse
Affiliation(s)
- Shafkat Anwar
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Gautam K. Singh
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jacob Miller
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Monica Sharma
- Division of Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Peter Manning
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph J. Billadello
- Division of Cardiovascular Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Pirooz Eghtesady
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Pamela K. Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Shirakawa T, Yoshitatsu M, Koyama Y, Kurata A, Miyoshi T, Mizoguchi H, Masai T, Toda K, Sawa Y. To what extent can 3D model replicate dimensions of individual mitral valve prolapse? J Artif Organs 2018; 21:348-355. [PMID: 29556869 DOI: 10.1007/s10047-018-1033-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022]
Abstract
Determining the complex geometry of mitral valve prolapse is often difficult. We constructed 3D models of six prolapsed mitral valves for surgical assessment, and evaluated how accurately the models could replicate individual valve dimensions. 3D polygon data were constructed based on an original segmentation method for computed tomography images. The model's replication performance was confirmed via dimensional comparison between the actual hearts during surgery and those models. The results revealed that the prolapsed segments matched in all cases; however, torn chordae were replicated in four cases. The mean height differences were 0.0 mm (SD 1.6, range - 2 to + 2 mm) for the anterolateral side, 0.0 mm (SD 1.7, range - 2 to + 2 mm) for the prolapsed leaflet center, and - 1.5 mm (SD 0.6, range - 1 to - 2 mm) for the posteromedial side. Regression analysis showed a strong and positive correlation, and Bland-Altman plots indicated quantitative similarity of the models to the actual hearts. We concluded that our 3D valve models could replicate the actual mitral valve prolapses within acceptable dimensional differences. Our concepts are useful for better 3D valve creation and better surgical planning with reliable 3D valve models.
Collapse
Affiliation(s)
- Takashi Shirakawa
- Department of Cardiovascular Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan.
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Masao Yoshitatsu
- Department of Cardiovascular Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Yasushi Koyama
- Department of Diagnostic Radiology and Cardiology, Sakurabashi Watanabe Hospital, Osaka, Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiroki Mizoguchi
- Department of Cardiovascular Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo, 660-8511, Japan
| | - Takafumi Masai
- Department of Cardiovascular Surgery, Sakurabashi Watanabe Hospital, Osaka, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
29
|
Scanlan AB, Nguyen AV, Ilina A, Lasso A, Cripe L, Jegatheeswaran A, Silvestro E, McGowan FX, Mascio CE, Fuller S, Spray TL, Cohen MS, Fichtinger G, Jolley MA. Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves. Pediatr Cardiol 2018; 39:538-547. [PMID: 29181795 PMCID: PMC5831483 DOI: 10.1007/s00246-017-1785-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed "negative" molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p < 0.01). Patient-specific, 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.
Collapse
Affiliation(s)
- Adam B Scanlan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Alex V Nguyen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Anna Ilina
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, USA
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, USA
| | - Linnea Cripe
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Anusha Jegatheeswaran
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Silvestro
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francis X McGowan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Christopher E Mascio
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Fuller
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas L Spray
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Meryl S Cohen
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gabor Fichtinger
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, USA
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
30
|
|
31
|
Drach A, Khalighi AH, Sacks MS. A comprehensive pipeline for multi-resolution modeling of the mitral valve: Validation, computational efficiency, and predictive capability. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:10.1002/cnm.2921. [PMID: 28776326 PMCID: PMC5797517 DOI: 10.1002/cnm.2921] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 05/18/2023]
Abstract
Multiple studies have demonstrated that the pathological geometries unique to each patient can affect the durability of mitral valve (MV) repairs. While computational modeling of the MV is a promising approach to improve the surgical outcomes, the complex MV geometry precludes use of simplified models. Moreover, the lack of complete in vivo geometric information presents significant challenges in the development of patient-specific computational models. There is thus a need to determine the level of detail necessary for predictive MV models. To address this issue, we have developed a novel pipeline for building attribute-rich computational models of MV with varying fidelity directly from the in vitro imaging data. The approach combines high-resolution geometric information from loaded and unloaded states to achieve a high level of anatomic detail, followed by mapping and parametric embedding of tissue attributes to build a high-resolution, attribute-rich computational models. Subsequent lower resolution models were then developed and evaluated by comparing the displacements and surface strains to those extracted from the imaging data. We then identified the critical levels of fidelity for building predictive MV models in the dilated and repaired states. We demonstrated that a model with a feature size of about 5 mm and mesh size of about 1 mm was sufficient to predict the overall MV shape, stress, and strain distributions with high accuracy. However, we also noted that more detailed models were found to be needed to simulate microstructural events. We conclude that the developed pipeline enables sufficiently complex models for biomechanical simulations of MV in normal, dilated, repaired states.
