1
|
Zhang Z, Li J, Jiang Y, Zhao L, Bai L, Yang J, Pang H, Lu J. Emission Characteristics of Aerosols Generated during the Micro-Nano Bubble Aeration Process in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17396-17405. [PMID: 39192731 DOI: 10.1021/acs.est.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Micro-nano bubble (MNB) aeration is an emerging technology that considerably enhances the aeration efficiency of wastewater. This study evaluates, for the first time, aerosolization at the water-air interface during MNB aeration. Our results show that the concentration of culturable mixed microorganisms (i.e., bacteria, fungi, and intestinal bacteria) in the in situ MNB generation (MNBs-G) phase is 2170 CFU/m3, 1.38 and 1.58-fold higher than those in medium-bubble aeration (MBA; 1568 CFU/m3) and small-bubble aeration (SBA; 1376 CFU/m3) aerosols, respectively. Conversely, the concentration of culturable mixed microorganisms in the MNB persistent dissolved oxygen (MNBs-O) phase is only 914 CFU/m3. Microbiological analysis shows a lower abundance of bacterial pathogens in MNBs-G (34.12%) and MNBs-O (34.02%) phases than in MBA (39.63%) and SBA (38.87%) aerosols. Acinetobacter is prevalent in MNBs-G (14.76%) and MNBs-O (8.22%) aerosols, whereas Bacillus and Arcobacter are prevalent in MBA (23.96%) and SBA (6.92%) aerosols, respectively. The total concentrations of chemicals [i.e., total organic carbon, water-soluble ions, and metal(loid)s] in aerosols formed via MNB aeration (205.98-373.74 μg/m3) are lower than those in MBA and SBA (398.69-594.92 μg/m3). Compared to MBA and SBA, the MNBs-G phase exhibits higher emissions of 12 elements in aerosols (i.e., NO3-, NO2-, Ca2+, Na+, K+, Mg2+, Zn, Cd, Fe, Mn, As, and Cr), whereas the MNBs-O phase generally shows lower emissions. These findings highlight the potential of optimized MNB aeration technology in considerably mitigating aerosol emissions and thereby advancing environmental sustainability in wastewater treatment.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Yijin Jiang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Lei Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xian 710055, China
| |
Collapse
|
2
|
Viegas C, Dias M, Pacífico C, Faria T, Clérigo A, Brites H, Caetano LA, Carolino E, Gomes AQ, Viegas S. Portuguese cork industry: filling the knowledge gap regarding occupational exposure to fungi and related health effects. Front Public Health 2024; 12:1355094. [PMID: 38915753 PMCID: PMC11195813 DOI: 10.3389/fpubh.2024.1355094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction The presence of the Penicillium section Aspergilloides (formerly known as Penicillium glabrum) in the cork industry involves the risk of respiratory diseases such as suberosis. Methods The aim of this study was to corroborate the predominant fungi present in this occupational environment by performing a mycological analysis of 360 workers' nasal exudates collected by nasal swabs. Additionally, evaluation of respiratory disorders among the cork workers was also performed by spirometry. Results Penicillium section Aspergilloides was detected by qPCR in 37 out of the 360 nasal swabs collected from workers' samples. From those, 25 remained negative for Penicillium sp. when using culture-based methods. A significant association was found between ventilatory defects and years of work in the cork industry, with those people working for 10 or more years in this industry having an approximately two-fold increased risk of having ventilatory defects compared to those working less time in this setting. Among the workers who detected the presence of Penicillium section Aspergilloides, those with symptoms presented slightly higher average values of CFU. Discussion Overall, the results obtained in this study show that working in the cork industry may have adverse effects on worker's respiratory health. Nevertheless, more studies are needed (e.g., using serological assays) to clarify the impact of each risk factor (fungi and dust) on disease etiology.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Marta Dias
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
| | - Cátia Pacífico
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Tiago Faria
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Anália Clérigo
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Hermínia Brites
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Liliana Aranha Caetano
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Anita Quintal Gomes
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Susana Viegas
- H&TRC – Health and Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA University Lisbon, Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Bøifot KO, Skogan G, Dybwad M. Sampling efficiency and nucleic acid stability during long-term sampling with different bioaerosol samplers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:577. [PMID: 38795190 PMCID: PMC11127824 DOI: 10.1007/s10661-024-12735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/17/2024] [Indexed: 05/27/2024]
Abstract
Aerosol microbiome studies have received increased attention as technological advancements have made it possible to dive deeper into the microbial diversity. To enhance biomass collection for metagenomic sequencing, long-term sampling is a common strategy. While the impact of prolonged sampling times on microorganisms' culturability and viability is well-established, its effect on nucleic acid stability remains less understood but is essential to ensure representative sample collection. This study evaluated four air samplers (SKC BioSampler, SASS3100, Coriolis μ, BioSpot-VIVAS 300-P) against a reference sampler (isopore membrane filters) to identify nucleic acid stability during long-term sampling. Physical sampling efficiencies determined with a fluorescent tracer for three particle sizes (0.8, 1, and 3 μm), revealed high efficiencies (> 80% relative to reference) for BioSampler, SASS3100, and BioSpot-VIVAS for all particle sizes, and for Coriolis with 3 μm particles. Coriolis exhibited lower efficiency for 0.8 μm (7%) and 1 μm (50%) particles. During 2-h sampling with MS2 and Pantoea agglomerans, liquid-based collection with Coriolis and BioSampler showed a decrease in nucleic acid yields for all test conditions. BioSpot-VIVAS displayed reduced sampling efficiency for P. agglomerans compared to MS2 and the other air samplers, while filter-based collection with SASS3100 and isopore membrane filters, showed indications of DNA degradation for 1 μm particles of P. agglomerans after long-term sampling. These findings show that long-term air sampling affects nucleic acid stability in both liquid- and filter-based collection methods. These results highlight bias produced by bioaerosol collection and should be considered when selecting an air sampler and interpreting aerosol microbiome data.
Collapse
Affiliation(s)
- Kari Oline Bøifot
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway.
- Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Gunnar Skogan
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
| | - Marius Dybwad
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
- Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
4
|
Chen Z, Liang Z, Li G, Das R, Chen P, An T. Online monitoring system for qualitative and quantitative analysis of bioaerosols by combined ATP bioluminescence assay with loop-mediated isothermal amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173404. [PMID: 38797419 DOI: 10.1016/j.scitotenv.2024.173404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Rapid detection of airborne pathogens is crucial in preventing respiratory infections and allergies. However, technologies aiming to real-time analysis of microorganisms in air remain limited due to the sparse and complex nature of bioaerosols. Here, we introduced an online bioaerosol monitoring system (OBMS) comprised of integrated units including a rotatable stainless-steel sintered filter-based sampler, a lysis unit for extracting adenosine triphosphate (ATP), and a single photon detector-based fluorescence unit. Through optimization of the ATP bioluminescence method and establishment of standard curves between relative luminescence units (RLUs) and ATP as well as microbial concentration, we achieved simultaneous detection of bioaerosols' concentration and activity. Testing OBMS with four bacterial and two fungal aerosols at a sampling flow rate of 10 to 50 L/min revealed an outstanding collection efficiency of 95 % at 30 L/min. A single OBMS measurement takes only 8 min (sampling: 5 min; lysis and detection: 3 min) with detection limits of 3 Pcs/ms photons (2.9 × 103 and 292 CFU/m3 for Staphylococcus aureus and Candida albicans aerosol). In both laboratory and field tests, OBMS detected higher concentrations of bioaerosol compared to the traditional Andersen impactor and liquid biosampler. When combined OBMS with loop-mediated isothermal amplification (LAMP), the bioaerosol can be qualitative and quantitative analyzed within 40 min without the cumbersome procedures of sample pretreatment and DNA extraction. These results offer a high compressive and humidity resistance membrane filtration sampler and validate the potential of OBMS for online measurement of bioaerosol concentration and composition.
Collapse
Affiliation(s)
- Zhen Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ranjit Das
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Kalyani, West Bengal 741245, India
| | - Pingan Chen
- Guangzhou Xiuming Environmental Protection Co., Ltd., Guangzhou 511450, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Gaetano AS, Semeraro S, Greco S, Greco E, Cain A, Perrone MG, Pallavicini A, Licen S, Fornasaro S, Barbieri P. Bioaerosol Sampling Devices and Pretreatment for Bacterial Characterization: Theoretical Differences and a Field Experience in a Wastewater Treatment Plant. Microorganisms 2024; 12:965. [PMID: 38792794 PMCID: PMC11124041 DOI: 10.3390/microorganisms12050965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Studies on bioaerosol bacterial biodiversity have relevance in both ecological and health contexts, and molecular methods, such as 16S rRNA gene-based barcoded sequencing, provide efficient tools for the analysis of airborne bacterial communities. Standardized methods for sampling and analysis of bioaerosol DNA are lacking, thus hampering the comparison of results from studies implementing different devices and procedures. Three samplers that use gelatin filtration, swirling aerosol collection, and condensation growth tubes for collecting bioaerosol at an aeration tank of a wastewater treatment plant in Trieste (Italy) were used to determine the bacterial biodiversity. Wastewater samples were collected directly from the untreated sewage to obtain a true representation of the microbiological community present in the plant. Different samplers and collection media provide an indication of the different grades of biodiversity, with condensation growth tubes and DNA/RNA shieldTM capturing the richer bacterial genera. Overall, in terms of relative abundance, the air samples have a lower number of bacterial genera (64 OTUs) than the wastewater ones (75 OTUs). Using the metabarcoding approach to aerosol samples, we provide the first preliminary step toward the understanding of a significant diversity between different air sampling systems, enabling the scientific community to orient research towards the most informative sampling strategy.
Collapse
Affiliation(s)
- Anastasia Serena Gaetano
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
- INSTM National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Sabrina Semeraro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
- INSTM National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, 34127 Trieste, Italy;
| | - Enrico Greco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
- INSTM National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Andrea Cain
- ACEGAS APS AMGA S.p.a., Via degli Alti Forni, 11, 34121 Trieste, Italy;
| | | | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, 34127 Trieste, Italy;
| | - Sabina Licen
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
| | - Pierluigi Barbieri
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
- INSTM National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9, 50121 Firenze, Italy
| |
Collapse
|
6
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
7
|
Huang Z, Yu X, Liu Q, Maki T, Alam K, Wang Y, Xue F, Tang S, Du P, Dong Q, Wang D, Huang J. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168818. [PMID: 38036132 DOI: 10.1016/j.scitotenv.2023.168818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the past few decades, especially since the outbreak of the coronavirus disease (COVID-19), the effects of atmospheric bioaerosols on human health, the environment, and climate have received great attention. To evaluate the impacts of bioaerosols quantitatively, it is crucial to determine the types of bioaerosols in the atmosphere and their spatial-temporal distribution. We provide a concise summary of the online and offline observation strategies employed by the global research community to sample and analyze atmospheric bioaerosols. In addition, the quantitative distribution of bioaerosols is described by considering the atmospheric bioaerosols concentrations at various time scales (daily and seasonal changes, for example), under various weather, and different underlying surfaces. Finally, a comprehensive summary of the reasons for the spatiotemporal distribution of bioaerosols is discussed, including differences in emission sources, the impact process of meteorological factors and environmental factors. This review of information on the latest research progress contributes to the emergence of further observation strategies that determine the quantitative dynamics of public health and ecological effects of bioaerosols.
