1
|
Singh LK, Pandey R, Siddiqi NJ, Sharma B. Molecular Mechanisms of Phthalate-Induced Hepatic Injury and Amelioration by Plant-Based Principles. TOXICS 2025; 13:32. [PMID: 39853030 PMCID: PMC11768991 DOI: 10.3390/toxics13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Phthalates are the emerging environmental toxicants derived from phthalic acid and its constituents, which are moderately present in plastics and many personal care products. Phthalate exposure occurs through various environmental factors, including air, water, and soil, with absorption facilitated via ingestion, inhalation, and dermal contact. Upon exposure, phthalates become bioavailable within the biological systems and undergo biotransformation and detoxification processes in the liver. The physicochemical properties of phthalates indicate their lipophilicity, environmental persistence, and bioaccumulation potential, influencing their absorption, distribution, and hepatic biotransformation. The prolonged exposure to phthalates adversely influences the biological redox system by altering the levels of the enzymatic and non-enzymatic antioxidants, molecular signaling pathways, and causing hepatic pathogenesis. The strategies to combat phthalate-induced toxicity include avoiding exposure to these compounds and using plant-based bioactive molecules such as polyphenols, which possess therapeutic potential as antioxidants, suppress inflammatory cascades, prevent oxidative damage, and stabilize cellular integrity. This review presents a comprehensive and updated account of the chemical, biochemical, immunological, and toxicological properties of phthalates, along with novel plant-based therapeutic strategies to mitigate the phthalate-induced adverse effects on living systems.
Collapse
Affiliation(s)
- Lalit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India;
| | - Rashmi Pandey
- Department of Biochemistry, Government Medical College, Haridwar 247667, Uttarakhand, India
| | - Nikhat Jamal Siddiqi
- Department of Internal Surgical Nursing, College of Nursing, King Saud University, Riyadh 11421, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India;
| |
Collapse
|
2
|
Okman E, Yalçın SS. Awareness and Knowledge of Endocrine-Disrupting Chemicals Among Pregnant Women and New Mothers: A Cross-Sectional Survey Study. TOXICS 2024; 12:890. [PMID: 39771105 PMCID: PMC11728504 DOI: 10.3390/toxics12120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND/OBJECTIVES Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with hormone regulation, leading to adverse health outcomes. Despite the wide use of EDCs in daily products like plastics, personal care items, and food packaging, public awareness remains low. Pregnant women and new mothers are particularly vulnerable, as exposure to EDCs during early life stages can have long-term health impacts. This cross-sectional, questionnaire-based study aimed to assess the awareness of EDCs among pregnant women and new mothers at a maternity hospital. METHODS This cross-sectional study was conducted in a tertiary care hospital between January and August 2022. A questionnaire based on the Mutualités Libres/AIM 2020 survey was used to assess awareness of EDCs among pregnant and postpartum women. The original survey was adapted culturally and linguistically for the Turkish population through translation and expert review. The questionnaire included sections on sociodemographics, habits, knowledge, information sources, healthcare, readiness for change, expectations, and attitudes. RESULTS The results showed that 59.2% of participants were unfamiliar with EDCs, and many lacked awareness of the associated health risks, including cancers, infertility, and developmental disorders in children. A significant portion of respondents had never heard of bisphenol A (BPA) or phthalates, while awareness of parabens was relatively higher. CONCLUSIONS The study concluded that increasing awareness of EDCs is essential for fostering informed avoidance behaviors, especially in vulnerable populations like pregnant women and new mothers. Public health campaigns and healthcare provider involvement are crucial for enhancing awareness and reducing the health risks associated with EDCs.
Collapse
Affiliation(s)
- Esin Okman
- Department of Pediatrics, Bilkent City Hospital, Ankara 06800, Türkiye
- Department of Social Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06230, Türkiye
| | - Sıddika Songül Yalçın
- Department of Social Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06230, Türkiye
- Division of Social Pediatrics, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children’s Hospital, Ankara 06230, Türkiye
| |
Collapse
|
3
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Guan H, Jia Q, Guo Z, Han X, Zhang H, Hao L, Wu C, Liu J. Emissions of Semi-Volatile Organic Compounds from Architectural Coatings and Polyvinyl Chloride Floorings: Microchamber Method. Molecules 2024; 29:4445. [PMID: 39339440 PMCID: PMC11434159 DOI: 10.3390/molecules29184445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Semi-volatile organic compounds (SVOCs) are modern chemical substances that are present in large quantities in indoor environments. Understanding the emission of SVOCs from building materials is essential to identify the main sources of indoor SVOCs and to improve indoor air quality. In this study, a reference method employing custom-designed microchambers (630 mL) was optimized by improving the structure of the gas path and adding polytetrafluoroethylene inner coating to the chamber. After optimization, the recoveries of the microchamber method were significantly improved (75.4-96.7%), and the background in the microchamber was greatly reduced (<0.02 μg/h). By using the microchamber method, 33 SVOCs (including two alkanes, one aromatic, one nitrogen compound, and twenty-nine oxygenated compounds) and 32 SVOCs (including seven alkanes, eight aromatics, and seventeen oxygenated compounds) were detected in the emissions of the architectural coating and the PVC flooring samples, respectively. The area-specific emission rates (SERa) of total SVOCs emitted from architectural coatings and PVC floorings were in the range of 4.09-1309 μg/m2/h) (median: 10.3 μg/m2/h) and 0.508-345 μg/m2/h (median: 11.9 μg/m2/h), respectively. Propanoic acid had the highest SERa (3143 μg/m2/h) in architectural coatings, while methylbenzene (345 μg/m2/h), 2-methylnaphthalene (65.2 μg/m2/h), and naphthalene (60.3 μg/m2/h) were main SVOCs emitted from PVC floorings. Meanwhile, the average second-stage (adsorbed phase) emission mass of the total SVOCs accounts for 66.3% and 47.3% in architectural coatings and PVC floorings, respectively, suggesting that the SVOCs emitted from building materials have a strong tendency to be absorbed on the surface of the room, e.g., the interior wall, the desk or even the skin.
Collapse
Affiliation(s)
- Hongyan Guan
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Qi Jia
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Zhongbao Guo
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Xu Han
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Huiyu Zhang
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Liteng Hao
- China Testing & Certification International Group Co., Ltd., Beijing 100024, China; (H.G.); (Q.J.); (H.Z.); (L.H.)
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.H.); (C.W.); (J.L.)
- Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
5
|
Xu Z, Luan L, Li P, Dong K. Extralong hot-spots sensor for SERS sensitive detection of phthalate plasticizers in biological tear and serum fluids. Anal Bioanal Chem 2024; 416:4301-4313. [PMID: 38852120 DOI: 10.1007/s00216-024-05366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Phthalate plasticizers (PAEs) illegally used in food pose a great threat to human health. A new and efficient sensing platform for the sensitive detection of the PAE residues in biological fluids needs to be designed and developed. Here, we report a simple and reliable surface-enhanced Raman spectroscopy (SERS) active platform with extralong hot spots of Au nanobipyramids@Ag nanorods (Au NBPs@Ag NRs) for the rapid and sensitive detection of PAEs in biological fluids. To achieve high activity, Au NBPs@Ag NRs with different shell lengths were fabricated by controlling the synthesis conditions, and the corresponding SERS properties were investigated by using crystal violet (CryV) and butyl benzyl phthalate (BBP). The experimental results showed that a longer shell length correlated to greater Raman activity, which was confirmed by finite-difference time-domain (FDTD) electromagnetic simulation. More importantly, the extralong hot spots of the Au NBPs@Ag NR SERS-active substrate showed excellent homogeneity and reproducibility for the CryV probe molecules (6.21%), and the detection limit was 10-9 M for both BBP and diethylhexyl phthalate (DEHP). Furthermore, through the standard addition method, an extralong hot spots SERS substrate could achieve highly sensitive detection of BBP and DEHP in serum and tears fluids, and the detection limit was as low as 3.52 × 10-8 M and 2.82 × 10-8 M. Therefore, the Au NBPs@Ag NR substrate with an extraordinarily long surface is efficient and versatile, and can potentially be used for high-efficiency sensing analysis in complex biological fluids.
Collapse
Affiliation(s)
- Ziming Xu
- Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Longlong Luan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, HefeiAnhui, 230009, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| | - Kai Dong
- Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
| |
Collapse
|
6
|
Mohammadi MJ, Farhadi M, Ghanbari S, Sepahvnand A, Dehvari M, Neisi M, Sharifi M, Bayat M. The concentration of phthalates in drinking water in Iran: A systematic review and meta-analysis. Toxicol Rep 2024; 12:299-306. [PMID: 38495472 PMCID: PMC10940755 DOI: 10.1016/j.toxrep.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
PAE and PC polymers, such as BPA, are utilized to make water bottles. Due to the lack of polymer-chemical interaction, PAE can enter drinking bottles during production, wrapping, and keeping. Phthalates can transfer from the bottle to the water depending on keeping conditions (temperature, time, sunlight intensity), pH, and bottle capacity. Since there haven't been previous studies published on the subject, the aim of this meta-analysis and systematic review research is to determine the level of phthalates in drinking water consumed in Iranian cities. Web of Science, Science of Direct, Scopus, and PubMed, databases have been used in this study. Eight studies were selected from 556 initial publications after screening for duplication and irrelevant information. Articles from January 1, 2000, to February 10, 2024, were found in the mentioned databases. Among the types of phthalates, the concentration of DEHP was reported higher than the others Because its concentration has been reported in seven out of eight studies. The highest concentration of DEHP was reported by Mehraie(2.22 µg/l), Zare Jeddi (0.8 µg/l), Yousefi (0.77 µg/l), Abtahi (0.76 µg/l), Zare Jeddi (0.42 µg/l), Abdolahnejad(0.15 µg/l), and Pourzamani (0.08 µg/l). The highest concentration of DEP, DBP, BBP, and PA was reported by Abtahi (0.77 µg/l) and Esteki (2.25 µg/l), Mehraie(0.93 µg/l), and Pourzamani (0.83 µg/l). The results of this study showed that the most important phthalates measured in drinking water include DEP, DEHP, DBP, BBP, and PA. According to the results of the present studies, the most important factor in the increase of phthalates is the storage conditions of drinking water (temperature, sunlight, and the type of pipe or bottle).
