1
|
Pacini ESA, de Paula Moro R, Godinho RO. Extracellular cAMP elicits contraction of rat vas deferens: Involvement of ecto-5'-nucleotidase and adenosine A 1 receptors. Toxicol Appl Pharmacol 2024; 491:117070. [PMID: 39151807 DOI: 10.1016/j.taap.2024.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
AIMS It is well established that intracellular cAMP contributes to the relaxation of vas deferens smooth muscle. In many tissues, intracellular cAMP is actively transported to the extracellular space, where it exerts regulatory functions, via its metabolite adenosine. These actions take place through the cAMP conversion to adenosine by ectoenzymes, a process called "extracellular cAMP-adenosine pathway". Herein, we investigated whether, in addition to ATP, extracellular cAMP might be an alternative source of adenosine, influencing the contraction of vas deferens smooth muscle. MAIN METHODS The effects of cAMP, 8-Br-cAMP and adenosine were analyzed in the isometric contractions of rat vas deferens. cAMP efflux was analyzed by measuring extracellular cAMP levels after exposure of vas deferens segments to isoproterenol and forskolin in the presence or absence of MK-571, an inhibitor of MRP/ABCC transporters. KEY FINDINGS While 8-Br-cAMP, a cell-permeable cAMP analog, induced relaxation of KCl-precontracted vas deferens, the non-permeant cAMP increased the KCl-induced contractile response, which was mimicked by adenosine, but prevented by inhibitors of ecto-5'-nucleotidase or A1 receptors. Our results also showed that isoproterenol and forskolin increases cAMP efflux via an MRP/ABCC transporter-dependent mechanism, since it is inhibited by MK-571. SIGNIFICANCE Our data show that activation of β-adrenoceptors and adenylyl cyclase increases cAMP efflux from vas deferens tissue, which modulates the vas deferens contractile response via activation of adenosine A1 receptors. Assuming that inhibition of vas deferens contractility has been proposed as a strategy for male contraception, the extracellular cAMP-adenosine pathway emerges as a potential pharmacological target that should be considered in studies of male fertility.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil
| | - Raíssa de Paula Moro
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
2
|
Zhou Y, Phelps GA, Mangrum MM, McLeish J, Phillips EK, Lou J, Ancajas CF, Rybak JM, Oelkers PM, Lee RE, Best MD, Reynolds TB. The small molecule CBR-5884 inhibits the Candida albicans phosphatidylserine synthase. mBio 2024; 15:e0063324. [PMID: 38587428 PMCID: PMC11077991 DOI: 10.1128/mbio.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregory A. Phelps
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter M. Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael D. Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Cullum SA, Platt S, Dale N, Isaac OC, Wragg ES, Soave M, Veprintsev DB, Woolard J, Kilpatrick LE, Hill SJ. Mechano-sensitivity of β2-adrenoceptors enhances constitutive activation of cAMP generation that is inhibited by inverse agonists. Commun Biol 2024; 7:417. [PMID: 38580813 PMCID: PMC10997663 DOI: 10.1038/s42003-024-06128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inactive R state and an active R* state that differ in their affinities for agonists, inverse agonists, and G-protein alpha subunits. The proportion of R* receptors that exist in the absence of agonists determines the level of constitutive receptor activity. In this study we demonstrate that mechanical stimulation can induce β2-adrenoceptor agonist-independent Gs-mediated cAMP signalling that is sensitive to inhibition by inverse agonists such as ICI-118551 and propranolol. The size of the mechano-sensitive response is dependent on the cell surface receptor expression level in HEK293G cells, is still observed in a ligand-binding deficient D113A mutant β2-adrenoceptor and can be attenuated by site-directed mutagenesis of the extracellular N-glycosylation sites on the N-terminus and second extracellular loop of the β2-adrenoceptor. Similar mechano-sensitive agonist-independent responses are observed in HEK293G cells overexpressing the A2A-adenosine receptor. These data provide new insights into how agonist-independent constitutive receptor activity can be enhanced by mechanical stimulation and regulated by inverse agonists.