Collapse
Affiliation(s)
- Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Xinrong Yu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiantao Liu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Teruya Maki
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Yongkai Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fanli Xue
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shihan Tang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengyue Du
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qing Dong
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
9
|
Hao W, Huang YW, Wang Y. Bioaerosol size as a potential determinant of airborne E. coliviability under ultraviolet germicidal irradiation and ozone disinfection. NANOTECHNOLOGY 2024; 35:145702. [PMID: 38086064 DOI: 10.1088/1361-6528/ad14b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Ultraviolet germicidal irradiation (UVGI) and ozone disinfection are crucial methods for mitigating the airborne transmission of pathogenic microorganisms in high-risk settings, particularly with the emergence of respiratory viral pathogens such as SARS-CoV-2 and avian influenza viruses. This study quantitatively investigates the influence of UVGI and ozone on the viability ofE. coliin bioaerosols, with a particular focus on howE. coliviability depends on the size of the bioaerosols, a critical factor that determines deposition patterns within the human respiratory system and the evolution of bioaerosols in indoor environments. This study used a controlled small-scale laboratory chamber whereE. colisuspensions were aerosolized and subjected to varying levels of UVGI and ozone levels throughout the exposure time (2-6 s). The normalized viability ofE. coliwas found to be significantly reduced by UVGI (60-240μW s cm-2) as the exposure time increased from 2 to 6 s, and the most substantial reduction ofE. colinormalized viability was observed when UVGI and ozone (65-131 ppb) were used in combination. We also found that UVGI reduced the normalized viability ofE. coliin bioaerosols more significantly with smaller sizes (0.25-0.5μm) than with larger sizes (0.5-2.5μm). However, when combining UVGI and ozone, the normalized viability was higher for smaller particle sizes than for the larger ones. The findings provide insights into the development of effective UVGI disinfection engineering methods to control the spread of pathogenic microorganisms in high-risk environments. By understanding the influence of the viability of microorganisms in various bioaerosol sizes, we can optimize UVGI and ozone techniques to reduce the potential risk of airborne transmission of pathogens.
Collapse
Affiliation(s)
- Weixing Hao
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Coral Gables, FL 33146, United States of America
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States of America
| | - Yang Wang
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Coral Gables, FL 33146, United States of America
| |
Collapse
|
10
|
Onwusereaka CO, Jalaludin J, Oluchi SE, Poh Choo VC. New generation sequencing: molecular approaches for the detection and monitoring of bioaerosols in an indoor environment: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0004. [PMID: 38214730 DOI: 10.1515/reveh-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The exposure of occupants to indoor air pollutants has increased in recent decades. The aim of this review is to discuss an overview of new approaches that are used to study fungal aerosols. Thus, this motivation was to compensate the gaps caused by the use of only traditional approaches in the study of fungal exposure. CONTENT The search involved various databases such as; Science Direct, PubMed, SAGE, Springer Link, EBCOHOST, MEDLINE, CINAHL, Cochrane library, Web of Science and Wiley Online Library. It was limited to full text research articles that reported the use of non-viable method in assessing bioaerosol, written in English Language, full text publications and published from year 2015-2022. SUMMARY AND OUTLOOK A total of 15 articles met the inclusion criteria and was included in this review. The use of next-generation sequencing, which is more commonly referred to as high-throughput sequencing (HTS) or molecular methods in microbial studies is based on the detection of genetic material of organisms present in a given sample. Applying these methods to different environments permitted the identification of the microorganisms present, and a better comprehension of the environmental impacts and ecological roles of microbial communities. Based on the reviewed articles, there is evidence that dust samples harbour a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples using 18S metagenomics approach.
Collapse
Affiliation(s)
- Cynthia Oluchi Onwusereaka
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Sampson Emilia Oluchi
- Department of Community Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | | |
Collapse
|
11
|
Sondhi P, Adeniji T, Lingden D, Stine KJ. Advances in endotoxin analysis. Adv Clin Chem 2024; 118:1-34. [PMID: 38280803 DOI: 10.1016/bs.acc.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The outer membrane of gram-negative bacteria is primarily composed of lipopolysaccharide (LPS). In addition to protection, LPS defines the distinct serogroups used to identify bacteria specifically. Furthermore, LPS also act as highly potent stimulators of innate immune cells, a phenomenon essential to understanding pathogen invasion in the body. The complex multi-step process of LPS binding to cells involves several binding partners, including LPS binding protein (LBP), CD14 in both membrane-bound and soluble forms, membrane protein MD-2, and toll-like receptor 4 (TLR4). Once these pathways are activated, pro-inflammatory cytokines are eventually expressed. These binding events are also affected by the presence of monomeric or aggregated LPS. Traditional techniques to detect LPS include the rabbit pyrogen test, the monocyte activation test and Limulus-based tests. Modern approaches are based on protein, antibodies or aptamer binding. Recently, novel techniques including electrochemical methods, HPLC, quartz crystal microbalance (QCM), and molecular imprinting have been developed. These approaches often use nanomaterials such as gold nanoparticles, quantum dots, nanotubes, and magnetic nanoparticles. This chapter reviews current developments in endotoxin detection with a focus on modern novel techniques that use various sensing components, ranging from natural biomolecules to synthetic materials. Highly integrated and miniaturized commercial endotoxin detection devices offer a variety of options as the scientific and technologic revolution proceeds.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Taiwo Adeniji
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Dhanbir Lingden
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States.
| |
Collapse
|
12
|
Viegas C, Eriksen E, Gomes B, Dias M, Cervantes R, Pena P, Carolino E, Twarużek M, Caetano LA, Viegas S, Graff P, Afanou AK, Straumfors A. Comprehensive assessment of occupational exposure to microbial contamination in waste sorting facilities from Norway. Front Public Health 2023; 11:1297725. [PMID: 38179569 PMCID: PMC10766354 DOI: 10.3389/fpubh.2023.1297725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction It is of upmost importance to contribute to fill the knowledge gap concerning the characterization of the occupational exposure to microbial agents in the waste sorting setting (automated and manual sorting). Methods This study intends to apply a comprehensive field sampling and laboratory protocol (culture based-methods and molecular tools), assess fungal azole resistance, as well as to elucidate on potential exposure related health effects (cytotoxicity analyses). Skin-biota samples (eSwabs) were performed on workers and controls to identify other exposure routes. Results In personal filter samples the guidelines in one automated industry surpassed the guidelines for fungi. Seasonal influence on viable microbial contamination including fungi with reduced susceptibility to the tested azoles was observed, besides the observed reduced susceptibility of pathogens of critical priority (Mucorales and Fusarium sp.). Aspergillus sections with potential toxigenic effect and with clinical relevance were also detected in all the sampling methods. Discussion The results regarding skin-biota in both controls´ and workers´ hands claim attention for the possible exposure due to hand to face/mouth contact. This study allowed concluding that working in automated and manual waste sorting plants imply high exposure to microbial agents.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Elke Eriksen
- National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Bianca Gomes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- CE3C – Center for Ecology, Evolution and Environmental Change, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Dias
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Renata Cervantes
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Pedro Pena
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza, Bydgoszcz, Poland
| | - Liliana Aranha Caetano
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Research Institute for Medicines (iMed.uLisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Tecnologia e Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Pål Graff
- National Institute of Occupational Health (STAMI), Oslo, Norway
| | | | - Anne Straumfors
- National Institute of Occupational Health (STAMI), Oslo, Norway
| |
Collapse
|
13
|
Chen H, Yan H, Xiu Y, Jiang L, Zhang J, Chen G, Yu X, Zhu H, Zhao X, Li Y, Tang W, Zhang X. Seasonal dynamics in bacterial communities of closed-cage broiler houses. Front Vet Sci 2022; 9:1019005. [PMID: 36406086 PMCID: PMC9669973 DOI: 10.3389/fvets.2022.1019005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The bacteria contained in air aerosols from poultry houses are closely connected to animal health and production. This study aimed to investigate the seasonal factors on microbial aerosol concentration, particle size and bacterial spectrum composition inside a closed-cage broiler house. Then, 16S rDNA sequencing technology was applied to analyze the characteristics of bacterial abundance and diversity. The results indicated that the concentration of bacterial aerosol in the broiler house varied significantly in different seasons, with a concentration range of 5.87–15.77 × 103 CFU/m3, and the highest and lowest concentrations in the summer and winter, respectively. Microbiological analysis showed that the proportion of Gram-negative bacteria in autumn was significantly higher than that in summer (P < 0.05). In addition, the floral structure of potential pathogenic bacterial genera also differed by season. Escherichia-Shigella, Streptococcus, Acinetobacter, Pseudomonas were identified in the bacterial aerosols. Importantly, the relative abundance of Firmicutes in spring and autumn was much higher. In contrast, the relative abundance of Proteobacteria in spring and autumn was lower than that in summer and winter. Altogether, results revealed the effects of seasonal factors on the diversity and abundance of bacteria and the distribution characteristics of major opportunistic pathogens in the air of closed-cage broiler houses. These results will provide important information for exploring the potential risk of aerosols from poultry houses all four seasons.
Collapse
Affiliation(s)
- Huan Chen
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
| | - Han Yan
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
| | - Yan Xiu
- Clinical Lab, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Linlin Jiang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, China
- *Correspondence: Linlin Jiang
| | - Jianlong Zhang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, China
- Jianlong Zhang
| | - Guozhong Chen
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Xin Yu
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Hongwei Zhu
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Xiaoyu Zhao
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Xingxiao Zhang
| |
Collapse
|
14
|
Naumova NB, Kabilov MR. About the Biodiversity of the Air Microbiome. Acta Naturae 2022; 14:50-56. [PMID: 36694900 PMCID: PMC9844089 DOI: 10.32607/actanaturae.11671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 10/27/2022] [Indexed: 01/22/2023] Open
Abstract
This brief review focuses on the properties of bioaerosols, presenting some recent results of metagenomic studies of the air microbiome performed using next-generation sequencing. The taxonomic composition and structure of the bioaerosol microbiome may display diurnal and seasonal dynamics and be dependent on meteorological events such as dust storms, showers, fogs, etc., as well as air pollution. The Proteobacteria and Ascomycota members are common dominants in bioaerosols in different troposphere layers. The microbiological composition of the lower troposphere air affects the composition and diversity of the indoor bioaerosol microbiome, and information about the latter is very important, especially during exacerbated epidemiological situations. Few studies focusing on the bioaerosol microbiome of the air above Russia urge intensification of such research.