Collapse
Affiliation(s)
- Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
32
|
El Sabbagh A, Eleid MF, Matsumoto JM, Anavekar NS, Al‐Hijji MA, Said SM, Nkomo VT, Holmes DR, Rihal CS, Foley TA. Three‐dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification. Catheter Cardiovasc Interv 2018; 92:E537-E549. [DOI: 10.1002/ccd.27488] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/01/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | - Mackram F. Eleid
- Department of Cardiovascular DiseasesMayo ClinicRochester Minnesota
| | | | | | | | - Sameh M. Said
- Division of Cardiovascular SurgeryMayo ClinicRochester Minnesota
| | | | - David R. Holmes
- Department of Cardiovascular DiseasesMayo ClinicRochester Minnesota
| | | | - Thomas A. Foley
- Department of Cardiovascular DiseasesMayo ClinicRochester Minnesota
- Department of RadiologyMayo ClinicRochester Minnesota
| |
Collapse
|
33
|
Ginty OK, Moore JM, Xu Y, Xia W, Fujii S, Bainbridge D, Peters TM, Kiaii BB, Chu MWA. Dynamic Patient-Specific Three-Dimensional Simulation of Mitral Repair. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2018. [DOI: 10.1177/155698451801300103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | - Yuanwei Xu
- Robarts Research Institute, London, ON Canada
| | - Wenyao Xia
- Robarts Research Institute, London, ON Canada
| | - Satoru Fujii
- Western University and London Health Sciences Centre, London, ON Canada
| | - Daniel Bainbridge
- Western University and London Health Sciences Centre, London, ON Canada
| | | | - Bob B. Kiaii
- Robarts Research Institute, London, ON Canada
- Western University and London Health Sciences Centre, London, ON Canada
| | - Michael W. A. Chu
- Robarts Research Institute, London, ON Canada
- Western University and London Health Sciences Centre, London, ON Canada
| |
Collapse
|
34
|
Dynamic Patient-Specific Three-Dimensional Simulation of Mitral Repair. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2018; 13:11-22. [DOI: 10.1097/imi.0000000000000463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Objective Planned mitral repair strategies are generally established from preoperative echocardiography; however, specific details of the repair are often determined intraoperatively. We propose that three-dimensional printed, patient-specific, dynamic mitral valve models may help surgeons plan and trial all the details of a specific patient's mitral repair preoperatively. Methods Using preoperative echocardiography, segmentation, modeling software, and three-dimensional printing, we created dynamic, high-fidelity, patient-specific mitral valve models including the subvalvular apparatus. We assessed the accuracy of 10 patient mitral valve models anatomically and functionally in a heart phantom simulator, both objectively by blinded echocardiographic assessment, and subjectively by two mitral repair experts. After this, we attempted model mitral repair and compared the outcomes with postoperative echocardiography. Results Model measurements were accurate when compared with patients on anterior-posterior diameter, circumference, and anterior leaflet length; however, less accurate on posterior leaflet length. On subjective assessment, Likert scores were high at 3.8 ± 0.4 and 3.4 ± 0.7, suggesting good fidelity of the dynamic model echocardiogram and functional model in the phantom to the preoperative three-dimensional echocardiogram, respectively. Mitral repair was successful in all 10 models with significant reduction in mitral insufficiency. In two models, mitral repair was performed twice, using two different surgical techniques to assess which provided a better outcome. When compared with the actual patient mitral repair outcome, the repaired models compared favorably. Conclusions Complex mitral valve modeling seems to predict an individual patient's mitral anatomy well, before surgery. Further investigation is required to determine whether deliberate preoperative practice can improve mitral repair outcomes.
