1
|
Owens MM, Dalal S, Radovic A, Fernandes L, Syed H, Herndon MK, Cooper C, Singh K, Beaumont E. Vagus nerve stimulation alleviates cardiac dysfunction and inflammatory markers during heart failure in rats. Auton Neurosci 2024; 253:103162. [PMID: 38513382 PMCID: PMC11318104 DOI: 10.1016/j.autneu.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Vagus nerve stimulation (VNS) is under clinical investigation as a therapy for heart failure with reduced ejection fraction (HFrEF). This study aimed to investigate its therapeutic effects on three main components of heart failure: cardiac function, cardiac remodeling and central neuroinflammation using a pressure overload (PO) rat model. Male Sprague-Dawley rats were divided into four groups: PO, PO + VNS, PO + VNS sham, and controls. All rats, except controls, underwent a PO surgery to constrict the thoracic aorta (~50 %) to induce HFrEF. Open loop VNS therapy was continuously administered to PO + VNS rats at 20 Hz, 1.0 mA for 60 days. Evaluation of cardiac function and structure via echocardiograms showed decreases in stroke volume and relative ejection fraction and increases in the internal diameter of the left ventricle during systole and diastole in PO rats (p < 0.05). However, these PO-induced adverse changes were alleviated with VNS therapy. Additionally, PO rats exhibited significant increases in myocyte cross sectional areas indicating hypertrophy, along with significant increases in myocardial fibrosis and apoptosis, all of which were reversed by VNS therapy (p < 0.05). Furthermore, VNS mitigated microglial activation in two central autonomic nuclei: the paraventricular nucleus of the hypothalamus and locus coeruleus. These findings demonstrate that when VNS therapy is initiated at an early stage of HFrEF progression (<10 % reduction in relative ejection fraction), the supplementation of vagal activity is effective in restoring multi organ homeostasis in a PO model.
Collapse
Affiliation(s)
- Misty M Owens
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Suman Dalal
- Department of Health Sciences, East Tennessee State University, 248 Lamb Hall, PO Box 70673, Johnson City, TN, 37614, United States of America; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, 1276 Gilbreath Dr., Box 70300, Johnson City, TN 37614, United States of America
| | - Aleksandra Radovic
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Luciano Fernandes
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Hassan Syed
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Mary-Katherine Herndon
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Coty Cooper
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, 1276 Gilbreath Dr., Box 70300, Johnson City, TN 37614, United States of America; James H. Quillen Veterans Affairs Medical Center, Lamont St & Veterans Way, Johnson City, TN 37604, United States of America
| | - Eric Beaumont
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, 1276 Gilbreath Dr., Box 70300, Johnson City, TN 37614, United States of America.
| |
Collapse
|
2
|
Chang M, Wang H, Lei Y, Yang H, Xu J, Tang S. Proteomic study of left ventricle and cortex in rats after myocardial infarction. Sci Rep 2024; 14:6866. [PMID: 38514755 PMCID: PMC10958002 DOI: 10.1038/s41598-024-56816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Myocardial infarction (MI) induces neuroinflammation indirectly, chronic neuroinflammation may cause neurodegenerative diseases. Changes in the proteomics of heart and brain tissue after MI may shed new light on the mechanisms involved in neuroinflammation. This study explored brain and heart protein changes after MI with a data-independent acquisition (DIA) mode proteomics approach. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in the heart of rats, and the immunofluorescence of microglia in the brain cortex was performed at 1d, 3d, 5d, and 7d after MI to detect the neuroinflammation. Then proteomics was accomplished to obtain the vital proteins in the heart and brain post-MI. The results show that the number of microglia was significantly increased in the Model-1d group, the Model-3d group, the Model-5d group, and the Model-7d group compared to the Sham group. Various proteins were obtained through DIA proteomics. Linking to key targets of brain disease, 14 proteins were obtained in the brain cortex. Among them, elongation of very long chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) were verified through western blotting (WB). The results of WB were consistent with the proteomics results. Therefore, these proteins may be related to the pathogenesis of neuroinflammation after MI.
Collapse
Affiliation(s)
- Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Xiang C, Cheng Y, Yu X, Mao T, Luo H, Hu H, Wu Y, Sang R, Wang Z, Wang Y, Luo Q, Huang J, Zhao J, Wang J, Wang X, Chen M, Liu W, Zhou L, Wang S, Jiang H. Low-intensity focused ultrasound modulation of the paraventricular nucleus to prevent myocardial infarction-induced ventricular arrhythmia. Heart Rhythm 2024; 21:340-348. [PMID: 38042443 DOI: 10.1016/j.hrthm.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Our previous study showed that light-emitting diode modulation of the hypothalamic paraventricular nucleus (PVN), which is the control center of the sympathetic nervous system, might attenuate neuroinflammation in the PVN and prevent ventricular arrhythmias (VAs) after myocardial infarction (MI). Low-intensity focused ultrasound (LIFU) has deeper penetration than does light-emitting diode, while its effect on the PVN has not been reported. OBJECTIVE This study aimed to explore the effect of LIFU modulation of the PVN on the inducibility of post-MI VAs. METHODS Fifty-four Sprague-Dawley rats were randomly divided into acute control (n = 12, 22.22%), acute MI (AMI, n = 12, 22.22%), AMI + LIFU (n = 12, 22.22%), chronic control (n = 6, 11.11%), chronic MI (CMI, n = 6, 11.11%), and CMI + LIFU (n = 6, 11.11%) groups. MI was induced by left anterior artery ligation, and electrocardiographic recording for 0.5 hours after MI and programmed electrophysiological stimulation were used to test the vulnerability of VAs. Peripheral sympathetic neural activity was assessed by measuring left stellate ganglion neural activity. Finally, hearts and brains were extracted for Western blotting and histopathological analysis, respectively. RESULTS Compared with the AMI group, AMI-induced VAs (P < .05) and left stellate ganglion neural activity (P < .05) were significantly attenuated in the AMI + LIFU group. In addition, LIFU resulted in a significant reduction of microglial activation in the PVN and expression of inflammatory cytokines in the peri-ischemic myocardium. In the CMI + LIFU group, there was no obvious tissue damage in the brain. CONCLUSION LIFU modulation of the PVN may prevent the incidence of post-MI VAs by attenuating MI-induced sympathetic neural activation and inflammatory response.