Collapse
Affiliation(s)
- N. B. Naumova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - M. R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| |
Collapse
|
15
|
Wang Y, Yang K, Guo X, Zhao S, Lu Z, Yang L, Song H, Zhou G. The generation characteristics, pattern, and exposure risk of bioaerosol emitted in an A²O process wastewater treatment plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113823. [PMID: 36068750 DOI: 10.1016/j.ecoenv.2022.113823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Bioaerosols can be generated in wastewater treatment plants (WWTPs), they may contain pathogenic bacteria, cause disease transmission, and attract the public's attention. In this study, bioaerosols were collected from seven different stages of an A²O process WWTP. The component characteristics were analyzed by bacterial culture and high-throughput sequencing. The correlations in different processes were analyzed, and the health risks of bioaerosols produced were evaluated. The results showed that the concentration range of bacteria aerosol in the WWTP was 75 CFU/m³-706 CFU/m³. The concentration range of total suspended particles was 111.13 µg/m³-211.67 µg/m³, the primary water-soluble ions were Ca²⁺ and Cl⁻. In the air of each stage, the main bacteria were Cetobacterium, Bacteroides, Romboutsia, and the fungi were Fusarium, Alternaria, and Aspergillus. The dominant bacteria in the wastewater were Cetobacterium, Romboutsia, Stenotrophobacter, and the fungi were Fusarium, Aspergillus, and Mortierella. The total bacterial concentration and ion concentration in the aerobic section of the biochemical tank were the highest. The results of species composition and principal component analysis showed that the bacterial composition in the air at different processes was similar, while the bacteria in wastewater differed significantly. Among them, the wastewater bacteria in the aerobic section of the biochemical tank were closer to that in the air. Fungal results were similar to bacteria but not prominent. The bioaerosol exposure risk results show that the risk in each stage was acceptable (5.15 ×10⁻⁴-6.47 ×10⁻³). However, the exposure risk of bioaerosol was calculated by the total bacterial concentration. In fact, some pathogenic microorganisms such as Escherichia coli and Aspergillus flavus were detected in bioaerosols, which may cause hemorrhagic colitis, cancer and other diseases by swallowing and inhalation. Therefore, the risk might be underestimated and should be a cause of concern.
Collapse
Affiliation(s)
- Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Kai Yang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xuebin Guo
- Beijing drainage group research center, Beijing 100085, China
| | - Shan Zhao
- Beijing drainage group research center, Beijing 100085, China; Beijing Municipal Sewage Recycling Engineering Technology Research Center, Beijing 100085, China
| | - Zhiqiang Lu
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin 300191, China
| | - Liying Yang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Huiling Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guoyu Zhou
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
16
|
Urban Aerobiome and Effects on Human Health: A Systematic Review and Missing Evidence. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urban air pollutants are a major public health concern and include biological matters which composes about 25% of the atmospheric aerosol particles. Airborne microorganisms were traditionally characterized by culture-based methods recognizing just 1.5–15.3% of the total bacterial diversity that was evaluable by genome signature in the air environment (aerobiome). Despite the large number of exposed people, urban aerobiomes are still weakly described even if recently advanced literature has been published. This paper aims to systematically review the state of knowledge on the urban aerobiome and human health effects. A total of 24 papers that used next generation sequencing (NGS) techniques for characterization and comprised a seasonal analysis have been included. A core of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroides and various factors that influenced the community structure were detected. Heterogenic methods and results were reported, for both sampling and aerobiome diversity analysis, highlighting the necessity of in-depth and homogenized assessment thus reducing the risk of bias. The aerobiome can include threats for human health, such as pathogens and resistome spreading; however, its diversity seems to be protective for human health and reduced by high levels of air pollution. Evidence of the urban aerobiome effects on human health need to be filled up quickly for urban public health purposes.
Collapse
|
17
|
Gao M, Zhang X, Yue Y, Qiu T, Wang J, Wang X. Air path of antimicrobial resistance related genes from layer farms: Emission inventory, atmospheric transport, and human exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128417. [PMID: 35183825 DOI: 10.1016/j.jhazmat.2022.128417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/26/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Animal husbandry is a significant contributor to increased environmental antimicrobial resistance (AMR), but little is known regarding the dissemination of AMR from animal farms via airborne transmission. Here, we connected the air path of AMR related genes tailored to layer poultry farms from source of escape to end of sedimentation. The emission inventories of 8 AMR related genes from all 163-layer poultry farms around Beijing city were quantified. We developed the atmospheric transport model with a gene degradation module to estimate the spatiotemporal distribution of airborne AMR, and also assessed their corresponding regional exposure and sedimentation. Total emissions of 16 S rDNA and AMR related genes from layer houses ranged from 1015 to 1016 copies year-1. Those layer-sourced genes contributed 1-14.6% of antimicrobial resistant genes, 4.9% of Staphylococcus spp. and 2.2% of CintI1 to the corresponding annual genetic burden of Beijing's urban air. The average exposure of the Beijing residents to layer-sourced airborne 16 S rDNA was 1.39 × 104 copies year-1 person-1, approximately 87% of them would be deposited in the upper respiratory tract. The findings highlight that air medium represents an important dissemination pathway of animal-sourced genes to AMR burden in humans and environment.
Collapse
Affiliation(s)
- Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland.
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
18
|
Aerosolization Behaviour of Fungi and Its Potential Health Effects during the Composting of Animal Manure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095644. [PMID: 35565041 PMCID: PMC9101844 DOI: 10.3390/ijerph19095644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022]
Abstract
Compost is an important source of airborne fungi that can adversely affect occupational health. However, the aerosol behavior of fungi and their underlying factors in composting facilities are poorly understood. We collected samples from compost piles and the surrounding air during the composting of animal manure and analyzed the aerosolization behavior of fungi and its potential health effects based on the fungal composition and abundance in two media using high-throughput sequencing and ddPCR. There were differences in fungal diversity and richness between the air and composting piles. Ascomycota and Basidiomycota were the two primary fungal phyla in both media. The dominant fungal genera in composting piles were Aspergillus, Thermomyces, and Alternaria, while the dominant airborne fungal genes were Alternaria, Cladosporium, and Sporobolomyces. Although the communities of total fungal genera and pathogenic/allergenic genera were different in the two media, fungal abundance in composting piles was significantly correlated with abundance in air. According to the analysis on fungal composition, a total of 69.10% of the fungal genera and 91.30% of pathogenic/allergenic genera might escape from composting pile into the air. A total of 77 (26.64%) of the fungal genera and six (20%) of pathogenic/allergenic genera were likely to aerosolize. The influence of physicochemical parameters and heavy metals on the aerosol behavior of fungal genera, including pathogenic/allergenic genera, varied among the fungal genera. These results increase our understanding of fungal escape during composting and highlight the importance of aerosolization behavior for predicting the airborne fungal composition and corresponding human health risks in compost facilities.
Collapse
|
19
|
Drautz-Moses DI, Luhung I, Gusareva ES, Kee C, Gaultier NE, Premkrishnan BNV, Lee CF, Leong ST, Park C, Yap ZH, Heinle CE, Lau KJX, Purbojati RW, Lim SBY, Lim YH, Kutmutia SK, Aung NW, Oliveira EL, Ng SG, Dacanay J, Ang PN, Spence S, Phung WJ, Wong A, Kennedy RJ, Kalsi N, Sasi SP, Chandrasekaran L, Uchida A, Junqueira ACM, Kim HL, Hankers R, Feuerle T, Corsmeier U, Schuster SC. Vertical stratification of the air microbiome in the lower troposphere. Proc Natl Acad Sci U S A 2022; 119:e2117293119. [PMID: 35131944 PMCID: PMC8851546 DOI: 10.1073/pnas.2117293119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/11/2021] [Indexed: 12/11/2022] Open
Abstract
The troposphere constitutes the final frontier of global ecosystem research due to technical challenges arising from its size, low biomass, and gaseous state. Using a vertical testing array comprising a meteorological tower and a research aircraft, we conducted synchronized measurements of meteorological parameters and airborne biomass (n = 480) in the vertical air column up to 3,500 m. The taxonomic analysis of metagenomic data revealed differing patterns of airborne microbial community composition with respect to time of day and height above ground. The temporal and spatial resolution of our study demonstrated that the diel cycle of airborne microorganisms is a ground-based phenomenon that is entirely absent at heights >1,000 m. In an integrated analysis combining meteorological and biological data, we demonstrate that atmospheric turbulence, identified by potential temperature and high-frequency three-component wind measurements, is the key driver of bioaerosol dynamics in the lower troposphere. Multivariate regression analysis shows that at least 50% of identified airborne microbial taxa (n = ∼10,000) are associated with either ground or height, allowing for an understanding of dispersal patterns of microbial taxa in the vertical air column. Due to the interconnectedness of atmospheric turbulence and temperature, the dynamics of microbial dispersal are likely to be impacted by rising global temperatures, thereby also affecting ecosystems on the planetary surface.
Collapse
Affiliation(s)
- Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Irvan Luhung
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Elena S Gusareva
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
- The Asian School of the Environment, Nanyang Technological University, Singapore 637459
| | - Carmon Kee
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Nicolas E Gaultier
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | | | - Choou Fook Lee
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - See Ting Leong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Changsook Park
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Zhei Hwee Yap
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Cassie E Heinle
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Kenny J X Lau
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Rikky W Purbojati
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Serene B Y Lim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Yee Hui Lim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Shruti Ketan Kutmutia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Ngu War Aung
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Elaine L Oliveira
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Soo Guek Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Justine Dacanay
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Poh Nee Ang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Sam Spence
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Wen Jia Phung
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Anthony Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Ryan J Kennedy
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Namrata Kalsi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Santhi Puramadathil Sasi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Lakshmi Chandrasekaran
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Akira Uchida
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Ana Carolina M Junqueira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Hie Lim Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
- The Asian School of the Environment, Nanyang Technological University, Singapore 637459
| | - Rudolf Hankers
- Institute of Flight Guidance, Technische Universität, 38108 Braunschweig, Germany
| | - Thomas Feuerle
- Institute of Flight Guidance, Technische Universität, 38108 Braunschweig, Germany
| | - Ulrich Corsmeier
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551;
| |
Collapse
|
20
|
Compendium of analytical methods for sampling, characterization and quantification of bioaerosols. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Nieto-Caballero M, Gomez OM, Shaughnessy R, Hernandez M. Aerosol fluorescence, airborne hexosaminidase, and quantitative genomics distinguish reductions in airborne fungal loads following major school renovations. INDOOR AIR 2022; 32:e12975. [PMID: 34897813 DOI: 10.1111/ina.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Fluorescent aerosol cytometry (FAC) was compared to concurrent recovery of airborne β-N-acetylhexosaminidase (NAHA) and quantitative polymerase chain reaction (qPCR) for the respective ability of these methods to detect significant changes in airborne fungal loads in response to building renovations. Composite, site-randomized indoor aerosol samples for airborne fungi measurements were acquired from more than 70 occupied classrooms in 26 different public schools in the Colorado Rocky Mountain Front Range region of the United States. As judged by ANOVA and Pearson's correlation test, statistically significant associations were observed between real-time FAC and airborne NAHA levels, which detected significant reductions in airborne fungal loads immediately following building rehabilitations. With lower confidence, a statistically significant association was also resolved between fluorescing aerosols, NAHA levels, and the recovery of fungal 18S rRNA gene copies by qPCR from simultaneous, collocated aerosol samples. Quantitative differences encountered between the recovery of common genomic markers for airborne fungi and that of optical and biochemical methods are attributed to the variance in 18S rRNA target gene copies that different fungal species can host.