Collapse
Affiliation(s)
- Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Farhadi
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saeed Ghanbari
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arefeh Sepahvnand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahboobeh Dehvari
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohadese Neisi
- Student of Research Committee and Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sharifi
- Student of Research Committee and Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marzieh Bayat
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Sokołowski A, Dybowski MP, Oleszczuk P, Gao Y, Czech B. Fast and reliable determination of phthalic acid esters in soil and lettuce samples based on QuEChERS GC-MS/MS. Food Chem 2024; 440:138222. [PMID: 38134829 DOI: 10.1016/j.foodchem.2023.138222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Phthalates are commonly used as plasticizers, and solvents in industry and households. We propose an application of the QuEChERS method for the determination of six PAEs in the soil and lettuce (roots and leaves) by GC-MS/MS. The QuEChERS method validation procedure was performed and good linearity (>0.997), recovery (97.2-99.1 %), very low detection limits (0.09-0.43 ng/g), and satisfactory inter- and intraday precision (∼4%) were obtained confirming that QuEChERS GC-MS/MS applied for PAEs determination in the environmental samples is a cheap and environmentally friendly method. In general, the higher the number of carbon atoms in PAEs, the higher the percentage noted in the lettuce roots. At higher PAEs concentration (60 ng/g) the main bis(2-ethylhexyl) phthalate (DEHP) sink were roots whereas at lower concentrations (30 ng/g) most of DEHP was noted in lettuce leaves implying that the fate of PAEs was governed not by the chemical structure of PAEs but rather partitioning (logKow).
Collapse
Affiliation(s)
- Artur Sokołowski
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Michał P Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
8
|
Pinto-Vidal FA, Novák J, Jílková SR, Rusina T, Vrana B, Melymuk L, Hilscherová K. Endocrine disrupting potential of total and bioaccessible extracts of dust from seven different types of indoor environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133778. [PMID: 38460255 DOI: 10.1016/j.jhazmat.2024.133778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/11/2024]
Abstract
Information on the indoor environment as a source of exposure with potential adverse health effects is mostly limited to a few pollutant groups and indoor types. This study provides a comprehensive toxicological profile of chemical mixtures associated with dust from various types of indoor environments, namely cars, houses, prefabricated apartments, kindergartens, offices, public spaces, and schools. Organic extracts of two different polarities and bioaccessible extracts mimicking the gastrointestinal conditions were prepared from two different particle size fractions of dust. These extracts were tested on a battery of human cell-based bioassays to assess endocrine disrupting potentials. Furthermore, 155 chemicals from different pollutant groups were measured and their relevance for the bioactivity was determined using concentration addition modelling. The exhaustive and bioaccessible extracts of dust from the different microenvironments interfered with aryl hydrocarbon receptor, estrogen, androgen, glucocorticoid, and thyroid hormone (TH) receptor signalling, and with TH transport. Noteably, bioaccessible extracts from offices and public spaces showed higher estrogenic effects than the organic solvent extracts. 114 of the 155 targeted chemicals were detectable, but the observed bioactivity could be only marginally explained by the detected chemicals. Diverse toxicity patterns across different microenvironments that people inhabit throughout their lifetime indicate potential health and developmental risks, especially for children. Limited data on the endocrine disrupting potency of relevant chemical classes, especially those deployed as replacements for legacy contaminants, requires further study.
Collapse
Affiliation(s)
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Simona Rozárka Jílková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Tatsiana Rusina
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
9
|
Bozzola E, Agostiniani R, Pacifici Noja L, Park J, Lauriola P, Nicoletti T, Taruscio D, Taruscio G, Mantovani A. The impact of indoor air pollution on children's health and well-being: the experts' consensus. Ital J Pediatr 2024; 50:69. [PMID: 38616250 PMCID: PMC11017701 DOI: 10.1186/s13052-024-01631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Pollution of the indoor environment represents a concern for human health, mainly in case of prolonged exposure such as in the case of women, children, the elderly, and the chronically ill, who spend most of their time in closed environments. MAIN BODY The aim of the study is to organize a group of experts in order to evaluate the evidence and discuss the main risk factors concerning indoor air and the impact on human health as well as challenging factors regarding preventive strategies to reduce pollution. The experts highlighted the main risk factors concerning indoor air, including poor ventilation, climatic conditions, chemical substances, and socio-economic status. They discussed the impact on human health in terms of mortality and morbidity, as well as challenging factors regarding preventive strategies to reduce pollution. CONCLUSION The experts identified strategies that can be reinforced to reduce indoor pollution and prevent negative consequences on human health at national and local levels.
Collapse
Affiliation(s)
- Elena Bozzola
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | | - Jibin Park
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paolo Lauriola
- Rete Italiana Medici Sentinella per l'Ambiente (RIMSA), ISDE/FNOMCeO, Rome, Italy
| | - Tiziana Nicoletti
- Association of the chronically ill and rare patients, Cittadinazattiva APS, Rome, Italy
| | | | | | | |
Collapse
|
10
|
Ofodile J, Alves MR, Liang Y, Franklin EB, Lunderberg DM, Ivey CE, Singer BC, Nazaroff WW, Goldstein AH. Characterizing PM 2.5 Emissions and Temporal Evolution of Organic Composition from Incense Burning in a California Residence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5047-5057. [PMID: 38437595 DOI: 10.1021/acs.est.3c08904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM2.5), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs). Speciated organic PM2.5 measurements were made using two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HR-ToF-MS) and semivolatile thermal desorption aerosol gas chromatography (SV-TAG). Organic PM2.5 EFs ranged from 7 to 31 mg g-1 for burned incense and were largely comprised of polar and oxygenated species, with high abundance of biomass-burning tracers such as levoglucosan. Differences in PM2.5 EFs and chemical profiles were observed in relation to the type of incense burned. Nine indoor SVOCs considered to originate from sources other than incense combustion were enhanced during incense events. Time-resolved concentrations of these SVOCs correlated well with PM2.5 mass (R2 > 0.75), suggesting that low-volatility SVOCs such as bis(2-ethylhexyl)phthalate and butyl benzyl phthalate partitioned to incense-generated PM2.5. Both direct emissions and enhanced partitioning of low-volatility indoor SVOCs to incense-generated PM2.5 can influence inhalation exposures during and after indoor incense use.
Collapse
Affiliation(s)
- Jennifer Ofodile
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michael R Alves
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Yutong Liang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Emily B Franklin
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David M Lunderberg
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Cesunica E Ivey
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Brett C Singer
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Babaei P, Nikravan Madan E, Güllü G, Gören İE, Gül HK, Dağlıoğlu N, Kurt Karakuş PB. Levels, distribution, sources and human exposure pathways of alkylphenol and alkylphenol ethoxylates in indoor dust in Turkiye. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123447. [PMID: 38278401 DOI: 10.1016/j.envpol.2024.123447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Environmental phenolic chemicals, due to their widespread occurrence and potent estrogenic properties, pose a risk to human exposure. The phenolic organic contaminants alkylphenols (APs) and alkylphenol polyethoxylates (APEs) are used in various household applications, and they may enter to the environment during production and use, potentially appearing in indoor dust. However, little is known about the levels of environmental phenolics in indoor environments. In this study, five of these compounds namely octylphenol (OP), 4-Octylphenol Monoethoxylate (4-OPME), 4-tert-octylphenol (4-t-OP), 4-n-nonylphenol (4-n-NP) and nonylphenol diethoxylate (di-NPE) were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in household dust samples (n = 148) collected from Ankara, the capital of Turkiye. OP and 4-OPME was not present in any of the analyzed samples. The median concentrations of the 148 settling dust samples were 35, 520, and 1910 ng g-1 dust for 4-t-OP, 4-n-NP, and di-NPE, respectively. An assessment of the human (children and adults) exposure pathway to APs and APEs, which are recognized as endocrine-disrupting chemicals found in residential dust, revealed that it was approximately 3 times higher for children than for adults at both moderate and heavy exposure levels. The association between chemical exposure, house characteristics, and family lifestyle was investigated using a multivariate logistic regression model. According to the results of this model, while the high concentrations measured for 4-t-OP were not found to be associated with any of the household parameters, high levels of 4-n-NP and di-NPE were associated with the frequency of house cleaning, repairs made during the previous year, residential type, the number of occupants, flooring materials, and the purchase of new household items within the past year. This study provides a basis for prioritizing toxicology and exposure studies for EDCs and mixtures and may offer new tools for exposure assessment in health studies.
Collapse
Affiliation(s)
- Parisa Babaei
- Hacettepe University, Department of Environmental Engineering, Ankara, Turkiye
| | | | - Gülen Güllü
- Hacettepe University, Department of Environmental Engineering, Ankara, Turkiye.
| | | | - Hatice Kübra Gül
- Bursa Technical University, Department of Environmental Engineering, Bursa, Turkiye
| | | | | |
Collapse
|
12
|
Seo M, Choi J, Park J, Yu WJ, Kim S. Computational modeling approaches for developing a synergistic effect prediction model of estrogen agonistic activity. CHEMOSPHERE 2024; 349:140926. [PMID: 38092168 DOI: 10.1016/j.chemosphere.2023.140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The concerns regarding the potential health threats caused by estrogenic endocrine-disrupting chemicals (EDCs) and their mixtures manufactured by the chemical industry are increasing worldwide. Conventional experimental tests for understanding the estrogenic activity of mixtures are expensive and time-consuming. Although non-testing methods using computational modeling approaches have been developed to reduce the number of traditional tests, they are unsuitable for predicting synergistic effects because current prediction models consider only a single chemical. Thus, the development of predictive models is essential for predicting the mixture toxicity, including chemical interactions. However, selecting suitable computational modeling approaches to develop a high-performance prediction model requires considerable time and effort. In this study, we provide a suitable computational approach to develop a predictive model for the synergistic effects of estrogenic activity. We collected datasets on mixture toxicity based on the synergistic effect of estrogen agonistic activity in binary mixtures. Using the model deviation ratio approach, we classified the labels of the binary mixtures as synergistic or non-synergistic effects. We assessed five molecular descriptors, four machine learning-based algorithms, and a deep learning-based algorithm to provide a suitable computational modeling approach. Compared with other modeling approaches, the prediction model using the deep learning-based algorithm and chemical-protein network descriptors exhibited the best performance in predicting the synergistic effects. In conclusion, we developed a new high-performance binary classification model using a deep neural network and chemical-protein network-based descriptors. The developed model will be helpful for the preliminary screening of the synergistic effects of binary mixtures during the development process of chemical products.