Collapse
Affiliation(s)
- Sean A Cullum
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Simon Platt
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Natasha Dale
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Oliver C Isaac
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Edward S Wragg
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Dmitry B Veprintsev
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
4
|
Belardin LB, Brochu K, Légaré C, Battistone MA, Breton S. Purinergic signaling in the male reproductive tract. Front Endocrinol (Lausanne) 2022; 13:1049511. [PMID: 36419764 PMCID: PMC9676935 DOI: 10.3389/fendo.2022.1049511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Purinergic receptors are ubiquitously expressed throughout the body and they participate in the autocrine and paracrine regulation of cell function during normal physiological and pathophysiological conditions. Extracellular nucleotides activate several types of plasma membrane purinergic receptors that form three distinct families: P1 receptors are activated by adenosine, P2X receptors are activated by ATP, and P2Y receptors are activated by nucleotides including ATP, ADP, UTP, UDP, and UDP-glucose. These specific pharmacological fingerprints and the distinct intracellular signaling pathways they trigger govern a large variety of cellular responses in an organ-specific manner. As such, purinergic signaling regulates several physiological cell functions, including cell proliferation, differentiation and death, smooth muscle contraction, vasodilatation, and transepithelial transport of water, solute, and protons, as well as pathological pathways such as inflammation. While purinergic signaling was first discovered more than 90 years ago, we are just starting to understand how deleterious signals mediated through purinergic receptors may be involved in male infertility. A large fraction of male infertility remains unexplained illustrating our poor understanding of male reproductive health. Purinergic signaling plays a variety of physiological and pathophysiological roles in the male reproductive system, but our knowledge in this context remains limited. This review focuses on the distribution of purinergic receptors in the testis, epididymis, and vas deferens, and their role in the establishment and maintenance of male fertility.
Collapse
Affiliation(s)
- Larissa Berloffa Belardin
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Kéliane Brochu
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Christine Légaré
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Maria Agustina Battistone
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvie Breton
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
In ovo feeding of vitamin C regulates splenic development through purine nucleotide metabolism and induction of apoptosis in broiler chickens. Br J Nutr 2021; 126:652-662. [PMID: 33222701 DOI: 10.1017/s0007114520004717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nutrition in early life has a long-term influence on later health. In order to the explore effects of in ovo feeding (IOF) of vitamin C on splenic development, splenic metabolism and apoptosis were detected in embryo, adult chickens and in vitro. A total of 360 fertile eggs were selected and randomly assigned to control (CON) and vitamin C (VC) groups which were injected with saline and vitamin C on embryonic day 11, respectively. Functional enrichment of differentially expressed genes by transcriptome on embryonic day 19 suggested that purine nucleotide metabolism might be a potential pathway for the IOF of vitamin C to regulate spleen development. Additionally, the IOF of vitamin C significantly increased splenic vitamin C content on post-hatch day 21. Meanwhile, the splenic expression of adenosine deaminase, serine/threonine kinase 1 and proliferating cell nuclear antigen was down-regulated, whereas the expression of cysteinyl aspartate specific proteinase 9 was up-regulated in the VC group. On post-hatch day 42, the IOF of vitamin C significantly down-regulated the splenic expression of B-cell lymphoma 2 and increased the mRNA level of cysteinyl aspartate specific proteinase 9. The IOF of vitamin C could regulate the expression of genes related to adenylate metabolism and increased the apoptosis rate in vitro, which is consistent with the result in vivo. In conclusion, the IOF of vitamin C regulated splenic development and maturation by affecting purine nucleotide metabolism pathway and promoting apoptosis.