Collapse
Affiliation(s)
- Marina Nieto-Caballero
- Civil, Environmental and Architectural Engineering Department, Environmental Engineering Program, University of Colorado, Boulder, Colorado, USA
| | - Odessa M Gomez
- Civil, Environmental and Architectural Engineering Department, Environmental Engineering Program, University of Colorado, Boulder, Colorado, USA
| | - Richard Shaughnessy
- Chemical Engineering Department, Indoor Air Program, University of Tulsa, Tulsa, Oklahoma, USA
| | - Mark Hernandez
- Civil, Environmental and Architectural Engineering Department, Environmental Engineering Program, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
22
|
SCHIAVANO GIUDITTAFIORELLA, BALDELLI GIULIA, CEPPETELLI VERONICA, BRANDI GIORGIO, AMAGLIANI GIULIA. Assessment of hygienic conditions of recreational facility restrooms: an integrated approach. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E48-E53. [PMID: 34322616 PMCID: PMC8283657 DOI: 10.15167/2421-4248/jpmh2021.62.1.1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/15/2021] [Indexed: 11/20/2022]
Abstract
Introduction Microbiological quality of recreational environments included restrooms, is generally assessed by water and surface monitoring. In this study, an environmental monitoring, conducted in spring, of swimming pool restrooms of a recreation center located in the Marche region has been carried out. Seven water samples and seven surface swabs were collected. Moreover, six air samples have been included. The aim of this study was to evaluate if air microbiological monitoring, along with molecular detection in real-time PCR, could give additional useful information about the hygienic conditions of the facility. Methods Heterotrophic Plate Count (HPC) both at 22°C (psychrophilic) and 37°C (mesophilic) was determined by separate cultures in all samples. The presence of Legionella pneumophila and Pseudomonas aeruginosa was evaluated by both culture and real-time PCR. Results The analysis of shower water recorded a HPC load of mesophilic bacteria (37°C) more than 10-fold higher in men restroom, respect to women’s one (> 100 vs < 10 CFU/ml), while in air samples was between < 100 and > 500. Concerning pathogen presence, both species Legionella pneumophila and Pseudomonas aeruginosa were detected only in men restroom, but in different sample types by using different methods (culture and real-time PCR). Conclusions Air sampling may offer the advantage of giving more representative data about microbial presence in restrooms, including bacterial species transmitted through aerosol, like Legionella. Moreover, the concurrent use of molecular and microbiological detection in an integrated approach could offer the advantage of greater sensitivity.
Collapse
Affiliation(s)
- GIUDITTA FIORELLA SCHIAVANO
- Department of Humanities, University of Urbino Carlo Bo, Urbino (PU), Italy
- Correspondence: Giuditta Fiorella Schiavano, University of Urbino Carlo Bo, Department of Humanities, via Bramante 17, 61029 Urbino (PU), Italy - Tel. +39 0722 303546 - E-mail:
| | - GIULIA BALDELLI
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | | | - GIORGIO BRANDI
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| | - GIULIA AMAGLIANI
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU), Italy
| |
Collapse
|
23
|
Pan Y, Ren Q, Chen P, Wu J, Wu Z, Zhang G. Insight Into Microbial Community Aerosols Associated With Electronic Waste Handling Facilities by Culture-Dependent and Culture-Independent Methods. Front Public Health 2021; 9:657784. [PMID: 33889561 PMCID: PMC8055949 DOI: 10.3389/fpubh.2021.657784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Airborne microorganisms in the waste associated environments are more active and complex compared to other places. However, the diversity and structure of airborne bacteria in waste-associated environments are still not clearly understood. The purpose of this study was to assess airborne bacterial community in electronic waste dismantling site and a waste transfer station based on culture-dependent and culture-independent methods. A total of 229 isolates were obtained from four airborne sites collected from residential area, electronic industrial park, and office area in or near an electronic waste dismantling site and a waste transfer station in Southern China in the morning, afternoon, and evening. Most of the isolates were isolated from air for the first time and 14 potentially novel species were identified by Sanger sequencing. Bacterial communities in waste-associated bioaerosols were predominated by Proteobacteria and Bacteroidetes. Abundant genera (>1%) included Paracaedibacteraceae (uncultured EF667926), Ralstonia, Chroococcidiopsis, Chitinophagaceae (uncultured FN428761), Sphingobium, and Heliimonas. One-third of the species in these genera were uncultured approximately. Differences community structure existed in airborne bacterial diversity among different sampling sites. These results showed that waste-associated environments have unique bacterial diversity. Further studies on such environments could provide new insights into bacterial community.
Collapse
Affiliation(s)
- Yimin Pan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaoqiao Ren
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiguo Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhendong Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guoxia Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| |
Collapse
|
24
|
Marcovecchio F, Perrino C. Contribution of Primary Biological Aerosol Particles to airborne particulate matter in indoor and outdoor environments. CHEMOSPHERE 2021; 264:128510. [PMID: 33049501 DOI: 10.1016/j.chemosphere.2020.128510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The atmospheric concentration of bioparticles was determined in some outdoor and indoor sites by using a commercial low-volume sampler and a detection method based on particle collection on polycarbonate filters, propidium iodide staining, observation by fluorescence microscopy and image analysis. Outdoor sampling was continuously carried out from May 2015 to October 2016 by cumulating monthly samples over individual filters. PBAPs contribution to PM10 concentration was in the range 0.7-13%. Seasonal differences were found in PBAPs concentration, shape and mass distribution. Higher concentrations were recorded during the warm period, when the bioparticles were more numerous, larger and more elongated. Simultaneous indoor and outdoor daily samples were collected during the spring of 2014 and 2017 in domestic environments. In indoor sites PBAPs were much higher in concentration than outdoors and showed a different visual appearance, with very wide polyhedral-shaped particles identifiable as skin flakes. Indoor/outdoor ratio (I/O) of PBAPs was in the range 6-16. Indoors, PBAPs contributed 21-77% to organic matter and 16-68% to PM10. When sampling into a sealed room, I/O was only 0.01 for individual bioparticles heavier than100 ng, while it was in the range 0.24-0.43 for PBAPs below 20 ng. This suggests that the infiltration factor of wide bioparticles was very low and that their concentration increase in indoor environments was due to indoor sources, namely the presence of human beings. Samplings carried out in different rooms of an apartment showed that most of the PBAPs mass was due to particles heavier than 100 ng, particularly in the bedroom.
Collapse
Affiliation(s)
- Francesca Marcovecchio
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria km. 29,300, 00015, Monterotondo St., Rome, Italy
| | - Cinzia Perrino
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria km. 29,300, 00015, Monterotondo St., Rome, Italy.
| |
Collapse
|
25
|
Heo KJ, Ko HS, Jeong SB, Kim SB, Jung JH. Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols. NANO LETTERS 2021; 21:1017-1024. [PMID: 33444028 DOI: 10.1021/acs.nanolett.0c04096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioaerosols, including infectious diseases such as COVID-19, are a continuous threat to global public safety. Despite their importance, the development of a practical, real-time means of monitoring bioaerosols has remained elusive. Here, we present a novel, simple, and highly efficient means of obtaining enriched bioaerosol samples. Aerosols are collected into a thin and stable liquid film by the unique interaction of a superhydrophilic surface and a continuous two-phase centrifugal flow. We demonstrate that this method can provide a concentration enhancement ratio of ∼2.4 × 106 with a collection efficiency of ∼99.9% and an aerosol-into-liquid transfer rate of ∼95.9% at 500 nm particle size (smaller than a single bacterium). This transfer is effective in both laboratory and external ambient environments. The system has a low limit of detection of <50 CFU/m3air using a straightforward bioluminescence-based technique and shows significant potential for air monitoring in occupational and public-health applications.
Collapse
Affiliation(s)
- Ki Joon Heo
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Hyun Sik Ko
- Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Sang Bin Jeong
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
- Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Bok Kim
- Department of Environmental Machinery, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Jae Hee Jung
- Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
26
|
Park JH, Lemons AR, Roseman J, Green BJ, Cox-Ganser JM. Bacterial community assemblages in classroom floor dust of 50 public schools in a large city: characterization using 16S rRNA sequences and associations with environmental factors. MICROBIOME 2021; 9:15. [PMID: 33472703 PMCID: PMC7819239 DOI: 10.1186/s40168-020-00954-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
Characterizing indoor microbial communities using molecular methods provides insight into bacterial assemblages present in environments that can influence occupants' health. We conducted an environmental assessment as part of an epidemiologic study of 50 elementary schools in a large city in the northeastern USA. We vacuumed dust from the edges of the floor in 500 classrooms accounting for 499 processed dust aliquots for 16S Illumina MiSeq sequencing to characterize bacterial assemblages. DNA sequences were organized into operational taxonomic units (OTUs) and identified using a database derived from the National Center for Biotechnology Information. Bacterial diversity and ecological analyses were performed at the genus level. We identified 29 phyla, 57 classes, 148 orders, 320 families, 1193 genera, and 2045 species in 3073 OTUs. The number of genera per school ranged from 470 to 705. The phylum Proteobacteria was richest of all while Firmicutes was most abundant. The most abundant order included Lactobacillales, Spirulinales, and Clostridiales. Halospirulina was the most abundant genus, which has never been reported from any school studies before. Gram-negative bacteria were more abundant and richer (relative abundance = 0.53; 1632 OTUs) than gram-positive bacteria (0.47; 1441). Outdoor environment-associated genera were identified in greater abundance in the classrooms, in contrast to homes where human-associated bacteria are typically more abundant. Effects of school location, degree of water damage, building condition, number of students, air temperature and humidity, floor material, and classroom's floor level on the bacterial richness or community composition were statistically significant but subtle, indicating relative stability of classroom microbiome from environmental stress. Our study indicates that classroom floor dust had a characteristic bacterial community that is different from typical house dust represented by more gram-positive and human-associated bacteria. Health implications of exposure to the microbiomes in classroom floor dust may be different from those in homes for school staff and students. Video abstract.