Collapse
Affiliation(s)
- Myungwon Seo
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Jiwon Choi
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Jongseo Park
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Sunmi Kim
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
13
|
Goh M, Fu L, Seetoh WG, Koay A, Hua H, Tan SM, Tay SH, Jinfeng EC, Abdullah N, Ng SY, Lakshmanan M, Arumugam P. Mono-2-ethylhexylphthalate (MEHP) is a potent agonist of human TRPA1 channel. CHEMOSPHERE 2024; 349:140740. [PMID: 38006918 DOI: 10.1016/j.chemosphere.2023.140740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Phthalates are extensively used as plasticizers in diverse consumer care products but have been reported to cause adverse health effects in humans. A commonly used phthalate, di-2-ethylhexylphthalate (DEHP) causes developmental and reproductive toxicities in humans, but the associated molecular mechanisms are not fully understood. Mono-2-ethylhexylphthalate (MEHP), a hydrolytic product of DEHP generated by cellular esterases, is proposed to be the active toxicant. We conducted a screen for sensory irritants among compounds used in consumer care using an assay for human Transient Receptor Potential A1 (hTRPA1). We have identified MEHP as a potent agonist of hTRPA1. MEHP-induced hTRPA1 activation was blocked by the TRPA1 inhibitor A-967079. Patch clamp assays revealed that MEHP induced inward currents in cells expressing hTRPA1. In addition, the N855S mutation in hTRPA1 associated with familial episodic pain syndrome decreased MEHP-induced hTRPA1 activation. In summary, we report that MEHP is a potent agonist of hTRPA1 which generates new possible mechanisms for toxic effects of phthalates in humans.
Collapse
Affiliation(s)
- Megan Goh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Lin Fu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore, 138671
| | - Wei-Guang Seetoh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Ann Koay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Huang Hua
- National University of Singapore, Department of Physiology, 4 Science Drive 2, Wet Science Building Level 11, Singapore, 117544
| | - Shi Min Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Shermaine Huiping Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Elaine Chin Jinfeng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669
| | - Nimo Abdullah
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669; Nanyang Technological University, School of Biological Sciences, Singapore, 637551.
| |
Collapse
|
14
|
Di D, Zhang R, Zhou H, Wei M, Cui Y, Zhang J, Yuan T, Liu Q, Zhou T, Liu J, Wang Q. Exposure to phenols, chlorophenol pesticides, phthalate and PAHs and mortality risk: A prospective study based on 6 rounds of NHANES. CHEMOSPHERE 2023; 329:138650. [PMID: 37037349 DOI: 10.1016/j.chemosphere.2023.138650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVES Human exposure to various endocrine disrupting chemicals (EDCs) is widespread and long-lasting. The primary objective of this study was to prospectively evaluate the association of combined exposure of phenols, chlorophenol pesticides, phthalate and polycyclic aromatic hydrocarbons (PAHs) and mortality risk in a representative US population. METHODS The data on urinary levels of phenols, chlorophenol pesticides, phthalates, and PAH metabolites, were collected from participants aged ≥20 years in six rounds of the National Health and Nutrition Examination Survey (NHANES) (2003-2014). NHANES-linked death records up to December 31, 2015 were used to ascertain mortality status and cause of death. Cox proportional hazards and competing risk models were mainly used for chemical and mortality risk association analysis. The weighted quantile sum (WQS) regression and the least absolute shrinkage and selection operator regression were employed to estimate the association between EDC co-exposure and mortality risk. RESULTS High levels of mono-n-butyl phthalate, monobenzyl phthalate, and 1-napthol were significantly associated with increased risk of all cause, cardiovascular disease (CVD) and cancer mortality among all participants. WQS index was associated with the risks of all-cause (hazard ratio [HR] = 1.389, 95%CI: 1.155-1.669) and CVD mortality (HR = 1.925, 95%CI: 1.152-3.216). High co-exposure scores were associated with elevated all-cause (HR = 2.842, 95% CI: 1.2.094-3.858), CVD (HR = 1.855, 95% CI: 1.525-2.255), and cancer mortality risks (HR = 2.961, 95% CI: 1.468-5.972). The results of subgroup analysis, competing risk model, and sensitivity analysis were generally consistent with the findings from the main analyses, indicating the robustness of our findings. CONCLUSIONS This study provided the first epidemiological evidence that co-exposure to EDC at fairly low levels contributed to elevated mortality risk among US adults. The underlying mechanisms for the effects of EDC co-exposure on human health are worthy of future exploration.
Collapse
Affiliation(s)
- Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junan Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Zhao Y, Zhu L, Ding Y, Ji W, Liu K, Liu K, Gao B, Tao X, Dong YG, Wang FQ, Wei D. Simple and cheap CRISPR/Cas12a biosensor based on plug-and-play of DNA aptamers for the detection of endocrine-disrupting compounds. Talanta 2023; 263:124761. [PMID: 37267883 DOI: 10.1016/j.talanta.2023.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Endocrine-disrupting compounds (EDCs) are widely distributed in the environment. Here, we present a CRISPR/Cas12a (CAS) biosensor based on DNA aptamers for point-of-care detection of EDCs. Two typical EDCs, 17β-estradiol (E2) and bisphenol A (BPA), were selected to be detected by the CAS biosensors via the plug-and-play of their DNA aptamers. The results indicated that the performance of the CAS biosensors can be well regulated by controlling the trans-cleavage activity of Cas12a on a single-stranded DNA reporter and optimizing the sequence and ratio of DNA aptamer and activator DNA. Ultimately, two reliable and specific biosensors were developed, with the linear range and limit of detection of 0.2-25 nM and 0.08 nM for E2 and of 0.1-250 nM and 0.06 nM for BPA, respectively. Compared to the existing detection methods, the CAS biosensors showed higher reliability and sensitivity with simple operation, short detection time, and no costly equipment.
Collapse
Affiliation(s)
- Yunqiu Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Lin Zhu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yaxue Ding
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiting Ji
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Yu-Guo Dong
- Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China.
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| |
Collapse
|
16
|
Nguyen AV, Van Vu T, Pham CLT, Nguyen VN, Ta NT, Hoang AQ, Minh TB, Tran TM. Widespread distribution of phthalic acid esters in indoor and ambient air samples collected from Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63175-63184. [PMID: 36959402 DOI: 10.1007/s11356-023-26558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
In the present study, distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 90 air samples collected from the urban areas in Hanoi, Vietnam from May to August 2022. The total concentrations of PAEs in indoor and ambient air samples were in the range of 320-4770 ng/m3 and 35.9-133 ng/m3, respectively. Total concentrations of PAEs in indoor air were about one order of magnitude higher than those in ambient air. Among PAEs studied, di-(2-ethyl)hexyl phthalate (DEHP) was measured at the highest levels in all air samples, followed by di-n-octyl phthalate (DnOP) and di-n-butyl phthalate (DnBP). The PAEs concentrations in air samples collected from laboratories at nighttime were significantly higher than those during daytime (p < 0.05). Meanwhile, the distributions of PAEs in various micro-environments in the same house are no statistically significant difference. The median exposure doses of PAEs through inhalation for adults and children were 248 and 725 ng/kg-bw/d, respectively. These exposure levels were still lower than the respective reference doses (RfD) proposed by the US EPA for selected compounds such as diethyl phthalate (DEP), DnBP, and DEHP.
Collapse
Affiliation(s)
- Anh Viet Nguyen
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Tu Van Vu
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Chi Linh Thi Pham
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Viet Ngoc Nguyen
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Nguyen Thuy Ta
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tu Binh Minh
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tri Manh Tran
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam.
| |
Collapse
|
17
|
Li B, Wu G, Yang X, Li Z, Albasher G, Alsultan N, Memon AA, Afridi HI. Correlation of endocrine disrupting chemicals with essential elements in biological samples of children (1-5 years) with different infectious diseases and impact on sustainable outdoor activities. ENVIRONMENTAL RESEARCH 2023; 229:115781. [PMID: 37076035 DOI: 10.1016/j.envres.2023.115781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have been extensively explored due to their harmful effects on individual health and the environment by interfering with hormone activity and disrupting the endocrine system. However, their relationship with essential trace elements remains uncertain. This research aimed to investigate the possible correlation between essential trace elements and toxic metals, including cadmium (Cd), and lead (Pb) in children aged 1-5 years with various infectious diseases, including gastrointestinal disorders, typhoid fever, and pneumonia. The study was conducted on biological testing and specimen (scalp hair and whole blood) of diseased and non-diseased children of the same residential area and referent/control age-matched children from developed cities consuming domestically treated water. The media of biological samples were oxidized by an acid mixture before being analyzed by atomic absorption spectrophotometry. The accuracy and validity of the methodology were verified through accredited reference material from scalp hair and whole blood sample. The study results revealed that diseased children had lower mean values of essential trace elements (iron, copper, and zinc) in both scalp hair and blood, except for copper, which was found to be higher in blood samples of diseased children. This implies that the deficiency of essential residue and trace elements in children from rural areas who consume groundwater is linked to various infectious diseases. The study highlights the need for more human biomonitoring of EDCs to better comprehend their non-classical toxic properties and their concealed costs on human health. The findings suggest that exposure to EDCs could be associated with unfavorable health outcomes and emphasizes the need for future regulatory policies to minimize exposure and safeguard the health of current and forthcoming generations of children. Furthermore, the study highlights the implication of essential trace elements in maintaining good health and their potential correlation with toxic metals in the environment.
Collapse
Affiliation(s)
- Bo Li
- Physical Education Department, Xi'an University of Finance and Economics, 64 Xiaozhai E Rd, Yanta District, Xi'An, Shaanxi, China
| | - Guangliang Wu
- Physical Education Department, Renmin University of China, No. 59, Zhongguancun Street, Haidian District, Beijing, China.