Collapse
|
35
|
Birbara NS, Otton JM, Pather N. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models. Heart Lung Circ 2017; 28:302-313. [PMID: 29655572 DOI: 10.1016/j.hlc.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/09/2017] [Accepted: 10/25/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. METHODS A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. RESULTS The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p<0.05) in precision between these methods. Patient-specific 3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. CONCLUSIONS This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings.
Collapse
Affiliation(s)
- Nicolette S Birbara
- School of Medical Sciences, Medicine, University of New South Wales, Sydney, NSW, Australia
| | - James M Otton
- School of Medical Sciences, Medicine, University of New South Wales, Sydney, NSW, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; Liverpool Hospital, Sydney, NSW, Australia
| | - Nalini Pather
- School of Medical Sciences, Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Vukicevic M, Vekilov DP, Grande-Allen JK, Little SH. Patient-specific 3D Valve Modeling for Structural Intervention. STRUCTURAL HEART-THE JOURNAL OF THE HEART TEAM 2017. [DOI: 10.1080/24748706.2017.1377363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marija Vukicevic
- Department of Cardiology, Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, USA
| | | | | | - Stephen H. Little
- Department of Cardiology, Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
37
|
Kankala RK, Zhu K, Li J, Wang CS, Wang SB, Chen AZ. Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale. Biofabrication 2017; 9:032002. [PMID: 28770811 DOI: 10.1088/1758-5090/aa8113] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fabrication of tissue-/organ-like structures at arbitrary geometries by mimicking the properties of the complex material offers enormous interest to the research and clinical applicability in cardiovascular diseases. Patient-specific, durable, and realistic three-dimensional (3D) cardiac models for anatomic consideration have been developed for education, pro-surgery planning, and intra-surgery guidance. In cardiac tissue engineering (TE), 3D printing technology is the most convenient and efficient microfabrication method to create biomimetic cardiovascular tissue for the potential in vivo implantation. Although booming rapidly, this technology is still in its infancy. Herein, we provide an emphasis on the application of this technology in clinical practices, micro- and nanoscale fabrications by cardiac TE. Initially, we will give an overview on the fabrication methods that can be used to synthesize the arbitrary 3D components with controlled features and will subsequently highlight the current limitations and future perspective of 3D printing used for cardiovascular diseases.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, People's Republic of China. Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.
Collapse
|
39
|
Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D Printing and its Future Directions. JACC Cardiovasc Imaging 2017; 10:171-184. [PMID: 28183437 PMCID: PMC5664227 DOI: 10.1016/j.jcmg.2016.12.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review, we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation, including coregistration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and surgical and catheter-based structural disease, 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions.
Collapse
Affiliation(s)
- Marija Vukicevic
- Department of Cardiology, Weill Cornell Medicine, Houston Methodist Research Institute, Houston, Texas
| | - Bobak Mosadegh
- Department of Radiology and Medicine, Weill Cornell Medicine, New-York Presbyterian, New York, New York
| | - James K Min
- Department of Radiology and Medicine, Weill Cornell Medicine, New-York Presbyterian, New York, New York
| | - Stephen H Little
- Department of Cardiology, Weill Cornell Medicine, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
40
|
3D Printing to Guide Ventricular Assist Device Placement in Adults With Congenital Heart Disease and Heart Failure. JACC-HEART FAILURE 2017; 4:301-11. [PMID: 27033018 DOI: 10.1016/j.jchf.2016.01.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/30/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022]
Abstract
As the population of adults with congenital heart disease continues to grow, so does the number of these patients with heart failure. Ventricular assist devices are underutilized in adults with congenital heart disease due to their complex anatomic arrangements and physiology. Advanced imaging techniques that may increase the utilization of mechanical circulatory support in this population must be explored. Three-dimensional printing offers individualized structural models that would enable pre-surgical planning of cannula and device placement in adults with congenital cardiac disease and heart failure who are candidates for such therapies. We present a review of relevant cardiac anomalies, cases in which such models could be utilized, and some background on the cost and procedure associated with this process.