Collapse
Affiliation(s)
- Chunrong Xiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ye Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaomei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianlong Mao
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Haoyuan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuzhe Wu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ruiqi Sang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhuo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yujie Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qinyu Luo
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyu Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiahui Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiale Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xinqi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mingxian Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
4
|
Traub J, Frey A, Störk S. Chronic Neuroinflammation and Cognitive Decline in Patients with Cardiac Disease: Evidence, Relevance, and Therapeutic Implications. Life (Basel) 2023; 13:life13020329. [PMID: 36836686 PMCID: PMC9962280 DOI: 10.3390/life13020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acute and chronic cardiac disorders predispose to alterations in cognitive performance, ranging from mild cognitive impairment to overt dementia. Although this association is well-established, the factors inducing and accelerating cognitive decline beyond ageing and the intricate causal pathways and multilateral interdependencies involved remain poorly understood. Dysregulated and persistent inflammatory processes have been implicated as potentially causal mediators of the adverse consequences on brain function in patients with cardiac disease. Recent advances in positron emission tomography disclosed an enhanced level of neuroinflammation of cortical and subcortical brain regions as an important correlate of altered cognition in these patients. In preclinical and clinical investigations, the thereby involved domains and cell types of the brain are gradually better characterized. Microglia, resident myeloid cells of the central nervous system, appear to be of particular importance, as they are extremely sensitive to even subtle pathological alterations affecting their complex interplay with neighboring astrocytes, oligodendrocytes, infiltrating myeloid cells, and lymphocytes. Here, we review the current evidence linking cognitive impairment and chronic neuroinflammation in patients with various selected cardiac disorders including the aspect of chronic neuroinflammation as a potentially druggable target.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
- Correspondence: ; Tel.: +4993120139216
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
5
|
Yoshizawa M, Fukushi I, Takeda K, Kono Y, Hasebe Y, Koizumi K, Ikeda K, Pokorski M, Toda T, Okada Y. Role of microglia in blood pressure and respiratory responses to acute hypoxic exposure in rats. J Physiol Sci 2022; 72:26. [PMID: 36229778 DOI: 10.1186/s12576-022-00848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Microglia modulate cardiorespiratory activities during chronic hypoxia. It has not been clarified whether microglia are involved in the cardiorespiratory responses to acute hypoxia. Here we investigated this issue by comparing cardiorespiratory responses to two levels of acute hypoxia (13% O2 for 4 min and 7% O2 for 5 min) in conscious unrestrained rats before and after systemic injection of minocycline (MINO), an inhibitor of microglia activation. MINO increased blood pressure but not lung ventilation in the control normoxic condition. Acute hypoxia stimulated cardiorespiratory responses in MINO-untreated rats. MINO failed to significantly affect the magnitude of hypoxia-induced blood pressure elevation. In contrast, MINO tended to suppress the ventilatory responses to hypoxia. We conclude that microglia differentially affect cardiorespiratory regulation depending on the level of blood oxygenation. Microglia suppressively contribute to blood pressure regulation in normoxia but help maintain ventilatory augmentation in hypoxia, which underscores the dichotomy of central regulatory pathways for both systems.
Collapse
Affiliation(s)
- Masashi Yoshizawa
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Isato Fukushi
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.,Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.,Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yosuke Kono
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Yohei Hasebe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Keiichi Koizumi
- Department of Pediatrics, Fujiyoshida Municipal Hospital, Yamanashi, Japan
| | - Keiko Ikeda
- Institute of Innovative Research, Homeostatic Mechanism Research Unit, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Takako Toda
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.
| |
Collapse
|
6
|
Sustained Increase in Serum Glial Fibrillary Acidic Protein after First ST-Elevation Myocardial Infarction. Int J Mol Sci 2022; 23:ijms231810304. [PMID: 36142218 PMCID: PMC9499398 DOI: 10.3390/ijms231810304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0–4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway.
Collapse
|
7
|
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J Inflamm Res 2022; 15:3083-3094. [PMID: 35642214 PMCID: PMC9148574 DOI: 10.2147/jir.s350109] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
- Correspondence: Hong Jiang; Jun Wan, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China, Email ;
| |
Collapse
|
8
|
Qi L, Hu H, Wang Y, Hu H, Wang K, Li P, Yin J, Shi Y, Wang Y, Zhao Y, Lyu H, Feng M, Xue M, Li X, Li Y, Yan S. New insights into the central sympathetic hyperactivity post-myocardial infarction: Roles of METTL3-mediated m 6 A methylation. J Cell Mol Med 2022; 26:1264-1280. [PMID: 35040253 PMCID: PMC8831944 DOI: 10.1111/jcmm.17183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022] Open
Abstract
Ventricular arrhythmias (VAs) triggers by sympathetic nerve hyperactivity contribute to sudden cardiac death in myocardial infarction (MI) patients. Microglia-mediated inflammation in the paraventricular nucleus (PVN) is involved in sympathetic hyperactivity after MI. N6-methyladenosine (m6 A), the most prevalent mRNA and epigenetic modification, is critical for mediating cell inflammation. We aimed to explore whether METTL3-mediated m6 A modification is involved in microglia-mediated sympathetic hyperactivity after MI in the PVN. MI model was established by left coronary artery ligation. METTL3-mediated m6 A modification was markedly increased in the PVN at 3 days after MI, and METTL3 was primarily located in microglia by immunofluorescence. RNA-seq, MeRIP-seq, MeRIP-qPCR, immunohistochemistry, ELISA, heart rate variability measurements, renal sympathetic nerve activity recording and programmed electrical stimulation confirmed that the elevated toll-like receptor 4 (TLR4) expression by m6 A modification on TLR4 mRNA 3'-UTR region combined with activated NF-κB signalling led to the overwhelming production of pro-inflammatory cytokines IL-1β and TNF-α in the PVN, thus inducing the sympathetic hyperactivity and increasing the incidence of VAs post-MI. Targeting METTL3 attenuated the inflammatory response and sympathetic hyperactivity and reduced the incidence of VAs post-MI.