Collapse
Affiliation(s)
- Ju-Hyeong Park
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - Angela R Lemons
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jerry Roseman
- Philadelphia Federation of Teachers Health & Welfare Fund & Union, Philadelphia, PA, USA
| | - Brett J Green
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jean M Cox-Ganser
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
27
|
Burdsall AC, Xing Y, Cooper CW, Harper WF. Bioaerosol emissions from activated sludge basins: Characterization, release, and attenuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141852. [PMID: 32891995 PMCID: PMC7439818 DOI: 10.1016/j.scitotenv.2020.141852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 05/19/2023]
Abstract
This article presents a critical review of the peer-reviewed literature related to bioaerosol generation from activated sludge basins. Characterization techniques include a variety of culture- and nonculture-based techniques, each with unique features. Bioaerosols contain a variety of clinical pathogens including Staphylococcus saprophyticus, Clostridium perfringens, and Salmonella enteritidis; exposure to these microorganisms increases human health risks. Release mechanisms involve splashing and bubble burst dynamics. Larger bubbles emit more aerosol particles than smaller ones. Attenuation strategies include covering sources with lids, adjusting the method and intensity of aeration, and using free-floating carrier media. Future studies should combine culture and non-culture based methods, and expand chemical databases and spectral libraries in order to realize the full power of real-time online monitoring.
Collapse
Affiliation(s)
- Adam C Burdsall
- Air Force Institute of Technology, Environmental Engineering and Science Program, Department of Systems Engineering and Management, 2950 Hobson Way, Wright-Patterson AFB, OH 45433, USA
| | - Yun Xing
- Air Force Institute of Technology, Environmental Engineering and Science Program, Department of Systems Engineering and Management, 2950 Hobson Way, Wright-Patterson AFB, OH 45433, USA
| | - Casey W Cooper
- Air Force Institute of Technology, Environmental Engineering and Science Program, Department of Systems Engineering and Management, 2950 Hobson Way, Wright-Patterson AFB, OH 45433, USA
| | - Willie F Harper
- Air Force Institute of Technology, Environmental Engineering and Science Program, Department of Systems Engineering and Management, 2950 Hobson Way, Wright-Patterson AFB, OH 45433, USA.
| |
Collapse
|
28
|
Ruiz-Gil T, Acuña JJ, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Airborne bacterial communities of outdoor environments and their associated influencing factors. ENVIRONMENT INTERNATIONAL 2020; 145:106156. [PMID: 33039877 DOI: 10.1016/j.envint.2020.106156] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/16/2023]
Abstract
Microbial entities (such bacteria, fungi, archaea and viruses) within outdoor aerosols have been scarcely studied compared with indoor aerosols and nonbiological components, and only during the last few decades have their studies increased. Bacteria represent an important part of the microbial abundance and diversity in a wide variety of rural and urban outdoor bioaerosols. Currently, airborne bacterial communities are mainly sampled in two aerosol size fractions (2.5 and 10 µm) and characterized by culture-dependent (plate-counting) and culture-independent (DNA sequencing) approaches. Studies have revealed a large diversity of bacteria in bioaerosols, highlighting Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as ubiquitous phyla. Seasonal variations in and dispersion of bacterial communities have also been observed between geographical locations as has their correlation with specific atmospheric factors. Several investigations have also suggested the relevance of airborne bacteria in the public health and agriculture sectors as well as remediation and atmospheric processes. However, although factors influencing airborne bacterial communities and standardized procedures for their assessment have recently been proposed, the use of bacterial taxa as microbial indicators of specific bioaerosol sources and seasonality have not been broadly explored. Thus, in this review, we summarize and discuss recent advances in the study of airborne bacterial communities in outdoor environments and the possible factors influencing their abundance, diversity, and seasonal variation. Furthermore, airborne bacterial activity and bioprospecting in different fields (e.g., the textile industry, the food industry, medicine, and bioremediation) are discussed. We expect that this review will reveal the relevance and influencing factors of airborne bacteria in outdoor environments as well as stimulate new investigations on the atmospheric microbiome, particularly in areas where air quality is a public concern.
Collapse
Affiliation(s)
- Tay Ruiz-Gil
- Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - So Fujiyoshi
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Microbial Genomics and Ecology, Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Jun Noda
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Graduate School of Veterinary Science, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Microbial Genomics and Ecology, Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan.
| |
Collapse
|
29
|
Bhardwaj J, Kim MW, Jang J. Rapid Airborne Influenza Virus Quantification Using an Antibody-Based Electrochemical Paper Sensor and Electrostatic Particle Concentrator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10700-10712. [PMID: 32833440 DOI: 10.1021/acs.est.0c00441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Airborne influenza viruses are responsible for serious respiratory diseases, and most detection methods for airborne viruses are based on extraction of nucleic acids. Herein, vertical-flow-assay-based electrochemical paper immunosensors were fabricated to rapidly quantify the influenza H1N1 viruses in air after sampling with a portable electrostatic particle concentrator (EPC). The effects of antibodies, anti-influenza nucleoprotein antibodies (NP-Abs) and anti-influenza hemagglutinin antibodies (HA-Abs), on the paper sensors as well as nonpulsed high electrostatic fields with and without corona charging on the virus measurement were investigated. The antigenicity losses of the surface (HA) proteins were caused by H2O2 via lipid oxidation-derived radicals and 1O2 via direct protein peroxidation upon exposure of a high electrostatic field. However, minimal losses in antigenicity of NP of the influenza viruses were observed, and the concentration of the H1N1 viruses was more than 160 times higher in the EPC than the BioSampler upon using NP-Ab based paper sensors after 60 min collection. This NP-Ab-based paper sensors with the EPC provided measurements comparable to quantitative polymerase chain reaction (qPCR) but much quicker, specific to the influenza H1N1 viruses in the presence of other airborne microorganisms and beads, and more cost-effective than enzyme-linked immunosorbent assay and qPCR.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Myeong-Woo Kim
- School of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
30
|
Sarda-Estève R, Baisnée D, Guinot B, Mainelis G, Sodeau J, O’Connor D, Besancenot JP, Thibaudon M, Monteiro S, Petit JE, Gros V. Atmospheric Biodetection Part I: Study of Airborne Bacterial Concentrations from January 2018 to May 2020 at Saclay, France. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176292. [PMID: 32872373 PMCID: PMC7504533 DOI: 10.3390/ijerph17176292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022]
Abstract
Background: The monitoring of bioaerosol concentrations in the air is a relevant endeavor due to potential health risks associated with exposure to such particles and in the understanding of their role in climate. In this context, the atmospheric concentrations of bacteria were measured from January 2018 to May 2020 at Saclay, France. The aim of the study was to understand the seasonality, the daily variability, and to identify the geographical origin of airborne bacteria. Methods: 880 samples were collected daily on polycarbonate filters, extracted with purified water, and analyzed using the cultivable method and flow cytometry. A source receptor model was used to identify the origin of bacteria. Results: A tri-modal seasonality was identified with the highest concentrations early in spring and over the summer season with the lowest during the winter season. Extreme changes occurred daily due to rapid changes in meteorological conditions and shifts from clean air masses to polluted ones. Conclusion: Our work points toward bacterial concentrations originating from specific seasonal-geographical ecosystems. During pollution events, bacteria appear to rise from dense urban areas or are transported long distances from their sources. This key finding should drive future actions to better control the dispersion of potential pathogens in the air, like persistent microorganisms originating from contaminated areas.
Collapse
Affiliation(s)
- Roland Sarda-Estève
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
- Correspondence: ; Tel.: +33-1-69-08-97-47
| | - Dominique Baisnée
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| | - Benjamin Guinot
- Laboratoire d’Aérologie, Université Toulouse III, CNRS, UPS, 31400 Toulouse, France;
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Gediminas Mainelis
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA;
| | - John Sodeau
- Department of Chemistry and Environmental Research Institute, University College Cork, T12 YN60 Cork, Ireland;
| | - David O’Connor
- School of Chemical and Pharmaceutical Sciences, Technological University of Dublin, D06F793 Dublin 6, Ireland;
| | - Jean Pierre Besancenot
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Michel Thibaudon
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Sara Monteiro
- Themo Fisher Scientific, 18 avenue de Quebec, 91941 Villebon Courtaboeuf, France;
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| | - Valérie Gros
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| |
Collapse
|
31
|
Stewart JD, Shakya KM, Bilinski T, Wilson JW, Ravi S, Choi CS. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138353. [PMID: 32408469 DOI: 10.1016/j.scitotenv.2020.138353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms are abundant in the near surface atmosphere and make up a significant fraction of organic aerosols with implications on both human health and ecosystem services. Despite their importance, studies investigating biogeographical patterns of the atmospheric microbiome between urban and suburban areas are limited. Urban and suburban locations (including their microbial communities) vary considerably depending on climate, topography, industrial activities, demographics and other socio-economic factors. Hence, we need more location-specific data to make informed decision affecting air quality, human health, and the implication of a changing climate and policy decisions. The objective of this study was to describe how the atmospheric microbiome varies in composition and function between urban and suburban sites. We used high-throughput sequencing to analyze microbial communities collected at different times from PM2.5 samples collected by active sampling method (using a pump and an impactor) and dust settling of TSP collected by passive sampling method (no pump and no impactor) from an urban and suburban site. We found diverse communities unique in composition at both sites with equivalent functional potential. Taxonomic composition varied significantly with Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Other phyla in greater relative abundance at the urban site. In contrast, Cyanobacteria, Tenericutes, Fusobacteria, and Deinococcus, were enriched at the suburban site. Community diversity also demonstrated a high degree of temporal variation within site. We identified over one-third of the communities as potentially pathogenic taxa (urban: 47.52% ± 14.40%, suburban: 34.53% ± 14.60%) and determined the majority of organisms come from animal-associated host or are environmental non-specific. Potentially pathogenic taxa and source environments were similar between active- and passive- sampling method results. Our research is novel it adds to the underrepresented set of studies on atmospheric microbial structure and function across land types and is the first to compare suburban and urban atmospheric communities.