Collapse
|
41
|
3D printers for surgical practice. 3D Print Med 2017. [DOI: 10.1016/b978-0-08-100717-4.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
|
42
|
Cardiovascular 3D Printing. 3D Print Med 2017. [DOI: 10.1007/978-3-319-61924-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Abstract
3D-printed models fabricated from CT, MRI, or echocardiography data provide the advantage of haptic feedback, direct manipulation, and enhanced understanding of cardiovascular anatomy and underlying pathologies. Reported applications of cardiovascular 3D printing span from diagnostic assistance and optimization of management algorithms in complex cardiovascular diseases, to planning and simulating surgical and interventional procedures. The technology has been used in practically the entire range of structural, valvular, and congenital heart diseases, and the added-value of 3D printing is established. Patient-specific implants and custom-made devices can be designed, produced, and tested, thus opening new horizons in personalized patient care and cardiovascular research. Physicians and trainees can better elucidate anatomical abnormalities with the use of 3D-printed models, and communication with patients is markedly improved. Cardiovascular 3D bioprinting and molecular 3D printing, although currently not translated into clinical practice, hold revolutionary potential. 3D printing is expected to have a broad influence in cardiovascular care, and will prove pivotal for the future generation of cardiovascular imagers and care providers. In this Review, we summarize the cardiovascular 3D printing workflow, from image acquisition to the generation of a hand-held model, and discuss the cardiovascular applications and the current status and future perspectives of cardiovascular 3D printing.
Collapse
|
44
|
Biglino G, Capelli C, Bruse J, Bosi GM, Taylor AM, Schievano S. Computational modelling for congenital heart disease: how far are we from clinical translation? Heart 2016; 103:98-103. [PMID: 27798056 PMCID: PMC5284484 DOI: 10.1136/heartjnl-2016-310423] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022] Open
Abstract
Computational models of congenital heart disease (CHD) have become increasingly sophisticated over the last 20 years. They can provide an insight into complex flow phenomena, allow for testing devices into patient-specific anatomies (pre-CHD or post-CHD repair) and generate predictive data. This has been applied to different CHD scenarios, including patients with single ventricle, tetralogy of Fallot, aortic coarctation and transposition of the great arteries. Patient-specific simulations have been shown to be informative for preprocedural planning in complex cases, allowing for virtual stent deployment. Novel techniques such as statistical shape modelling can further aid in the morphological assessment of CHD, risk stratification of patients and possible identification of new ‘shape biomarkers’. Cardiovascular statistical shape models can provide valuable insights into phenomena such as ventricular growth in tetralogy of Fallot, or morphological aortic arch differences in repaired coarctation. In a constant move towards more realistic simulations, models can also account for multiscale phenomena (eg, thrombus formation) and importantly include measures of uncertainty (ie, CIs around simulation results). While their potential to aid understanding of CHD, surgical/procedural decision-making and personalisation of treatments is undeniable, important elements are still lacking prior to clinical translation of computational models in the field of CHD, that is, large validation studies, cost-effectiveness evaluation and establishing possible improvements in patient outcomes.