Collapse
Affiliation(s)
- Lei Qi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.,Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Hu
- Department of Cardiology, Jining No.1 People' Hospital, Jining, China
| | - Ye Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Kang Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pingjiang Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.,Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yugen Shi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yu Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yuepeng Zhao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.,Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hangji Lyu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.,Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Feng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.,Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Mei Xue
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Xinran Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Yan Li
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Suhua Yan
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| |
Collapse
|
9
|
Gelosa P, Castiglioni L, Rzemieniec J, Muluhie M, Camera M, Sironi L. Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain. J Mol Med (Berl) 2022; 100:23-41. [PMID: 34674004 PMCID: PMC8724191 DOI: 10.1007/s00109-021-02154-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 12/04/2022]
Abstract
Myocardial infarction (MI) is the leading cause of death among ischemic heart diseases and is associated with several long-term cardiovascular complications, such as angina, re-infarction, arrhythmias, and heart failure. However, MI is frequently accompanied by non-cardiovascular multiple comorbidities, including brain disorders such as stroke, anxiety, depression, and cognitive impairment. Accumulating experimental and clinical evidence suggests a causal relationship between MI and stroke, but the precise underlying mechanisms have not yet been elucidated. Indeed, the risk of stroke remains a current challenge in patients with MI, in spite of the improvement of medical treatment among this patient population has reduced the risk of stroke. In this review, the effects of the signaling from the ischemic heart to the brain, such as neuroinflammation, neuronal apoptosis, and neurogenesis, and the possible actors mediating these effects, such as systemic inflammation, immunoresponse, extracellular vesicles, and microRNAs, are discussed.
Collapse
Affiliation(s)
- Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Marina Camera
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
- Centro Cardiologico Monzino, 20138, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy.
| |
Collapse
|
10
|
Thorp EB, Flanagan ME, Popko B, DeBerge M. Resolving inflammatory links between myocardial infarction and vascular dementia. Semin Immunol 2022; 59:101600. [PMID: 35227567 PMCID: PMC10234261 DOI: 10.1016/j.smim.2022.101600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/15/2023]
Abstract
Myocardial infarction is associated with increased risk for vascular dementia. In both myocardial infarction and vascular dementia, there is evidence that elevated inflammatory biomarkers are associated with worsened clinical outcomes. Myocardial infarction leads to a systemic inflammatory response, which may contribute to recruitment or activation of myeloid cells, including monocytes, microglia, and perivascular macrophages, within the central nervous system. However, our understanding of the causative roles for these cells linking cardiac injury to the development and progression of dementia is incomplete. Herein, we provide an overview of inflammatory cellular and molecular links between myocardial infarction and vascular dementia and discuss strategies to resolve inflammation after myocardial infarction to limit neurovascular injury.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.
| | - Margaret E Flanagan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.
| |
Collapse
|
11
|
Zhang S, Hu L, Han C, Huang R, Ooi K, Qian X, Ren X, Chu D, Zhang H, Du D, Xia C. PLIN2 Mediates Neuroinflammation and Oxidative/Nitrosative Stress via Downregulating Phosphatidylethanolamine in the Rostral Ventrolateral Medulla of Stressed Hypertensive Rats. J Inflamm Res 2021; 14:6331-6348. [PMID: 34880641 PMCID: PMC8646230 DOI: 10.2147/jir.s329230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Oxidative/nitrosative stress, neuroinflammation and their intimate interactions mediate sympathetic overactivation in hypertension. An immoderate inflammatory response is characterized not only by elevated proinflammatory cytokines (PICs) but by increases in mitochondrial dysfunction, reactive oxygen species (ROS), and nitric oxide (NO). Recent data pinpoint that both the phospholipid and lipid droplets (LDs) are potent modulators of microglia physiology. Methods Stress rats underwent compound stressors for 15 days with PLIN2-siRNA or scrambled-siRNA (SC-siRNA) administrated into the rostral ventrolateral medulla (RVLM). Lipids were analyzed by mass spectroscopy-based quantitative lipidomics. The phenotypes and proliferation of microglia, LDs, in the RVLM of rats were detected; blood pressure (BP) and myocardial injury in rats were evaluated. The anti-oxidative/nitrosative stress effect of phosphatidylethanolamine (PE) was explored in cultured primary microglia. Results Lipidomics analysis showed that 75 individual lipids in RVLM were significantly dysregulated by stress [PE was the most one], demonstrating that lipid composition changed with stress. In vitro, prorenin stress induced the accumulation of LDs, increased PICs, which could be blocked by siRNA-PLIN2 in microglia. PLIN2 knockdown upregulated the PE synthesis in microglia. Anti-oxidative/nitrosative stress effect of PE delivery was confirmed by the decrease of ROS and decrease in 3-NT and MDA in prorenin-treated microglia. PLIN2 knockdown in the RVLM blocked the number of iNOS+ and PCNA+ microglia, decreased BP, alleviated cardiac fibrosis and hypertrophy in stressed rats. Conclusion PLIN2 mediates microglial polarization/proliferation via downregulating PE in the RVLM of stressed rats. Delivery of PE is a promising strategy for combating neuroinflammation and oxidative/nitrosative stress in stress-induced hypertension.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Hu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Chengzhi Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Renhui Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Kokwin Ooi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xinyi Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaorong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dechang Chu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, People's Republic of China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, People's Republic of China
| | - Dongshu Du
- School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
12
|
Human umbilical cord mesenchymal stem cells ameliorate depression by regulating Jmjd3 and microglia polarization in myocardial infarction mice. Psychopharmacology (Berl) 2021; 238:2973-2984. [PMID: 34374805 DOI: 10.1007/s00213-021-05912-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Microglia regulate the inflammation of the central nervous system and play a crucial role in the pathogenesis of depression. Moreover, Jmjd3 is involved in microglia polarization. Mounting studies reported the beneficial effects of human umbilical cord mesenchymal stem cells (HUC-MSCs) on myocardial infarction (MI), Unfortunately, its effects on MI-induced depression and its underlying mechanisms remain unclear. OBJECTIVES We aimed to investigate the antidepressant effects of HUC-MSCs and their impacts on microglia polarization. METHODS In the current study, the MI model was established by ligating the left anterior descending coronary artery. Mice were injected with HUC-MSCs or PBS through the tail vein 1week after the surgery. The sucrose preference test (SPT), tail suspension test (TST), and forced swim test (FST) were performed to evaluate depression-like behavior. Cardiac function and myocardial fibrosis were evaluated at the end of the experiments. Immunofluorescence, Western blot, ELISA, and qRT-PCR were used to detect the levels of Jmjd3 and microglia-related markers and inflammatory factors. RESULTS HUC-MSC treatment significantly improved cardiac function, reduced the area of myocardial fibrosis, and alleviated depression-like behaviors induced by MI. HUC-MSCs inhibited the expression of Jmjd3 and promoted the switch of microglia in the prefrontal cortex, hypothalamus, and hippocampus from M1 to M2, thereby decreased the level of pro-inflammatory factors. CONCLUSION HUC-MSCs have cardioprotective and potential anti-depressive effects induced by MI related to the inflammation improved by regulating Jmjd3 and microglial polarization.