| | - Xiaoguang Yang
- Physical Education Department, Xi'an University of Finance and Economics, 64 Xiaozhai E Rd, Yanta District, Xi'An, Shaanxi, China
| | - Zeyun Li
- Geography Section, School of Humanities, Universiti Sains Malaysia, Penang, Malaysia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alsultan
- Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Aijaz Ahmed Memon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Hassan Imran Afridi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| |
Collapse
|
18
|
Gao Y, Hu X, Deng C, Wang M, Niu X, Luo N, Ji Y, Li G, An T. New insight into molecular mechanism of P450-Catalyzed metabolism of emerging contaminants and its consequence for human health: A case study of preservative methylparaben. ENVIRONMENT INTERNATIONAL 2023; 174:107890. [PMID: 37001212 DOI: 10.1016/j.envint.2023.107890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Hydroxylated metabolites in the living body are considered as a potential biomarker of exposure to emerging contaminations (ECs) and breast cancer, but their formation mechanism has not received enough attention. Besides, the adverse impacts of metabolites during the metabolic transformation of ECs largely remain unknown. In this study, we employed a density functional calculation combing with in-vitro incubation of human liver microsomes to explore the bio-transformation of preservative methylparaben (MPB) in human bodies. Our results showed that hydroxylated metabolites of MPB (OH-MPB) were observed experimentally, while a formation mechanism was revealed at the molecular level. That is, hydroxylated metabolite was exclusively formed via the hydrogen abstraction from the phenolic hydroxyl group of MPB followed by the OH-rebound pathway, rather than the direct hydroxylation on the benzene ring. The increasing of hydroxyl groups on ECs could improve the metabolisms. This was confirmed in the metabolism of ECs without hydroxyl group and with multiple-hydroxyl groups, respectively. Furthermore, toxicity assessments show that compared to parent MPB, the hydroxylated metabolites have increased negative impacts on the gastrointestinal system and liver. A semiquinone product exhibits potential damage in the cardiovascular system and epoxides are toxic to the blood and gastrointestinal system. The findings deepen our insight into the biotransformation of parabens in human health, especially by providing health warnings about the potential impacts caused by semiquinone and epoxides.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyue Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
García-Recio E, Costela-Ruiz VJ, Illescas-Montes R, Melguizo-Rodríguez L, García-Martínez O, Ruiz C, De Luna-Bertos E. Modulation of Osteogenic Gene Expression by Human Osteoblasts Cultured in the Presence of Bisphenols BPF, BPS, or BPAF. Int J Mol Sci 2023; 24:ijms24054256. [PMID: 36901687 PMCID: PMC10002049 DOI: 10.3390/ijms24054256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Bone effects attributed to bisphenols (BPs) include the inhibition of growth and differentiation. This study analyzes the effect of BPA analogs (BPS, BPF, and BPAF) on the gene expression of the osteogenic markers RUNX2, osterix (OSX), bone morphogenetic protein-2 (BMP-2), BMP-7, alkaline phosphatase (ALP), collagen-1 (COL-1), and osteocalcin (OSC). Human osteoblasts were obtained by primary culture from bone chips harvested during routine dental work in healthy volunteers and were treated with BPF, BPS, or BPAF for 24 h at doses of 10-5, 10-6, and 10-7 M. Untreated cells were used as controls. Real-time PCR was used to determine the expression of the osteogenic marker genes RUNX2, OSX, BMP-2, BMP-7, ALP, COL-1, and OSC. The expression of all studied markers was inhibited in the presence of each analog; some markers (COL-1; OSC, BMP2) were inhibited at all three doses and others only at the highest doses (10-5 and 10-6 M). Results obtained for the gene expression of osteogenic markers reveal an adverse effect of BPA analogs (BPF, BPS, and BPAF) on the physiology of human osteoblasts. The impact on ALP, COL-1, and OSC synthesis and therefore on bone matrix formation and mineralization is similar to that observed after exposure to BPA. Further research is warranted to determine the possible contribution of BP exposure to the development of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Enrique García-Recio
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.GRANADA, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2a Planta, 18012 Granada, Spain
| | - Víctor J. Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.GRANADA, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2a Planta, 18012 Granada, Spain
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.GRANADA, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2a Planta, 18012 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.GRANADA, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2a Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.GRANADA, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2a Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.GRANADA, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2a Planta, 18012 Granada, Spain
- Institute of Neuroscience, University of Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-243-497
| | - Elvira De Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.GRANADA, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2a Planta, 18012 Granada, Spain
| |
Collapse
|
20
|
Zou ML, Huang HC, Chen YH, Jiang CB, Wu CD, Lung SCC, Chien LC, Lo YC, Chao HJ. Sex-differences in the effects of indoor air pollutants and household environment on preschool child cognitive development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160365. [PMID: 36427743 DOI: 10.1016/j.scitotenv.2022.160365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Air pollution, outdoor residential environment, indoor household characteristics, and parental mental health are potential factors associated with child development. However, few studies have simultaneously analyzed the association between the aforementioned factors and preschool child (aged 2-5 years) development. This study investigated the effects of those factors on child development and their potential modifying effects. A total of 142 participants were recruited from a birth cohort study in the Greater Taipei Area, and the evaluation was conducted at each participant's home from 2017 to 2020. Child cognitive development was assessed by psychologists using the Bayley Scales of Infant and Toddler Development and the Wechsler Preschool & Primary Scale of Intelligence. Household air pollutants, outdoor residential environment, indoor household characteristics, parental mental health, and other covariates were evaluated. Multiple regressions were used to examine the relationships between child development and covariates. Stratified analysis by child sex and parental mental health was conducted. Average indoor air pollutant levels were below Taiwan's Indoor Air Quality Standards. After adjustment for covariates, the indoor total volatile organic compounds (TVOCs) level was significantly associated with poor child development (per interquartile range increase in the TVOC level was associated with a 5.1 percentile decrease in child cognitive development). Sex difference was observed for the association between TVOC exposure and child development. Living near schools, burning incense at home, purchasing new furniture, and parental anxiety were related to child development. Indoor TVOC level was associated with poor child cognitive development, specifically with the girls. Indoor and outdoor residential environment and parental anxiety interfered with child development. TVOCs should be used cautiously at home to minimize child exposure. A low-pollution living environment should be provided to ensure children's healthy development.
Collapse
Affiliation(s)
- Ming-Lun Zou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chun Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | | | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsing Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Survey on Phthalates in Beer Packaged in Aluminum Cans, PET and Glass Bottles. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phthalates are known as endocrine disruptors and are common in plastic polymers, varnishes, and printing inks. However, they most often enter the human body through food. Plastic materials that hold food contain different chemicals, and phthalates are one of them. Phthalates can also be found in microplastics since microplastic particles serve as a vector for different chemicals that can be slowly released into food and beverages. The aim of this preliminary study was to determine the concentration and types of phthalates (dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dibutyl phthalate, bis (2-ethylhexyl) phthalate, di-n-octyl-phthalate) in beer packaged in aluminum cans, PET, and glass bottles. Ten aluminum-canned beers, sixteen PET-packaged, and eighteen glass-bottled beers were bought at a local food store and subjected to GC–MS analysis to quantify and qualify phthalates. The results indicate that PET-packaged beers can contain significant amounts of phthalates; in sample P10, the total sum of phthalates reached 219.82 µg/L. Especially high concentrations of dibutyl phthalate were found in all samples, but the highest concentration was detected in sample P13 at 92.17 µg/L. However, canned beers showed even higher levels of certain phthalates, such as bis (2-ethylhexyl) phthalate, which amounted to 326.81 µg/L in sample C1. In short, phthalates pose a serious health-concerning problem and should be regarded as such.
Collapse
|
22
|
Pocar P, Grieco V, Aidos L, Borromeo V. Endocrine-Disrupting Chemicals and Their Effects in Pet Dogs and Cats: An Overview. Animals (Basel) 2023; 13:ani13030378. [PMID: 36766267 PMCID: PMC9913107 DOI: 10.3390/ani13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Over the past few decades, several pollutants classified as environmental endocrine-disrupting chemicals (EDCs) have become a matter of significant public health concern. Companion animals play a major role in human society, and pet ownership is substantially increasing worldwide. These intimate human-pet relationships imply sharing much of the same environment, thus including exposure to similar levels of EDCs in daily routine. Here, we review the current knowledge on the sources and routes of exposure to EDCs in domestic indoor and outdoor environments and discuss whether endocrine disruption is a health concern in pets. We summarize the phenomenon of endocrine disruption, providing examples of EDCs with a known impact on dog and cat health. Then, we propose an overview of the literature on the adverse effects of EDCs in domestic pets, with a special focus on the health of reproductive and thyroid systems. Finally, we explore the potential role of companion animals as unintentional sentinels of environmental exposure to EDCs and the implications for public health risk assessment in a "shared risk" scenario. Overall, this review supports the need for an integrated approach considering humans, animals, and the environment as a whole for a comprehensive assessment of the impact of EDCs on human and animal health.
Collapse
|
23
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
24
|
Bai L, Lv K, Li J, Gao W, Liao C, Wang Y, Jiang G. Evaluating the dynamic distribution process and potential exposure risk of chlorinated paraffins in indoor environments of Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129907. [PMID: 36099735 DOI: 10.1016/j.jhazmat.2022.129907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated paraffins (CPs) are typical semi-volatile chemicals (SVOCs) that have been used in copious quantities in indoor material additives. SVOCs distribute dynamically between the gas phase and various condensate phases, especially organic films. Investigating the dynamic behaviors of existing CPs in indoor environments is necessary for understanding their potential risk to humans from indoor exposure. We investigate the distribution profiles of CPs in both gas phase and organic films in indoor environments of residential buildings in Beijing, China. The concentrations of CPs were in the range of 32.21-1447 ng/m3 in indoor air and in the range of 42.30-431.1 μg/m2 and in organic films. Cooking frequency was identified as a key factor that affected the distribution profiles of CPs. Furthermore, a film/gas partitioning model was constructed to explore the transportation and fate of CPs. Interestingly, a re-emission phenomenon from organic films was observed for chemical groups with lower log Koa components, and, importantly, their residue levels in indoor air were well predicted. The estimated exposure risk of CPs in indoor environment was obtained. For the first time, these results produced convincing evidence that the co-exposure risk of short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in indoor air could be further increased by film/gas distribution properties, which is relevant for performing risk assessments of exposure to these SVOCs in indoor environments.
Collapse
Affiliation(s)
- Lu Bai
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Public Health, Qingdao University, Qingdao 266021, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
25
|
Dione CT, Ndiaye M, Delhomme O, Diebakate C, Ndiaye B, Diagne I, Cisse D, Hane M, Dione MM, Diouf S, Diop A, Millet M. Pollution of water in Africa: a review of contaminants and fish as biomonitors and analytical methodologies-the case of Senegal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2374-2391. [PMID: 36399299 DOI: 10.1007/s11356-022-24216-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollution is one of the major problems facing human health, ecosystems, and biodiversity. This is particularly the case for water quality in Senegal. Fish can be used as a biomonitor of pollution by accumulating pollutants from the environment through their tissues. Fish is an indispensable element in the assessment of the quality of the environment due to the diversity of biological cycles and their position in the food chain. Fish, which is very sensitive to chemical and bacterial pollution, concentrates pollutants and is a good indicator of water quality. This review presents water pollution in Senegal and the possibility of using fish as an ideal monitoring matrix for marine environments, to detect the concentration of heavy metals and organic pollutants. The different extraction and analytical techniques used for fish biomonitoring will be also described.