Collapse
Affiliation(s)
- Giovanni Biglino
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK.,Cardiorespiratory Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Claudio Capelli
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Jan Bruse
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Giorgia M Bosi
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Andrew M Taylor
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Silvia Schievano
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
45
|
Aggarwal A, Pouch AM, Lai E, Lesicko J, Yushkevich PA, Gorman Iii JH, Gorman RC, Sacks MS. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. J Biomech 2016; 49:2481-90. [PMID: 27207385 PMCID: PMC5028253 DOI: 10.1016/j.jbiomech.2016.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 12/28/2022]
Abstract
Residual and physiological functional strains in soft tissues are known to play an important role in modulating organ stress distributions. Yet, no known comprehensive information on residual strains exist, or non-invasive techniques to quantify in-vivo deformations for the aortic valve (AV) leaflets. Herein we present a completely non-invasive approach for determining heterogeneous strains - both functional and residual - in semilunar valves and apply it to normal human AV leaflets. Transesophageal 3D echocardiographic (3DE) images of the AV were acquired from open-heart transplant patients, with each AV leaflet excised after heart explant and then imaged in a flattened configuration ex-vivo. Using an established spline parameterization of both 3DE segmentations and digitized ex-vivo images (Aggarwal et al., 2014), surface strains were calculated for deformation between the ex-vivo and three in-vivo configurations: fully open, just-coapted, and fully-loaded. Results indicated that leaflet area increased by an average of 20% from the ex-vivo to in-vivo open states, with a highly heterogeneous strain field. The increase in area from open to just-coapted state was the highest at an average of 25%, while that from just-coapted to fully-loaded remained almost unaltered. Going from the ex-vivo to in-vivo mid-systole configurations, the leaflet area near the basal attachment shrank slightly, whereas the free edge expanded by ~10%. This was accompanied by a 10° -20° shear along the circumferential-radial direction. Moreover, the principal stretches aligned approximately with the circumferential and radial directions for all cases, with the highest stretch being along the radial direction. Collectively, these results indicated that even though the AV did not support any measurable pressure gradient in the just-coapted state, the leaflets were significantly pre-strained with respect to the excised state. Furthermore, the collagen fibers of the leaflet were almost fully recruited in the just-coapted state, making the leaflet very stiff with marginal deformation under full pressure. Lastly, the deformation was always higher in the radial direction and lower along the circumferential one, the latter direction made stiffer by the preferential alignment of collagen fibers. These results provide significant insight into the distribution of residual strains and the in-vivo strains encountered during valve opening and closing in AV leaflets, and will form an important component of the tool that can evaluate valve׳s functional properties in a non-invasive manner.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Center for Cardiovascular Simulation Institute for Computational Engineering & Sciences Department of Biomedical Engineering The University of Texas at Austin, Austin, TX, USA; Zienkiewicz Centre for Computational Engineering Swansea University, Swansea, UK
| | - Alison M Pouch
- Gorman Cardiovascular Research Group Department of Surgery University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Lai
- Gorman Cardiovascular Research Group Department of Surgery University of Pennsylvania, Philadelphia, PA, USA
| | - John Lesicko
- Center for Cardiovascular Simulation Institute for Computational Engineering & Sciences Department of Biomedical Engineering The University of Texas at Austin, Austin, TX, USA
| | - Paul A Yushkevich
- Department of Radiology University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group Department of Surgery University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group Department of Surgery University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation Institute for Computational Engineering & Sciences Department of Biomedical Engineering The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
46
|
Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions. Ann Biomed Eng 2016; 45:508-519. [DOI: 10.1007/s10439-016-1676-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
|
47
|
Byrne N, Velasco Forte M, Tandon A, Valverde I, Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis 2016; 5:2048004016645467. [PMID: 27170842 PMCID: PMC4853939 DOI: 10.1177/2048004016645467] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/29/2016] [Indexed: 12/01/2022] Open
Abstract
Background Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. Methods A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ) and segmentation software were recorded. Results Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports). The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015). The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Conclusions and implication of key findings Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods.