Collapse
|
13
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
14
|
Light Emitting Diode Therapy Protects against Myocardial Ischemia/Reperfusion Injury through Mitigating Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9343160. [PMID: 32963707 PMCID: PMC7486644 DOI: 10.1155/2020/9343160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/27/2020] [Indexed: 01/09/2023]
Abstract
Background Neuroinflammation plays a key role in myocardial ischemia-reperfusion (I/R) injury. Previous studies showed that light-emitting diode (LED) therapy might improve M2 microglia activation and brain-derived neurotrophic factor (BDNF) expression, thereby exerting anti-inflammatory effects. Therefore, we hypothesized that LED therapy might reduce myocardial I/R injury by neuroinflammation modulation. Objective To explore the effect of LED therapy on myocardial I/R-induced injury and seek the underlying mechanism. Methods Thirty rats were randomly divided into three groups: Control group (without LED treatment or myocardial I/R, n = 6), I/R group (with myocardial I/R only, n = 12), and LED+I/R group (with myocardial I/R and LED therapy, n = 12). Electrocardiogram was recorded continuously during the procedure. In addition, brain tissue was extracted for BDNF, Iba1, and CD206 analyses, and heart tissue for myocardial injury (ischemic size and infarct size), IL-4 and IL-10 mRNA analysis. Results In comparison with the I/R group, the ischemia size and the infarct size were significantly attenuated by LED therapy in the LED+I/R group. Meanwhile, the microglia activation induced by I/R injury was prominently attenuated by LED treatment either. And it is apparent that there was also an increase in the beneficial neuroinflammation markers (BDNF and CD206) in the paraventricular nucleus (PVN) in the LED+I/R group. Furthermore, the anti-inflammatory cytokines, IL-4 and IL-10, were greatly decreased by I/R while improved by LED treatment in myocardium. Conclusion LED therapy might reduce neuroinflammation in PVN and decrease myocardium injury by elevating BDNF and M2 microglia.
Collapse
|
15
|
Lee HW, Ahmad M, Wang HW, Leenen FHH. Effects of exercise on BDNF-TrkB signaling in the paraventricular nucleus and rostral ventrolateral medulla in rats post myocardial infarction. Neuropeptides 2020; 82:102058. [PMID: 32507324 DOI: 10.1016/j.npep.2020.102058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling in the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) is associated with cardiovascular regulation. Exercise increases plasma BDNF and attenuates activation of central pathways in the PVN and RVLM post myocardial infarction (MI). The present study assessed whether MI alters BDNF-TrkB signaling and intracellular factors Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Akt in the PVN and RVLM of male Wistar rats with or without exercise or treatment with the TrkB blocker ANA-12. A 4-week period of treadmill exercise training was performed in MI rats. A separate experiment was conducted with 2.5 mg/kg ANA-12 in sedentary MI rats. At 5 weeks post MI, in both the PVN and RVLM, the ratio of full-length TrkB (TrkB.FL) and truncated TrkB (TrkB.T1) was decreased. 0.5 mg/kg ANA-12 did not affect BDNF-TrkB signaling and cardiac function post MI, but 2.5 mg/kg ANA-12 further decreased ejection fraction (EF). Exercise increased mature BDNF (mBDNF) and decreased Akt activity in the PVN, whereas in the RVLM, exercise did not affect mBDNF but lowered p-CaMKIIβ. ANA-12 prevented the exercise-induced increase in mBDNF in the PVN and decrease in p-CaMKIIβ in the RVLM. In conclusion, exercise decreases Akt activity in the PVN and decreases p-CaMKIIβ in the RVLM post MI. BDNF-TrkB signaling only mediates the decrease in p-CaMKIIβ in the RVLM. The exercise-induced decreases in Akt activity in the PVN and p-CaMKIIβ in the RVLM may contribute to the attenuation of the decrease in EF and sympathetic hyperactivity post MI.