Collapse
Affiliation(s)
- J D Stewart
- Department of Geography & the Environment, Villanova University, PA, USA
| | - K M Shakya
- Department of Geography & the Environment, Villanova University, PA, USA.
| | - T Bilinski
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - J W Wilson
- Department of Biology, Villanova University, PA, USA
| | - S Ravi
- Department of Earth & Environmental Science, Temple University, PA, USA
| | - Chong Seok Choi
- Department of Earth & Environmental Science, Temple University, PA, USA
| |
Collapse
|
32
|
Piri A, Kim HR, Hwang J. Prevention of damage caused by corona discharge-generated reactive oxygen species under electrostatic aerosol-to-hydrosol sampling. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121477. [PMID: 31704122 DOI: 10.1016/j.jhazmat.2019.121477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Human exposure to airborne pathogens is a major cause of health concerns; therefore, it is imperative to monitor, sample, and detect airborne bio-particles. Among various bio-aerosol sampling methods, electrostatic precipitation (EP) is an efficient technique for capturing bio-aerosols as hydrosols due to a lower pressure drop and less damage to sensitive bio-particles. Corona discharge is the main EP mechanism; however, this inevitably generates reactive oxygen species (ROS), which can be transported and dissolved in the sampling liquid. ROS can modify cellular component structures and damage DNA. Additionally, during the sampling process, the liquid flow rate and sampling liquid type can highly affect sampling efficiency. Here, different liquid types and flow rates are examined and ascorbic acid (AA), known as vitamin C, is added to prevent bio-particle damage. However, a high AA concentration can cause oxidative damage. Therefore, the optimal AA concentration should be chosen to obtain the greatest protective effect.
Collapse
Affiliation(s)
- Amin Piri
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Hyeong Rae Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea.
| |
Collapse
|
33
|
Abstract
Airborne microorganisms are very difficult to assess accurately under field conditions owing to differences in the sample collection efficiency of the selected sampler and variations in DNA extraction efficiencies. Consequently, bioaerosol abundance and biodiversity can be underestimated, making it more difficult to link specific bioaerosol components to diseases and human health risk. Owing to the low biomass in air samples, it remains a challenge to obtain a representative microbiological sample to recover sufficient DNA for downstream analyses. Improved sampling methods are particularly crucial, especially for investigating viral communities, owing to the extremely low biomass of viral particles in the air compared with other environments. Without detailed information about sampling, characterization and enumeration techniques, interpretation of exposure level is very difficult. Despite this, bioaerosol research has been enhanced by molecular tools, especially next-generation sequencing approaches that have allowed faster and more detailed characterization of air samples.
Collapse
|
34
|
Ferguson RMW, Garcia‐Alcega S, Coulon F, Dumbrell AJ, Whitby C, Colbeck I. Bioaerosol biomonitoring: Sampling optimization for molecular microbial ecology. Mol Ecol Resour 2019; 19:672-690. [PMID: 30735594 PMCID: PMC6850074 DOI: 10.1111/1755-0998.13002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Abstract
Bioaerosols (or biogenic aerosols) have largely been overlooked by molecular ecologists. However, this is rapidly changing as bioaerosols play key roles in public health, environmental chemistry and the dispersal ecology of microbes. Due to the low environmental concentrations of bioaerosols, collecting sufficient biomass for molecular methods is challenging. Currently, no standardized methods for bioaerosol collection for molecular ecology research exist. Each study requires a process of optimization, which greatly slows the advance of bioaerosol science. Here, we evaluated air filtration and liquid impingement for bioaerosol sampling across a range of environmental conditions. We also investigated the effect of sampling matrices, sample concentration strategies and sampling duration on DNA yield. Air filtration using polycarbonate filters gave the highest recovery, but due to the faster sampling rates possible with impingement, we recommend this method for fine -scale temporal/spatial ecological studies. To prevent bias for the recovery of Gram-positive bacteria, we found that the matrix for impingement should be phosphate-buffered saline. The optimal method for bioaerosol concentration from the liquid matrix was centrifugation. However, we also present a method using syringe filters for rapid in-field recovery of bioaerosols from impingement samples, without compromising microbial diversity for high -throughput sequencing approaches. Finally, we provide a resource that enables molecular ecologists to select the most appropriate sampling strategy for their specific research question.
Collapse
Affiliation(s)
| | | | - Frederic Coulon
- School of Water, Energy and EnvironmentCranfield UniversityCranfieldUK
| | | | - Corinne Whitby
- School of Biological SciencesUniversity of EssexColchesterUK
| | - Ian Colbeck
- School of Biological SciencesUniversity of EssexColchesterUK
| |
Collapse
|
35
|
Mbareche H, Veillette M, Teertstra W, Kegel W, Bilodeau GJ, Wösten HAB, Duchaine C. Recovery of Fungal Cells from Air Samples: a Tale of Loss and Gain. Appl Environ Microbiol 2019; 85:e02941-18. [PMID: 30824432 PMCID: PMC6495771 DOI: 10.1128/aem.02941-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
There are limitations in establishing a direct link between fungal exposure and health effects due to the methodology used, among other reasons. Culture methods ignore the nonviable/uncultivable fraction of airborne fungi. Molecular methods allow for a better understanding of the environmental health impacts of microbial communities. However, there are challenges when applying these techniques to bioaerosols, particularly to fungal cells. This study reveals that there is a loss of fungal cells when samples are recovered from air using wet samplers and aimed to create and test an improved protocol for concentrating mold spores via filtration prior to DNA extraction. Results obtained using the new technique showed that up to 3 orders of magnitude more fungal DNA was retrieved from the samples using quantitative PCR. A sequencing approach with MiSeq revealed a different diversity profile depending on the methodology used. Specifically, 8 fungal families out of 19 families tested were highlighted to be differentially abundant in centrifuged and filtered samples. An experiment using laboratory settings showed the same spore loss during centrifugation for Aspergillus niger and Penicillium roquefortii strains. We believe that this work helped identify and address fungal cell loss during processing of air samples, including centrifugation steps, and propose an alternative method for a more accurate evaluation of fungal exposure and diversity.IMPORTANCE This work shed light on a significant issue regarding the loss of fungal spores when recovered from air samples using liquid medium and centrifugation to concentrate air particles before DNA extraction. We provide proof that the loss affects the overall fungal diversity of aerosols and that some taxa are differentially more affected than others. Furthermore, a laboratory experiment confirmed the environmental results obtained during field sampling. The filtration protocol described in this work offers a better description of the fungal diversity of aerosols and should be used in fungal aerosol studies.
Collapse
Affiliation(s)
- Hamza Mbareche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Wieke Teertstra
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Willem Kegel
- Department of Physical and Colloid Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Guillaume J Bilodeau
- Pathogen Identification Research Laboratory, Canadian Food Inspection Agency (CFIA), Ottawa, Canada
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
36
|
Tanaka D, Sato K, Goto M, Fujiyoshi S, Maruyama F, Takato S, Shimada T, Sakatoku A, Aoki K, Nakamura S. Airborne Microbial Communities at High-Altitude and Suburban Sites in Toyama, Japan Suggest a New Perspective for Bioprospecting. Front Bioeng Biotechnol 2019; 7:12. [PMID: 30805335 PMCID: PMC6370616 DOI: 10.3389/fbioe.2019.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/17/2019] [Indexed: 01/18/2023] Open
Abstract
Airborne microorganisms, especially those at high altitude, are exposed to hostile conditions, including ultraviolet (UV) radiation, desiccation, and low temperatures. This study was conducted to compare the composition and abundance of airborne microorganisms at a high-altitude site, Mt. Jodo [2,839 m above mean sea level (AMSL)] and a suburban site (23 m AMSL) in Toyama, Japan. To our knowledge, this is the first study to investigate microbial communities in air samples collected simultaneously at two sites in relatively close proximity, from low and high altitude. Air samples were collected over a period of 3 years during 2009-2011. We then examined the bacterial and eukaryotic communities and estimated the abundance of bacteria and fungi with real-time TaqMan PCR. The airborne bacterial and eukaryotic communities differed between high-altitude and suburban sites on each sampling day. Backward trajectory analysis of air masses that arrived at high-altitude and suburban sites on each sampling day displayed almost the same paths. The bacterial communities were dominated by Actinobacteria, Firmicutes, and Proteobacteria, while the eukaryotic communities included Ascomycota, Basidiomycota, and Streptophyta. We also predicted some application of such microbial communities. The airborne bacterial and fungal abundance at the high-altitude site was about two times lower than that at the suburban site. These results showed that each airborne microbial communities have locality even if they are collected close location.
Collapse
Affiliation(s)
- Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Kei Sato
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Motoshi Goto
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - So Fujiyoshi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
- JST/JICA, Science and Technology Research Partnership for Sustainable Development Program, Tokyo, Japan
| | - Fumito Maruyama
- JST/JICA, Science and Technology Research Partnership for Sustainable Development Program, Tokyo, Japan
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunsuke Takato
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Takamune Shimada
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Akihiro Sakatoku
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Kazuma Aoki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Shogo Nakamura
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
37
|
Nieto-Caballero M, Savage N, Keady P, Hernandez M. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. J Microbiol Methods 2019; 157:1-3. [DOI: 10.1016/j.mimet.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
|
38
|
Xie Z, Fan C, Lu R, Liu P, Wang B, Du S, Jin C, Deng S, Li Y. Characteristics of ambient bioaerosols during haze episodes in China: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1930-1942. [PMID: 30237031 DOI: 10.1016/j.envpol.2018.09.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 09/07/2018] [Indexed: 05/22/2023]
Abstract
Frequent low visibility, haze pollution caused by heavy fine particulate matter (PM2.5) loading, has been entailing significant environmental issues and health risks in China since 2013. A substantial fraction of bioaerosols was observed in PM (1.5-15%) during haze periods with intensive pollution. However, systematic and consistent results of the variations of bioaerosol characteristics during haze pollution are lacking. The role of bioaerosols in air quality and interaction with environment conditions are not yet well characterized. The present article provides an overview of the state of bioaerosol research during haze episodes based on numerous recent studies over the past decade, focusing on concentration, size distribution, community structure, and influence factors. Examples of insightful results highlighted the characteristics of bioaerosols at different air pollution levels and their pollution effects. We summarize the influences of meteorological and environmental factors on the distribution of bioaerosols. Further studies on bioaerosols, applying standardized sampling and identification criteria and investigating the influence of mechanisms of environmental or pollution factors on bioaerosols as well as the sources of bioaerosols are proposed.
