1
|
Morris CJ, Rolf MG, Starnes L, Villar IC, Pointon A, Kimko H, Di Veroli GY. Modelling hemodynamics regulation in rats and dogs to facilitate drugs safety risk assessment. Front Pharmacol 2024; 15:1402462. [PMID: 39534082 PMCID: PMC11555398 DOI: 10.3389/fphar.2024.1402462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceutical companies routinely screen compounds for hemodynamics related safety risk. In vitro secondary pharmacology is initially used to prioritize compounds while in vivo studies are later used to quantify and translate risk to humans. This strategy has shown limitations but could be improved via the incorporation of molecular findings in the animal-based toxicological risk assessment. The aim of this study is to develop a mathematical model for rat and dog species that can integrate secondary pharmacology modulation and therefore facilitate the overall pre-clinical safety translation assessment. Following an extensive literature review, we built two separate models recapitulating known regulation processes in dogs and rats. We describe the resulting models and show that they can reproduce a variety of interventions in both species. We also show that the models can incorporate the mechanisms of action of a pre-defined list of 50 pharmacological mechanisms whose modulation predict results consistent with known pharmacology. In conclusion, a mechanistic model of hemodynamics regulations in rat and dog species has been developed to support mechanism-based safety translation in drug discovery and development.
Collapse
Affiliation(s)
- Christopher J. Morris
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael G. Rolf
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Starnes
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inmaculada C. Villar
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Giovanni Y. Di Veroli
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
2
|
Marocolo M, Hohl R, Arriel RA, Mota GR. Ischemic preconditioning and exercise performance: are the psychophysiological responses underestimated? Eur J Appl Physiol 2023; 123:683-693. [PMID: 36478078 DOI: 10.1007/s00421-022-05109-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The findings of the ischemic preconditioning (IPC) on exercise performance are mixed regarding types of exercise, protocols and participants' training status. Additionally, studies comparing IPC with sham (i.e., low-pressure cuff) and/or control (i.e., no cuff) interventions are contentious. While studies comparing IPC versus a control group generally show an IPC significant effect on performance, sham interventions show the same performance improvement. Thus, the controversy over IPC ergogenic effect may be due to limited discussion on the psychophysiological mechanisms underlying cuff maneuvers. Psychophysiology is the study of the interrelationships between mind, body and behavior, and mental processes are the result of the architecture of the nervous system and voluntary exercise is a behavior controlled by the central command modulated by sensory inputs. Therefore, this narrative review aims to associate potential IPC-induced positive effects on performance with sensorimotor pathways (e.g., sham influencing bidirectional body-brain integration), hemodynamic and metabolic changes (i.e., blood flow occlusion reperfusion cycles). Overall, IPC and sham-induced mechanisms on exercise performance may be due to a bidirectional body-brain integration of muscle sensory feedback to the central command resulting in delayed time to exhaustion, alterations on perceptions and behavior. Additionally, hemodynamic responses and higher muscle oxygen extraction may justify the benefits of IPC on muscle contractile function.
Collapse
Affiliation(s)
- Moacir Marocolo
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Rodrigo Hohl
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Rhaí André Arriel
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gustavo R Mota
- Exercise Science, Health and Human Performance Research Group, Department of Sport Sciences, Institute of Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
3
|
Smith CR, Dickinson KJ, Carrazana G, Beyer A, Spana JC, Teixeira FJP, Zamajtuk K, Maciel CB, Busl KM. Ultrasound-Guided Suprazygomatic Nerve Blocks to the Pterygopalatine Fossa: A Safe Procedure. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:1366-1375. [PMID: 35043949 PMCID: PMC9608014 DOI: 10.1093/pm/pnac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 01/06/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Large-scale procedural safety data on pterygopalatine fossa nerve blocks (PPFBs) performed via a suprazygomatic, ultrasound-guided approach are lacking, leading to hesitancy surrounding this technique. The aim of this study was to characterize the safety of PPFB. METHODS This retrospective chart review examined the records of adults who received an ultrasound-guided PPFB between January 1, 2016, and August 30, 2020, at the University of Florida. Indications included surgical procedures and nonsurgical pain. Clinical data describing PPFB were extracted from medical records. Descriptive statistics were calculated for all variables, and quantitative variables were analyzed with the paired t test to detect differences between before and after the procedure. RESULTS A total of 833 distinct PPFBs were performed on 411 subjects (59% female, mean age 48.5 years). Minor oozing from the injection site was the only reported side effect, in a single subject. Although systolic blood pressure, heart rate, and oxygen saturation were significantly different before and after the procedure (132.3 vs 136.4 mm Hg, P < 0.0001; 78.2 vs 80.8, P = 0.0003; and 97.8% vs 96.3%, P < 0.0001; respectively), mean arterial pressure and diastolic blood pressure were not significantly different (96.2 vs 97.1 mm Hg, P = 0.1545, and 78.2 vs 77.4 mm Hg, P = 0.1314, respectively). Similar results were found within subgroups, including subgroups by sex, race, and indication for PPFB. DISCUSSION We have not identified clinically significant adverse effects from PPFB performed with an ultrasound-guided suprazygomatic approach in a large cohort in the hospital setting. PPFBs are a safe and well-tolerated pain management strategy; however, prospective multicenter studies are needed.