Collapse
Affiliation(s)
- Cheikh Tidiane Dione
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES, UMR 7515 CNRS), University of Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 3, France
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Momar Ndiaye
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Olivier Delhomme
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES, UMR 7515 CNRS), University of Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 3, France
- Faculty of Sciences and Technics, Lorraine University, Metz, France
| | - Cheikhna Diebakate
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Department of Animal Biology, Dakar, Senegal
| | - Birame Ndiaye
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Ibrahima Diagne
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Dame Cisse
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Maoudo Hane
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Mame Mor Dione
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Sitor Diouf
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Abdoulaye Diop
- Cheikh Anta Diop University (UCAD), Faculty of Sciences and Technology, Laboratory of Physical Organic Chemistry and Environmental Analysis (LCPOAE), Dakar, Senegal
| | - Maurice Millet
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES, UMR 7515 CNRS), University of Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 3, France.
| |
Collapse
|
26
|
Hernandez G, Low J, Nand A, Bu A, Wallis SL, Kestle L, Berry TA. Quantifying and managing plastic waste generated from building construction in Auckland, New Zealand. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:205-213. [PMID: 35698793 PMCID: PMC9925883 DOI: 10.1177/0734242x221105425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Each year, construction and demolition (C&D) waste contributes at least 25,000 tonnes to the total amount of plastic landfilled in Auckland, New Zealand. The growing use of plastic in the packaging of building materials, use of polystyrene and products, such as building wrap, are contributing to this. Unlike countries such as the UK, most construction waste in New Zealand is not sorted on-site, and C&D waste is often co-mingled; therefore, minimal analysis on the recoverability of plastics has been attempted. This study identified and quantified the plastic waste stream produced from four construction sites, generated from various stages of construction in Auckland, New Zealand. Plastic waste was taken over three construction stages including demolition, exterior and weatherproofing and services and cladding, amounting to 112 kg (or 11.2 m3). The main types of plastic analysed were polyethylene, contributing 77% (by mass), and polyvinyl chloride, representing 31% (by mass). The main reason for the generation of plastic waste across the four sites was highly variable and dependent on construction stage. However, it was apparent that plastic packaging of materials was not the single area of concern, and plastic building componentry and protection materials should also be investigated for their contribution. This study supports the requirement for improved understanding and awareness around the composition and fate of plastic C&D waste. Long-term benefits to the construction industry are from raising awareness of the potential to make profits from valuable waste products and to improve environmental performance and reputation, for a competitive advantage in New Zealand.
Collapse
Affiliation(s)
- German Hernandez
- Environmental Solutions Research
Centre, Unitec Institute of Technology, Auckland, New Zealand
| | - Joanne Low
- Environmental Solutions Research
Centre, Unitec Institute of Technology, Auckland, New Zealand
| | - Ashveen Nand
- School of Environmental and Animal
Sciences, Unitec Institute of Technology, Auckland, New Zealand
| | - Alex Bu
- Environmental Solutions Research
Centre, Unitec Institute of Technology, Auckland, New Zealand
| | - Shannon L Wallis
- Environmental Solutions Research
Centre, Unitec Institute of Technology, Auckland, New Zealand
| | - Linda Kestle
- School of Building Construction, Unitec
Institute of Technology, Auckland, New Zealand
| | - Terri-Ann Berry
- Environmental Solutions Research
Centre, Unitec Institute of Technology, Auckland, New Zealand
| |
Collapse
|
27
|
Gea M, Toso A, Bentivegna GN, Buganza R, Abrigo E, De Sanctis L, Schilirò T. Oestrogenic Activity in Girls with Signs of Precocious Puberty as Exposure Biomarker to Endocrine Disrupting Chemicals: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:14. [PMID: 36612336 PMCID: PMC9819927 DOI: 10.3390/ijerph20010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The relationship between endocrine disrupting chemical (EDC) exposure and Precocious Puberty (PP) was investigated in this pilot study, involving girls with signs of PP (P) and pre-pubertal girls (C). Risk factors for PP were assessed through questionnaires, while 17β-oestradiol (E2) levels and oestrogenic activity were quantified on sera. The oestrogenic activity, expressed as E2 equivalent concentration (EEQ), was applied as EDC exposure biomarker. Questionnaires showed a low EDC knowledge, a high EDC exposure, and a potential relationship between some habits at risk for EDC exposure and PP. EEQs were similar between C and P; however, they were significantly higher in girls living in an urban environment than in girls living in a rural environment, suggesting a potential higher EDC exposure in cities. The results of this pilot study highlighted the need to raise awareness on EDCs and can be considered a starting point to clarify the relationship between EDC exposure and PP.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Anna Toso
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Institut régional du Cancer de Montpellier (ICM), Université Montpellier, 34090 Montpellier, France
| | | | - Raffaele Buganza
- Unit of Pediatric Endocrinology, Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, 10126 Turin, Italy
| | - Enrica Abrigo
- Unit of Pediatric Endocrinology, Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, 10126 Turin, Italy
| | - Luisa De Sanctis
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
- Unit of Pediatric Endocrinology, Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, 10126 Turin, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
28
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. ENVIRONMENT INTERNATIONAL 2022; 170:107611. [PMID: 36335895 DOI: 10.1016/j.envint.2022.107611] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Gaseous organic compounds, mainly volatile organic compounds (VOCs), have become a wide concern in various indoor environments where we spend the majority of our daily time. The sources, compositions, variations, and sinks of indoor VOCs are extremely complex, and their potential impacts on human health are less understood. Owing to the deployment of the state-of-the-art real-time mass spectrometry during the last two decades, our understanding of the sources, dynamic changes and chemical transformations of VOCs indoors has been significantly improved. This review aims to summarize the key findings from mass spectrometry measurements in recent indoor studies including residence, classroom, office, sports center, etc. The sources and sinks, compositions and distributions of indoor VOCs, and the factors (e.g., human activities, air exchange rate, temperature and humidity) driving the changes in indoor VOCs are discussed. The physical and chemical processes of gas-particle partitioning and secondary oxidation processes of VOCs, and their impacts on human health are summarized. Finally, the recommendations for future research directions on indoor VOCs measurements and indoor chemistry are proposed.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyao Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Mohammadi A, Dobaradaran S, Schmidt TC, Malakootian M, Spitz J. Emerging contaminants migration from pipes used in drinking water distribution systems: a review of the scientific literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75134-75160. [PMID: 36127528 DOI: 10.1007/s11356-022-23085-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Migration of emerging contaminants (ECs) from pipes into water is a global concern due to potential human health effects. Nevertheless, a review of migration ECs from pipes into water distribution systems is presently lacking. This paper reviews, the reported occurrence migration of ECs from pipes into water distribution systems in the world. Furthermore, the results related to ECs migration from pipes into water distribution systems, their probable sources, and their hazards are discussed. The present manuscript considered the existing reports on migration of five main categories of ECs including microplastics (MPs), bisphenol A (BPA), phthalates, nonylphenol (NP), perfluoroalkyl, and polyfluoroalkyl substances (PFAS) from distribution network into tap water. A focus on tap water in published literature suggests that pipes type used had an important role on levels of ECs migration in water during transport and storage of water. For comparison, tap drinking water in contact with polymer pipes had the highest mean concentrations of reviewed contaminants. Polyvinyl chloride (PVC), polyamide (PA), polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) were the most frequently detected types of microplastics (MPs) in tap water. Based on the risk assessment analysis of ECs, levels of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) were above 1, indicating a potential non-carcinogenic health risk to consumers. Finally, there are still scientific gaps on occurrence and migration of ECs from pipes used in distribution systems, and this needs more in-depth studies to evaluate their exposure hazards on human health.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Systems Environmental Health and Energy Research Center, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU) Universitätsstraße 5, 45141, Essen, Germany
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Jörg Spitz
- Akademie Für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
31
|
Ruczyńska W, Szlinder-Richert J, Meissner W, Ożarowska A, Zaniewicz G. Occurrence and tissue distribution of alkylphenols (APs) in selected waterbirds from the Southern Baltic. CHEMOSPHERE 2022; 303:135191. [PMID: 35690171 DOI: 10.1016/j.chemosphere.2022.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to determine the concentrations of nonylphenols (NPs) and 4-t-octylphenol (4tOP) in the muscles, liver, and kidneys of selected waterbird species. Three species with different feeding habits were selected, i.e., greater scaup (Aythya marila), great crested grebe (Podiceps cristatus), and great cormorant (Phalacrocorax carbo) to investigate the potential effects of diet on the level of contaminants tested. The determination and quantification of analytes were performed using gas chromatography with mass spectrometric detection (GC-MS). The highest NP concentrations were noted in the kidneys of greater scaups and great crested grebes (208.3 and 160.8 μg kg-1 ww, resp.), which were six to fourteen-fold higher than those in the muscles (15.0 and 25.6 μg kg-1 ww, resp.) and livers (22.9 and 13.8 μg kg-1 ww, resp.) of these species. In greater scaups, the mean concentration of NPs in the livers was lower than in the muscles, while in great crested grebes, it was the opposite and higher concentrations were noted in the muscles. The mean concentrations of NPs in the muscles and livers of great cormorants were at similarly low levels (12.5 and 9.7 μg kg-1 ww, resp.). The concentrations of 4tOP in all samples were low, ranging from <LOQ to 0.29 μg kg-1 ww. The results of our study indicated that sex and diet did not affect the NP tissue concentrations in different waterbird species, but the phenological period (migration vs breeding) might influence the contamination levels in the kidneys.
Collapse
Affiliation(s)
- Wiesława Ruczyńska
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland.
| | | | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Zaniewicz
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
32
|
Ma J, Lu Y, Teng Y, Tan C, Ren W, Cao X. Occurrence and health risk assessment of phthalate esters in tobacco and soils in tobacco-producing areas of Guizhou province, southwest China. CHEMOSPHERE 2022; 303:135193. [PMID: 35679984 DOI: 10.1016/j.chemosphere.2022.135193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Flue-cured tobacco is one of the important sources of national economy in China. However, Phthalic acid esters (PAEs) are ubiquitous contaminants in the cultivation and growth management of flue-cured tobacco, and attracting more and more attention. Here, six priority PAEs were detected in tobacco and soils and their residue characteristics, pollution sources were analyzed, and their exposure risks to the health of farmers were assessed. The concentration of six total PAEs ranged from 0.78 to 4.79 mg/kg in tobacco with the average of 1.75 mg/kg, and 0.84-25.68 mg/kg in soils with the average of 5.40 mg/kg. Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) had the highest detection frequency (DF = 100%) both in soil and tobacco samples. DEHP was the most abundant of the total PAEs in soil and tobacco samples, with the mean contribution values of 71.0% and 58.8%, respectively. Principal component analysis (PCA) indicates that the major sources of PAEs in the tobacco-soil system were plastic films, fertilizers and pesticides. Health risk assessment suggests that the non-cancer hazard indexes (NCHI) of dimethyl phthalate (DMP), diethyl phthalate (DEP), DBP and di-n-octyl phthalate (DnOP) in all samples for farmers were at acceptable levels (NCHI < 1), and the average carcinogenic hazard indexes (CHI) of butyl benzyl phthalate (BBP) and DEHP for farmers were 3.79 × 10-13 and 8.54 × 10-11 in soils, respectively, 8.23 × 10-13 and 1.95 × 10-11 in tobacco, respectively, which were considered to be very low level (CHI < 10-6). This study provides data on PAEs in tobacco and soils and their health risks which may provide valuable information to aid the management of tobacco cultivation and risk avoidance.