Collapse
Affiliation(s)
- Heow Won Lee
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
Yuan T, Manohar K, Latorre R, Orock A, Greenwood-Van Meerveld B. Inhibition of Microglial Activation in the Amygdala Reverses Stress-Induced Abdominal Pain in the Male Rat. Cell Mol Gastroenterol Hepatol 2020; 10:527-543. [PMID: 32408032 PMCID: PMC7394753 DOI: 10.1016/j.jcmgh.2020.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Psychological stress is a trigger for the development of irritable bowel syndrome and associated symptoms including abdominal pain. Although irritable bowel syndrome patients show increased activation in the limbic brain, including the amygdala, the underlying molecular and cellular mechanisms regulating visceral nociception in the central nervous system are incompletely understood. In a rodent model of chronic stress, we explored the role of microglia in the central nucleus of the amygdala (CeA) in controlling visceral sensitivity. Microglia are activated by environmental challenges such as stress, and are able to modify neuronal activity via synaptic remodeling and inflammatory cytokine release. Inflammatory gene expression and microglial activity are regulated negatively by nuclear glucocorticoid receptors (GR), which are suppressed by the stress-activated pain mediator p38 mitogen-activated protein kinases (MAPK). METHODS Fisher-344 male rats were exposed to water avoidance stress (WAS) for 1 hour per day for 7 days. Microglia morphology and the expression of phospho-p38 MAPK and GR were analyzed via immunofluorescence. Microglia-mediated synaptic remodeling was investigated by quantifying the number of postsynaptic density protein 95-positive puncta. Cytokine expression levels in the CeA were assessed via quantitative polymerase chain reaction and a Luminex assay (Bio-Rad, Hercules, CA). Stereotaxic infusion into the CeA of minocycline to inhibit, or fractalkine to activate, microglia was followed by colonic sensitivity measurement via a visceromotor behavioral response to isobaric graded pressures of tonic colorectal distension. RESULTS WAS induced microglial deramification in the CeA. Moreover, WAS induced a 3-fold increase in the expression of phospho-p38 and decreased the ratio of nuclear GR in the microglia. The number of microglia-engulfed postsynaptic density protein 95-positive puncta in the CeA was increased 3-fold by WAS, while cytokine levels were unchanged. WAS-induced changes in microglial morphology, microglia-mediated synaptic engulfment in the CeA, and visceral hypersensitivity were reversed by minocycline whereas in stress-naïve rats, fractalkine induced microglial deramification and visceral hypersensitivity. CONCLUSIONS Our data show that chronic stress induces visceral hypersensitivity in male rats and is associated with microglial p38 MAPK activation, GR dysfunction, and neuronal remodeling in the CeA.
Collapse
Affiliation(s)
- Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Krishna Manohar
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rocco Latorre
- Department of Basic Science and Craniofacial Biology, New York University, New York City, New York
| | - Albert Orock
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,Oklahoma City VA Health Care System, Oklahoma City, Oklahoma,Correspondence Address correspondence to: Beverley Greenwood-Van Meerveld, PhD, O’Donoghue Building, Room 332, 1122 NE 13th Street, Oklahoma City, Oklahoma 73117.
| |
Collapse
|
17
|
Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol 2020; 598:33-59. [PMID: 31671478 DOI: 10.1113/jp278864] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 08/25/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
18
|
Vaillancourt M, Chia P, Medzikovic L, Cao N, Ruffenach G, Younessi D, Umar S. Experimental Pulmonary Hypertension Is Associated With Neuroinflammation in the Spinal Cord. Front Physiol 2019; 10:1186. [PMID: 31616310 PMCID: PMC6764190 DOI: 10.3389/fphys.2019.01186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Rationale Pulmonary hypertension (PH) is a rare but fatal disease characterized by elevated pulmonary pressures and vascular remodeling, leading to right ventricular failure and death. Recently, neuroinflammation has been suggested to be involved in the sympathetic activation in experimental PH. Whether PH is associated with neuroinflammation in the spinal cord has never been investigated. Methods/Results PH was well-established in adult male Wistar rats 3-week after pulmonary endothelial toxin Monocrotaline (MCT) injection. Using the thoracic segments of the spinal cord, we found a 5-fold increase for the glial fibrillary acidic protein (GFAP) in PH rats compared to controls (p < 0.05). To further determine the region of the spinal cord where GFAP was expressed, we performed immunofluorescence and found a 3 to 3.5-fold increase of GFAP marker in the gray matter, and a 2 to 3-fold increase in the white matter in the spinal cord of PH rats compared to controls. This increase was due to PH (MCT vs. Control; p < 0.01), and there was no difference between the dorsal versus ventral region. PH rats also had an increase in the pro-inflammatory marker chemokine (C-C motif) ligand 3 (CCL3) protein expression (∼ 3-fold) and (2.8 to 4-fold, p < 0.01) in the white matter. Finally, angiogenesis was increased in PH rat spinal cords assessed by the adhesion molecule CD31 expression (1.5 to 2.3-fold, p < 0.01). Conclusion We report for the first time evidence for neuroinflammation in the thoracic spinal cord of pulmonary hypertensive rats. The impact of spinal cord inflammation on cardiopulmonary function in PH remains elusive.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pamela Chia
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lejla Medzikovic
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nancy Cao
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Younessi
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
19
|
