1
|
Liu Chung Ming C, Wang X, Gentile C. Protective role of acetylcholine and the cholinergic system in the injured heart. iScience 2024; 27:110726. [PMID: 39280620 PMCID: PMC11402255 DOI: 10.1016/j.isci.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
This review explores the roles of the cholinergic system in the heart, comprising the neuronal and non-neuronal cholinergic systems. Both systems are essential for maintaining cardiac homeostasis by regulating the release of acetylcholine (ACh). A reduction in ACh release is associated with the early onset of cardiovascular diseases (CVDs), and increasing evidence supports the protective roles of ACh against CVD. We address the challenges and limitations of current strategies to elevate ACh levels, including vagus nerve stimulation and pharmacological interventions such as cholinesterase inhibitors. Additionally, we introduce alternative strategies to increase ACh in the heart, such as stem cell therapy, gene therapy, microRNAs, and nanoparticle drug delivery methods. These findings offer new insights into advanced treatments for regenerating the injured human heart.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| | - Xiaowei Wang
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
2
|
Braczko F, Fischl SR, Reinders J, Lieder HR, Kleinbongard P. Activation of the nonneuronal cholinergic cardiac system by hypoxic preconditioning protects isolated adult cardiomyocytes from hypoxia/reoxygenation injury. Am J Physiol Heart Circ Physiol 2024; 327:H70-H79. [PMID: 38700468 PMCID: PMC11380960 DOI: 10.1152/ajpheart.00211.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Activation of the vagus nerve mediates cardioprotection and attenuates myocardial ischemia/reperfusion (I/R) injury. In response to vagal activation, acetylcholine (ACh) is released from the intracardiac nervous system (ICNS) and activates intracellular cardioprotective signaling cascades. Recently, however, a nonneuronal cholinergic cardiac system (NNCCS) in cardiomyocytes has been described as an additional source of ACh. To investigate whether the NNCCS mediates cardioprotection in the absence of vagal and ICNS activation, we used a reductionist approach of isolated adult rat ventricular cardiomyocytes without neuronal cells, using hypoxic preconditioning (HPC) as a protective stimulus. Adult rat ventricular cardiomyocytes were isolated, the absence of neuronal cells was confirmed, and HPC was induced by 10/20 min hypoxia/reoxygenation (H/R) before subjection to 30/5 min H/R to simulate I/R injury. Cardiomyocyte viability was assessed by trypan blue staining at baseline and after HPC+H/R or H/R. Intra- and extracellular ACh was quantified using liquid chromatography-coupled mass spectrometry at baseline, after HPC, after hypoxia, and after reoxygenation, respectively. In a subset of experiments, muscarinic and nicotinic ACh receptor (m- and nAChR) antagonists were added during HPC or during H/R. Cardiomyocyte viability at baseline (69 ± 4%) was reduced by H/R (10 ± 3%). With HPC, cardiomyocyte viability was preserved after H/R (25 ± 6%). Intra- and extracellular ACh increased during hypoxia; HPC further increased both intra- and extracellular ACh (from 0.9 ± 0.7 to 1.5 ± 1.0 nmol/mg; from 0.7 ± 0.6 to 1.1 ± 0.7 nmol/mg, respectively). The addition of mAChR and nAChR antagonists during HPC had no impact on HPC's protection; however, protection was abrogated when antagonists were added during H/R (cardiomyocyte viability after H/R: 23 ± 5%; 13 ± 4%). In conclusion, activation of the NNCCS is involved in cardiomyocyte protection; HPC increases intra- and extracellular ACh during H/R, and m- and nAChRs are causally involved in HPC's cardiomyocyte protection during H/R. The interplay between upstream ICNS activation and NNCCS activation in myocardial cholinergic metabolism and cardioprotection needs to be investigated in future studies.NEW & NOTEWORTHY The intracardiac nervous system is considered to be involved in ischemic conditioning's cardioprotection through the release of acetylcholine (ACh). However, we demonstrate that hypoxic preconditioning (HPC) protects from hypoxia/reoxygenation injury and increases intra- and extracellular ACh during hypoxia in isolated adult ventricular rat cardiomyocytes. HPC's protection involves cardiomyocyte muscarinic and nicotinic ACh receptor activation. Thus, besides the intracardiac nervous system, a nonneuronal cholinergic cardiac system may also be causally involved in cardiomyocyte protection by ischemic conditioning.
Collapse
Affiliation(s)
- Felix Braczko
- Institute for Pathophysiology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Sara Romina Fischl
- Institute for Pathophysiology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jörg Reinders
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Helmut Raphael Lieder
- Institute for Pathophysiology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Takenaka Y, Hirasaki M, Bono H, Nakamura S, Kakinuma Y. Transcriptome Analysis Reveals Enhancement of Cardiogenesis-Related Signaling Pathways by S-Nitroso- N -Pivaloyl- d -Penicillamine: Implications for Improved Diastolic Function and Cardiac Performance. J Cardiovasc Pharmacol 2024; 83:433-445. [PMID: 38422186 DOI: 10.1097/fjc.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT We previously reported a novel compound called S-nitroso- N -pivaloyl- d -penicillamine (SNPiP), which was screened from a group of nitric oxide donor compounds with a basic chemical structure of S-nitroso- N -acetylpenicillamine, to activate the nonneuronal acetylcholine system. SNPiP-treated mice exhibited improved cardiac output and enhanced diastolic function, without an increase in heart rate. The nonneuronal acetylcholine-activating effects included increased resilience to ischemia, modulation of energy metabolism preference, and activation of angiogenesis. Here, we performed transcriptome analysis of SNPiP-treated mice ventricles to elucidate how SNPiP exerts beneficial effects on cardiac function. A time-course study (24 and 48 hours after SNPiP administration) revealed that SNPiP initially induced Wnt and cyclic guanosine monophosphate-protein kinase G signaling pathways, along with upregulation of genes involved in cardiac muscle tissue development and oxytocin signaling pathway. We also observed enrichment of glycolysis-related genes in response to SNPiP treatment, resulting in a metabolic shift from oxidative phosphorylation to glycolysis, which was suggested by reduced cardiac glucose contents while maintaining adenosine tri-phosphate levels. In addition, SNPiP significantly upregulated atrial natriuretic peptide and sarcolipin, which play crucial roles in calcium handling and cardiac performance. These findings suggest that SNPiP may have therapeutic potential based on the pleiotropic mechanisms elucidated in this study.
Collapse
Affiliation(s)
- Yasuhiro Takenaka
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; and
| | - Shigeo Nakamura
- Department of Chemistry, Nippon Medical School, Tokyo, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
4
|
Kakinuma Y. Non-neuronal cholinergic system in the heart influences its homeostasis and an extra-cardiac site, the blood-brain barrier. Front Cardiovasc Med 2024; 11:1384637. [PMID: 38601043 PMCID: PMC11004362 DOI: 10.3389/fcvm.2024.1384637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The non-neuronal cholinergic system of the cardiovascular system has recently gained attention because of its origin. The final product of this system is acetylcholine (ACh) not derived from the parasympathetic nervous system but from cardiomyocytes, endothelial cells, and immune cells. Accordingly, it is defined as an ACh synthesis system by non-neuronal cells. This system plays a dispensable role in the heart and cardiomyocytes, which is confirmed by pharmacological and genetic studies using murine models, such as models with the deletion of vesicular ACh transporter gene and modulation of the choline acetyltransferase (ChAT) gene. In these models, this system sustained the physiological function of the heart, prevented the development of cardiac hypertrophy, and negatively regulated the cardiac metabolism and reactive oxygen species production, resulting in sustained cardiac homeostasis. Further, it regulated extra-cardiac organs, as revealed by heart-specific ChAT transgenic (hChAT tg) mice. They showed enhanced functions of the blood-brain barrier (BBB), indicating that the augmented system influences the BBB through the vagus nerve. Therefore, the non-neuronal cardiac cholinergic system indirectly influences brain function. This mini-review summarizes the critical cardiac phenotypes of hChAT tg mice and focuses on the effect of the system on BBB functions. We discuss the possibility that a cholinergic signal or vagus nerve influences the expression of BBB component proteins to consolidate the barrier, leading to the downregulation of inflammatory responses in the brain, and the modulation of cardiac dysfunction-related effects on the brain. This also discusses the possible interventions using the non-neuronal cardiac cholinergic system.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
5
|
An X, Cho H. Increased GIRK channel activity prevents arrhythmia in mice with heart failure by enhancing ventricular repolarization. Sci Rep 2023; 13:22479. [PMID: 38110503 PMCID: PMC10728207 DOI: 10.1038/s41598-023-50088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023] Open
Abstract
Ventricular arrhythmia causing sudden cardiac death is the leading mode of death in patients with heart failure. Yet, the mechanisms that prevent ventricular arrhythmias in heart failure are not well characterized. Using a mouse model of heart failure created by transverse aorta constriction, we show that GIRK channel, an important regulator of cardiac action potentials, is constitutively active in failing ventricles in contrast to normal cells. Evidence is presented indicating that the tonic activation of M2 muscarinic acetylcholine receptors by endogenously released acetylcholine contributes to the constitutive GIRK activity. This constitutive GIRK activity prevents the action potential prolongation in heart failure ventricles. Consistently, GIRK channel blockade with tertiapin-Q induces QT interval prolongation and increases the incidence of arrhythmia in heart failure, but not in control mice. These results suggest that constitutive GIRK channels comprise a key mechanism to protect against arrhythmia by providing repolarizing currents in heart failure ventricles.