Collapse
Affiliation(s)
- Cameron R Smith
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida
| | - Katie J Dickinson
- Department of Neurology, Division of Neurocritical Care, University of Florida College of Medicine, Gainesville, Florida
| | | | | | - Jessica C Spana
- Department of Neurology, Division of Neurocritical Care, University of Florida College of Medicine, Gainesville, Florida
| | - Fernanda J P Teixeira
- Department of Neurology, Division of Neurocritical Care, University of Florida College of Medicine, Gainesville, Florida
| | | | - Carolina B Maciel
- Department of Neurology, Division of Neurocritical Care, University of Florida College of Medicine, Gainesville, Florida
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, Florida
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Katharina M Busl
- Correspondence to: Katharina M. Busl, MD, MS, Department of Neurology, Division of Neurocritical Care, McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL 32610, USA. Tel: 352 273 5500; Fax: 352 273 5575; E-mail:
| |
Collapse
|
4
|
Duyn JH, Ozbay PS, Chang C, Picchioni D. Physiological changes in sleep that affect fMRI inference. Curr Opin Behav Sci 2019; 33:42-50. [PMID: 32613032 DOI: 10.1016/j.cobeha.2019.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
fMRI relies on a localized cerebral blood flow (CBF) response to changes in cortical neuronal activity. An underappreciated aspect however is its sensitivity to contributions from autonomic physiology that may affect CBF through changes in vascular resistance and blood pressure. As is reviewed here, this is crucial to consider in fMRI studies of sleep, given the close linkage between the regulation of arousal state and autonomic physiology. Typical methods for separating these effects are based on the use of reference signals that may include physiological parameters such as heart rate and respiration; however, the use of time-invariant models may not be adequate due to the possibly changing relationship between reference and fMRI signals with arousal state. In addition, recent research indicates that additional physiological reference signals may be needed to accurately describe changes in systemic physiology, including sympathetic indicators such as finger skin vascular tone and blood pressure.
Collapse
Affiliation(s)
- Jeff H Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| | - Pinar S Ozbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University
| | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| |
Collapse
|
5
|
Liu SC, Kao MC, Huang YC, Su WF. Vidian Neurectomy for Management of Chronic Cluster Headache. Neurosurgery 2019; 84:1059-1064. [PMID: 30535031 DOI: 10.1093/neuros/nyy136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Management of chronic cluster headache (CCH) remains a challenging endeavor, and the optimal surgical approach for medically refractory CCH remains controversial. OBJECTIVE To conduct a preliminary evaluation of the efficacy and safety of vidian neurectomy (VN) in patients with medically refractory CCH. METHODS Between March 2013 and December 2015, 9 CCH patients, all of whom had failed to respond to conservative therapy, underwent VN with a precise nerve cut and maximal preservation of the sphenopalatine ganglion. Data included demographic variables, cluster headache onset and duration, mean attack frequency, mean attack intensity, and pain disability index measures pre- and through 12-mo postsurgery. RESULTS Seven of the 9 cases (77.8%) showed immediate improvement. Improvement was delayed by 1 mo in 1 patient, after which the surgical effects of pain relief were maintained throughout the follow-up period. One patient (11.1%) did not improve after surgery. One year after VN, patients' mean attack frequency, mean attack intensity, and pain disability index decreased by 54.5%, 52.9%, and 56.4%, respectively. No patient experienced treatment-related side effects or complications. CONCLUSION VN is an effective treatment method for CCH patients. Precise Vidian nerve identification and maximal preservation of the sphenopalatine ganglion may achieve good surgical outcomes and dramatically improve quality of life among patients, without significant adverse events.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ming-Chang Kao
- Division of Pain Medicine, Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, Republic of China.,School of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
| | - Yun-Chen Huang
- School of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, Republic of China
| | - Wan-Fu Su
- School of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, Republic of China
| |
Collapse
|
6
|