Wang S, Wu L, Li X, Li B, Zhai Y, Zhao D, Jiang H. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model. J Neuroinflammation 2019; 16:139. [PMID: 31287006 PMCID: PMC6615251 DOI: 10.1186/s12974-019-1513-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sympathetic overactivation and inflammation are two major mediators to post-myocardial ischemia-reperfusion (I/R)-induced ventricular arrhythmia (VA). The vicious cycle between microglia and sympathetic activation plays an important role in sympathetic hyperactivity related to cardiovascular diseases. Recently, studies have shown that microglial activation might be attenuated by light-emitting diode (LED) therapy. Therefore, we hypothesized that LED therapy might protect against myocardial I/R-induced VAs by attenuating microglial and sympathetic activation. Methods Thirty-six male anesthetized rats were randomized into four groups: control group (n = 6), LED group (n = 6), I/R group (n = 12), and LED+I/R group (n = 12). I/R was generated by left anterior descending artery occlusion for 30 min followed by 3 h reperfusion. ECG and left stellate ganglion (LSG) neural activity were recorded continuously. After 3 h reperfusion, a programmed stimulation protocol was conducted to test the inducibility of VA. Furthermore, we extracted the brain tissue to examine the microglial activation, and the peri-ischemic myocardium to examine the expression of NGF and inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α). Results As compared to the I/R group, LED illumination significantly inhibited the LSG neural activity (P < 0.01) and reduced the inducibility of VAs (arrhythmia score 4.417 ± 0.358 vs. 3 ± 0.3257, P < 0.01) in the LED+I/R group. Furthermore, LED significantly attenuated microglial activation and downregulated the expression of inflammatory cytokines and NGF in the peri-infarct myocardium. Conclusions LED therapy may protect against myocardial I/R-induced VAs by central and peripheral neuro-immune regulation.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
20
|
Wang HW, Ahmad M, Jadayel R, Najjar F, Lagace D, Leenen FHH. Inhibition of inflammation by minocycline improves heart failure and depression-like behaviour in rats after myocardial infarction. PLoS One 2019; 14:e0217437. [PMID: 31233508 PMCID: PMC6590948 DOI: 10.1371/journal.pone.0217437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
RATIONALE Patients with heart failure have an increased incidence of depression. Central and peripheral inflammation play a major role in the pathophysiology of both heart failure and depression. AIM Minocycline is an antibiotic that inhibits microglia activation and release of pro-inflammatory cytokines. We assessed effects of minocycline on extent of heart failure and depression at 2 and 8 weeks post myocardial infarction. METHODS/RESULTS Male Wistar rats were randomly divided into 3 groups: (i) sham + vehicle; (ii) MI + vehicle; and (iii) MI + minocycline with n/group of 8, 9 and 9 at 2 weeks, and 10, 16, 8 at weeks, respectively. Oral minocycline (50 mg/kg/day) or vehicle started 2 days before surgery. Depression-like behaviour was assessed with sucrose preference and forced swim tests, and cardiac function with echo and hemodynamics. After myocardial infarction, microglia activation and plasma/brain pro-inflammatory cytokines increased, which were mostly prevented by minocycline. At 8 weeks, cardiac dysfunction was attenuated by minocycline: infarct size (MI + Vehicle 29±1, MI + Min 23±1%), ejection fraction (Sham 80±1, MI + Vehicle 48±2, MI + Min 58±2%) and end diastolic pressure (Sham 3.2±0.3, MI + Vehicle 18.2±1.1, MI + Min 8.5±0.9 mm Hg). Depression-like behaviour was significantly improved by minocycline in sucrose preference test (% Sucrose Intake: Sham 96±1, MI + Vehicle 78±2, MI + Min 87±2) and forced swim test (% Immobile: Sham 40±4, MI + Vehicle 61±3, MI + Min 37±6). CONCLUSION Rats post myocardial infarction develop systemic inflammation, heart failure and depression-like behaviour that are all attenuated by minocycline. Targeting (neuro) inflammation may represent new therapeutic strategy for patients with heart failure and depression.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Rami Jadayel
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Fatimah Najjar
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Diane Lagace
- Neuroscience Research Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Frans H. H. Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Wang S, Wu L, Zhai Y, Li X, Li B, Zhao D, Jiang H. Noninvasive light emitting diode therapy: A novel approach for postinfarction ventricular arrhythmias and neuroimmune modulation. J Cardiovasc Electrophysiol 2019; 30:1138-1147. [PMID: 31104349 DOI: 10.1111/jce.13974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sympathetic neural activation plays a key role in the incidence and maintenance of acute myocardial infarction (AMI) induced ventricular arrhythmia (VA). Furthermore, previous studies showed that AMI might induce microglia and sympathetic activation and that microglial activation might contribute to sympathetic activation. Recently, studies showed that light emitting diode (LED) therapy might attenuate microglial activation. Therefore, we hypothesized that LED therapy might reduce AMI-induced VA by attenuating microglia and sympathetic activation. METHODS Thirty anesthetized rats were randomly divided into three groups: the Control group (n = 6), AMI group (n = 12), and AMI + LED group (n = 12). Electrocardiogram (ECG) and left stellate ganglion (LSG) neural activity were continuously recorded. The incidence of VAs was recorded during the first hour after AMI. Furthermore, we sampled the brain and myocardium tissue of the different groups to examine the microglial activation and expression of nerve growth factor (NGF), interleukin-18 (IL-18), and IL-1β, respectively. RESULTS Compared to the AMI group, LED therapy significantly reduced the incidence of AMI-induced VAs (ventricular premature beats [VPB] number: 85.08 ± 13.91 vs 27.5 ± 9.168, P < .01; nonsustained ventricular tachycardia (nSVT) duration: 34.39 ± 8.562 vs 9.005 ± 3.442, P < .05; nSVT number: 18.92 ± 4.52 vs 7.583 ± 3.019, P < .05; incidence rate of SVT/VF: 58.33% vs. 8.33%, P < .05) and reduced the LSG neural activity (P < .01) in the AMI + LED group. Furthermore, LED significantly attenuated microglial activation and reduced IL-18, IL-1β, and NGF expression in the peri-infarct myocardium. CONCLUSION LED therapy may protect against AMI-induced VAs by suppressing sympathetic neural activity and the inflammatory response.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
22
|
Cohen EM, Farnham MMJ, Kakall Z, Kim SJ, Nedoboy PE, Pilowsky PM. Glia and central cardiorespiratory pathology. Auton Neurosci 2018; 214:24-34. [PMID: 30172674 DOI: 10.1016/j.autneu.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
Respiration and blood pressure are primarily controlled by somatic and autonomic motor neurones, respectively. Central cardiorespiratory control is critical in moment-to-moment survival, but it also has a role in the development and maintenance of chronic pathological conditions such as hypertension. The glial cells of the brain are non-neuronal cells with metabolic, immune, and developmental functions. Recent evidence shows that glia play an active role in supporting and regulating the neuronal circuitry which drives the cardiorespiratory system. Here we will review the activities of two key types of glial cell, microglia and astrocytes, in assisting normal central cardiorespiratory control and in pathology.