Collapse
Affiliation(s)
- Xue An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| |
Collapse
|
6
|
Butova X, Myachina T, Simonova R, Kochurova A, Bozhko Y, Arkhipov M, Solovyova O, Kopylova G, Shchepkin D, Khokhlova A. Peculiarities of the Acetylcholine Action on the Contractile Function of Cardiomyocytes from the Left and Right Atria in Rats. Cells 2022; 11:cells11233809. [PMID: 36497067 PMCID: PMC9737865 DOI: 10.3390/cells11233809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Acetylcholine (ACh) is the neurotransmitter of the parasympathetic nervous system that modulates cardiac function, and its high concentrations may induce atrial fibrillation. We compared the ACh action on the mechanical function of single cardiomyocytes from the left atria (LA) and the right atria (RA). We exposed single rat LA and RA cardiomyocytes to 1, 10, and 100 µM ACh for 10-15 min and measured the parameters of sarcomere shortening-relengthening and cytosolic calcium ([Ca2+]i) transients during cell contractions. We also studied the effects of ACh on cardiac myosin function using an in vitro motility assay and analyzed the phosphorylation level of sarcomeric proteins. In LA cardiomyocytes, ACh decreased the time to peak sarcomere shortening, time to 50% relengthening, and time to peak [Ca2+]i transients. In RA cardiomyocytes, ACh affected the time of shortening and relengthening only at 10 µM. In the in vitro motility assay, ACh reduced to a greater extent the sliding velocity of F-actin over myosin from LA cardiomyocytes, which was accompanied by a more pronounced decrease in phosphorylation of the myosin regulatory light chain (RLC) in LA cardiomyocytes than in RA cardiomyocytes. Our findings indicate that ACh plays an important role in modulating the contractile function of LA and RA, provoking more pronounced changes in the time course of sarcomere shortening-relengthening and the kinetics of actin-myosin interaction in LA cardiomyocytes.
Collapse
Affiliation(s)
- Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Raisa Simonova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Yakov Bozhko
- Department of Therapy, Ural State Medical University, Repina Str. 3, 620028 Yekaterinburg, Russia
| | - Michael Arkhipov
- Department of Therapy, Ural State Medical University, Repina Str. 3, 620028 Yekaterinburg, Russia
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Correspondence:
| |
Collapse
|
7
|
RGS3L allows for an M 2 muscarinic receptor-mediated RhoA-dependent inotropy in cardiomyocytes. Basic Res Cardiol 2022; 117:8. [PMID: 35230541 PMCID: PMC8888479 DOI: 10.1007/s00395-022-00915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/31/2023]
Abstract
The role and outcome of the muscarinic M2 acetylcholine receptor (M2R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M2R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the Gi-mediated Rac1 activation into a Gi-mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (- 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart.
Collapse
|
8
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
9
|
Targosova K, Kucera M, Kilianova Z, Slobodova L, Szmicsekova K, Hrabovska A. Cardiac nicotinic receptors show β-subunit-dependent compensatory changes. Am J Physiol Heart Circ Physiol 2021; 320:H1975-H1984. [PMID: 33769917 DOI: 10.1152/ajpheart.00995.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotinic receptors (NRs) play an important role in the cholinergic regulation of heart functions, and converging evidence suggests a diverse repertoire of NR subunits in the heart. A recent hypothesis about the plasticity of β NR subunits suggests that β2-subunits and β4-subunits may substitute for each other. In our study, we assessed the hypothetical β-subunit interchangeability in the heart at the level of mRNA. Using two mutant mice strains lacking β2 or β4 NR subunits, we examined the relative expression of NR subunits and other key cholinergic molecules. We investigated the physiology of isolated hearts perfused by Langendorff's method at basal conditions and after cholinergic and/or adrenergic stimulation. Lack of β2 NR subunit was accompanied with decreased relative expression of β4-subunits and α3-subunits. No other cholinergic changes were observed at the level of mRNA, except for increased M3 and decreased M4 muscarinic receptors. Isolated hearts lacking β2 NR subunit showed different dynamics in heart rate response to indirect cholinergic stimulation. In hearts lacking β4 NR subunit, increased levels of β2-subunits were observed together with decreased mRNA for acetylcholine-synthetizing enzyme and M1 and M4 muscarinic receptors. Changes in the expression levels in β4-/- hearts were associated with increased basal heart rate and impaired response to a high dose of acetylcholine upon adrenergic stimulation. In support of the proposed plasticity of cardiac NRs, our results confirmed subunit-dependent compensatory changes to missing cardiac NRs subunits with consequences on isolated heart physiology.NEW & NOTEWORTHY In the present study, we observed an increase in mRNA levels of the β2 NR subunit in β4-/- hearts but not vice versa, thus supporting the hypothesis of β NR subunit plasticity that depends on the specific type of missing β-subunit. This was accompanied with specific cholinergic adaptations. Nevertheless, isolated hearts of β4-/- mice showed increased basal heart rate and a higher sensitivity to a high dose of acetylcholine upon adrenergic stimulation.
Collapse
Affiliation(s)
- Katarina Targosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Matej Kucera
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia.,Department of Pharmacology, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Lubica Slobodova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia.,Department of Pharmacology, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Kristina Szmicsekova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Anna Hrabovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia.,Department of Pharmacology, Slovak Medical University in Bratislava, Bratislava, Slovakia.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Saw EL, Pearson JT, Schwenke DO, Munasinghe PE, Tsuchimochi H, Rawal S, Coffey S, Davis P, Bunton R, Van Hout I, Kai Y, Williams MJA, Kakinuma Y, Fronius M, Katare R. Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovasc Diabetol 2021; 20:50. [PMID: 33618724 PMCID: PMC7898760 DOI: 10.1186/s12933-021-01231-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acetylcholine (ACh) plays a crucial role in the function of the heart. Recent evidence suggests that cardiomyocytes possess a non-neuronal cholinergic system (NNCS) that comprises of choline acetyltransferase (ChAT), choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), acetylcholinesterase (AChE) and type-2 muscarinic ACh receptors (M2AChR) to synthesize, release, degrade ACh as well as for ACh to transduce a signal. NNCS is linked to cardiac cell survival, angiogenesis and glucose metabolism. Impairment of these functions are hallmarks of diabetic heart disease (DHD). The role of the NNCS in DHD is unknown. The aim of this study was to examine the effect of diabetes on cardiac NNCS and determine if activation of cardiac NNCS is beneficial to the diabetic heart. METHODS Ventricular samples from type-2 diabetic humans and db/db mice were used to measure the expression pattern of NNCS components (ChAT, CHT1, VAChT, AChE and M2AChR) and glucose transporter-4 (GLUT-4) by western blot analysis. To determine the function of the cardiac NNCS in the diabetic heart, a db/db mouse model with cardiac-specific overexpression of ChAT gene was generated (db/db-ChAT-tg). Animals were followed up serially and samples collected at different time points for molecular and histological analysis of cardiac NNCS components and prosurvival and proangiogenic signaling pathways. RESULTS Immunoblot analysis revealed alterations in the components of cardiac NNCS and GLUT-4 in the type-2 diabetic human and db/db mouse hearts. Interestingly, the dysregulation of cardiac NNCS was followed by the downregulation of GLUT-4 in the db/db mouse heart. Db/db-ChAT-tg mice exhibited preserved cardiac and vascular function in comparison to db/db mice. The improved function was associated with increased cardiac ACh and glucose content, sustained angiogenesis and reduced fibrosis. These beneficial effects were associated with upregulation of the PI3K/Akt/HIF1α signaling pathway, and increased expression of its downstream targets-GLUT-4 and VEGF-A. CONCLUSION We provide the first evidence for dysregulation of the cardiac NNCS in DHD. Increased cardiac ACh is beneficial and a potential new therapeutic strategy to prevent or delay the development of DHD.
Collapse
Affiliation(s)
- Eng Leng Saw
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Pujika Emani Munasinghe
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Shruti Rawal
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Sean Coffey
- Department of Medicine, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Yuko Kai
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Michael J A Williams
- Department of Medicine, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Martin Fronius
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
11
|
Oikawa S, Kai Y, Mano A, Ohata H, Kurabayashi A, Tsuda M, Kakinuma Y. Non-neuronal cardiac acetylcholine system playing indispensable roles in cardiac homeostasis confers resiliency to the heart. J Physiol Sci 2021; 71:2. [PMID: 33461483 PMCID: PMC10717922 DOI: 10.1186/s12576-020-00787-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND We previously established that the non-neuronal cardiac cholinergic system (NNCCS) is equipped with cardiomyocytes synthesizes acetylcholine (ACh), which is an indispensable endogenous system, sustaining cardiac homeostasis and regulating an inflammatory status, by transgenic mice overexpressing choline acetyltransferase (ChAT) gene in the heart. However, whole body biological significances of NNCCS remain to be fully elucidated. METHODS AND RESULTS To consolidate the features, we developed heart-specific ChAT knockdown (ChATKD) mice using 3 ChAT-specific siRNAs. The mice developed cardiac dysfunction. Factors causing it included the downregulation of cardiac glucose metabolism along with decreased signal transduction of Akt/HIF-1alpha/GLUT4, leading to poor glucose utilization, impairment of glycolytic metabolites entering the tricarboxylic (TCA) cycle, the upregulation of reactive oxygen species (ROS) production with an attenuated scavenging potency, and the downregulated nitric oxide (NO) production via NOS1. ChATKD mice revealed a decreased vagus nerve activity, accelerated aggression, more accentuated blood basal corticosterone levels with depression-like phenotypes, several features of which were accompanied by cardiac dysfunction. CONCLUSION The NNCCS plays a crucial role in cardiac homeostasis by regulating the glucose metabolism, ROS synthesis, NO levels, and the cardiac vagus nerve activity. Thus, the NNCCS is suggested a fundamentally crucial system of the heart.