Collapse
|
6
|
Tocchetti GN, Domínguez CJ, Zecchinati F, Arana MR, Rigalli JP, Ruiz ML, Villanueva SSM, Mottino AD. Intraluminal nutrients acutely strengthen rat intestinal MRP2 barrier function by a glucagon-like peptide-2-mediated mechanism. Acta Physiol (Oxf) 2020; 230:e13514. [PMID: 32476256 DOI: 10.1111/apha.13514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/02/2023]
Abstract
AIM MRP2 is an intestinal ABC transporter that prevents the absorption of dietary xenobiotics. The aims of this work were: (1) to evaluate whether a short-term regulation of intestinal MRP2 barrier function takes place in vivo after luminal incorporation of nutrients and (2) to explore the underlying mechanism. METHODS MRP2 activity and localization were assessed in an in vivo rat model with preserved irrigation and innervation. Nutrients were administered into distal jejunum. After 30-minutes treatments, MRP2 activity was assessed in proximal jejunum by quantifying the transport of the model substrate 2,4-dinitrophenyl-S-glutathione. MRP2 localization was determined by quantitative confocal microscopy. Participation of extracellular mediators was evaluated using selective inhibitors and by immunoneutralization. Intracellular pathways were explored in differentiated Caco-2 cells. RESULTS Oleic acid, administered intraluminally at dietary levels, acutely stimulated MRP2 insertion into brush border membrane. This was associated with increased efflux activity and, consequently, enhanced barrier function. Immunoneutralization of the gut hormone glucagon-like peptide-2 (GLP-2) prevented oleic acid effect on MRP2, demonstrating the participation of this trophic factor as a main mediator. Further experiments using selective inhibitors demonstrated that extracellular adenosine synthesis and its subsequent binding to enterocytic A2B adenosine receptor (A2BAR) take place downstream GLP-2. Finally, studies in intestinal Caco-2 cells revealed the participation of A2BAR/cAMP/PKA intracellular pathway, ultimately leading to increased MRP2 localization in apical domains. CONCLUSION These findings reveal an on-demand, acute regulation of MRP2-associated barrier function, constituting a novel physiological mechanism of protection against the absorption of dietary xenobiotics in response to food intake.
Collapse
Affiliation(s)
- Guillermo N. Tocchetti
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
- Department of Clinical Pharmacology and Pharmacoepidemiology University of Heidelberg Heidelberg Germany
| | - Camila J. Domínguez
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Felipe Zecchinati
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Maite R. Arana
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Juan P. Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology University of Heidelberg Heidelberg Germany
| | - María L. Ruiz
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Silvina S. M. Villanueva
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| | - Aldo D. Mottino
- Institute of Experimental Physiology (IFISE) National Scientific and Technical Research Council (CONICET)National University of Rosario (UNR) Rosario Argentina
| |
Collapse
|
7
|
Mânica A, De SÁ CA, Barili A, Corralo VS, Bonadiman BS, Oliveira GG, Bagatini MD, Cardoso AM. Exercise with blood flow restriction as a new tool for health improvement in hypertensive elderly women: the role of purinergic enzymes. J Sports Med Phys Fitness 2020; 60:1477-1485. [DOI: 10.23736/s0022-4707.20.10956-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
de Oliveira M, Mathias LS, de Sibio MT, Noronha-Matos JB, Costa MA, Nogueira CR, Correia-de-Sá P. Pitfalls and challenges of the purinergic signaling cascade in obesity. Biochem Pharmacol 2020; 182:114214. [PMID: 32905795 DOI: 10.1016/j.bcp.2020.114214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem which have reached pandemic proportions, now also including low and middle-income countries. Excessive or abnormal fat deposition in the abdomen especially in the visceral compartment is tightly associated with a high metabolic risk for arterial hypertension, type II diabetes, cardiovascular diseases, musculoskeletal disorders (especially articular degeneration) and some cancers. Contrariwise, accumulation of fat in the subcutaneous compartment has been associated with a neutral metabolic impact, favoring a lower risk of insulin resistance. Obesity results more often from an avoidable imbalance between food consumption and energy expenditure. There are several recommended strategies for dealing with obesity, including pharmacological therapies, but their success remains incomplete and may not compensate the associated adverse effects. Purinergic signaling operated by ATP and its metabolite, adenosine, has attracted increasing attention in obesity. The extracellular levels of purines often reflect the energy status of a given cell population. Adenine nucleotides and nucleosides fine tuning control adipogenesis and mature adipocytes function via the activation of P2 and P1 purinoceptors, respectively. These features make the purinergic signaling cascade a putative target for therapeutic intervention in obesity and related metabolic syndromes. There are, however, gaps in our knowledge regarding the role of purines in adipocyte precursors differentiation and mature adipocytes functions, as well as their impact among distinct adipose tissue deposits (e.g. white vs. brown, visceral vs. subcutaneous), which warrants further investigations before translation to clinical trials can be made.