Collapse
Affiliation(s)
- E Myfanwy Cohen
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Seung Jae Kim
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
23
|
Stefano GB, Pilonis N, Ptacek R, Raboch J, Vnukova M, Kream RM. Gut, Microbiome, and Brain Regulatory Axis: Relevance to Neurodegenerative and Psychiatric Disorders. Cell Mol Neurobiol 2018; 38:1197-1206. [PMID: 29802603 PMCID: PMC6061125 DOI: 10.1007/s10571-018-0589-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022]
Abstract
It has become apparent that the molecular and biochemical integrity of interactive families, genera, and species of human gut microflora is critically linked to maintaining complex metabolic and behavioral processes mediated by peripheral organ systems and central nervous system neuronal groupings. Relatively recent studies have established intrinsic ratios of enterotypes contained within the human microbiome across demographic subpopulations and have empirically linked significant alterations in the expression of bacterial enterotypes with the initiation and persistence of several major metabolic and psychiatric disorders. Accordingly, the goal of our review is to highlight potential thematic/functional linkages of pathophysiological alterations in gut microbiota and bidirectional gut-brain signaling pathways with special emphasis on the potential roles of gut dysbiosis on the pathophysiology of psychiatric illnesses. We provide critical discussion of putative thematic linkages of Parkinson's disease (PD) data sets to similar pathophysiological events as potential causative factors in the development and persistence of diverse psychiatric illnesses. Finally, we include a concise review of preclinical paradigms that involve immunologically-induced GI deficits and dysbiosis of maternal microflora that are functionally linked to impaired neurodevelopmental processes leading to affective behavioral syndromes in the offspring.
Collapse
Affiliation(s)
- G B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic.
| | - N Pilonis
- Warsaw Medical University, Public Central Teaching Hospital, Warsaw, Poland
| | - R Ptacek
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - J Raboch
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - M Vnukova
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - R M Kream
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| |
Collapse
|
24
|
Du D, Hu L, Wu J, Wu Q, Cheng W, Guo Y, Guan R, Wang Y, Chen X, Yan X, Zhu D, Wang J, Zhang S, Guo Y, Xia C. Neuroinflammation contributes to autophagy flux blockage in the neurons of rostral ventrolateral medulla in stress-induced hypertension rats. J Neuroinflammation 2017; 14:169. [PMID: 28835252 PMCID: PMC5569471 DOI: 10.1186/s12974-017-0942-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neuroinflammation plays hypertensive roles in the uninjured autonomic nuclei of the central nervous system, while its mechanisms remain unclear. The present study is to investigate the effect of neuroinflammation on autophagy in the neurons of the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for the maintenance of vasomotor tone reside. METHODS Stress-induced hypertension (SIH) was induced by electric foot-shock stressors with noise interventions in rats. Systolic blood pressure (SBP) and the power density of the low frequency (LF) component of the SAP spectrum were measured to reflect sympathetic vasomotor activity. Microglia activation and pro-inflammatory cytokines (PICs (IL-1β, TNF-α)) expression in the RVLM were measured by immunoblotting and immunostaining. Autophagy and autophagic vacuoles (AVs) were examined by autophagic marker (LC3 and p62) expression and transmission electron microscopy (TEM) image, respectively. Autophagy flux was evaluated by RFP-GFP-tandem fluorescent LC3 (tf-LC3) vectors transfected into the RVLM. Tissue levels of glutamate, gamma aminobutyric acid (GABA), and plasma levels of norepinephrine (NE) were measured by using high-performance liquid chromatography (HPLC) with electrochemical detection. The effects of the cisterna magna infused minocycline, a microglia activation inhibitor, on the abovementioned parameters were analyzed. RESULTS SIH rats showed increased SBP, plasma NE accompanied by an increase in LF component of the SBP spectrum. Microglia activation and PICs expression was increased in SIH rats. TEM demonstrated that stress led to the accumulation of AVs in the RVLM of SIH rats. In addition to the Tf-LC3 assay, the concurrent increased level of LC3-II and p62 suggested the impairment of autophagic flux in SIH rats. To the contrary, minocycline facilitated autophagic flux and induced a hypotensive effect with attenuated microglia activation and decreased PICs in the RVLM of SIH rats. Furthermore, SIH rats showed higher levels of glutamate and lower level of GABA in the RVLM, while minocycline attenuated the decrease in GABA and the increase in glutamate of SIH rats. CONCLUSIONS Collectively, we concluded that the neuroinflammation might impair autophagic flux and induced neural excitotoxicity in the RVLM neurons following SIH, which is involved in the development of SIH.
Collapse
Affiliation(s)
- Dongshu Du
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Li Hu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Jiaxiang Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Qin Wu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wenjing Cheng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yuhong Guo
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yahui Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 People’s Republic of China
| | - Xingxin Chen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Xanxia Yan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Shutian Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, 200011 People’s Republic of China
| | - Yanfang Guo
- Department of Pediatrics, Pudong Gongli Hospital, Shanghai, 200135 People’s Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
25
|
Balivada S, Ganta CK, Zhang Y, Pawar HN, Ortiz RJ, Becker KG, Khan AM, Kenney MJ. Microarray analysis of aging-associated immune system alterations in the rostral ventrolateral medulla of F344 rats. Physiol Genomics 2017; 49:400-415. [PMID: 28626023 PMCID: PMC5582943 DOI: 10.1152/physiolgenomics.00131.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022] Open
Abstract
The rostral ventrolateral medulla (RVLM) is an area of the brain stem that contains diverse neural substrates that are involved in systems critical for physiological function. There is evidence that aging affects some neural substrates within the RVLM, although age-related changes in RVLM molecular mechanisms are not well established. The goal of the present study was to characterize the transcriptomic profile of the aging RVLM and to test the hypothesis that aging is associated with altered gene expression in the RVLM, with an emphasis on immune system associated gene transcripts. RVLM tissue punches from young, middle-aged, and aged F344 rats were analyzed with Agilent's whole rat genome microarray. The RVLM gene expression profile varied with age, and an association between chronological age and specific RVLM gene expression patterns was observed [P < 0.05, false discovery rate (FDR) < 0.3]. Functional analysis of RVLM microarray data via gene ontology profiling and pathway analysis identified upregulation of genes associated with immune- and stress-related responses and downregulation of genes associated with lipid biosynthesis and neurotransmission in aged compared with middle-aged and young rats. Differentially expressed genes associated with the complement system and microglial cells were further validated by quantitative PCR with separate RVLM samples (P < 0.05, FDR < 0.1). The present results have identified age-related changes in the transcriptomic profile of the RVLM, modifications that may provide the molecular backdrop for understanding age-dependent changes in physiological regulation.