Zaproudina N, Rissanen APE, Lipponen JA, Vierola A, Rissanen SM, Karjalainen PA, Soinila S, Närhi M. Tooth Clenching Induces Abnormal Cerebrovascular Responses in Migraineurs. Front Neurol 2018; 9:1112. [PMID: 30622506 PMCID: PMC6309104 DOI: 10.3389/fneur.2018.01112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023] Open
Abstract
Prevalence of masticatory parafunctions, such as tooth clenching and grinding, is higher among migraineurs than non-migraineurs, and masticatory dysfunctions may aggravate migraine. Migraine predisposes to cerebrovascular disturbances, possibly due to impaired autonomic vasoregulation, and sensitization of the trigeminovascular system. The relationships between clenching, migraine, and cerebral circulation are poorly understood. We used Near-Infrared Spectroscopy to investigate bilateral relative oxy- (%Δ[O2Hb]), deoxy- (%Δ[HHb]), and total (%Δ[tHb]) hemoglobin concentration changes in prefrontal cortex induced by maximal tooth clenching in twelve headache-free migraineurs and fourteen control subjects. From the start of the test, migraineurs showed a greater relative increase in right-side %Δ[HHb] than controls, who showed varying reactions, and right-side increase in %Δ[tHb] was also greater in migraineurs (p < 0.001 and p < 0.05, respectively, time-group interactions, Linear mixed models). With multivariate regression model, migraine predicted the magnitude of maximal blood pressure increases, associated in migraineurs with mood scores and an intensity of both headache and painful signs of temporomandibular disorders (pTMD). Although changes in circulatory parameters predicted maximal NIRS responses, the between-group differences in the right-side NIRS findings remained significant after adjusting them for systolic blood pressure and heart rate. A family history of migraine, reported by all migraineurs and four controls, also predicted maximal increases in both %Δ[HHb] and %Δ[tHb]. Presence of pTMD, revealed in clinical oral examination in eight migraineurs and eight controls, was related to maximal %Δ[HHb] increase only in controls. To conclude, the greater prefrontal right-side increases in cerebral %Δ[HHb] and %Δ[tHb] may reflect disturbance of the tooth clenching-related cerebral (de)oxygenation based on impaired reactivity and abnormal microcirculation processes in migraineurs. This finding may have an impact in migraine pathophysiology and help to explain the deleterious effect of masticatory dysfunctions in migraine patients. However, the role of tooth clenching as a migraine trigger calls for further studies.
Collapse
Affiliation(s)
- Nina Zaproudina
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Antti-Pekka E Rissanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Jukka A Lipponen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Anu Vierola
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Saara M Rissanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Pasi A Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Seppo Soinila
- Division of Clinical Neurosciences, General Neurology, Turku University Hospital and Department of Neurology, Turku University Hospital, Turku, Finland
| | - Matti Närhi
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Cakmak YO, Cotofana S, Jäger C, Morawski M, Sora MC, Werner M, Hammer N. Peri-arterial Autonomic Innervation of the Human Ear. Sci Rep 2018; 8:11469. [PMID: 30065349 PMCID: PMC6068185 DOI: 10.1038/s41598-018-29839-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Auricular vasomotor responses are considered to be signs of clinical conditions including migraine. The mechanisms of auricular vasomotor control are still debatable. This study aimed at investigating perivascular co-transmitters of vasomotor control in the auricle. Another aim was to provide three-dimensional arterial maps of the auricle, as a proxy of periarterial autonomic innervation. Twelve paired human auricles were used to visualize the arteries following Spalteholz clearing and μ-CT-based reconstruction. Perivascular innervation staining was conducted using anti-tyrosine hydroxylase (TH), anti-neuropeptide Y (NPY), anti-vasoactive intestinal peptide (VIP) and anti-choline acetyl transferase (ChAT). The combined Spalteholz technique and μ-CT revealed a highly consistent arrangement of the auricular vasculature. The superficial temporal (STA) and posterior auricular artery (PAA) supply the helical rim arcade and arcade, with the STA mainly forming the superior and the PAA forming the middle and inferior auricular artery. Co-existence of sympathetic NPY+ and TH+ terminals mediating vasoconstriction, and VIP+ and ACh+ indicating cholinergic vasodilatation, was found in the perivascular zone. The presence of both sympathetic vasoconstriction and cholinergic co-innervation for active vasodilatation was shown in the perivascular auricular zone. Assuming that the highly-consistent vasculature gives way to these terminals, this periarterial innervation may be found spread out across the helix.