Collapse
Affiliation(s)
- Miriane de Oliveira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Lucas Solla Mathias
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Maria Teresa de Sibio
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Célia Regina Nogueira
- São Paulo State University (UNESP), Botucatu Medical School, District of Rubião Jr, s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP); Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
9
|
The anti-inflammatory effect of resistance training in hypertensive women: the role of purinergic signaling. J Hypertens 2020; 38:2490-2500. [DOI: 10.1097/hjh.0000000000002578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Opposing Effects of Adenosine and Inosine in Human Subcutaneous Fibroblasts May Be Regulated by Third Party ADA Cell Providers. Cells 2020; 9:cells9030651. [PMID: 32156055 PMCID: PMC7140481 DOI: 10.3390/cells9030651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Human subcutaneous fibroblasts (HSCF) challenged with inflammatory mediators release huge amounts of ATP, which rapidly generates adenosine. Given the nucleoside’s putative relevance in wound healing, dermal fibrosis, and myofascial pain, we investigated the role of its precursor, AMP, and of its metabolite, inosine, in HSCF cells growth and collagen production. AMP (30 µM) was rapidly (t½ 3 ± 1 min) dephosphorylated into adenosine by CD73/ecto-5′-nucleotidase. Adenosine accumulation (t½ 158 ± 17 min) in the extracellular fluid reflected very low cellular adenosine deaminase (ADA) activity. HSCF stained positively against A2A and A3 receptors but were A1 and A2B negative. AMP and the A2A receptor agonist, CGS21680C, increased collagen production without affecting cells growth. The A2A receptor antagonist, SCH442416, prevented the effects of AMP and CGS21680C. Inosine and the A3 receptor agonist, 2Cl-IB-MECA, decreased HSCF growth and collagen production in a MRS1191-sensitive manner, implicating the A3 receptor in the anti-proliferative action of inosine. Incubation with ADA reproduced the inosine effect. In conclusion, adenosine originated from extracellular ATP hydrolysis favors normal collagen production by HSCF via A2A receptors. Inhibition of unpredicted inosine formation by third party ADA cell providers (e.g., inflammatory cells) may be a novel therapeutic target to prevent inappropriate dermal remodeling via A3 receptors activation.
Collapse
|
11
|
Pinto-Cardoso R, Pereira-Costa F, Pedro Faria J, Bandarrinha P, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Adenosinergic signalling in chondrogenesis and cartilage homeostasis: Friend or foe? Biochem Pharmacol 2019; 174:113784. [PMID: 31884043 DOI: 10.1016/j.bcp.2019.113784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Chondrocytes and their mesenchymal cell progenitors secrete a variety of bioactive molecules, including adenine nucleotides and nucleosides, but these molecules are not usually highlighted in review papers about the secretome of these cells. Ageing and inflammatory insults compromise chondrocytes ability to keep ATP/adenosine synthesis, release and turnover. Cartilage homeostasis depends on extracellular adenosine levels, which acting via four P1 purinoceptor subtypes modulates the release of pro-inflammatory mediators, including NO, PGE2 and several cytokines. Native articular cartilage is challenged by synovial fluid flow during normal joint motion transiently increasing ATP release and adenosine formation in the joint microenvironment. Excessive joint motion and shockwave trauma are deleterious to cartilage homeostasis due to HIF-1α overexpression, resulting in disproportionate ecto-5'-nucleotidase/CD73 production, adenosine accumulation and superfluous A2B receptors activation. Scarcity of data however exists on the putative interplay between coexistent high affinity (A2A and A3) and low affinity (A2B) adenosine receptors activation affecting stem cells fate towards preferential chondrogenic or osteogenic lineages in the human cartilage. Hints gathered in this commentary result mainly from studies using human immortalized cell lines and animal (e.g. rodent, equine, bovine) tissue samples. The available data point towards adenosine A2A and A3 receptors having cartilage protective roles, while excessive adenosine accumulation may be detrimental via low affinity A2B receptors activation, with little reference to the putative role of the adenosine forming enzyme ecto-5'-nucleotidase/CD73. Thus, emphasizing the multiple pathways responsible for controlling adenosine signalling in cartilage will certainly impact on the search for novel therapeutic targets for highly disabling articular disorders.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Flávio Pereira-Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - João Pedro Faria
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Patrícia Bandarrinha
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal.