Collapse
Affiliation(s)
- Shino Oikawa
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yuko Kai
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Asuka Mano
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Hisayuki Ohata
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Atsushi Kurabayashi
- Department of Pathology, Kochi Medical School, Nankoku, Kochi, 783-8505, Japan
| | - Masayuki Tsuda
- Institute for Laboratory Animal Research, Kochi Medical School, Nankoku, Kochi, 783-8505, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
12
|
Kakinuma Y. Characteristic Effects of the Cardiac Non-Neuronal Acetylcholine System Augmentation on Brain Functions. Int J Mol Sci 2021; 22:ijms22020545. [PMID: 33430415 PMCID: PMC7826949 DOI: 10.3390/ijms22020545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of non-neuronal acetylcholine in the heart, this specific system has drawn scientific interest from many research fields, including cardiology, immunology, and pharmacology. This system, acquired by cardiomyocytes independent of the parasympathetic nervous system of the autonomic nervous system, helps us to understand unsolved issues in cardiac physiology and to realize that the system may be more pivotal for cardiac homeostasis than expected. However, it has been shown that the effects of this system may not be restricted to the heart, but rather extended to cover extra-cardiac organs. To this end, this system intriguingly influences brain function, specifically potentiating blood brain barrier function. Although the results reported appear to be unusual, this novel characteristic can provide us with another research interest and therapeutic application mode for central nervous system diseases. In this review, we discuss our recent studies and raise the possibility of application of this system as an adjunctive therapeutic modality.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
13
|
Rocha-Resende C, da Silva AM, Prado MAM, Guatimosim S. Protective and anti-inflammatory effects of acetylcholine in the heart. Am J Physiol Cell Physiol 2020; 320:C155-C161. [PMID: 33264077 DOI: 10.1152/ajpcell.00315.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The innate and adaptive immune systems play an important role in the development of cardiac diseases. Therefore, it has become critical to identify molecules that can modulate inflammation in the injured heart. In this regard, activation of the cholinergic system in animal models of heart disease has been shown to exert protective actions that include immunomodulation of cardiac inflammation. In this mini-review, we briefly present our current understanding on the cardiac cellular sources of acetylcholine (ACh) (neuronal vs. nonneuronal), followed by a discussion on its contribution to the regulation of inflammatory cells. Although the mechanism behind ACh-mediated protection still remains to be fully elucidated, the beneficial immunomodulatory role of the cholinergic signaling emerges as a potential key regulator of cardiac inflammation.
Collapse
Affiliation(s)
- Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Aristóbolo Mendes da Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
14
|
Alghamdi AM, Testrow CP, Whittaker DG, Boyett MR, Hancox JC, Zhang H. Mechanistic Insights Into the Reduced Pacemaking Rate of the Rabbit Sinoatrial Node During Postnatal Development: A Simulation Study. Front Physiol 2020; 11:547577. [PMID: 33329016 PMCID: PMC7715043 DOI: 10.3389/fphys.2020.547577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Marked age- and development- related differences have been observed in morphology and characteristics of action potentials (AP) of neonatal and adult sinoatrial node (SAN) cells. These may be attributable to a different set of ion channel interactions between the different ages. However, the underlying mechanism(s) have yet to be elucidated. The objective of this study was to determine the mechanisms underlying different spontaneous APs and heart rate between neonatal and adult SAN cells of the rabbit heart by biophysical modeling approaches. A mathematical model of neonatal rabbit SAN cells was developed by modifying the current densities and/or kinetics of ion channels and transporters in an adult cell model based on available experimental data obtained from neonatal SAN cells. The single cell models were then incorporated into a multi-cellular, two-dimensional model of the intact SAN-atrium to investigate the functional impact of altered ion channels during maturation on pacemaking electrical activities and their conduction at the tissue level. Effects of the neurotransmitter acetylcholine on the pacemaking activities in neonatal cells were also investigated and compared to those in the adult. Our results showed: (1) the differences in ion channel properties between neonatal and adult SAN cells are able to account for differences in their APs and the heart rate, providing mechanistic insight into understanding the reduced pacemaking rate of the rabbit sinoatrial node during postnatal development; (2) in the 2D model of the intact SAN-atria, it was shown that cellular changes during postnatal development impaired pacemaking activity through increasing the activation time and reducing the conduction velocity across the SAN; (3) the neonatal SAN model, with its faster beating rates, showed a greater sensitivity to parasympathetic modulation in response to acetylcholine than did the adult model. These results provide novel insights into the understanding of the cellular mechanisms underlying the differences in the cardiac pacemaking activities of the neonatal and adult SAN.
Collapse
Affiliation(s)
- Azzah M Alghamdi
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom.,Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Craig P Testrow
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Dominic G Whittaker
- Department of Mathematics, University of Nottingham, Nottingham, United Kingdom
| | - Mark R Boyett
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jules C Hancox
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom.,School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom.,Peng Cheng Laboratory, Shenzhen, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Oikawa S, Kai Y, Mano A, Nakamura S, Kakinuma Y. S-Nitroso-N-Pivaloyl-D-Penicillamine, a novel non-neuronal ACh system activator, modulates cardiac diastolic function to increase cardiac performance under pathophysiological conditions. Int Immunopharmacol 2020; 84:106459. [PMID: 32325404 DOI: 10.1016/j.intimp.2020.106459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 01/06/2023]
Abstract
We have previously reported the development of a novel chemical compound, S-Nitroso-N-Pivaloyl-D-Penicillamine (SNPiP), for the upregulation of the non-neuronal cardiac cholinergic system (NNCCS), a cardiac acetylcholine (ACh) synthesis system, which is different from the vagus nerve releasing of ACh as a neurotransmitter. However, it remains unclear how SNPiP could influence cardiac function positively, and whether SNPiP could improve cardiac function under various pathological conditions. SNPiP-injected control mice demonstrated a gradual upregulation in diastolic function without changes in heart rate. In contrast to some parameters in cardiac function that were influenced by SNPiP 24 h or 48 h after a single intraperitoneal (IP) injection, 72 h later, end-systolic pressure, cardiac output, end-diastolic volume, stroke volume, and ejection fraction increased. IP SNPiP injection also improved impaired cardiac function, which is a characteristic feature of the db/db heart, in a delayed fashion, including diastolic and systolic function, following either several consecutive injections or a single injection. SNPiP, a novel NNCCS activator, could be applied as a therapeutic agent for the upregulation of NNCCS and as a unique tool for modulating cardiac function via improvement in diastolic function.
Collapse
Affiliation(s)
- Shino Oikawa
- Department of Bioregulatory Science (Physiology), Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuko Kai
- Department of Bioregulatory Science (Physiology), Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Asuka Mano
- Department of Bioregulatory Science (Physiology), Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Shigeo Nakamura
- Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science (Physiology), Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
16
|
Wei T, Lu S, Sun J, Xu Z, Yang X, Wang F, Ma Y, Shi YS, Chen X. Sanger's Reagent Sensitized Photocleavage of Amide Bond for Constructing Photocages and Regulation of Biological Functions. J Am Chem Soc 2020; 142:3806-3813. [PMID: 32023409 DOI: 10.1021/jacs.9b11357] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photolabile groups offer promising tools to study biological processes with high spatial and temporal control. In the investigation, we designed and prepared several new glycine amide derivatives of Sanger's reagent and demonstrated that they serve as a new class of photocages for Zn2+ and an acetylcholinesterase (AChE) inhibitor. We showed that the mechanism for photocleavage of these substances involves initial light-driven cyclization between the 2,4-dinitrophenyl and glycine methylene groups to form acyl benzimidazole N-oxides, which undergo secondary photoinduced decarboxylation in association with rupture of an amide bond. The cleavage reactions proceed with modest to high quantum yields. We demonstrated that these derivatives can be used in targeted intracellular delivery of Zn2+, fluorescent imaging by light-triggered Zn2+ release, and regulation of biological processes including the enzymatic activity of carbonic anhydrase (CA), negative regulation of N-methyl-d-aspartate receptors (NMDARs), and pulse rate of cardiomyocytes. The successful proof-of-concept examples described above open a new avenue for using Sanger's reagent-based glycine amides as photocages for the exploration of complex cellular functions and signaling pathways.