Collapse
Affiliation(s)
- Jun Ma
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China; College of Materials and Chemistry, Tongren University, Tongren, 554300, China.
| | - Yingang Lu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, China
| |
Collapse
|
33
|
Zhou F, Jin Z, Zhu L, Huang F, Ye A, Hou C. A preliminary study on the relationship between environmental endocrine disruptors and precocious puberty in girls. J Pediatr Endocrinol Metab 2022; 35:989-997. [PMID: 35692072 DOI: 10.1515/jpem-2021-0691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To explore the associations of environmental endocrine disruptors on precocious puberty in girls. METHODS This was a case-control study in which 30 girls with precocious puberty and 46 age- and race-matched prepubertal females were enrolled. The concentrations of 10 environment endocrine disruptors (bisphenol A, bisphenol B, butylparaben, propylparaben, ethvlparaben, methylparaben, mono-butyl phthalate, mono-2-ethylhexyl phthalate, monoethyl phthalate, and monomethyl phthalate) in urine and 10 steroid hormones (dihydrotestosterone, corticosterone, hydrocortisone, 11-deoxycortisol, 17α-hydroxy progesterone, 4-androstene-3,17-dione, estrone, deoxycorticosterone, pregnenolone, and dehydroepiandrosterone) in serum were detected with the liquid chromatography-mass spectrometry (LC-MS). RESULTS According to the Mann-Whitney U test, urinary levels of bisphenol A, monobutyl phthalate, and monomethyl phthalate were significantly higher in the precocious group than in the prepubertal group, and blood levels of hydrocortisone, 11-deoxycortisol, corticosterone, deoxycorticosterone, and pregnenolone were significantly lower in the precocious group than in the prepubertal group (p<0.05, VIP>1). CONCLUSIONS Our findings confirm the association between phthalate exposure and the incidence of precocious puberty in girls. Control and reduction of children exposure to phthalate esters should be considered as a health priority.
Collapse
Affiliation(s)
- Fang Zhou
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, P.R. China
| | - Zhenzhen Jin
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, P.R. China
| | - Li Zhu
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, P.R. China
| | - Fang Huang
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, P.R. China
| | - Angzhi Ye
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, P.R. China
| | - Chunguang Hou
- Traditional Chinese Medical Hospital of Zhuji, Zhuji, P.R. China
| |
Collapse
|
34
|
Siegel EL, Ghassabian A, Hipwell AE, Factor-Litvak P, Zhu Y, Steinthal HG, Focella C, Battaglia L, Porucznik CA, Collingwood SC, Klein-Fedyshin M, Kahn LG. Indoor and outdoor air pollution and couple fecundability: a systematic review. Hum Reprod Update 2022; 29:45-70. [PMID: 35894871 PMCID: PMC9825271 DOI: 10.1093/humupd/dmac029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/27/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Air pollution is both a sensory blight and a threat to human health. Inhaled environmental pollutants can be naturally occurring or human-made, and include traffic-related air pollution (TRAP), ozone, particulate matter (PM) and volatile organic compounds, among other substances, including those from secondhand smoking. Studies of air pollution on reproductive and endocrine systems have reported associations of TRAP, secondhand smoke (SHS), organic solvents and biomass fueled-cooking with adverse birth outcomes. While some evidence suggests that air pollution contributes to infertility, the extant literature is mixed, and varying effects of pollutants have been reported. OBJECTIVE AND RATIONALE Although some reviews have studied the association between common outdoor air pollutants and time to pregnancy (TTP), there are no comprehensive reviews that also include exposure to indoor inhaled pollutants, such as airborne occupational toxicants and SHS. The current systematic review summarizes the strength of evidence for associations of outdoor air pollution, SHS and indoor inhaled air pollution with couple fecundability and identifies gaps and limitations in the literature to inform policy decisions and future research. SEARCH METHODS We performed an electronic search of six databases for original research articles in English published since 1990 on TTP or fecundability and a number of chemicals in the context of air pollution, inhalation and aerosolization. Standardized forms for screening, data extraction and study quality were developed using DistillerSR software and completed in duplicate. We used the Newcastle-Ottawa Scale to assess risk of bias and devised additional quality metrics based on specific methodological features of both air pollution and fecundability studies. OUTCOMES The search returned 5200 articles, 4994 of which were excluded at the level of title and abstract screening. After full-text screening, 35 papers remained for data extraction and synthesis. An additional 3 papers were identified independently that fit criteria, and 5 papers involving multiple routes of exposure were removed, yielding 33 articles from 28 studies for analysis. There were 8 papers that examined outdoor air quality, while 6 papers examined SHS exposure and 19 papers examined indoor air quality. The results indicated an association between outdoor air pollution and reduced fecundability, including TRAP and specifically nitrogen oxides and PM with a diameter of ≤2.5 µm, as well as exposure to SHS and formaldehyde. However, exposure windows differed greatly between studies as did the method of exposure assessment. There was little evidence that exposure to volatile solvents is associated with reduced fecundability. WIDER IMPLICATIONS The evidence suggests that exposure to outdoor air pollutants, SHS and some occupational inhaled pollutants may reduce fecundability. Future studies of SHS should use indoor air monitors and biomarkers to improve exposure assessment. Air monitors that capture real-time exposure can provide valuable insight about the role of indoor air pollution and are helpful in assessing the short-term acute effects of pollutants on TTP.
Collapse
Affiliation(s)
- Eva L Siegel
- Columbia University, Mailman School of Public Health, New York, NY, USA
| | | | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pam Factor-Litvak
- Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Carolina Focella
- New York University Grossman School of Medicine, New York, NY, USA
| | - Lindsey Battaglia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Linda G Kahn
- Correspondence address. E-mail: https://orcid.org/0000-0002-6512-6160
| |
Collapse
|
35
|
Clérigo F, Ferreira S, Ladeira C, Marques-Ramos A, Almeida-Silva M, Mendes LA. Cytotoxicity Assessment of Nanoplastics and Plasticizers Exposure in In Vitro Lung Cell Culture Systems—A Systematic Review. TOXICS 2022; 10:toxics10070402. [PMID: 35878307 PMCID: PMC9315584 DOI: 10.3390/toxics10070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Emerging contaminants such as nanoplastics (NPs), as well as manufacturing by-products such as plasticizers, have gained global attention and concern due to their limited biodegradability and their potential impact on human health, in particular the effects on respiratory tissue. In parallel, in vitro cell culture techniques are key to the assessment and characterization of toxic effects and cellular mechanisms in different types of tissues and should provide relevant information to understand the hazardous potential of these emergent contaminants. This systematic review presents the main results on the current knowledge of the effects of NPs and plasticizers on lung cells, as assessed with the use of in vitro cell culture techniques. From the selected studies (n = 10), following the PRISMA approach, it was observed that cell viability was the most frequently assessed endpoint and that most studies focused on epithelial cells and exposures to polystyrene (PS). It was observed that exposure to NPs or plasticizers induces cytotoxicity in a dose-dependent manner, regardless of the size of the NPs. Furthermore, there is evidence that the characteristics of NPs can affect the toxic response by promoting the association with other organic compounds. As such, further in vitro studies focusing on the combination of NPs with plasticizers will be essential for the understanding of mechanisms of NPs toxicity.
Collapse
Affiliation(s)
- Fabiana Clérigo
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Sandra Ferreira
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Carina Ladeira
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Ana Marques-Ramos
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Marina Almeida-Silva
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, Bobadela-Loures, 2695-066 Lisbon, Portugal
| | - Luís André Mendes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Animal Ecology Group (GEA), Universidade de Vigo, 36210 Vigo, Spain
- Correspondence:
| |
Collapse
|
36
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
37
|
Goh CJH, Cui L, Wong JH, Lewis J, Goh M, Kong KW, Yang LK, Alfatah M, Kanagasundaram Y, Hoon S, Arumugam P. Diethyl phthalate (DEP) perturbs nitrogen metabolism in Saccharomyces cerevisiae. Sci Rep 2022; 12:10237. [PMID: 35715465 PMCID: PMC9205984 DOI: 10.1038/s41598-022-14284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
Phthalates are ubiquitously used as plasticizers in various consumer care products. Diethyl phthalate (DEP), one of the main phthalates, elicits developmental and reproductive toxicities but the underlying mechanisms are not fully understood. Chemogenomic profiling of DEP in S. cerevisiae revealed that two transcription factors Stp1 and Dal81 involved in the Ssy1-Ptr5-Ssy5 (SPS) amino acid-sensing pathway provide resistance to DEP. Growth inhibition of yeast cells by DEP was stronger in poor nitrogen medium in comparison to nitrogen-rich medium. Addition of amino acids to nitrogen-poor medium suppressed DEP toxicity. Catabolism of amino acids via the Ehrlich pathway is required for suppressing DEP toxicity. Targeted metabolite analyses showed that DEP treatment alters the amino acid profile of yeast cells. We propose that DEP inhibits the growth of yeast cells by affecting nitrogen metabolism and discuss the implications of our findings on DEP-mediated toxic effects in humans.
Collapse
Affiliation(s)
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Jin Huei Wong
- Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671, Singapore
| | - Jacqueline Lewis
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Megan Goh
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Kiat Whye Kong
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671, Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Shawn Hoon
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
38
|
Marlatt VL, Bayen S, Castaneda-Cortès D, Delbès G, Grigorova P, Langlois VS, Martyniuk CJ, Metcalfe CD, Parent L, Rwigemera A, Thomson P, Van Der Kraak G. Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. ENVIRONMENTAL RESEARCH 2022; 208:112584. [PMID: 34951986 DOI: 10.1016/j.envres.2021.112584] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in aquatic and terrestrial environments. The main objective of this review was to summarize the current knowledge of the impacts of EDCs on reproductive success in wildlife and humans. The examples selected often include a retrospective assessment of the knowledge of reproductive impacts over time to discern how the effects of EDCs have changed over the last several decades. Collectively, the evidence summarized here within reinforce the concept that reproduction in wildlife and humans is negatively impacted by anthropogenic chemicals, with several altering endocrine system function. These observations of chemicals interfering with different aspects of the reproductive endocrine axis are particularly pronounced for aquatic species and are often corroborated by laboratory-based experiments (i.e. fish, amphibians, birds). Noteworthy, many of these same indicators are also observed in epidemiological studies in mammalian wildlife and humans. Given the vast array of reproductive strategies used by animals, it is perhaps not surprising that no single disrupted target is predictive of reproductive effects. Nevertheless, there are some general features of the endocrine control of reproduction, and in particular, the critical role that steroid hormones play in these processes that confer a high degree of susceptibility to environmental chemicals. New research is needed on the implications of chemical exposures during development and the potential for long-term reproductive effects. Future emphasis on field-based observations that can form the basis of more deliberate, extensive, and long-term population level studies to monitor contaminant effects, including adverse effects on the endocrine system, are key to addressing these knowledge gaps.