Collapse
Affiliation(s)
- Zhengsheng Xie
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Chunlan Fan
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Rui Lu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Pengxia Liu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Beibei Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Shengli Du
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Cheng Jin
- School of Architecture, Chang'an University, Xi'an, 710061, China
| | - Shunxi Deng
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710054, China
| | - Yanpeng Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710054, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China.
| |
Collapse
|
39
|
Fang Z, Guo W, Zhang J, Lou X. Influence of Heat Events on the Composition of Airborne Bacterial Communities in Urban Ecosystems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2295. [PMID: 30347662 PMCID: PMC6210276 DOI: 10.3390/ijerph15102295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Airborne bacteria are significantly affected by meteorological and environmental conditions. However, there is little quantitative data available on the effects of these factors on airborne bacteria in urban ecosystems. In the present study, we analyzed weather-dependent changes in the composition of airborne bacterial communities using high throughput sequencing. Samples were collected before and after a period of constant hot weather at four selected sampling sites (YRBS, ZJGUSJC, TJCR, and BLQG) in Hangzhou. Our results show that the average amount of bacterial 16S rRNA gene copy numbers per m³ of air decreased significantly after constant high temperature. In addition, the number of operational taxonomic units and the Shannon⁻Wiener diversity indexes of the samples at all four selected sampling sites were significantly decreased after the heat event, showing notable impact on bacterial diversity. We also detected a significant increase in the abundances of spore-forming bacteria. Firmicutes increased from 3.7% to 9.9%, Bacillales increased from 2.6% to 7.6%, and Bacillaceae increased from 1.5% to 5.9%. In addition, we observed an increase in beta-Proteobacteria (18.2% to 50.3%), Rhodocyclaceae (6.9% to 29.9%), and Burkholderiaceae (8.1% to 15.2%). On the other hand, the abundance of alpha-Proteobacteria (39.6% to 9.8%), Caulobacteraceae (17.9% to 0.5%), Sphingomonadaceae (7.2% to 3.3%), and Xanthomonadaceae (3.0% to 0.5%) was significantly lower. Taken together, our data suggest that the composition of airborne bacterial communities varies greatly dependent on heat events, and that such communities include several species that are highly susceptible to high-temperature related stressors such as high air temperature, low relative humidity, and high intensity of solar radiation.
Collapse
Affiliation(s)
- Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Weijun Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Junwen Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Xiuqin Lou
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China.
| |
Collapse
|
40
|
Unterwurzacher V, Pogner C, Berger H, Strauss J, Strauss-Goller S, Gorfer M. Validation of a quantitative PCR based detection system for indoor mold exposure assessment in bioaerosols. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1454-1468. [PMID: 30225499 DOI: 10.1039/c8em00253c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Determination and assessment of airborne fungal particles is complex and results of different sampling and analytical strategies are hard to compare due to limitations of each of the techniques. Here, an indoor mold detection system based on quantitative polymerase chain reaction (qPCR) is described and validated for its reliability and stability to identify airborne fungal particles collected. Data obtained from testing the system with fungal DNA, spore suspensions and bioaerosols indicated a need for spiking and normalization of measurements due to material loss and assay specific bias. Considering the loss of material during sample processing, detection limits defined for suspensions of Tritirachium oryzae spores were roughly 18 spores per sample. Detection of fungal spore mixtures nebulized under controlled conditions in a bioaerosol chamber showed generally 2-3 times higher normalized values measured with the molecular system compared to cultivation. Data obtained from a mold infested indoor sampling site and its corresponding outdoor reference measurement showed good correlations between qPCR and high-throughput sequencing (rho = 0.83, p < 0.01), if Cladosporium species were excluded. Taking necessary data normalization into account, the described qPCR detection system shows great potential to complement commonly used culture based approaches with the aim to improve the precision of indoor mold assessments. In contrast to already available qPCR assays that detect certain molds on a species level, this system covers a broad range of relevant fungal communities, serving as a promising alternative to high-throughput sequencing to identify indoor molds.
Collapse
Affiliation(s)
- Verena Unterwurzacher
- Center for Health and Bioresources, Austrian Institute of Technology - AIT, Tulln, Austria.
| | | | | | | | | | | |
Collapse
|
41
|
Application of Cytosense flow cytometer for the analysis of airborne bacteria collected by a high volume impingement sampler. J Microbiol Methods 2018; 154:63-72. [PMID: 30342070 DOI: 10.1016/j.mimet.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 01/18/2023]
Abstract
Characterization of airborne bacterial cells requires efficient collection, concentration, and analysis techniques, particularly to overcome the challenge of their dilute nature in outdoor environments. This study aims to establish a rapid and reliable approach for quantification of bacteria in air samples. To do this, a high volume impingement sampler was applied to collect airborne bacteria from a wastewater treatment plant (WWTP). The bacterial cell density was estimated by a Cytosense flow cytometer (Cytobouy) and compared to quantitative PCR (qPCR) data based on 16S rRNA genes. The average bacterial cell density measured by Cytosense ranged from 1.1 to 2.5 × 104 cells m-3 of air and that estimated by qPCR ranged from 0.08 to 3.8 × 104 cells m-3 of air. Regression analysis showed no systematic difference in bacterial cell densities between two methods applied when the cells were analyzed in vivo, and statistical tests confirmed that Cytosense counts of unfixed samples provided realistic values. Bacterial cell densities and the amount of DNA extracted from the sample were significantly correlated with relative humidity on a sampling day. The results showed that the present method was reliable to estimate bacteria densities from the outdoor environment, and the analysis given by Cytosense was faster and more sensitive than qPCR method. In addition, the Cytosense gave valuable information about cell characteristics at different sampling conditions.
Collapse
|
42
|
Gao M, Qiu T, Sun Y, Wang X. The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants. ENVIRONMENT INTERNATIONAL 2018; 116:229-238. [PMID: 29698899 DOI: 10.1016/j.envint.2018.04.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 05/21/2023]
Abstract
Composting is considered to reduce the introduction of antimicrobial resistance genes (ARGs) into the environment through land application of manure; however, the possible pollution of ARGs in the atmospheric environment of composting plants is unknown. In this study, 29 air samples including up- and downwind, composting, packaging, and office areas from 4 composting plants were collected. Dynamic concentrations of 22 subtypes of ARGs, class 1 integron (intl1), and 2 potential human pathogenic bacteria (HPB), and bacterial communities were investigated using droplet digital PCR and 16S rRNA gene sequencing, respectively. In this study, intl1 and 22 subtypes of ARGs (except tetQ) were detected in air of composting, packaging, office, and downwind areas. The highest concentration of 15 out of 22 subtypes of ARGs was detected in the packaging areas, and intl1 also had the maximum average concentration of 104 copies/m3, with up to (1.78 ± 0.49) × 10-2 copies/16S rRNA copy. Non-metric multi-dimensional scaling of ARGs, potential HPBs, and bacterial components all indicated that the bioaerosol pollutant pattern in packaging areas was most similar to that in composting areas, followed by office, downwind, and upwind areas. The co-occurrence between ARGs and bacterial taxa assessed by Procrustes test, mantel test, and network analysis implied that aerosolized ARG fragments from composting and packaging areas contributed to the compositions of ARG aerosols in office and downwind areas. The results presented here show that atmoshperic environments of composting plants harbor abundant and diverse ARGs, which highlight the urgent need for comprehensive evaluation of potential human health and ecological risks of composts during both production as well as land application.
Collapse
Affiliation(s)
- Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanmei Sun
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
43
|
Wang Y, Li L, Han Y, Liu J, Yang K. Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:162-170. [PMID: 29471278 DOI: 10.1016/j.ecoenv.2018.02.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 05/04/2023]
Abstract
Samples from two oxidation ditch process municipal wastewater treatment plants (MWTPs) (HJK and GXQ) in two regions of China were analysed for bacteria, particles, total organic carbon, and water-soluble ions in bioaerosols. Diversity and potential pathogen populations were evaluated by high-throughput sequencing. Bioaerosol sources, factors affecting intestinal bacterial survival, and the relationship between bioaerosols and water were analysed by Source tracker and partial least squares-discriminant, principal component, and canonical correspondence analyses. Culturable bacteria concentrations were 110-846 and 27-579 CFU/m3 at HJK and GXQ, respectively. Intestinal bacteria constituted 6-33% of bacteria. Biochemical reaction tank, sludge dewatering house (SDH), and fine screen samples showed the greatest contribution to bioaerosol contamination. Enterobacter aerogenes was the main intestinal bacteria (> 99.5%) in HJK and detected at each sampling site. Enterobacter aerogenes (98.67% in SDH), Aeromonas sp. (76.3% in biochemical reaction tank), and Acinetobacter baumannii (99.89% in fine screens) were the main intestinal bacteria in GXQ. Total suspended particulate masses in SDH were 229.46 and 141.6 μg/m3 in HJK and GXQ, respectively. Percentages of insoluble compounds in total suspended particulates decreased as height increased. The main soluble ions in bioaerosols were Ca2+, Na+, Cl-, and SO42-, which ranged from 3.8 to 27.55 μg/m3 in the MWTPs. Water was a main source of intestinal bacteria in bioaerosols from the MWTPs. Bioaerosols in HJK but not in GXQ were closely related. Relative humidity and some ions positively influenced intestinal bacteria in bioaerosols, while wind speed and solar illumination had a negative influence.
Collapse
Affiliation(s)
- Yanjie Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Kaixiong Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
44
|
Han Y, Wang Y, Li L, Xu G, Liu J, Yang K. Bacterial population and chemicals in bioaerosols from indoor environment: Sludge dewatering houses in nine municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:469-478. [PMID: 29136598 DOI: 10.1016/j.scitotenv.2017.11.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 05/04/2023]
Abstract
Municipal wastewater treatment plants (MWTPs) are regarded as sources of airborne microorganisms. Sludge dewatering house (SDH) is one of the most serious indoor bioaerosol pollution treatment sectors in MWTPs. In this study, properties of bioaerosols from SDHs of nine MWTPs were investigated in China. Results suggested that bioaerosols were generated mainly from the mixed liquor and will be promoted by the mechanical motion of belts of dewatering devices. They will accumulate in the SDHs due to the treatment devices placed inside. Levels of airborne bacteria and chemicals showed regional variations. In Hefei and Yixing, the emissions of total suspended particles (TSP) and airborne bacteria were higher than those in Beijing and Guangzhou. Results of bacterial population showed that bacterial species in bioaerosols from SDHs also presented significant regional disparity; these regional disparities were closely related with the source of bioaerosols in SDHs. Among these identified bacterial species, some common potential pathogens were detected in all SDHs, such as Aeromonas caviae, Flavobacterium sp., and Staphylococcus lentus. Relative humidity (RH) and temperature were the major parameters on bioaerosols to survive. As shown in this study, SDHs in wastewater treatment plants should be provided considerable attention for being an emission source of indoor bioaerosols.