Collapse
Affiliation(s)
- N Byrne
- Department of Medical Physics, Guy's and St. Thomas' NHS Foundation Trust, London, UK; Paediatric Cardiology, Evelina London Children's Hospital at Guy's and St. Thomas' NHS Foundation Trust, London, UK; Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - M Velasco Forte
- Paediatric Cardiology, Evelina London Children's Hospital at Guy's and St. Thomas' NHS Foundation Trust, London, UK; Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - A Tandon
- Departments of Paediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - I Valverde
- Paediatric Cardiology, Evelina London Children's Hospital at Guy's and St. Thomas' NHS Foundation Trust, London, UK; Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK; Department of Paediatric Cardiology, Hospital Virgen del Rocio, Seville, Spain; Institute of Biomedicine of Seville, Seville, Spain
| | - T Hussain
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK; Departments of Paediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
48
|
Bouma W, Lai EK, Levack MM, Shang EK, Pouch AM, Eperjesi TJ, Plappert TJ, Yushkevich PA, Mariani MA, Khabbaz KR, Gleason TG, Mahmood F, Acker MA, Woo YJ, Cheung AT, Jackson BM, Gorman JH, Gorman RC. Preoperative Three-Dimensional Valve Analysis Predicts Recurrent Ischemic Mitral Regurgitation After Mitral Annuloplasty. Ann Thorac Surg 2015; 101:567-75; discussion 575. [PMID: 26688087 DOI: 10.1016/j.athoracsur.2015.09.076] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/08/2015] [Accepted: 09/21/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Valve repair for ischemic mitral regurgitation (IMR) with undersized annuloplasty rings is characterized by high IMR recurrence rates. Patient-specific preoperative imaging-based risk stratification for recurrent IMR would optimize results. We sought to determine if prerepair three-dimensional (3D) echocardiography combined with a novel valve-modeling algorithm would be predictive of IMR recurrence 6 months after repair. METHODS Intraoperative transesophageal real-time 3D echocardiography was performed in 50 patients undergoing undersized ring annuloplasty for IMR and in 21 patients with normal mitral valves. A customized image analysis protocol was used to assess 3D annular geometry and regional leaflet tethering. IMR recurrence (≥ grade 2) was assessed with two-dimensional transthoracic echocardiography 6 months after repair. RESULTS Preoperative annular geometry was similar in all IMR patients, and preoperative leaflet tethering was significantly higher in patients with recurrent IMR (n=13) than in patients in whom IMR did not recur (n=37) (tethering index: 3.91 ± 1.01 vs 2.90 ± 1.17, p = 0.008; tethering angles of A3: 23.5° ± 8.9° vs 14.4° ± 11.4°, p = 0.012; P2: 44.4° ± 8.8° vs 28.2° ± 17.0°, p = 0.002; and P3: 35.2° ± 6.0° vs. 18.6° ± 12.7°, p < 0.001). Multivariate logistic regression analysis revealed the preoperative P3 tethering angle as an independent predictor of IMR recurrence with an optimal cutoff value of 29.9° (area under the curve, 0.92; 95% confidence interval, 0.84 to 1.00; p < 0.001). CONCLUSIONS 3D echocardiography combined with valve modeling is predictive of recurrent IMR. Preoperative regional leaflet tethering of segment P3 is a strong independent predictor of IMR recurrence after undersized ring annuloplasty. In patients with a preoperative P3 tethering angle of 29.9° or larger, chordal-sparing valve replacement rather than valve repair should be strongly considered.