Collapse
Affiliation(s)
- Yusuf Ozgur Cakmak
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Dunedin, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| | | | - Carsten Jäger
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Leipzig, Germany
| | - Markus Morawski
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Leipzig, Germany
| | - Mircea-Constantin Sora
- Sigmund-Freud Private University Vienna, Centre for Anatomy and Molecular Medicine, Vienna, Austria.,Medical University of Vienna, Zentrum für Anatomie und Zellbiologie, Vienna, Austria
| | - Michael Werner
- Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Niels Hammer
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany. .,Department of Trauma, Orthopedic and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany.
| |
Collapse
|
8
|
Serrador JM, Freeman R. Enhanced Cholinergic Activity Improves Cerebral Blood Flow during Orthostatic Stress. Front Neurol 2017; 8:103. [PMID: 28373858 PMCID: PMC5357636 DOI: 10.3389/fneur.2017.00103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
Cerebral blood flow (CBF) and consequently orthostatic tolerance when upright depends on dilation of the cerebral vasculature in the face of reduced perfusion pressure associated with the hydrostatic gradient. However, it is still unclear if cholinergic activation plays a role in this dilation. To determine if enhancing central cholinergic activity with the centrally acting acetylcholinesterase inhibitor, physostigmine would increase CBF when upright compared to the peripherally acting acetylcholinesterase inhibitor, neostigmine, or saline. We performed a randomized double-blind dose-ranging study that took place over 3 days in a hospital-based research lab. Eight healthy controls (six women and two men, mean age, 26 years; range 21–33) were given infusions of physostigmine, neostigmine, or saline on three different days. Five-minute tilts were repeated at baseline (no infusion), Dose 1 (0.2 μg/kg/min physostigmine; 0.1 μg/kg/min neostigmine) and Dose 2 (0.6 μg/kg/min physostigmine or 0.3 μg/kg/min neostigmine), and placebo (0.9% NaCl). Cerebral blood velocity, beat-to-beat blood pressure, and end-tidal CO2 were continuously measured during tilts. Physostigmine (0.6 μg/kg/min) resulted in higher cerebral blood velocity during tilt (90.5 ± 1.5%) than the equivalent neostigmine (85.5 ± 2.6%) or saline (84.8 ± 1.7%) trials (P < 0.05). This increase occurred despite a greater postural hypocapnia, suggesting physostigmine had a direct vasodilatory effect on the cerebral vasculature. Cerebral hypoperfusion induced by repeated tilts was eliminated by infusion of physostigmine not neostigmine. In conclusion, this study provides the first evidence that enhancement of central, not peripheral, cholinergic activity attenuates the physiological decrease in CBF seen during upright tilt. These data support the need for further research to determine if enhancing central cholinergic activity may improve symptoms in patients with symptomatic orthostatic intolerance.