Collapse
Affiliation(s)
- V L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - S Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - D Castaneda-Cortès
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - G Delbès
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - P Grigorova
- Département Science et Technologie, Université TELUQ, Montréal, QC, Canada
| | - V S Langlois
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - C J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - C D Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Parent
- Département Science et Technologie, Université TELUQ, Montréal, QC, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - P Thomson
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
39
|
Avila BS, Ramírez C, Téllez-Avila E, Combariza D. Occupational exposure to polychlorinated biphenyls (PCBs) in workers at companies in the Colombian electricity sector. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:941-951. [PMID: 32795198 DOI: 10.1080/09603123.2020.1806213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) comprise a family of 209 congeners that have low electrical conductivity and high thermal resistance due to their physicochemical properties and are thus widely used as dielectric oils, among other applications. Although PCBs are no longer used in dielectric oils in Colombia as of several years ago, electric transformers in Colombia might still contain PCBs, and workers might carry PCBs due to exposure from when they were still used in dielectric fluid. Thus, occupational exposure in Colombia to PCBs was evaluated by determining their concentrations in the blood plasma samples of 115 workers in the electricity sector . The sum of the six PCB indicators was between <LOD and 16.09 µg L-1 (median: <0.10 µg L-1, 95th percentile: 1.30 µg L-1), and the total concentration of PCBs calculated as PCB 138 + 153 + 180 × 1.7 was between <LOD and 3210.17 ng g-1 lipids (median: <7.30 ng g-1 , 95th percentile: 392.79 ng g-1). . One worker dedicated to transformer and capacitor maintenance activities presented a PCB value higher than the biological tolerance level of 15 µg L-1. The findings of the present investigation revealed that workers in the electricity sector face chronic occupational exposure to PCBs; Finally, the results can help to improve health policies related to these contaminants in the country.
Collapse
Affiliation(s)
- Boris Santiago Avila
- National Institute of Health, Environmental and Laboral Health Group, Bogota D.C, Colombia
| | - Carolina Ramírez
- National Institute of Health, Environmental and Laboral Health Group, Bogota D.C, Colombia
| | - Eliana Téllez-Avila
- National Institute of Health, Environmental and Laboral Health Group, Bogota D.C, Colombia
| | - David Combariza
- National Institute of Health, Environmental and Laboral Health Group, Bogota D.C, Colombia
| |
Collapse
|
40
|
Mousavi SE, Delgado-Saborit JM, Adivi A, Pauwels S, Godderis L. Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151654. [PMID: 34785217 DOI: 10.1016/j.scitotenv.2021.151654] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 05/25/2023]
Abstract
A rich body of literature indicates that environmental factors interact with the human microbiome and influence its composition and functions contributing to the pathogenesis of diseases in distal sites of the body. This systematic review examines the scientific evidence on the effect of environmental toxicants, air pollutants and endocrine disruptors (EDCs), on compositional and diversity of human microbiota. Articles from PubMed, Embase, WoS and Google Scholar where included if they focused on human populations or the SHIME® model, and assessed the effects of air pollutants and EDCs on human microbiome. Non-human studies, not written in English and not displaying original research were excluded. The Newcastle-Ottawa Scale was used to assess the quality of individual studies. Results were extracted and presented in tables. 31 studies were selected, including 24 related to air pollutants, 5 related to EDCs, and 2 related to EDC using the SHIME® model. 19 studies focussed on the respiratory system (19), gut (8), skin (2), vaginal (1) and mammary (1) microbiomes. No sufficient number of studies are available to observe a consistent trend for most of the microbiota, except for streptococcus and veillionellales for which 9 out of 10, and 3 out of 4 studies suggest an increase of abundance with exposure to air pollution. A limitation of the evidence reviewed is the scarcity of existing studies assessing microbiomes from individual systems. Growing evidence suggests that exposure to environmental contaminants could change the diversity and abundance of resident microbiota, e.g. in the upper and lower respiratory, gastrointestinal, and female reproductive system. Microbial dysbiosis might lead to colonization of pathogens and outgrowth of pathobionts facilitating infectious diseases. It also might prime metabolic dysfunctions disrupting the production of beneficial metabolites. Further studies should elucidate the role of environmental pollutants in the development of dysbiosis and dysregulation of microbiota-related immunological processes.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- Department of Water and Wastewater Treatment, Water and Wastewater Consulting Engineers (Design & Research), Isfahan, Iran
| | - Juana Maria Delgado-Saborit
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Castellon, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Sara Pauwels
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Belgium; IDEWE, External Service for Prevention and Protection at work, Interleuvenlaan 58, 3001 Heverlee, Belgium.
| |
Collapse
|
41
|
Wronka I, Kliś K. Effect of air pollution on age at menarche in polish females, born 1993-1998. Sci Rep 2022; 12:4820. [PMID: 35315430 PMCID: PMC8938500 DOI: 10.1038/s41598-022-08577-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of the study was to analyse the association between the degree of air pollution (suspended particulate matter, sulphur dioxide, benzopyrene levels) in the location of residence during childhood and adolescence and the age at menarche. The research was carried out in the period from 2015 to 2018 in Poland. Anthropometric measurements were performed, and questionnaire data were collected from 1,257 women, aged 19-25 years. The average levels of subjects' exposure to analysed air pollutants, i.e., particulate matter, sulphur dioxide, nitric oxide and benzene during childhood-adolescence was assessed from the data acquired by the Polish Chief Inspectorate for Environmental Protection. Negative relationships between age at menarche and suspended particulate matter as well as nitrogen levels were found. A similar trend was observed in an analysis of the relationship between age at menarche and the complex air pollution index. The tendency for age at menarche to decrease together with worsening air quality was also visible after adjusted for socioeconomic status. Girls exposed to high suspended particulate matter levels were characterised by higher risk of early age at menarche. High levels of air pollution are related to younger age at menarche and the risk of the menstruation onset below 11 years.
Collapse
Affiliation(s)
- Iwona Wronka
- Laboratory of Anthropology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, ul. Gronostajowa 9, 30-387, Kraków, Poland.
| | - Katarzyna Kliś
- Laboratory of Anthropology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, ul. Gronostajowa 9, 30-387, Kraków, Poland
- Department of Human Biology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
42
|
Şolpan D, Ahmed Ibrahim KE, Elbashir AA, Mehrnia M, Osman Ahmed MM, Güven O. Radiolytic degradation of carbaryl in aqueous solution by gamma-irradiation/H2O2 process. Appl Radiat Isot 2022; 184:110210. [DOI: 10.1016/j.apradiso.2022.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/25/2021] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
|
43
|
Fruh V, Cheng JJ, Aschengrau A, Mahalingaiah S, Lane KJ. Fine particulate matter and polycystic ovarian morphology. Environ Health 2022; 21:26. [PMID: 35180862 PMCID: PMC8855564 DOI: 10.1186/s12940-022-00835-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Polycystic ovary morphology (PCOM) is an ultrasonographic finding that can be present in women with ovulatory disorder and oligomenorrhea due to hypothalamic, pituitary, and ovarian dysfunction. While air pollution has emerged as a possible disrupter of hormone homeostasis, limited research has been conducted on the association between air pollution and PCOM. METHODS We conducted a longitudinal cohort study using electronic medical records data of 5,492 women with normal ovaries at the first ultrasound that underwent a repeated pelvic ultrasound examination during the study period (2004-2016) at Boston Medical Center. Machine learning text algorithms classified PCOM by ultrasound. We used geocoded home address to determine the ambient annual average PM2.5 exposures and categorized into tertiles of exposure. We used Cox Proportional Hazards models on complete data (n = 3,994), adjusting for covariates, and additionally stratified by race/ethnicity and body mass index (BMI). RESULTS Cumulative exposure to PM2.5 during the study ranged from 4.9 to 17.5 µg/m3 (mean = 10.0 μg/m3). On average, women were 31 years old and 58% were Black/African American. Hazard ratios and 95% confidence intervals (CI) comparing the second and third PM2.5 exposure tertile vs. the reference tertile were 1.12 (0.88, 1.43) and 0.89 (0.62, 1.28), respectively. No appreciable differences were observed across race/ethnicity. Among women with BMI ≥ 30 kg/m2, we observed weak inverse associations with PCOM for the second (HR: 0.93, 95% CI: 0.66, 1.33) and third tertiles (HR: 0.89, 95% CI: 0.50, 1.57). CONCLUSIONS In this study of reproductive-aged women, we observed little association between PM2.5 concentrations and PCOM incidence. No dose response relationships were observed nor were estimates appreciably different across race/ethnicity within this clinically sourced cohort.
Collapse
Affiliation(s)
- Victoria Fruh
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Jay Jojo Cheng
- Department of Biostatistics and Medical Informatics, University of Wisconsin, 702 West Johnson Street, Madison, WI, USA
| | - Ann Aschengrau
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Shruthi Mahalingaiah
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Obstetrics and Gynecology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114-2696, USA
| | - Kevin J Lane
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
44
|
Nováková Z, Novák J, Bittner M, Čupr P, Přibylová P, Kukučka P, Smutná M, Escher BI, Demirtepe H, Miralles-Marco A, Hilscherová K. Toxicity to bronchial cells and endocrine disruptive potentials of indoor air and dust extracts and their association with multiple chemical classes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127306. [PMID: 34879546 DOI: 10.1016/j.jhazmat.2021.127306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Pollution of indoor environment, where people spend much of their time, comprises complex mixtures of compounds with vastly understudied hazard potential. This study examined several important specific toxic effects and pollutant levels (177 compounds) of indoor samples (air gas phase, PM10 and dust) from different microenvironments after two extractions with focus on their gas/particle/dust distribution and polarity. The endocrine disruptive (ED) potential was assessed by human cell-based in vitro bioassays addressing anti-/estrogenicity, anti-/androgenicity, aryl hydrocarbon, thyroid and peroxisome proliferator-activated receptor-mediated activities. Potential toxicity to respiratory tract tissue was assessed using human bronchial cell line. The toxicological analyses pointed out the relevance of both inhalation and ingestion exposure, with significant effects detected after exposure to extracts from all three studied matrices with distinct gas/particle distribution patterns. Chemical analyses document the high complexity of indoor pollutant mixtures with greatest levels of phthalates, their emerging alternatives, and PAHs in dust. Despite the detection of up to 108 chemicals, effects were explained only to low extent. This emphasizes data gaps regarding ED potencies of many detected abundant indoor contaminants, but also potential presence of other unidentified ED compounds. The omnipresent ED potentials in indoor environment rise concern regarding associated human health risk.