Collapse
Affiliation(s)
- Tingwen Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Jiahui Sun
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210032 , China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center , Nanjing University , Nanjing 210032 , China
| | - Zhijun Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Xiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210032 , China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center , Nanjing University , Nanjing 210032 , China.,Chemistry and Biomedicine Innovation Center , Nanjing University , Nanjing 210032 , China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| |
Collapse
|
17
|
Saw EL, Kakinuma Y, Fronius M, Katare R. The non-neuronal cholinergic system in the heart: A comprehensive review. J Mol Cell Cardiol 2018; 125:129-139. [PMID: 30343172 DOI: 10.1016/j.yjmcc.2018.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/24/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023]
Abstract
The autonomic influences on the heart have a ying-yang nature, albeit oversimplified, the interplay between the sympathetic and parasympathetic system (known as the cholinergic system) is often complex and remain poorly understood. Recently, the heart has been recognized to consist of neuronal and non-neuronal cholinergic system (NNCS). The existence of cardiac NNCS has been confirmed by the presence of cholinergic markers in the cardiomyocytes, which are crucial for synthesis (choline acetyltransferase, ChAT), storage (vesicular acetylcholine transporter, VAChT), reuptake of choline for synthesis (high-affinity choline transporter, CHT1) and degradation (acetylcholinesterase, AChE) of acetylcholine (ACh). The non-neuronal ACh released from cardiomyocytes is believed to locally regulate some of the key physiological functions of the heart, such as regulation of heart rate, offsetting hypertrophic signals, maintenance of action potential propagation as well as modulation of cardiac energy metabolism via the muscarinic ACh receptor in an auto/paracrine manner. Apart from this, several studies have also provided evidence for the beneficial role of ACh released from cardiomyocytes against cardiovascular diseases such as sympathetic hyperactivity-induced cardiac remodeling and dysfunction as well as myocardial infarction, confirming the important role of NNCS in disease prevention. In this review, we aim to provide a fundamental overview of cardiac NNCS, and information about its physiological role, regulatory factors as well as its cardioprotective effects. Finally, we propose the different approaches to target cardiac NNCS as an adjunctive treatment to specifically address the withdrawal of neuronal cholinergic system in cardiovascular disease such as heart failure.
Collapse
Affiliation(s)
- Eng Leng Saw
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, New Zealand
| | - Yoshihiko Kakinuma
- Department of Physiology (Bioregulatory Science), Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Martin Fronius
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, New Zealand.
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, New Zealand.
| |
Collapse
|
18
|
Apatzidou DA, Iskas A, Konstantinidis A, Alghamdi AM, Tumelty M, Lappin DF, Nile CJ. Clinical associations between acetylcholine levels and cholinesterase activity in saliva and gingival crevicular fluid and periodontal diseases. J Clin Periodontol 2018; 45:1173-1183. [DOI: 10.1111/jcpe.12989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Danae A. Apatzidou
- Lab of Preventive Dentistry, Periodontology and implant Biology; School of Dentistry; Aristotle University; Thessaloniki Greece
| | - Achilleas Iskas
- Lab of Preventive Dentistry, Periodontology and implant Biology; School of Dentistry; Aristotle University; Thessaloniki Greece
| | - Antonis Konstantinidis
- Lab of Preventive Dentistry, Periodontology and implant Biology; School of Dentistry; Aristotle University; Thessaloniki Greece
| | - Abeer M. Alghamdi
- Oral Sciences Research Group; University of Glasgow Dental School; School of Medicine, Dentistry and Nursing; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - Maria Tumelty
- Oral Sciences Research Group; University of Glasgow Dental School; School of Medicine, Dentistry and Nursing; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - David F. Lappin
- Oral Sciences Research Group; University of Glasgow Dental School; School of Medicine, Dentistry and Nursing; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - Christopher J. Nile
- Oral Sciences Research Group; University of Glasgow Dental School; School of Medicine, Dentistry and Nursing; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
19
|
Basalay MV, Davidson SM, Gourine AV, Yellon DM. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol 2018; 113:25. [PMID: 29858664 PMCID: PMC5984640 DOI: 10.1007/s00395-018-0684-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Remote ischaemic conditioning (RIC) is a promising method of cardioprotection, with numerous clinical studies having demonstrated its ability to reduce myocardial infarct size and improve prognosis. On the other hand, there are several clinical trials, in particular those conducted in the setting of elective cardiac surgery, that have failed to show any benefit of RIC. These contradictory data indicate that there is insufficient understanding of the mechanisms underlying RIC. RIC is now known to signal indiscriminately, protecting not only the heart, but also other organs. In particular, experimental studies have demonstrated that it is able to reduce infarct size in an acute ischaemic stroke model. However, the mechanisms underlying RIC-induced neuroprotection are even less well understood than for cardioprotection. The existence of bidirectional feedback interactions between the heart and the brain suggests that the mechanisms of RIC-induced neuroprotection and cardioprotection should be studied as a whole. This review, therefore, addresses the topic of the neural component of the RIC mechanism.
Collapse
Affiliation(s)
- Marina V Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Andrey V Gourine
- Department of Cardiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
20
|
Li L, Weng Y, Wang W, Bai M, Lei H, Zhou H, Jiang H. Multiple organic cation transporters contribute to the renal transport of sulpiride. Biopharm Drug Dispos 2017; 38:526-534. [PMID: 28926871 DOI: 10.1002/bdd.2104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023]
Abstract
Sulpiride, a selective dopamine D2 receptor blocker, is used widely for the treatment of schizophrenia, depression and gastric/duodenal ulcers. Because the great majority of sulpiride is positively charged at physiological pH 7.4, and ~70% of the dose recovered in urine is in the unchanged form after human intravenous administration of sulpiride, it is believed that transporters play an important role in the renal excretion of sulpiride. The aim of the present study was to explore which transporters contribute to the renal disposition of sulpiride. The results demonstrated that sulpiride was a substrate of human carnitine/organic cation transporter 1 (hOCTN1) and 2 (hOCTN2), human organic cation transporter 2 (hOCT2), human multidrug and toxin efflux extrusion protein 1 (hMATE1) and 2-K (hMATE2-K). Sulpiride accumulation from the basolateral (BL) to the apical (AP) side in MDCK-hOCT2/pcDNA3.1 cell monolayers was much greater than that in MDCK-hOCT2/hMATE1 cells, and cimetidine dramatically reduced the intracellular accumulation of sulpiride from BL to AP. In addition, the accumulation of sulpiride in mouse primary renal tubular cells (mPRTCs) was markedly reduced by inhibitors of Oct2 and Octns. The results implied that OCTN1, OCTN2, OCT2, MATE1 and MATE2-K probably contributed to the renal transfer of sulpiride, in which OCT2 mediated the uptake of sulpiride from the bloodstream to the proximal tubular cells, while MATEs contributed to the sulpiride efflux from the proximal tubular cells to the renal lumen, and OCTNs participated in both renal secretion and reabsorption.
Collapse
Affiliation(s)
- Liping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yayun Weng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengru Bai
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongmei Lei
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Mavropoulos SA, Khan NS, Levy ACJ, Faliks BT, Sison CP, Pavlov VA, Zhang Y, Ojamaa K. Nicotinic acetylcholine receptor-mediated protection of the rat heart exposed to ischemia reperfusion. Mol Med 2017; 23:120-133. [PMID: 28598489 DOI: 10.2119/molmed.2017.00091] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Reperfusion injury following acute myocardial infarction is associated with significant morbidity. Activation of neuronal or non-neuronal cholinergic pathways in the heart has been shown to reduce ischemic injury and this effect has been attributed primarily to muscarinic acetylcholine receptors. In contrast, the role of nicotinic receptors, specifically alpha-7 subtype (α7nAChR) in the myocardium remains unknown which offers an opportunity to potentially repurpose several agonists/modulators that are currently under development for neurologic indications. Treatment of ex vivo and in vivo rat models of cardiac ischemia/reperfusion (I/R) with a selective α7nAChR agonist (GTS21) showed significant increases in left ventricular developing pressure, and rates of pressure development without effects on heart rate. These positive functional effects were blocked by co-administration with methyllycaconatine (MLA), a selective antagonist of α7nAChRs. In vivo, delivery of GTS21 at the initiation of reperfusion, reduced infarct size by 42% (p<0.01) and decreased tissue reactive oxygen species (ROS) by 62% (p<0.01). Flow cytometry of MitoTracker Red stained mitochondria showed that mitochondrial membrane potential was normalized in mitochondria isolated from GTS21 treated compared to untreated I/R hearts. Intracellular ATP concentration in cultured cardiomyocytes exposed to hypoxia/reoxygenation was reduced (p<0.001), but significantly increased to normoxic levels with GTS21 treatment, and this was abrogated by MLA pretreatment. Activation of stress-activated kinases, JNK and p38MAPK, were significantly reduced by GTS21 in I/R. We conclude that targeting myocardial 17nAChRs in I/R may provide therapeutic benefit by improving cardiac contractile function through a mechanism that preserves mitochondrial membrane potential, maintains intracellular ATP and reduces ROS generation, thus limiting infarct size.