Collapse
Affiliation(s)
- Sivasai Balivada
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas;
| | - Chanran K Ganta
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas; and
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, Baltimore, Maryland
| | - Hitesh N Pawar
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas
| | - Richard J Ortiz
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, Baltimore, Maryland
| | - Arshad M Khan
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas
| | - Michael J Kenney
- Department of Biological Sciences, College of Science, University of Texas at El Paso, El Paso, Texas
| |
Collapse
|
26
|
Alerted microglia and the sympathetic nervous system: A novel form of microglia in the development of hypertension. Respir Physiol Neurobiol 2016; 226:51-62. [DOI: 10.1016/j.resp.2015.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
|
27
|
Kapoor K, Bhandare AM, Nedoboy PE, Mohammed S, Farnham MMJ, Pilowsky PM. Dynamic changes in the relationship of microglia to cardiovascular neurons in response to increases and decreases in blood pressure. Neuroscience 2016; 329:12-29. [PMID: 27155147 DOI: 10.1016/j.neuroscience.2016.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023]
Abstract
Microglia are present throughout the central nervous system (CNS) and express receptors for every known neurotransmitter. During inflammation, microglia change into a state that either promotes removal of debris (M1), or into a state that promotes soothing (M2). Caudal- and rostral- ventrolateral medullary regions (CVLM and RVLM, respectively) of the brainstem are key nuclei involved in all aspects of the cardiovascular system. In this study, we investigate a novel role for microglia in cardiovascular control in the brainstem of adult male Sprague-Dawley (SD) rat. Here we show, that increases and decreases in blood pressure (BP) triggers alertness in the physiology of microglia in the brainstem region; inducing changes in microglial spatial distribution and the number of synapses in contact with microglial end processes. Following 6h of acute hypertension, the number of synapses in contact with microglia increased by ≈30% in both regions of the brainstem, CVLM and RVLM. Induction of acute hypotension for 6h causes microglia to reduce the number of synaptic contacts by >20% in both, CVLM and RVLM, nuclei of the brainstem. Our analysis of the morphological characteristics of microglia, and expression levels of M1 and M2, reveals that the changes induced in microglial behavior do not require any obvious dramatic changes in their morphology. Taken together, our findings suggest that microglia play a novel, unexpected, physiological role in the uninjured autonomic nuclei of CNS; we therefore speculate that microglia act cooperatively with brainstem cardiovascular neurons to maintain them in a physiologically receptive state.
Collapse
Affiliation(s)
- Komal Kapoor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Amol M Bhandare
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Suja Mohammed
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Department of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
28
|
Kim SJ, Kim YJ, Kakall Z, Farnham MMJ, Pilowsky PM. Intermittent hypoxia-induced cardiorespiratory long-term facilitation: A new role for microglia. Respir Physiol Neurobiol 2016; 226:30-8. [PMID: 27015670 DOI: 10.1016/j.resp.2016.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia induces plasticity in neural networks controlling breathing and cardiovascular function. Studies demonstrate that mechanisms causing cardiorespiratory plasticity rely on intracellular signalling pathways that are activated by specific neurotransmitters. Peptides such as serotonin, PACAP and orexin are well-known for their physiological significance in regulating the cardiorespiratory system. Their receptor counterparts are present in cardiorespiratory centres of the brainstem medulla and spinal cord. Microglial cells are also important players in inducing plasticity. The phenotype and function of microglial cells can change based on the physiological state of the central nervous system. Here, we propose that in the autonomic nuclei of the ventral brainstem the relationship between neurotransmitters and neurokines, neurons and microglia determines the overall neural function of the central cardiorespiratory system.
Collapse
Affiliation(s)
- Seung Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Yeon Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Melissa M J Farnham
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Paul M Pilowsky
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia.
| |
Collapse
|
29
|
Effect of Prolonged Moderate Exercise on the Changes of Nonneuronal Cells in Early Myocardial Infarction. Neural Plast 2015; 2015:265967. [PMID: 26266053 PMCID: PMC4526216 DOI: 10.1155/2015/265967] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/25/2015] [Indexed: 02/02/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death in developed countries and it is characterized by several associated symptomatologies and poor quality of life. Recent data showed a possible interaction between infarction and brain inflammation and activity. Previous studies have demonstrated the beneficial effect of exercise training on deterioration in cardiac function after MI. In this study we analyzed in sedentary and trained rats the microglia and astrocytes 48 hours after MI in PVN, thalamus, prefrontal cortex, and hippocampus through immunofluorescence approach. We found significant changes in specific microglia phenotypes in the brain areas analyzed together with astrocytes activation. Prolonged exercise normalized these morphological changes of microglia and astrocytes in the prefrontal cortex, hippocampus, and thalamus but not in the PVN. Our data suggest that there is an early brain reaction to myocardial infarction induction, involving nonneuronal cells, that is attenuated by the prolonged exercise.
Collapse
|
30
|
Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis. Mol Neurobiol 2015; 53:1770-1781. [DOI: 10.1007/s12035-015-9107-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
|