Collapse
Affiliation(s)
- Jorge M Serrador
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences, Newark, NJ, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Cardiovascular Electronics, National University of Ireland Galway, Galway, Ireland
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
9
|
Borsody MK, Sacristan E. Facial nerve stimulation as a future treatment for ischemic stroke. Brain Circ 2016; 2:164-177. [PMID: 30276294 PMCID: PMC6126226 DOI: 10.4103/2394-8108.195281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 11/23/2022] Open
Abstract
Stimulation of the autonomic parasympathetic fibers of the facial nerve system (hereafter simply “facial nerve”) rapidly dilates the cerebral arteries and increases cerebral blood flow whether that stimulation is delivered at the facial nerve trunk or at distal points such as the sphenopalatine ganglion. Facial nerve stimulation thus could be used as an emergency treatment of conditions of brain ischemia such as ischemic stroke. A rich history of scientific research has examined this property of the facial nerve, and various means of activating the facial nerve can be employed including noninvasive means. Herein, we review the anatomical and physiological research behind facial nerve stimulation and the facial nerve stimulation devices that are in development for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Mark K Borsody
- Centro Nacional de Investigación en Imagenología e Instrumentación Médica, Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico, NeuroSpring, Dover, Delaware, USA
| | - Emilio Sacristan
- Centro Nacional de Investigación en Imagenología e Instrumentación Médica, Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico, NeuroSpring, Dover, Delaware, USA
| |
Collapse
|
10
|
Roloff EVL, Tomiak‐Baquero AM, Kasparov S, Paton JFR. Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 2016; 594:6463-6485. [PMID: 27357059 PMCID: PMC5108906 DOI: 10.1113/jp272450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/18/2016] [Indexed: 12/25/2022] Open
Abstract
This review aims to summarise the contemporary evidence for the presence and function of the parasympathetic innervation of the cerebral circulation with emphasis on the vertebral and basilar arteries (the posterior cerebral circulation). We consider whether the parasympathetic innervation of blood vessels could be used as a means to increase cerebral blood flow. This may have clinical implications for pathologies associated with cerebral hypoperfusion such as stroke, dementia and hypertension. Relative to the anterior cerebral circulation little is known of the origins and neurochemical phenotypes of the parasympathetic innervation of the vertebrobasilar arteries. These vessels normally provide blood flow to the brainstem and cerebellum but can, via the Circle of Willis upon stenosis of the internal carotid arteries, supply blood to the anterior cerebral circulation too. We review the multiple types of parasympathetic fibres and their distinct transmitter mechanisms and how these vary with age, disease and species. We highlight the importance of parasympathetic fibres for mediating the vasodilatory response to sympathetic activation. Current trials are investigating the possibility of electrically stimulating the postganglionic parasympathetic ganglia to improve cerebal blood flow to reduce the penumbra following stroke. We conclude that although there are substantial gaps in our understanding of the origins of parasympathetic innervation of the vertebrobasilar arteries, activation of this system under some conditions might bring therapeutic benefits.
Collapse
Affiliation(s)
- Eva v. L. Roloff
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Ana M. Tomiak‐Baquero
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| | - Julian F. R. Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical SciencesUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
11
|
Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res 2016; 44:1381-1394. [PMID: 27834303 PMCID: PMC5536760 DOI: 10.1177/0300060516671622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Samantha Johnston
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Anu Chacko
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Thao Nguyen
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Peter Smith
- 2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Donald Staines
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
12
|
Bain AR, Nybo L, Ainslie PN. Cerebral Vascular Control and Metabolism in Heat Stress. Compr Physiol 2016; 5:1345-80. [PMID: 26140721 DOI: 10.1002/cphy.c140066] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides an in-depth update on the impact of heat stress on cerebrovascular functioning. The regulation of cerebral temperature, blood flow, and metabolism are discussed. We further provide an overview of vascular permeability, the neurocognitive changes, and the key clinical implications and pathologies known to confound cerebral functioning during hyperthermia. A reduction in cerebral blood flow (CBF), derived primarily from a respiratory-induced alkalosis, underscores the cerebrovascular changes to hyperthermia. Arterial pressures may also become compromised because of reduced peripheral resistance secondary to skin vasodilatation. Therefore, when hyperthermia is combined with conditions that increase cardiovascular strain, for example, orthostasis or dehydration, the inability to preserve cerebral perfusion pressure further reduces CBF. A reduced cerebral perfusion pressure is in turn the primary mechanism for impaired tolerance to orthostatic challenges. Any reduction in CBF attenuates the brain's convective heat loss, while the hyperthermic-induced increase in metabolic rate increases the cerebral heat gain. This paradoxical uncoupling of CBF to metabolism increases brain temperature, and potentiates a condition whereby cerebral oxygenation may be compromised. With levels of experimentally viable passive hyperthermia (up to 39.5-40.0 °C core temperature), the associated reduction in CBF (∼ 30%) and increase in cerebral metabolic demand (∼ 10%) is likely compensated by increases in cerebral oxygen extraction. However, severe increases in whole-body and brain temperature may increase blood-brain barrier permeability, potentially leading to cerebral vasogenic edema. The cerebrovascular challenges associated with hyperthermia are of paramount importance for populations with compromised thermoregulatory control--for example, spinal cord injury, elderly, and those with preexisting cardiovascular diseases.