Collapse
Affiliation(s)
- Wobbe Bouma
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eric K Lai
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melissa M Levack
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric K Shang
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas J Eperjesi
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theodore J Plappert
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Massimo A Mariani
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kamal R Khabbaz
- Department of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Gleason
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Feroze Mahmood
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael A Acker
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Albert T Cheung
- Department of Anesthesia, Stanford University, Stanford, California
| | - Benjamin M Jackson
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Ripley B, Kelil T, Cheezum MK, Goncalves A, Di Carli MF, Rybicki FJ, Steigner M, Mitsouras D, Blankstein R. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr 2015; 10:28-36. [PMID: 26732862 DOI: 10.1016/j.jcct.2015.12.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/05/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND 3D printing is a promising technique that may have applications in medicine, and there is expanding interest in the use of patient-specific 3D models to guide surgical interventions. OBJECTIVE To determine the feasibility of using cardiac CT to print individual models of the aortic root complex for transcatheter aortic valve replacement (TAVR) planning as well as to determine the ability to predict paravalvular aortic regurgitation (PAR). METHODS This retrospective study included 16 patients (9 with PAR identified on blinded interpretation of post-procedure trans-thoracic echocardiography and 7 age, sex, and valve size-matched controls with no PAR). 3D printed models of the aortic root were created from pre-TAVR cardiac computed tomography data. These models were fitted with printed valves and predictions regarding post-implant PAR were made using a light transmission test. RESULTS Aortic root 3D models were highly accurate, with excellent agreement between annulus measurements made on 3D models and those made on corresponding 2D data (mean difference of -0.34 mm, 95% limits of agreement: ± 1.3 mm). The 3D printed valve models were within 0.1 mm of their designed dimensions. Examination of the fit of valves within patient-specific aortic root models correctly predicted PAR in 6 of 9 patients (6 true positive, 3 false negative) and absence of PAR in 5 of 7 patients (5 true negative, 2 false positive). CONCLUSIONS Pre-TAVR 3D-printing based on cardiac CT provides a unique patient-specific method to assess the physical interplay of the aortic root and implanted valves. With additional optimization, 3D models may complement traditional techniques used for predicting which patients are more likely to develop PAR.
Collapse
Affiliation(s)
- Beth Ripley
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tatiana Kelil
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael K Cheezum
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine (Cardiovascular Division), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Goncalves
- Department of Medicine (Cardiovascular Division), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; University of Porto Medical School, Porto, Portugal
| | - Marcelo F Di Carli
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine (Cardiovascular Division), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank J Rybicki
- The Ottawa Hospital Research Institute and Department of Radiology, The University of Ottawa, Ottawa, ON, Canada
| | - Mike Steigner
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dimitrios Mitsouras
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ron Blankstein
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine (Cardiovascular Division), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Front Surg 2015; 2:25. [PMID: 26137465 PMCID: PMC4468745 DOI: 10.3389/fsurg.2015.00025] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022] Open
Abstract
Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing intraoperative guidance tools, teaching patients and surgical trainees, and producing patient-specific prosthetics in everyday surgical practice.
Collapse
Affiliation(s)
- Michael P Chae
- 3D PRINT Laboratory, Department of Surgery, Peninsula Health , Frankston, VIC , Australia ; Monash University Plastic and Reconstructive Surgery Group (Peninsula Clinical School), Peninsula Health , Frankston, VIC , Australia
| | - Warren M Rozen
- 3D PRINT Laboratory, Department of Surgery, Peninsula Health , Frankston, VIC , Australia ; Monash University Plastic and Reconstructive Surgery Group (Peninsula Clinical School), Peninsula Health , Frankston, VIC , Australia
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology, Centre for Human Anatomy Education, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton, VIC , Australia
| | - Michael W Findlay
- 3D PRINT Laboratory, Department of Surgery, Peninsula Health , Frankston, VIC , Australia ; Department of Surgery, Stanford University , Stanford, CA , USA
| | - Robert T Spychal
- 3D PRINT Laboratory, Department of Surgery, Peninsula Health , Frankston, VIC , Australia
| | - David J Hunter-Smith
- 3D PRINT Laboratory, Department of Surgery, Peninsula Health , Frankston, VIC , Australia ; Monash University Plastic and Reconstructive Surgery Group (Peninsula Clinical School), Peninsula Health , Frankston, VIC , Australia
| |
Collapse
|