Collapse
Affiliation(s)
- Zuzana Nováková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Michal Bittner
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research - UFZ, Cell Toxicology, 04318 Leipzig, Germany
| | - Hale Demirtepe
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ana Miralles-Marco
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic.
| |
Collapse
|
45
|
Li Y, Zheng N, Li Y, Li P, Sun S, Wang S, Song X. Exposure of childbearing-aged female to phthalates through the use of personal care products in China: An assessment of absorption via dermal and its risk characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150980. [PMID: 34662603 DOI: 10.1016/j.scitotenv.2021.150980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Phthalates (PAEs) are widely used in personal care products (PCPs) and skin care packaging materials. Through national representative sampling, 328 childbearing-aged females in China were investigated by questionnaire, whose contact factors for 30 cosmetic products were collected. According to the daily exposure method and adverse cumulative effects of PAE exposure on female reproduction, we derived the ERα, ERβ binding, and AR anti-androgenic effects. The utilization rates of acne cleanser, acne cream, cleanser (non-acne), and cream (non-acne) in volunteers were 21.90%, 22.22%, 51.63%, and 51.96%, respectively. Examining the data for PAEs in PCPs, the content of DBP (dibutyl phthalate) in them was significantly higher for tubes (0.26 ± 0.05 μg/g) and other packaging (pump type and metal tube) (0.25 ± 0.03 μg/g) than bowl (0.17 ± 0.04 μg/g). The DBP content of acne cream (0.27 ± 0.03 μg/g) was significantly higher than that of non-acne cream (0.17 ± 0.03 μg/g); likewise, there was significantly more DEHP (di (2-ethylhexyl) phthalate) in acne cleanser (0.87 ± 0.15 μg/g) than non-acne cleanser (0.64 ± 0.36 μg/g). Students and office worker were the main consumers of PCPs; however, among all occupation groups, the daily exposure dose of PCPs for workers was highest (mean = 0.0004, 0.0002, 0.0009 μg/kg bw/day for DEP (diethyl phthalate), DBP, and DEHP, respectively). The cumulative indices of PAEs' exposure revealed that the level of ERα and ERβ binding and AR anti-androgenic effects in workers was respectively 0.4935, 0.0186, and 0.2411 μg/kg bw/day. The risk index (HITDI and HIRfDs) of DEP, DBP, and DEHP was lower than their corresponding reference value (hazard index <1), but using PCPs may cause potential health risks. Therefore, we should pay attention to the adverse effects of PAEs on female reproductive functioning, especially the cumulative exposure of females of childbearing age.
Collapse
Affiliation(s)
- Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Na Zheng
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China.
| | - Yang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Pengyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xue Song
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
46
|
Wan Y, Diamond ML, Siegel JA. Quantitative filter forensics for semivolatile organic compounds in social housing apartments. INDOOR AIR 2022; 32:e12994. [PMID: 35225385 DOI: 10.1111/ina.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Residents from low-income social housing are vulnerable to adverse health effects from indoor air pollution. Particle-bound concentrations of eight phthalates and 12 polycyclic aromatic hydrocarbons (PAHs) in indoor air were measured using quantitative filter forensics with portable air cleaners deployed for three one-week periods from 2015 to 2017. The sample included 143 apartments across seven multi-unit social housing buildings in Toronto, Canada, that went through energy retrofits in 2016. Eight phthalates and six PAHs were found in more than 50% of the apartments in either of the three sampling periods. Di(2-ethylhexyl) phthalate (DEHP) and phenanthrene were the dominant phthalate and PAH, with median concentrations of 146, 143, and 130 ng/m3 and 1.51, 0.58, and 0.76 ng/m3 in the late spring of 2015, and after retrofits in late spring 2017 and winter of 2017, respectively. SVOC concentrations were generally lower after energy retrofits, with significant differences for phenanthrene, fluoranthene, and pyrene. Lower concentrations post-retrofit may be related to less overheating and less need for opening windows. Concentrations of phthalates and PAHs in this study were similar to or higher than those reported in the literature. Results suggest that the use of portable air filters is a promising method to assess concentrations of indoor particle-bound SVOCs.
Collapse
Affiliation(s)
- Yuchao Wan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
- School of Environment, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey A Siegel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Runkel AA, Mazej D, Snoj Tratnik J, Tkalec Ž, Kosjek T, Horvat M. Exposure of men and lactating women to environmental phenols, phthalates, and DINCH. CHEMOSPHERE 2022; 286:131858. [PMID: 34399256 DOI: 10.1016/j.chemosphere.2021.131858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Phthalates and 1,2-Cyclohexane dicarboxylic acid diisononyl ester (DINCH), bisphenols (BPs), parabens (PBs), and triclosan (TCS) are high-production-volume chemicals of pseudo-persistence that are concerning for the environment and human health. This study aims to assess the exposure to 10 phthalates, DINCH, and environmental phenols (3 BPs, 7 PBs, and TCS) of Slovenian men (n = 548) and lactating primiparous women (n = 536). We observed urinary concentrations comparable to studies from other countries and significant differences among the sub-populations. In our study, men had significantly higher levels of phthalates, DINCH, and BPs, whereas the concentrations of PBs in urine were significantly higher in women. The most significant determinant of exposure was the area of residence and the year of sampling (2008-2014) that mirrors trends in the market. Participants from urban or industrialized sampling locations had higher levels of almost all monitored analytes compared to rural locations. In an attempt to assess the risk of the population, hazard quotient (HQ) values were calculated for individual compounds and the chemical mixture. Individual analytes do not seem to pose a risk to the studied population at current exposure levels, whereas the HQ value of the chemical mixture is near the threshold of 1 which would indicate a higher risk. We conclude that greater emphasis on the risk resulting from cumulative exposure to chemical mixtures and additional studies are needed to estimate the exposure of susceptible populations, such as children.
Collapse
Affiliation(s)
- Agneta A Runkel
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | | | - Žiga Tkalec
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Tina Kosjek
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
48
|
UV light impact on phthalates migration from children’s toys into artificial saliva. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc210928097a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phthalates has been widely used in children?s toys as plastic plasticizers and softeners. Therefore, attention should be paid to plastic toys, especially those that children can put in their mouths. In this paper quantification of five phthalates: DMP, DnBP, BBP, DEHP and DnOP in plastic toys, as well as irradiation of toys with UV light was performed. After sample preparation and development of the liquid?liquid phthalate extraction method from artificial saliva phthalate quantitative determination using the GC?MS technique was performed. The mean recovery value for DEHP is 77.03?2.76 %. The determination of phthalate in the recipient models (artificial saliva and n-hexane) was performed after 6, 15 and 30 days of the migration test using the GC?MS technique. Based on the known mass % DEHP in the analyzed toys, the percentage of phthalate migration from each analyzed toy to the recipient model after 6, 15 and 30 days of the migration test was calculated. The results show that there is no significant migration of DEHP into artificial saliva, due to high polarity of the recipient (artificial saliva is polar), unlike n-hexane where the migration of DEHP is significant because it is a non-polar solvent.
Collapse
|
49
|
Migliaccio S, Bimonte VM, Besharat ZM, Sabato C, Lenzi A, Crescioli C, Ferretti E. Environmental Contaminants Acting as Endocrine Disruptors Modulate Atherogenic Processes: New Risk Factors for Cardiovascular Diseases in Women? Biomolecules 2021; 12:biom12010044. [PMID: 35053192 PMCID: PMC8773563 DOI: 10.3390/biom12010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 12/04/2022] Open
Abstract
The number of aged individuals is increasing worldwide, rendering essential the comprehension of pathophysiological mechanisms of age-related alterations, which could facilitate the development of interventions contributing to “successful aging” and improving quality of life. Cardiovascular diseases (CVD) include pathologies affecting the heart or blood vessels, such as hypertension, peripheral artery disease and coronary heart disease. Indeed, age-associated modifications in body composition, hormonal, nutritional and metabolic factors, as well as a decline in physical activity are all involved in the increased risk of developing atherogenic alterations that raise the risk of CVD development. Several factors have been reported to play a role in the alterations observed in muscle and endothelial cells and that lead to increased CVD, such as genetic pattern, smoking and unhealthy lifestyle. Moreover, a difference in the risk of these diseases in women and men has been reported. Interestingly, in the past decades attention has been focused on a potential role of several pollutants that disrupt human health by interfering with hormonal pathways, and more specifically in non-communicable diseases such as obesity, diabetes and CVD. This review will focus on the potential alteration induced by Endocrine Disruptors (Eds) in the attempt to characterize a potential role in the cellular and molecular mechanisms involved in the atheromatous degeneration process and CVD progression.
Collapse
Affiliation(s)
- Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (V.M.B.); (C.C.)
- Correspondence:
| | - Viviana M. Bimonte
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (V.M.B.); (C.C.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (C.S.); (A.L.); (E.F.)
| | - Claudia Sabato
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (C.S.); (A.L.); (E.F.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (C.S.); (A.L.); (E.F.)
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (V.M.B.); (C.C.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (C.S.); (A.L.); (E.F.)
| |
Collapse
|
50
|
Tsitsimpikou C, Georgiadis N, Tsarouhas K, Kartsidis P, Foufa E, Bacopoulou F, Choursalas A, Kouretas D, Nikolaidis AK, Koulaouzidou EA. Children and Parents' Awareness Regarding Potential Hazards Derived from the Use of Chemical Products in Greece. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412948. [PMID: 34948557 PMCID: PMC8701440 DOI: 10.3390/ijerph182412948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Over the last decades, human activities prompted the high production and widespread use of household chemical products, leading to daily exposure of humans to several chemicals. The objective of this study was to investigate the frequency of chemicals' use by children and parents in Greece and estimate the level of risk awareness and understanding among them. A total of 575 parents and children were asked to answer an anonymous, closed-ended, validated, and self-administered questionnaire. One-third of the children and almost half of the parents participating in the study believed that commonly used chemical products do not pose any risk to human health or to the environment, despite the product labelling. The majority of both children (61.8%) and parents (70.6%) were informed about product safety via the product labelling. Around 20% in both groups could not differentiate between systemic toxicity and acute lethal effects depicted by pictograms on the label and milder hazards, such as skin irritation. Moreover, the information on hazard and precautionary statements appearing on the label was very poorly perceived. Therefore, as both children and parents seem not to clearly identify the hazards and risks arising from the use of everyday chemical products, targeted awareness policies should be implemented to support the safe use of household products.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Kartsidis
- School of Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece;
| | - Eleni Foufa
- General Chemical State Laboratory of Greece, 11521 Athens, Greece; (C.T.); (E.F.)
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Athanasios Choursalas
- Department of Pediatric Cardiology, Onasseio Cardiac Surgery Center, 17674 Athens, Greece;
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Alexandros K. Nikolaidis
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece;
| | - Elisabeth A. Koulaouzidou
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-231-099-9616
| |
Collapse
|