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal.
| |
Collapse
|
12
|
Bragança B, Nogueira-Marques S, Ferreirinha F, Fontes-Sousa AP, Correia-de-Sá P. The Ionotropic P2X4 Receptor has Unique Properties in the Heart by Mediating the Negative Chronotropic Effect of ATP While Increasing the Ventricular Inotropy. Front Pharmacol 2019; 10:1103. [PMID: 31611793 PMCID: PMC6769074 DOI: 10.3389/fphar.2019.01103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Mounting evidence indicate that reducing the sinoatrial node (SAN) activity may be a useful therapeutic strategy to control of heart failure. Purines, like ATP and its metabolite adenosine, consistently reduce the SAN spontaneous activity leading to negative cardiac chronotropy, with variable effects on the force of myocardial contraction (inotropy). Apart from adenosine A1 receptors, the human SAN expresses high levels of ATP-sensitive ionotropic P2X4 receptors (P2X4R), yet their cardiac role is unexplored. Methods: Here, we investigated the activity of P2 purinoceptors on isolated spontaneously beating atria (chronotropy) and on 2 Hz-paced right ventricular (RV, inotropy) strips from Wistar rats. Results: ATP (pEC 50 = 4.05) and its stable analogue ATPγS (pEC 50 = 4.69) concentration-dependently reduced atrial chronotropy. Inhibition of ATP breakdown into adenosine by NTPDases with POM-1 failed to modify ATP-induced negative chronotropy. The effect of ATP on atrial rate was attenuated by a broad-spectrum P2 antagonist, PPADS, as well as by 5-BDBD, which selectively blocks the P2X4R subtype; however, no effect was observed upon blocking the A1 receptor with DPCPX. The P2X4R positive allosteric modulator, ivermectin, increased the negative chronotropic response of ATP. Likewise, CTP, a P2X agonist that does not generate adenosine, replicated the P2X4R-mediated negative chronotropism of ATP. Inhibition of the Na+/Ca2+ exchanger (NCX) with KB-R7943 and ORM-10103, but not blockage of the HCN channel with ZD7288, mimicked the effect of the P2X4R blocker, 5-BDBD. In paced RV strips, ATP caused a mild negative inotropic effect, which magnitude was 2 to 3-fold increased by 5-BDBD and KB-R7943. Immunofluorescence confocal microscopy studies confirm that cardiomyocytes of the rat SAN and RV co-express P2X4R and NCX1 proteins. Conclusions: Data suggest that activation of ATP-sensitive P2X4R slows down heart rate by reducing the SAN activity while increasing the magnitude of ventricular contractions. The mechanism underlying the dual effect of ATP in the heart may involve inhibition of intracellular Ca2+-extrusion by bolstering NCX function in the reverse mode. Thus, targeting the P2X4R activation may create novel well-tolerated heart-rate lowering drugs with potential benefits in patients with deteriorated ventricular function.