Collapse
Affiliation(s)
- Anthony R Bain
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| |
Collapse
|
13
|
Del Pozzi AT, Pandey A, Medow MS, Messer ZR, Stewart JM. Blunted cerebral blood flow velocity in response to a nitric oxide donor in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2014; 307:H397-404. [PMID: 24878770 DOI: 10.1152/ajpheart.00194.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cognitive deficits are characteristic of postural tachycardia syndrome (POTS). Intact nitrergic nitric oxide (NO) is important to cerebral blood flow (CBF) regulation, neurovascular coupling, and cognitive efficacy. POTS patients often experience defective NO-mediated vasodilation caused by oxidative stress. We have previously shown dilation of the middle cerebral artery in response to a bolus administration of the NO donor sodium nitroprusside (SNP) in healthy volunteers. In the present study, we hypothesized a blunted middle cerebral artery response to SNP in POTS. We used combined transcranial Doppler-ultrasound to measure CBF velocity and near-infrared spectroscopy to measure cerebral hemoglobin oxygenation while subjects were in the supine position. The responses of 17 POTS patients were compared with 12 healthy control subjects (age: 14-28 yr). CBF velocity in POTS patients and control subjects were not different at baseline (75 ± 3 vs. 71 ± 2 cm/s, P = 0.31) and decreased to a lesser degree with SNP in POTS patients (to 71 ± 3 vs. 62 ± 2 cm/s, P = 0.02). Changes in total and oxygenated hemoglobin (8.83 ± 0.45 and 8.13 ± 0.48 μmol/kg tissue) were markedly reduced in POTS patients compared with control subjects (14.2 ± 1.4 and 13.6 ± 1.6 μmol/kg tissue), primarily due to increased venous efflux. The data indicate reduced cerebral oxygenation, blunting of cerebral arterial vasodilation, and heightened cerebral venodilation. We conclude, based on the present study outcomes, that decreased bioavailability of NO is apparent in the vascular beds, resulting in a downregulation of NO receptor sites, ultimately leading to blunted responses to exogenous NO.
Collapse
Affiliation(s)
- Andrew T Del Pozzi
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Akash Pandey
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Marvin S Medow
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Zachary R Messer
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Julian M Stewart
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| |
Collapse
|
14
|
Parasympathetic reflex vasodilation in the cerebral hemodynamics of rats. J Comp Physiol B 2014; 184:385-99. [PMID: 24504265 DOI: 10.1007/s00360-014-0807-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
We investigated the role of parasympathetic reflex vasodilation in the regulation of the cerebral hemodynamics, and whether GABAA receptors modulate the response. We examined the effects of activation of the parasympathetic fibers through trigeminal afferent inputs on blood flow in the internal carotid artery (ICABF) and the cerebral blood vessels (rCBF) in parietal cortex in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited intensity- and frequency-dependent increases in ICABF that were independent of changes in external carotid artery blood flow. Increases in ICABF were elicited by LN stimulation regardless of the presence or absence of sympathetic innervation. The ICABF increases evoked by LN stimulation were almost abolished by the intravenous administration of hexamethonium (10 mg kg(-1)) and were reduced significantly by atropine administration (0.1 mg kg(-1)). Although the LN stimulation alone had no significant effect on rCBF, LN stimulation in combination with a blocker of the GABAA receptor pentylenetetrazole increased the rCBF markedly. This increase in rCBF was reduced significantly by the administration of hexamethonium and atropine. These observations indicate that the increases in both ICABF and rCBF are evoked by parasympathetic activation via the trigeminal-mediated reflex. The rCBF increase evoked by LN stimulation is thought to be limited by the GABAA receptors in the central nervous system. These results suggest that the parasympathetic reflex vasodilation and its modulation mediated by GABA receptors within synaptic transmission in the brainstem are involved in the regulation of the cerebral hemodynamics during trigeminal afferent inputs.