Collapse
Affiliation(s)
- Spyros A Mavropoulos
- Center for Heart and Lung Research, Northwell Health, Manhasset, NY.,Hofstra Northwell School of Medicine at Hofstra University, Hempstead, NY
| | - Nayaab S Khan
- Center for Heart and Lung Research, Northwell Health, Manhasset, NY
| | - Asaph C J Levy
- Hofstra Northwell School of Medicine at Hofstra University, Hempstead, NY
| | - Bradley T Faliks
- Hofstra Northwell School of Medicine at Hofstra University, Hempstead, NY
| | - Cristina P Sison
- Biostatistics Unit, The Feinstein Institute for Medical Research at Northwell Health, Manhasset, NY
| | - Valentin A Pavlov
- Biostatistics Unit, The Feinstein Institute for Medical Research at Northwell Health, Manhasset, NY.,Laboratory for Biomedical Sciences, The Feinstein Institute for Medical Research at Northwell Health, Manhasset, NY
| | - Youhua Zhang
- Dept. of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Kaie Ojamaa
- Center for Heart and Lung Research, Northwell Health, Manhasset, NY.,Hofstra Northwell School of Medicine at Hofstra University, Hempstead, NY.,Dept. of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
22
|
Various Regulatory Modes for Circadian Rhythmicity and Sexual Dimorphism in the Non-Neuronal Cardiac Cholinergic System. J Cardiovasc Transl Res 2017; 10:411-422. [PMID: 28497301 DOI: 10.1007/s12265-017-9750-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
Cardiomyocytes possess a non-neuronal cardiac cholinergic system (NNCCS) regulated by a positive feedback system; however, its other regulatory mechanisms remain to be elucidated, which include the epigenetic control or regulation by the female sex steroid, estrogen. Here, the NNCCS was shown to possess a circadian rhythm; its activity was upregulated in the light-off phase via histone acetyltransferase (HAT) activity and downregulated in the light-on phase. Disrupting the circadian rhythm altered the physiological choline acetyltransferase (ChAT) expression pattern. The NNCCS circadian rhythm may be regulated by miR-345, independently of HAT, causing decreased cardiac ChAT expression. Murine cardiac ChAT expression and ACh contents were increased more in female hearts than in male hearts. This upregulation was downregulated by treatment with the estrogen receptor antagonist tamoxifen, and in contrast, estrogen reciprocally regulated cardiac miR-345 expression. These results suggest that the NNCCS is regulated by the circadian rhythm and is affected by sexual dimorphism.
Collapse
|
23
|
Said SM, Saygili E, Rana OR, Genz C, Hahn J, Bali R, Varshney S, Albouaini K, Prondzinsky R, Braun-Dullaeus RC. Takotsubo Cardiomyopathy: What we have Learned in the Last 25 Years? (A Comparative Literature Review). Curr Cardiol Rev 2016; 12:297-303. [PMID: 26864096 PMCID: PMC5304252 DOI: 10.2174/1573403x12666160211125601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023] Open
Abstract
We performed a comparative literature review, to elucidate the major features of the Takotsubo (stress) cardiomyopathy (TCM) collected in last 25 years. TCM is characterized by left- or biventricular apical ballooning with a clinical presentation, electrocardiographic abnormalities, and biomarker profils similar to those seen in acute myocardial infarction. Epidemiological studies have shown that TCM is more common in postmenopausal women; however exact figures are not available. The underlying aetiology is still largely undetermined. Elevated catecholamine levels, lack of estrogen, disturbed myocardial fatty acid metabolism and plaque rupture with spontaneous thrombolysis are potentially discussed mechanisms responsible for inducing a prolonged stunned myocardium. Strong emotional or physical stress is the most frequently described trigger in the literature. Therapy recommendations include appropriate antiplatelet treatment, β-blockers and ACE inhibitors. The abnormal kinetics usually resolve or improve within a month and carry a favorable prognosis in most cases. However, all the suspected complications of an acute myocardial infarction, including cardiogenic shock or lethal arrhythmias, may still occur.
Collapse
Affiliation(s)
- Samir M Said
- Department of Cardiology, University Hospital Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Non-neuronal cardiac cholinergic system influences CNS via the vagus nerve to acquire a stress-refractory propensity. Clin Sci (Lond) 2016; 130:1913-28. [PMID: 27528769 DOI: 10.1042/cs20160277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
Abstract
We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity.
Collapse
|
25
|
Yajima M, Kimura S, Karaki S, Nio-Kobayashi J, Tsuruta T, Kuwahara A, Yajima T, Iwanaga T. Non-neuronal, but atropine-sensitive ileal contractile responses to short-chain fatty acids: age-dependent desensitization and restoration under inflammatory conditions in mice. Physiol Rep 2016; 4:4/7/e12759. [PMID: 27053293 PMCID: PMC4831327 DOI: 10.14814/phy2.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 01/22/2023] Open
Abstract
Intestinal epithelial cells sense short‐chain fatty acids (SCFAs) to secrete non‐neuronal acetylcholine (ACh). However, the roles of luminal SCFAs and epithelial ACh under normal and pathological conditions remain unknown. We examined ileal contractile responses to SCFAs at different ages and their mucosal cholinergic alterations under inflammatory conditions. Ileal contractile responses to SCFAs in 1‐day‐old pups to 7‐week‐old mice were compared using an isotonic transducer, and responses to an intraperitoneal injection of lipopolysaccharide (LPS) were analyzed in 7‐week‐old mice. The mRNA expression levels of a SCFA activate free fatty acid receptor, acetylcholinesterase (AChE), choline acetyltransferase (Chat), and choline transporter‐like protein 4 (CTL4) were measured using real‐time quantitative RT‐PCR. AChE was analyzed by histochemical and optical enzymatic assays. Atropine‐sensitive ileal contractile responses to SCFAs occurred in all 1‐day‐old pups, but were frequently desensitized after the weaning period. These contractile responses were not inhibited by tetrodotoxin and did not appear when the mucosal layer had been scraped off. Contractile desensitization in 7‐week‐old mice was abolished in the presence of the AChE inhibitor, eserine, which was consistent with increased AChE activity after weaning. Ileal contractions to SCFAs in adult mice were restored by LPS, which significantly increased the epithelial mRNA expression of Chat and CTL4. Atropine‐sensitive ileal contractile responses to SCFAs constitutively occur in the newborn period, and are desensitized during developmental stages following the up‐regulated expression of AChE in the villous mucosa, but are restored under inflammatory conditions possibly via the release of epithelial ACh.
Collapse
Affiliation(s)
- Masako Yajima
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan Laboratory of Physiology, School of Food and Nutritional Sciences, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichiro Karaki
- Laboratory of Physiology, School of Food and Nutritional Sciences, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Tsuruta
- Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University, Sapporo, Japan Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, School of Food and Nutritional Sciences, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takaji Yajima
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
YAJIMA M, KARAKI SI, TSURUTA T, KIMURA S, NIO-KOBAYASHI J, KUWAHARA A, YAJIMA T. Diversity of the intestinal microbiota differently affects non-neuronal and atropine-sensitive ileal contractile responses to short-chain fatty acids in mice . Biomed Res 2016; 37:319-328. [DOI: 10.2220/biomedres.37.319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masako YAJIMA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
- Laboratory of Physiology, Institute for Environmental Science, University of Shizuoka
- Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University
| | - Shin-Ichiro KARAKI
- Laboratory of Physiology, Institute for Environmental Science, University of Shizuoka
| | - Takeshi TSURUTA
- Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University
| | - Shunsuke KIMURA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| | - Junko NIO-KOBAYASHI
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| | - Atsukazu KUWAHARA
- Laboratory of Physiology, Institute for Environmental Science, University of Shizuoka
| | - Takaji YAJIMA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
- Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University
| |
Collapse
|
27
|
Pochini L, Scalise M, Di Silvestre S, Belviso S, Pandolfi A, Arduini A, Bonomini M, Indiveri C. Acetylcholine and acetylcarnitine transport in peritoneum: Role of the SLC22A4 (OCTN1) transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:653-60. [PMID: 26724204 DOI: 10.1016/j.bbamem.2015.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 01/29/2023]
Abstract
A suitable experimental tool based on proteoliposomes for assaying Organic Cation Transporter Novel member 1 (OCTN1) of peritoneum was pointed out. OCTN1, recently acknowledged as acetylcholine transporter, was immunodetected in rat peritoneum. Transport was assayed following flux of radiolabelled TEA, acetylcholine or acetylcarnitine in proteoliposomes reconstituted with peritoneum extract. OCTN1 mediated, besides TEA, also acetylcholine and a slower acetylcarnitine transport. External sodium inhibited acetylcholine uptake but not its release from proteoliposomes. Differently, sodium did not affect acetylcarnitine uptake. These results suggested that physiologically, acetylcholine should be released while acetylcarnitine was taken up by peritoneum cells. Transport was impaired by OCTN1 inhibitors, butyrobetaine, spermine, and choline. Biotin was also found as acetylcholine transport inhibitor. Anti-OCTN1 antibody specifically inhibited acetylcholine transport confirming the involvement of OCTN1. The transporter was also immunodetected in human mesothelial primary cells. Extract from these cells was reconstituted in proteoliposomes. Transport features very similar to those found with rat peritoneum were observed. Validation of the proteoliposome model for peritoneal transport study was then achieved assaying transport in intact mesothelial cells. TEA, butyrobetaine and Na(+) inhibited acetylcholine transport in intact cells while efflux was Na(+) insensitive. Therefore transport features in intact cells overlapped those found in proteoliposomes.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy
| | - Sara Di Silvestre
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" CeS.I., Via Luigi Polacchi, 11, 66013 Chieti, Italy
| | - Stefania Belviso
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" CeS.I., Via Luigi Polacchi, 11, 66013 Chieti, Italy
| | - Arduino Arduini
- CoreQuest Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy; Department of Research and Development, CoreQuest Sagl, Tecnopolo, Via Cantonale 18, 6928 Manno, Switzerland
| | - Mario Bonomini
- Department of Medicine, Institute of Nephrology, G. d'Annunzio University, Via dei Vestini, Chieti-Pescara, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy.