Collapse
Affiliation(s)
- Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,Hospital Pedro Hispano, ULS Matosinhos, Matosinhos, Portugal
| | - Sílvia Nogueira-Marques
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
|
14
|
de Oliveira JS, Abdalla FH, Dornelles GL, Palma TV, Signor C, da Silva Bernardi J, Baldissarelli J, Lenz LS, de Oliveira VA, Chitolina Schetinger MR, Melchiors Morsch VM, Rubin MA, de Andrade CM. Neuroprotective effects of berberine on recognition memory impairment, oxidative stress, and damage to the purinergic system in rats submitted to intracerebroventricular injection of streptozotocin. Psychopharmacology (Berl) 2019; 236:641-655. [PMID: 30377748 DOI: 10.1007/s00213-018-5090-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/21/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. The present study investigated the effects of 50 and 100 mg/kg berberine (BRB) on recognition memory, oxidative stress, and purinergic neurotransmission, in a model of sporadic dementia of the Alzheimer's type induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) in rats. Rats were submitted to ICV-STZ 3 mg/kg or saline, and 3 days later, were started on a treatment of BRB or saline for 21 days. The results demonstrated that BRB was effective in protecting against memory impairment, increased reactive oxygen species, and the subsequent increase in protein and lipid oxidation in the cerebral cortex and hippocampus, as well as δ-aminolevulinate dehydratase inhibition in the cerebral cortex. Moreover, the decrease in total thiols, and the reduced glutathione and glutathione S-transferase activity in the cerebral cortex and hippocampus of ICV-STZ rats, was prevented by BRB treatment. Besides an antioxidant effect, BRB treatment was capable of preventing decreases in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (EC-5'-Nt), and adenosine deaminase (ADA) activities in synaptosomes of the cerebral cortex and hippocampus. Thus, our data suggest that BRB exerts a neuroprotective effect on recognition memory, as well as on oxidative stress and oxidative stress-related damage, such as dysfunction of the purinergic system. This suggests that BRB may act as a promising multipotent agent for the treatment of AD.
Collapse
Affiliation(s)
- Juliana Sorraila de Oliveira
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. .,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Fátima Husein Abdalla
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme Lopes Dornelles
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Taís Vidal Palma
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane Signor
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Jamile da Silva Bernardi
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luana Suéling Lenz
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vitor Antunes de Oliveira
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maribel Antonello Rubin
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cinthia Melazzo de Andrade
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Department of Small Animal Clinic, Center of Rural Sciences Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
15
|
The ecto-enzymes CD73 and adenosine deaminase modulate 5'-AMP-derived adenosine in myofibroblasts of the rat small intestine. Purinergic Signal 2018; 14:409-421. [PMID: 30269308 DOI: 10.1007/s11302-018-9623-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a versatile signaling molecule recognized to physiologically influence gut motor functions. Both the duration and magnitude of adenosine signaling in enteric neuromuscular function depend on its availability, which is regulated by the ecto-enzymes ecto-5'-nucleotidase (CD73), alkaline phosphatase (AP), and ecto-adenosine deaminase (ADA) and by dipyridamole-sensitive equilibrative transporters (ENTs). Our purpose was to assess the involvement of CD73, APs, ecto-ADA in the formation of AMP-derived adenosine in primary cultures of ileal myofibroblasts (IMFs). IMFs were isolated from rat ileum longitudinal muscle segments by means of primary explant technique and identified by immunofluorescence staining for vimentin and α-smooth muscle actin. IMFs confluent monolayers were exposed to exogenous 5'-AMP in the presence or absence of CD73, APs, ecto-ADA, or ENTs inhibitors. The formation of adenosine and its metabolites in the IMFs medium was monitored by high-performance liquid chromatography. The distribution of CD73 and ADA in IMFs was detected by confocal immunocytochemistry and qRT-PCR. Exogenous 5'-AMP was rapidly cleared being almost undetectable after 60-min incubation, while adenosine levels significantly increased. Treatment of IMFs with CD73 inhibitors markedly reduced 5'-AMP clearance whereas ADA blockade or inhibition of both ADA and ENTs prevented adenosine catabolism. By contrast, inhibition of APs did not affect 5'-AMP metabolism. Immunofluorescence staining and qRT-PCR analysis confirmed the expression of CD73 and ADA in IMFs. Overall, our data show that in IMFs an extracellular AMP-adenosine pathway is functionally active and among the different enzymatic pathways regulating extracellular adenosine levels, CD73 and ecto-ADA represent the critical catabolic pathway.