Collapse
|
15
|
McGinnis WR, Audhya T, Edelson SM. Proposed toxic and hypoxic impairment of a brainstem locus in autism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6955-7000. [PMID: 24336025 PMCID: PMC3881151 DOI: 10.3390/ijerph10126955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 01/15/2023]
Abstract
Electrophysiological findings implicate site-specific impairment of the nucleus tractus solitarius (NTS) in autism. This invites hypothetical consideration of a large role for this small brainstem structure as the basis for seemingly disjointed behavioral and somatic features of autism. The NTS is the brain's point of entry for visceral afference, its relay for vagal reflexes, and its integration center for autonomic control of circulatory, immunological, gastrointestinal, and laryngeal function. The NTS facilitates normal cerebrovascular perfusion, and is the seminal point for an ascending noradrenergic system that modulates many complex behaviors. Microvascular configuration predisposes the NTS to focal hypoxia. A subregion--the "pNTS"--permits exposure to all blood-borne neurotoxins, including those that do not readily transit the blood-brain barrier. Impairment of acetylcholinesterase (mercury and cadmium cations, nitrates/nitrites, organophosphates, monosodium glutamate), competition for hemoglobin (carbon monoxide, nitrates/nitrites), and higher blood viscosity (net systemic oxidative stress) are suggested to potentiate microcirculatory insufficiency of the NTS, and thus autism.
Collapse
Affiliation(s)
- Woody R. McGinnis
- Autism Research Institute, 4182 Adams Avenue, San Diego, CA 92116, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-541-326-8822; Fax: +1-619-563-6840
| | - Tapan Audhya
- Division of Endocrinology, Department of Medicine, New York University Medical School, New York, NY 10016, USA; E-Mail:
| | - Stephen M. Edelson
- Autism Research Institute, 4182 Adams Avenue, San Diego, CA 92116, USA; E-Mail:
| |
Collapse
|
16
|
Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 2013; 20:217-38. [PMID: 23289720 DOI: 10.1111/micc.12035] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory nerves are integrated with endothelium-derived signals to produce vasodilation or vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell layers are connected directly to each other through GJs at discrete sites via MEJs projecting through holes in the IEL. Whereas studies of intercellular communication in the vascular wall have centered on endothelium-derived signals that govern SMC relaxation, attention has increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this emerging area of investigation in light of vasomotor control, the present review synthesizes current understanding of signaling events that originate within SMCs in response to perivascular neurotransmission in light of EC feedback. Although often ignored in studies of the resistance vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for myoendothelial communication. Greater understanding of these underlying signaling events and how they may be affected by aging and disease will provide new approaches for selective therapeutic interventions.
Collapse
Affiliation(s)
- Erika B Westcott
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
17
|
Ay I, Ay H. Ablation of the sphenopalatine ganglion does not attenuate the infarct reducing effect of vagus nerve stimulation. Auton Neurosci 2012; 174:31-5. [PMID: 23273773 DOI: 10.1016/j.autneu.2012.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 12/28/2022]
Abstract
Electrical stimulation of the cervical vagus nerve reduces infarct size by approximately 50% after cerebral ischemia in rats. The mechanism of ischemic protection by vagus nerve stimulation (VNS) is not known. In this study, we investigated whether the infarct reducing effect of VNS was mediated by activation of the parasympathetic vasodilator fibers that originate from the sphenopalatine ganglion (SPG) and innervate the anterior cerebral circulation. We examined the effects of electrical stimulation of the cervical vagus nerve in two groups of rats: one with and one without SPG ablation. Electrical stimulation was initiated 30 min after induction of ischemia, and lasted for 1h. Measurement of infarct size 24h later revealed that the volume of ischemic damage was smaller in those animals that received VNS treatment (41.32±2.07% vs. 24.19±2.62% of the contralateral hemispheric volume, n=6 in both; p<0.05). SPG ablation did not abolish this effect; the reduction in infarct volume following VNS was 58% in SPG-damaged animals, 41% in SPG-intact animals (p>0.05). In both SPG-intact and SPG-damaged animals VNS treatment resulted in better motor outcome (p<0.05 vs. corresponding controls for both). Our findings show that VNS can protect the brain against acute ischemic injury, and that this effect is not mediated by SPG projections.