| |
Collapse
|
28
|
Li-Sha G, Jing-Lin Z, Guang-Yi C, Li L, De-Pu Z, Yue-Chun L. Dose-dependent protective effect of nicotine in a murine model of viral myocarditis induced by coxsackievirus B3. Sci Rep 2015; 5:15895. [PMID: 26507386 PMCID: PMC4623743 DOI: 10.1038/srep15895] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
The alpha 7 nicotinic acetylcholine receptor (alpha7 nAChR) was recently described as an anti-inflammatory target in various inflammatory diseases. The aim of this study was to investigate the dose-related effects of nicotine, an alpha7 nAChR agonist, in murine model of viral myocarditis. BALB/C mice were infected by an intraperitoneally injection with coxsackievirus B3. Nicotine was administered at doses of 0.1, 0.2 or 0.4 mg/kg three times per day for 7 or 14 consecutive days. The effects of nicotine on survival, myocardial histopathological changes, cardiac function, and cytokine levels were studied. The survival rate on day 14 increased in a dose-dependent fashion and was markedly higher in the 0.2 and 0.4 mg/kg nicotine groups than in the infected untreated group. Treatment with high-dose nicotine reduced the myocardial inflammation and improved the impaired left ventricular function in infected mice. The mRNA expressions and protein levels of TNF-α, IL-1β, IL-6, and IL-17A were significantly downregulated in dose-dependent manners in the nicotine treatment groups compared to the infected untreated group. Nicotine dose-dependently reduced the severity of viral myocarditis through inhibiting the production of proinflammatory cytokines. The findings suggest that alpha7 nAChR agonists may be a promising new strategy for patients with viral myocarditis.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhao Jing-Lin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Guang-Yi
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liu Li
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhou De-Pu
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
29
|
Grando SA, Kawashima K, Kirkpatrick CJ, Kummer W, Wessler I. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system. Int Immunopharmacol 2015; 29:1-7. [PMID: 26362206 DOI: 10.1016/j.intimp.2015.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
This special issue of International Immunopharmacology is the proceedings of the Fourth International Symposium on Non-neuronal Acetylcholine that was held on August 28-30, 2014 at the Justus Liebig University of Giessen in Germany. It contains original contributions of meeting participants covering the significant progress in understanding of the biological and medical significance of the non-neuronal cholinergic system extending from exciting insights into molecular mechanisms regulating this system via miRNAs over the discovery of novel cholinergic cellular signaling circuitries to clinical implications in cancer, wound healing, immunity and inflammation, cardiovascular, respiratory and other diseases.
Collapse
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo 108-8641, Japan
| | - Charles J Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen D-35385, Germany
| | - Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| |
Collapse
|
30
|
Kakinuma Y. Future perspectives of a cardiac non-neuronal acetylcholine system targeting cardiovascular diseases as an adjunctive tool for metabolic intervention. Int Immunopharmacol 2015; 29:185-8. [PMID: 26028150 DOI: 10.1016/j.intimp.2015.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 01/04/2023]
Abstract
It has been several years since the function of the non-neuronal cholinergic system was independently reported in cardiomyocytes by several research groups. Although these findings initially seemed to be negligible and insignificant, extraordinary findings about cardiomyocytes were subsequently reported in studies involving the knockdown of the non-neuronal cholinergic system. These studies provide the evidence that this system may be indispensable for maintaining principal cardiac functions. Despite the absence of an appropriate and reliable technology to detect cellular ACh in real time in cardiomyocytes, studies of this system have progressed, albeit very slowly, to gradually consolidate the significance of this system. Based on the many significant findings regarding this system, these will be critical to develop adjunctive intervention therapy against cardiovascular diseases, including peripheral artery disease and heart failure. In this study, previous studies focusing on the non-neuronal cholinergic system are reviewed along with our studies, both indicating the biologically significant roles of the cardiac non-neuronal acetylcholine system from a clinical perspective.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Dep. of Physiology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
31
|
Nicotinic receptor-dependent and -independent effects of galantamine, an acetylcholinesterase inhibitor, on the non-neuronal acetylcholine system in C2C12 cells. Int Immunopharmacol 2015; 29:31-5. [PMID: 25979761 DOI: 10.1016/j.intimp.2015.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
Abstract
We previously reported that satellite cells possess the ability to produce angiogenic factors, including fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in vivo. However, whether C2C12 cells possess a non-neuronal cholinergic system (NNCS) or non-neuronal ACh (NNA) remains to be studied; therefore, we investigated the system using C2C12 cells and its regulatory mechanisms. C2C12 cells synthesized ACh, the level of which was comparable with that of cardiomyocytes, and the synthesis was augmented by the acetylcholinesterase inhibitor galantamine. The ChAT promoter activity was upregulated by nicotine or galantamine, partly through nicotinic receptors for both agents as well as through a non-nicotinic receptor pathway for galantamine. Further, VEGF secretion by C2C12 cells was also increased by nicotine or galantamine through nicotinic receptors as well as partly through non-nicotinic pathways in the case of galantamine. These results suggest that C2C12 cells are equipped with NNCS or NNA, which is positively regulated through nicotinic or non-nicotinic pathways, particularly in the case of galantamine. These results provide a novel concept that myogenic cells expressing NNA can be a therapeutic target for regulating angiogenic factor synthesis.
Collapse
|
32
|
Beckmann J, Schubert J, Morhenn HG, Grau V, Schnettler R, Lips KS. Expression of choline and acetylcholine transporters in synovial tissue and cartilage of patients with rheumatoid arthritis and osteoarthritis. Cell Tissue Res 2015; 359:465-477. [PMID: 25418136 PMCID: PMC4320306 DOI: 10.1007/s00441-014-2036-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Increasing evidence is showing that the non-neuronal cholinergic system plays an important role in the pathology of rheumatoid arthritis (RA). Choline transport into the cell is the rate-limiting step for the synthesis of acetylcholine (ACh), which can be released directly or in vesicles from the cell. However, in the human joint little is known about choline import or the release of ACh from the cell. Thus, we analyze the expression of members of the organic cation transporter (OCT), of the newly discovered choline transporter-like (CTL) family and of classical neuronal components such as the high-affinity choline transporter (CHT1) and the vesicular ACh transporter (VAChT) in the synovium and cartilage of the human hip joint from patients with osteoarthritis (OA) and RA. OCT1, OCT3 and OCTN1 and all members of the CTL family were expressed in synovial and cartilage samples. The expression of CTL1 and CTL2 was localized in synovial macrophages and fibroblasts. CHT1 mRNA expression was detectable only in the synovium, whereas VAChT was completely absent in all samples. Therefore, in the human joint, choline transport into the cell and the release of ACh seems to be mediated mainly by members of the OCT and CTL family. Expression of transporters appears not to be influenced by the pathological state, as no differences have been detected between joints from OA or RA patients. Importantly, however, all necessary components for choline import and the release of non-neuronal ACh are present in the human joint.
Collapse
Affiliation(s)
- Janet Beckmann
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany.
| | - Jan Schubert
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany
| | - Hans-Georg Morhenn
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Justus-Liebig University, Giessen, German
| | - Reinhard Schnettler
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany
- Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Giessen, German
| | - Katrin Susanne Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany
| |
Collapse
|
33
|
Roy A, Guatimosim S, Prado VF, Gros R, Prado MAM. Cholinergic activity as a new target in diseases of the heart. Mol Med 2015; 20:527-37. [PMID: 25222914 DOI: 10.2119/molmed.2014.00125] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system is an important modulator of cardiac signaling in both health and disease. In fact, the significance of altered parasympathetic tone in cardiac disease has recently come to the forefront. Both neuronal and nonneuronal cholinergic signaling likely play a physiological role, since modulating acetylcholine (ACh) signaling from neurons or cardiomyocytes appears to have significant consequences in both health and disease. Notably, many of these effects are solely due to changes in cholinergic signaling, without altered sympathetic drive, which is known to have significant adverse effects in disease states. As such, it is likely that enhanced ACh-mediated signaling not only has direct positive effects on cardiomyocytes, but it also offsets the negative effects of hyperadrenergic tone. In this review, we discuss recent studies that implicate ACh as a major regulator of cardiac remodeling and provide support for the notion that enhancing cholinergic signaling in human patients with cardiac disease can reduce morbidity and mortality. These recent results support the idea of developing large clinical trials of strategies to increase cholinergic tone, either by stimulating the vagus or by increased availability of Ach, in heart failure.
Collapse
Affiliation(s)
- Ashbeel Roy
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
34
|
Galluccio M, Pochini L, Peta V, Iannì M, Scalise M, Indiveri C. Functional and molecular effects of mercury compounds on the human OCTN1 cation transporter: C50 and C136 are the targets for potent inhibition. Toxicol Sci 2014; 144:105-13. [PMID: 25490951 DOI: 10.1093/toxsci/kfu259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The effect of mercury compounds has been tested on the organic cation transporter, hOCTN1. MeHg(+), Hg(2+), or Cd(2+) caused strong inhibition of transport. 1,4-Dithioerythritol (DTE), cysteine (Cys), and N-acetyl-l-cysteine reversed (NAC) the inhibition at different extents. 2-Aminoethyl methanethiosulfonate hydrobromide (MTSEA), a prototype SH reagent, exerted inhibition of transport similar to that observed for the mercurial agents. To investigate the mechanism of action of mercurials, mutants of hOCTN1 in which each of the Cys residues was substituted by Ala have been constructed, over-expressed in Escherichia coli, and purified. Tetraethylammonium chloride (TEA) uptake mediated by each mutant in proteoliposomes was comparable to that of wild type (WT). IC50 values of the WT and mutants for the mercury compounds were derived from dose-response analyses. The mutants C50A and C136A showed significant increase of IC50 indicating that the 2 Cys residues were involved in the interaction with the mercury compounds and inhibition of the transporter. The double mutant C50A/C136A was constructed; the lack of inhibition confirmed that the 2 Cys residues are the targets of mercury compounds. MTSEA showed similar behavior with respect to the mercurial reagents with the difference that increased IC50 was observed also in the C81A mutant. Similar results were obtained when transport was measured as acetylcholine uptake. Ethyl mercury (Thimerosal) inhibited hOCTN1 as well. C50A, C50A/C136A and, at very lower extent, C136A showed increased IC50 indicating that C50 was the major target of this mercury compound. The homology model of hOCTN1 was built using as template PiPT and validated by the experimental data on mutant proteins.