Collapse
Affiliation(s)
- Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yanjie Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Guangsu Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Kaixiong Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
45
|
Abrego N, Norros V, Halme P, Somervuo P, Ali-Kovero H, Ovaskainen O. Give me a sample of air and I will tell which species are found from your region: Molecular identification of fungi from airborne spore samples. Mol Ecol Resour 2018; 18:511-524. [PMID: 29330936 DOI: 10.1111/1755-0998.12755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 11/26/2022]
Abstract
Fungi are a megadiverse group of organisms, they play major roles in ecosystem functioning and are important for human health, food production and nature conservation. Our knowledge on fungal diversity and fungal ecology is however still very limited, in part because surveying and identifying fungi is time demanding and requires expert knowledge. We present a method that allows anyone to generate a list of fungal species likely to occur in a region of interest, with minimal effort and without requiring taxonomical expertise. The method consists of using a cyclone sampler to acquire fungal spores directly from the air to an Eppendorf tube, and applying DNA barcoding with probabilistic species identification to generate a list of species from the sample. We tested the feasibility of the method by acquiring replicate air samples from different geographical regions within Finland. Our results show that air sampling is adequate for regional-level surveys, with samples collected >100 km apart varying but samples collected <10 km apart not varying in their species composition. The data show marked phenology, and thus obtaining a representative species list requires aerial sampling that covers the entire fruiting season. In sum, aerial sampling combined with probabilistic molecular species identification offers a highly effective method for generating a species list of air-dispersing fungi. The method presented here has the potential to revolutionize fungal surveys, as it provides a highly cost-efficient way to include fungi as a part of large-scale biodiversity assessments and monitoring programs.
Collapse
Affiliation(s)
- Nerea Abrego
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Veera Norros
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Panu Halme
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Panu Somervuo
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Heini Ali-Kovero
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Otso Ovaskainen
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
46
|
Chang CW, Lin MH. Optimization of PMA-qPCR for Staphylococcus aureus and determination of viable bacteria in indoor air. INDOOR AIR 2018; 28:64-72. [PMID: 28683164 DOI: 10.1111/ina.12404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Staphylococcus aureus may cause infections in humans from mild skin disorders to lethal pneumonia. Rapid and accurate monitoring of viable S. aureus is essential to characterize human exposure. This study evaluated quantitative PCR (qPCR) with propidium monoazide (PMA) to quantify S. aureus. The results showed comparable S. aureus counts between exclusively live cells and mixtures of live/dead cells by qPCR with 1.5 or 2.3 μg/mL PMA (P>.05), illustrating the ability of PMA-qPCR to detect DNA exclusively from viable cells. Moreover, qPCR with 1.5 or 2.3 μg/mL PMA performed optimally with linearity over 103 -108 CFU/mL (R2 ≥0.9), whereas qPCR with 10, 23 or 46 μg/mL PMA significantly underestimated viable counts. Staphylococcus aureus and total viable bacteria were further determined with PMA-qPCR (1.5 μg/mL) from 48 samples from a public library and two university dormitories and four from outside. Viable bacteria averaged 1.9×104 cells/m3 , and S. aureus were detected in 22 (42%) samples with a mean of 4.4×103 cells/m3 . The number of S. aureus and viable bacteria were positively correlated (r=.61, P<.005), and percentages of S. aureus relative to viable bacteria averaged 12-44%. The results of field samples suggest that PMA-qPCR can be used to quantify viable S. aureus cells.
Collapse
Affiliation(s)
- C-W Chang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Center for Research on Environmental and Occupational Health, National Taiwan University, Taipei, Taiwan
- Research Center for Genes, Environmental and Human Health, National Taiwan University, Taipei, Taiwan
| | - M-H Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Mbareche H, Veillette M, Bonifait L, Dubuis ME, Benard Y, Marchand G, Bilodeau GJ, Duchaine C. A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1306-1314. [PMID: 28605849 DOI: 10.1016/j.scitotenv.2017.05.235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Composting is used all over the world to transform different types of organic matter through the actions of complex microbial communities. Moving and handling composting material may lead to the emission of high concentrations of bioaerosols. High exposure levels are associated with adverse health effects among compost industry workers. Fungal spores are suspected to play a role in many respiratory illnesses. There is a paucity of information related to the detailed fungal diversity in compost as well as in the aerosols emitted through composting activities. The aim of this study was to analyze the fungal diversity of both organic matter and aerosols present in facilities that process domestic compost and facilities that process pig carcasses. This was accomplished using a next generation sequencing approach that targets the ITS1 genomic region. Multivariate analyses revealed differences in the fungal community present in samples coming from compost treating both raw materials. Furthermore, results show that the compost type affects the fungal diversity of aerosols emitted. Although 8 classes were evenly distributed in all samples, Eurotiomycetes were more dominant in carcass compost while Sordariomycetes were dominant in domestic compost. A large diversity profile was observed in bioaerosols from both compost types showing the presence of a number of pathogenic fungi newly identified in bioaerosols emitted from composting plants. Members of the family Herpotrichiellaceae and Gymnoascaceae which have been shown to cause human diseases were detected in compost and air samples. Moreover, some fungi were identified in higher proportion in air compared to compost. This is the first study to identify a high level of fungal diversity in bioaerosols present in composting plants suggesting a potential exposure risk for workers. This study suggests the need for creating guidelines that address human exposure to bioaerosols. The implementation of technical and organizational measure should be a top priority. However, skin and respiratory protection for compost workers could be used to reduce the exposure as a second resort.
Collapse
Affiliation(s)
- Hamza Mbareche
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Laval university, Quebec City, Qc, Canada
| | - Marc Veillette
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada
| | - Laetitia Bonifait
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada
| | - Marie-Eve Dubuis
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Laval university, Quebec City, Qc, Canada
| | - Yves Benard
- Centre de Recherche Industrielle du Québec (CRIQ), Quebec City, Qc, Canada
| | - Geneviève Marchand
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du travail (IRSST), Montreal, Qc, Canada
| | - Guillaume J Bilodeau
- Pathogen Identification Research Lab, Canadian Food Inspection Agency (CFIA), Ottawa, Canada
| | - Caroline Duchaine
- Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Qc, Canada; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Laval university, Quebec City, Qc, Canada.
| |
Collapse
|
48
|
Eaton S, Zúñiga C, Czyzewski J, Ellis C, Genney DR, Haydon D, Mirzai N, Yahr R. A method for the direct detection of airborne dispersal in lichens. Mol Ecol Resour 2017; 18:240-250. [PMID: 29091345 DOI: 10.1111/1755-0998.12731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 11/27/2022]
Abstract
This study sets out a novel method to determine dispersal distances in lichens. Direct measurement of dispersal often remains difficult for lichens and other small inconspicuous species because of the need to track microscopic reproductive propagules, which even if they can be captured, cannot be identified using traditional morphological approaches. A low-cost device (<£200) was developed to trap the reproductive propagules of lichens, capable of sampling around 0.1 m3 of air per minute. In parallel, molecular techniques were developed to enable species-specific detection of propagules caught by the devices, with identification using novel species-specific primers and optimization of a standard DNA extraction and nested PCR protocol. The methods were tested for both their sensitivity and specificity against a suite of lichen epiphytes, differing in their reproductive mechanisms, dispersal structures and rarity. Sensitivity tests showed that the molecular techniques could detect a single asexual propagule (soredium or isidium), or as few as 10 sexual spores. As proof of concept, propagule traps were deployed into a wooded landscape where the target epiphytes were present. Extractions from deployed propagule traps were sequenced, showing that the method was able to detect the presence of the target species in the atmosphere. As far as we are aware, this is the first attempt to use mechanized propagule traps in combination with DNA diagnostics to detect dispersal of lichens. The tests carried out here point the way for future dispersal studies of lichen epiphytes and other passively dispersed microscopic organisms including fungi or bryophytes.
Collapse
Affiliation(s)
- Sally Eaton
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Jakub Czyzewski
- College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow, UK
| | | | - David R Genney
- Scottish Natural Heritage, Great Glen House, Inverness, UK
| | - Daniel Haydon
- College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow, UK
| | - Nosrat Mirzai
- College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow, UK
| | | |
Collapse
|
49
|
Švajlenka J, Kozlovská M, Pošiváková T. Assessment and biomonitoring indoor environment of buildings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:427-439. [PMID: 28868901 DOI: 10.1080/09603123.2017.1373276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/26/2017] [Indexed: 05/23/2023]
Abstract
Ensuring hygiene and health protection is one of the basic construction requirements. Such requirements are examined when commissioning new constructions and examining defects in constructions already in use. One substantial defect is biocorrosion which represents a synergistic process with a complex variety of factors. It is caused by biochemical manifestations of various micro-organisms (micromycetes). Micromycetes producing mycotoxins therefore play an important role regarding the so-called 'Sick Building Syndrome' that has become a global problem nowadays. The case study presented here aims to demonstrate the effectiveness of the diagnostic methods used in assessing the presence of micromycetes in a building's internal atmosphere and on the internal surfaces of a construction built using traditional construction methods. The methodology of comparing methods is based on their effectiveness, taking into account the identification of type and intensity of micromycetes presence in the air and on the material surfaces in the monitored areas.
Collapse
Affiliation(s)
- Jozef Švajlenka
- a Department of Construction Technology and Management, Faculty of Civil Engineering , Technical University of Kosice , Košice , Slovak Republic
| | - Mária Kozlovská
- a Department of Construction Technology and Management, Faculty of Civil Engineering , Technical University of Kosice , Košice , Slovak Republic
| | - Terézia Pošiváková
- b Department of Environment, Veterinary Legislative and Economics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| |
Collapse
|
50
|
Priyamvada H, Singh RK, Akila M, Ravikrishna R, Verma RS, Gunthe SS. Seasonal variation of the dominant allergenic fungal aerosols - One year study from southern Indian region. Sci Rep 2017; 7:11171. [PMID: 28894264 PMCID: PMC5593913 DOI: 10.1038/s41598-017-11727-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023] Open
Abstract
Quantitative estimations of fungal aerosols are important to understand their role in causing respiratory diseases to humans especially in the developing and highly populated countries. In this study we sampled and quantified the three most dominantly found allergenic airborne fungi, Aspergillus fumigatus, Cladosporium cladosporioides, and Alternaria alternata from ambient PM10 samples using the quantitative PCR (qPCR) technique in a southern tropical Indian region, for one full year. Highest concentrations of A. fumigatus and C. cladosporioides were observed during monsoon whereas A. alternata displayed an elevated concentration in winter. The meteorological parameters such as temperature, relative humidity, wind speed, and precipitation exhibited a substantial influence on the atmospheric concentrations of allergenic fungal aerosols. The morphological features of various allergenic fungal spores present in the PM10 were investigated and the spores were found to possess distinct structural features. In a maiden attempt over this region we correlate the ambient fungal concentrations with the epidemiological allergy occurrence to obtain firsthand and preliminary information about the causative fungal allergen to the inhabitants exposed to bioaerosols. Our findings may serve as an important reference to atmospheric scientists, aero-biologists, doctors, and general public.
Collapse
Affiliation(s)
- Hema Priyamvada
- EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Raj Kamal Singh
- EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M Akila
- EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - R Ravikrishna
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Rama Shanker Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sachin S Gunthe
- EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|