Collapse
Affiliation(s)
- Ilknur Ay
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital East, Charlestown, MA 02129, USA.
| | | |
Collapse
|
18
|
Enko K, Nakamura K, Yunoki K, Miyoshi T, Akagi S, Yoshida M, Toh N, Sangawa M, Nishii N, Nagase S, Kohno K, Morita H, Kusano KF, Ito H. Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci 2011; 61:507-13. [PMID: 21901641 PMCID: PMC10718035 DOI: 10.1007/s12576-011-0172-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/09/2011] [Indexed: 12/11/2022]
Abstract
Intermittent arm ischemia before percutaneous coronary intervention induces remote ischemic preconditioning (RIPC) and attenuates myocardial injury in patients with myocardial infarction. Several studies have shown that intermittent arm ischemia increases coronary flow and is related to autonomic nerve system. The aim of this study was to determine whether intermittent arm ischemia induces vasodilatation of other arteries and to assess changes in the autonomic nerve system during intermittent arm ischemia in humans. We measured change in the right brachial artery diameter during intermittent left arm ischemia through three cycles of 5-min inflation (200 mmHg) and 5-min deflation of a blood-pressure cuff using a 10-MHz linear array transducer probe in 20 healthy volunteers. We simultaneously performed power spectral analysis of heart rate. Ischemia-reperfusion of the left arm significantly dilated the right brachial artery time-dependently, resulting in a 3.2 ± 0.4% increase after the 3rd cycle. In the power spectral analysis of heart rate, the high-frequency domain (HF), which is a marker of parasympathetic activity, was significantly higher after the 3rd cycle of ischemia-reperfusion than baseline HF (P = 0.02). Intermittent arm ischemia was accompanied by vasodilatation of another artery and enhancement of parasympathetic activity. Those effects may play an important role in the mechanism of RIPC.
Collapse
Affiliation(s)
- Kenki Enko
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Kei Yunoki
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Norihisa Toh
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Mutsuko Sangawa
- Department of Cardiovascular Medicine, Saiseikai Kagawa Hospital, 1331-1 Tahikamimachi, Takamatsu, Kagawa 761-8076 Japan
| | - Nobuhiro Nishii
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Kunihisa Kohno
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Hiroshi Morita
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Kengo F. Kusano
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| |
Collapse
|
19
|
Taktakishvili OM, Lin LH, Vanderheyden AD, Nashelsky MB, Talman WT. Nitroxidergic innervation of human cerebral arteries. Auton Neurosci 2011; 156:152-3. [PMID: 20537599 DOI: 10.1016/j.autneu.2010.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/01/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
A dense network of nerves containing neuronal nitric oxide synthase is present in cerebral vessels from experimental animals. The nerves may regulate cerebrovascular tone, protect the brain from stroke, and contribute to cluster headaches in humans; but studies in humans have shown only modest nitroxidergic innervation of cerebral vessels. We tested the hypothesis that nerve fibers containing neuronal nitric oxide synthase richly innervate human cerebral arteries. We used immunohistochemical techniques at post mortem and found dense neuronal nitric oxide synthase nerve staining in human cerebral vessel walls consistent with participation of nitroxidergic fibers in human physiological and pathophysiological processes.
Collapse
|
20
|
Cetas JS, Lee DR, Alkayed NJ, Wang R, Iliff JJ, Heinricher MM. Brainstem control of cerebral blood flow and application to acute vasospasm following experimental subarachnoid hemorrhage. Neuroscience 2009; 163:719-29. [PMID: 19539726 DOI: 10.1016/j.neuroscience.2009.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/19/2022]
Abstract
Symptomatic ischemia following aneurysmal subarachnoid hemorrhage (SAH) is common but poorly understood and inadequately treated. Severe constriction of the major arteries at the base of the brain, termed vasospasm, traditionally has been thought to be a proximal event underlying these ischemias, although microvascular changes also have been described. The vast majority of studies aimed at understanding the pathogenesis of ischemic deficits, and vasospasm have focused on the interaction of the "spasmogen" of the extravasated blood with the smooth muscle and endothelium of the arteries. This has led to a comparative neglect of the contribution of the CNS to the maintenance of cerebral perfusion. In the present study, we focused on the role of the rostral ventromedial medulla (RVM) in modulating cerebral perfusion at rest and following an experimental SAH in the rat. Changes in cerebral blood flow (CBF) were measured using laser-Doppler flowmetry and three-dimensional optical microangiography. Focal application of a GABA(A) receptor agonist and antagonist was used to respectively inactivate and activate the RVM. We show here that the RVM modulates cerebral blood flow under resting conditions, and further, contributes to restoration of cerebral perfusion following a high-grade SAH. Failure of this brainstem compensatory mechanism could be significant for acute perfusion deficits seen in patients following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- J S Cetas
- Department of Neurological Surgery, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | | | | | | | | | |
Collapse
|