Collapse
Affiliation(s)
- Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Valentina Peta
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Maria Iannì
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
35
|
Gavioli M, Lara A, Almeida PWM, Lima AM, Damasceno DD, Rocha-Resende C, Ladeira M, Resende RR, Martinelli PM, Melo MB, Brum PC, Fontes MAP, Souza Santos RA, Prado MAM, Guatimosim S. Cholinergic signaling exerts protective effects in models of sympathetic hyperactivity-induced cardiac dysfunction. PLoS One 2014; 9:e100179. [PMID: 24992197 PMCID: PMC4081111 DOI: 10.1371/journal.pone.0100179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 05/23/2014] [Indexed: 12/17/2022] Open
Abstract
Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease.
Collapse
Affiliation(s)
- Mariana Gavioli
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline Lara
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro W. M. Almeida
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Augusto Martins Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Denis D. Damasceno
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina Ladeira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo R. Resende
- Department of Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patricia M. Martinelli
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Barrouin Melo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, Universidade de São Paulo, São Paulo, Brazil
| | - Marco Antonio Peliky Fontes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson A. Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marco A. M. Prado
- Robarts Research Institute, University of Western Ontario, Department of Physiology and Pharmacology, Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
36
|
Schulte A, Lichtenstern C, Henrich M, Weigand MA, Uhle F. Loss of vagal tone aggravates systemic inflammation and cardiac impairment in endotoxemic rats. J Surg Res 2014; 188:480-8. [PMID: 24565505 DOI: 10.1016/j.jss.2014.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND During the course of sepsis, often myocardial depression with hemodynamic impairment occurs. Acetylcholine, the main transmitter of the parasympathetic Nervus vagus, has been shown to be of importance for the transmission of signals within the immune system and also for a variety of other functions throughout the organism. Hypothesizing a potential correlation between this dysfunction and hemodynamic impairment, we wanted to assess the impact of vagal stimulation on myocardial inflammation and function in a rat model of lipopolysaccharide (LPS)-induced septic shock. As the myocardial tissue is (sparsely) innervated by the N. vagus, there might be an important anti-inflammatory effect in the heart, inhibiting proinflammatory gene expression in cardiomyocytes and improving cardiac function. MATERIALS AND METHODS We performed stimulation of the right cervical branch of the N. vagus in vagotomized, endotoxemic (1 mg/kg body weight LPS, intravenously) rats. Hemodynamic parameters were assessed over time using a left ventricular pressure-volume catheter. After the experiments, hearts and blood plasma were collected, and the expression of proinflammatory cytokines was measured using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS After vagotomy, the inflammatory response was aggravated, measurable by elevated cytokine levels in plasma and ventricular tissue. In concordance, cardiac impairment during septic shock was pronounced in these animals. To reverse both hemodynamic and immunologic effects of diminished vagal tone, even a brief stimulation of the N. vagus was enough during initial LPS infusion. CONCLUSIONS Overall, the N. vagus might play a major role in maintaining hemodynamic stability and cardiac immune homeostasis during septic shock.
Collapse
Affiliation(s)
- Astrid Schulte
- Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christoph Lichtenstern
- Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Michael Henrich
- Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus A Weigand
- Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Florian Uhle
- Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
37
|
Affiliation(s)
- Achilles Pappano
- Department of Cell BiologyUniversity of Connecticut Health CenterFarmingtonConnecticutUSA
| |
Collapse
|
38
|
Roy A, Fields WC, Rocha‐Resende C, Resende RR, Guatimosim S, Prado VF, Gros R, Prado MAM. Letters to the Editor. FASEB J 2014; 28:2-3. [DOI: 10.1096/fj.14-0102lte] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Borodinova AA, Abramochkin DV, Sukhova GS. Non-quantal release of acetylcholine in rat atrial myocardium is inhibited by noradrenaline. Exp Physiol 2013; 98:1659-67. [DOI: 10.1113/expphysiol.2013.074989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in hippocampus as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 257:129-39. [PMID: 24095878 DOI: 10.1016/j.bbr.2013.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023]
Abstract
To identify genes involved in the development/expression of anxiety/fear, we analyzed the gene expression profile in the hippocampus of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock is a unique genetic resource for the fine mapping of quantitative trait loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety, fearfulness or other complex traits. We selected high- and low-anxious NIH-HS rats according to the number of avoidance responses they performed in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety/fearfulness tests, i.e. the elevated zero-maze and a "novel-cage activity" test. Three weeks after behavioral testing, the hippocampus was dissected and prepared for the microarray study. There appeared 29 down-regulated and 37 up-regulated SNC-related genes (fold-change>|2.19|, FDR<0.05) in the "Low-anxious" vs. the "High-anxious" group. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, nine relevant genes (Avpr1b, Accn3, Cd74, Ltb, Nrg2, Oprdl1, Slc10a4, Slc5a7 and RT1-EC12), tested for validation through qRT-PCR, have either neuroendocrinological or neuroinmunological/inflammation-related functions, or have been related with the hippocampal cholinergic system, while some of them have also been involved in the modulation of anxiety or stress-related (neurobiological and behavioral) responses (i.e. Avpr1b, Oprdl1). The present work confirms the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis or mechanisms involved in anxiety and/or fear, and suggest that some MHC-(neuroinmunological/inflammation)-related pathways, as well as the cholinergic system within the hippocampus, may play a role in shaping individual differences in trait anxiety.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Roy A, Fields WC, Rocha-Resende C, Resende RR, Guatimosim S, Prado VF, Gros R, Prado MAM. Cardiomyocyte-secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J 2013; 27:5072-82. [PMID: 24018063 DOI: 10.1096/fj.13-238279] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heart activity and long-term function are regulated by the sympathetic and parasympathetic branches of the nervous system. Parasympathetic neurons have received increased attention recently because acetylcholine (ACh) has been shown to play protective roles in heart disease. However, parasympathetic innervation is sparse in the heart, raising the question of how cholinergic signaling regulates cardiomyocytes. We hypothesized that non-neuronal secretion of ACh from cardiomyocytes plays a role in cholinergic regulation of cardiac activity. To test this possibility, we eliminated secretion of ACh exclusively from cardiomyocytes by targeting the vesicular acetylcholine transporter (VAChT). We find that lack of cardiomyocyte-secreted ACh disturbs the regulation of cardiac activity and causes cardiomyocyte remodeling. Mutant mice present normal hemodynamic parameters under nonstressful conditions; however, following exercise, their heart rate response is increased. Moreover, hearts from mutant mice present increased oxidative stress, altered calcium signaling, remodeling, and hypertrophy. Hence, without cardiomyocyte-derived ACh secretion, hearts from mutant mice show signs of imbalanced autonomic activity consistent with decreased cholinergic drive. These unexpected results suggest that cardiomyocyte-derived ACh is required for maintenance of cardiac homeostasis and regulates critical signaling pathways necessary to maintain normal heart activity. We propose that this non-neuronal source of ACh boosts parasympathetic cholinergic signaling to counterbalance sympathetic activity regulating multiple aspects of heart physiology.
Collapse
Affiliation(s)
- Ashbeel Roy
- 1Robarts Research Institute, 100 Perth Dr., London, Ontario, N6A 5K8, Canada. M.A.M.P.,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim HY, Cho KW, Xu DY, Kang DG, Lee HS. Endogenous ACh tonically stimulates ANP secretion in rat atria. Am J Physiol Heart Circ Physiol 2013; 305:H1050-6. [PMID: 23913708 DOI: 10.1152/ajpheart.00469.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exogenous acetylcholine (ACh) is known to stimulate atrial natriuretic peptide (ANP) secretion concomitantly with a decrease in atrial pulse pressure. However, the role of intrinsic ACh in the regulation of ANP secretion remains unknown. Recently, it was shown that nonneuronal and neuronal ACh is present in the cardiac atria. From this finding we hypothesize that endogenously released ACh is involved in the regulation of ANP secretion in an autocrine or paracrine manner in the atria. Experiments were performed in isolated beating rat atria. ANP was measured using radioimmunoassay. To increase the availability of the ACh in the extracellular space of the atrium, its degradation was inhibited with an inhibitor of acetylcholinesterase. Acetylcholinesterase inhibition with physostigmine increased ANP secretion concomitantly with a decrease in atrial dynamics in a concentration-dependent manner. Inhibitors of M2 muscarinic ACh receptor (mAChR), methoctramine, and ACh-activated K(+) (KACh(+)) channels, tertiapin-Q, abolished the physostigmine-induced changes. The effects were not observed in the atria from rats treated with pertussis toxin. Furthermore, the physostigmine-induced effects were attenuated by an inhibitor of high-affinity choline transporter, hemicholinium-3, which is a rate-limiting step of ACh synthesis. Inhibitors of the mAChR signaling pathway and ACh synthesis also attenuated the basal levels of ANP secretion and accentuated atrial dynamics. These findings suggest that endogenously released ACh tonically stimulates ANP secretion from atrial cardiomyocytes via activation of M2 mAChR-Gi/o-KACh(+) channel signaling. It is also suggested that the ACh-ANP signaling is implicated in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Hye Yoom Kim
- Hanbang Body-fluid Research Center & College of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, Republic of Korea; and
| | | | | | | | | |
Collapse
|
43
|
Abstract
Acetylcholine, the first chemical to be identified as a neurotransmitter, is packed in synaptic vesicles by the activity of VAChT (vesicular acetylcholine transporter). A decrease in VAChT expression has been reported in a number of diseases, and this has consequences for the amount of acetylcholine loaded in synaptic vesicles as well as for neurotransmitter release. Several genetically modified mice targeting the VAChT gene have been generated, providing novel models to understand how changes in VAChT affect transmitter release. A surprising finding is that most cholinergic neurons in the brain also can express a second type of vesicular neurotransmitter transporter that allows these neurons to secrete two distinct neurotransmitters. Thus a given neuron can use two neurotransmitters to regulate different physiological functions. In addition, recent data indicate that non-neuronal cells can also express the machinery used to synthesize and release acetylcholine. Some of these cells rely on VAChT to secrete acetylcholine with potential physiological consequences in the periphery. Hence novel functions for the oldest neurotransmitter known are emerging with the potential to provide new targets for the treatment of several pathological conditions.
Collapse
|
44
|
Kakinuma Y, Tsuda M, Okazaki K, Akiyama T, Arikawa M, Noguchi T, Sato T. Heart-specific overexpression of choline acetyltransferase gene protects murine heart against ischemia through hypoxia-inducible factor-1α-related defense mechanisms. J Am Heart Assoc 2013; 2:e004887. [PMID: 23525439 PMCID: PMC3603257 DOI: 10.1161/jaha.112.004887] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the existence of a nonneuronal cholinergic system in ventricular myocardium. Methods and Results To examine the role of the nonneuronal cardiac cholinergic system, we generated choline acetyltransferase (ChAT)–expressing cells and heart‐specific ChAT transgenic (ChAT‐tg) mice. Compared with cardiomyocytes of wild‐type (WT) mice, those of the ChAT‐tg mice had high levels of ACh and hypoxia‐inducible factor (HIF)‐1α protein and augmented glucose uptake. These phenotypes were also reproduced by ChAT‐overexpressing cells, which utilized oxygen less. Before myocardial infarction (MI), the WT and ChAT‐tg mice showed similar hemodynamics; after MI, however, the ChAT‐tg mice had better survival than did the WT mice. In the ChAT‐tg hearts, accelerated angiogenesis at the ischemic area, and accentuated glucose utilization prevented post‐MI remodeling. The ChAT‐tg heart was more resistant to ischemia–reperfusion injury than was the WT heart. Conclusions These results suggest that the activated cardiac ACh‐HIF‐1α cascade improves survival after MI. We conclude that de novo synthesis of ACh in cardiomyocytes is a pivotal mechanism for self‐defense against ischemia.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Grando SA, Kawashima K, Kirkpatrick CJ, Meurs H, Wessler I. The non-neuronal cholinergic system: Basic science, therapeutic implications and new perspectives. Life Sci 2012; 91:969-72. [DOI: 10.1016/j.lfs.2012.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Both neuronal and non-neuronal acetylcholine take part in non-quantal acetylcholine release in the rat atrium. Life Sci 2012; 91:1023-6. [DOI: 10.1016/j.lfs.2012.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Zhao M, Sun L, Liu JJ, Wang H, Miao Y, Zang WJ. Vagal nerve modulation: A promising new therapeutic approach for cardiovascular diseases. Clin Exp Pharmacol Physiol 2012; 39:701-5. [DOI: 10.1111/j.1440-1681.2011.05644.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Roy A, Lara A, Guimarães D, Pires R, Gomes ER, Carter DE, Gomez MV, Guatimosim S, Prado VF, Prado MAM, Gros R. An analysis of the myocardial transcriptome in a mouse model of cardiac dysfunction with decreased cholinergic neurotransmission. PLoS One 2012; 7:e39997. [PMID: 22768193 PMCID: PMC3386908 DOI: 10.1371/journal.pone.0039997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 06/02/2012] [Indexed: 01/02/2023] Open
Abstract
Autonomic dysfunction is observed in many cardiovascular diseases and contributes to cardiac remodeling and heart disease. We previously reported that a decrease in the expression levels of the vesicular acetylcholine transporter (VAChT) in genetically-modified homozygous mice (VAChT KD(HOM)) leads to decreased cholinergic tone, autonomic imbalance and a phenotype resembling cardiac dysfunction. In order to further understand the molecular changes resulting from chronic long-term decrease in parasympathetic tone, we undertook a transcriptome-based, microarray-driven approach to analyze gene expression changes in ventricular tissue from VAChT KD(HOM) mice. We demonstrate that a decrease in cholinergic tone is associated with alterations in gene expression in mutant hearts, which might contribute to increased ROS levels observed in these cardiomyocytes. In contrast, in another model of cardiac remodeling and autonomic imbalance, induced through chronic isoproterenol treatment to increase sympathetic drive, these genes did not appear to be altered in a pattern similar to that observed in VAChT KD(HOM) hearts. These data suggest the importance of maintaining a fine balance between the two branches of the autonomic nervous system and the significance of absolute levels of cholinergic tone in proper cardiac function.
Collapse
Affiliation(s)
- Ashbeel Roy
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Aline Lara
- Departments of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo Guimarães
- Graduate Program Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Rita Pires
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Eneas R. Gomes
- Departments of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David E. Carter
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marcus V. Gomez
- Graduate Program Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vania F. Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marco A. M. Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert Gros
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine (Clinical Pharmacology), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Saygili E, Kluttig R, Rana OR, Saygili E, Gemein C, Zink MD, Rackauskas G, Weis J, Schwinger RHG, Marx N, Schauerte P. Age-related regional differences in cardiac nerve growth factor expression. AGE (DORDRECHT, NETHERLANDS) 2012; 34:659-667. [PMID: 21559866 PMCID: PMC3337926 DOI: 10.1007/s11357-011-9262-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
Age has been identified as an independent risk factor for cardiovascular diseases. A shift of the cardiac autonomic nervous system towards an increase in sympathetic tone has been reported in the elderly. Nerve growth factor (NGF) is the main neurotrophic factor that increases the sympathetic activity of the heart. If there is a shift of NGF expression in old compared to young cardiomyocytes and whether there are regional differences in the heart still remain unclear. Therefore, we chose a rat model of different-aged rats (3-4 days = neonatal, 6-8 weeks = young, 20-24 months = old), and isolated cardiomyocytes from the left and the right atrium (LA, RA), as well as from the left and the right ventricle (LV, RV), were used to determine NGF expression on mRNA and protein levels. In neonatal, young, and old rats, NGF amount in LA and RA was significantly lower as compared to LV and RV. In young and old rats, we found significant higher NGF protein levels in LA compared to RA. In addition, both atria showed an increase in NGF expression between age groups neonatal, young, and old. In both ventricles, we observed a significant decrease in NGF expression from neonatal to young rats and a significant increase from young to old rats. The highest NGF amount in LV and RV was observed in neonatal rats. Regarding tyrosine kinase A receptor (TrkA) expression, the main receptor for NGF signaling, both atria showed the largest expression in old rats; while in LV and RV, TrkA was expressed mainly in young rats. These results point to a contribution of nerve growth factors to the change of autonomic tone observed in elderly patients.
Collapse
Affiliation(s)
- Erol Saygili
- Department of Cardiology, RWTH Aachen University, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rocha-Resende C, Roy A, Resende R, Ladeira MS, Lara A, de Morais Gomes ER, Prado VF, Gros R, Guatimosim C, Prado MAM, Guatimosim S. Non-neuronal cholinergic machinery present in cardiomyocytes offsets hypertrophic signals. J Mol Cell Cardiol 2012; 53:206-16. [PMID: 22587993 DOI: 10.1016/j.yjmcc.2012.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/17/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022]
Abstract
Recent work has provided compelling evidence that increased levels of acetylcholine (ACh) can be protective in heart failure, whereas reduced levels of ACh secretion can cause heart malfunction. Previous data show that cardiomyocytes themselves can actively secrete ACh, raising the question of whether this cardiomyocyte derived ACh may contribute to the protective effects of ACh in the heart. To address the functionality of this non-neuronal ACh machinery, we used cholinesterase inhibitors and a siRNA targeted to AChE (acetylcholinesterase) as a way to increase the availability of ACh secreted by cardiac cells. By using nitric oxide (NO) formation as a biological sensor for released ACh, we showed that cholinesterase inhibition increased NO levels in freshly isolated ventricular myocytes and that this effect was prevented by atropine, a muscarinic receptor antagonist, and by inhibition of ACh synthesis or vesicular storage. Functionally, cholinesterase inhibition prevented the hypertrophic effect as well as molecular changes and calcium transient alterations induced by adrenergic overstimulation in cardiomyocytes. Moreover, inhibition of ACh storage or atropine blunted the anti-hypertrophic action of cholinesterase inhibition. Altogether, our results show that cardiomyocytes possess functional cholinergic machinery that offsets deleterious effects of hyperadrenergic stimulation. In addition, we show that adrenergic stimulation upregulates expression levels of cholinergic components. We propose that this cardiomyocyte cholinergic signaling could amplify the protective effects of the parasympathetic nervous system in the heart and may counteract or partially neutralize hypertrophic adrenergic effects.
Collapse
Affiliation(s)
- Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31270-901, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|