Collapse
|
16
|
Polachini CRN, Spanevello RM, Schetinger MRC, Morsch VM. Cholinergic and purinergic systems: A key to multiple sclerosis? J Neurol Sci 2018; 392:8-21. [DOI: 10.1016/j.jns.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022]
|
17
|
Bagatini MD, dos Santos AA, Cardoso AM, Mânica A, Reschke CR, Carvalho FB. The Impact of Purinergic System Enzymes on Noncommunicable, Neurological, and Degenerative Diseases. J Immunol Res 2018; 2018:4892473. [PMID: 30159340 PMCID: PMC6109496 DOI: 10.1155/2018/4892473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/03/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022] Open
Abstract
Evidences show that purinergic signaling is involved in processes associated with health and disease, including noncommunicable, neurological, and degenerative diseases. These diseases strike from children to elderly and are generally characterized by progressive deterioration of cells, eventually leading to tissue or organ degeneration. These pathological conditions can be associated with disturbance in the signaling mediated by nucleotides and nucleosides of adenine, in expression or activity of extracellular ectonucleotidases and in activation of P2X and P2Y receptors. Among the best known of these diseases are atherosclerosis, hypertension, cancer, epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The currently available treatments present limited effectiveness and are mostly palliative. This review aims to present the role of purinergic signaling highlighting the ectonucleotidases E-NTPDase, E-NPP, E-5'-nucleotidase, and adenosine deaminase in noncommunicable, neurological, and degenerative diseases associated with the cardiovascular and central nervous systems and cancer. In conclusion, changes in the activity of ectonucleotidases were verified in all reviewed diseases. Although the role of ectonucleotidases still remains to be further investigated, evidences reviewed here can contribute to a better understanding of the molecular mechanisms of highly complex diseases, which majorly impact on patients' quality of life.
Collapse
Affiliation(s)
- Margarete Dulce Bagatini
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Andréia Machado Cardoso
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aline Mânica
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Ruedell Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fabiano Barbosa Carvalho
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Manica A, Da Silva AM, Cardoso AM, Moreno M, Leal DB, Dutra Da Silva A, Schetinger MRC, Morsch VMM, Bagatini MD. High levels of extracellular ATP lead to chronic inflammatory response in melanoma patients. J Cell Biochem 2018; 119:3980-3988. [PMID: 29227546 DOI: 10.1002/jcb.26551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Skin cancer represents a serious public health problem and melanoma is considered the most significant due to its high metastasis capacity. Evasion mechanisms are the main characteristic of these tumor cells to escape of immune response. Extracellular nucleotides and nucleosides play an important role in inflammatory and immune responses. In this study, we analyzed the expression and activity of purinergic system enzymes in platelets and lymphocytes, ATP levels quantification, as well the level of pro and anti-inflammatory interleukins in the serum of 23 patients with surgical melanoma removal (CM group) and 23 control subjects (CT group). Results showed a decrease in ATP, ADP, and AMP hydrolysis and an increase in ATP levels quantification in CM group. The pro-inflammatory cytokines were elevated in CM group when compared to CT group. These results suggest an inflammatory process, even after surgical removal, due to elevated extracellular ATP levels. Besides, CM group displayed an increase in IL-10 levels and an increased in ADA activity in platelets and lymphocytes. Once adenosine and IL-10 are anti-inflammatory molecules, these results indicate a down-regulation of immune system front to malignant process. The alteration in nucleotide and nucleoside hydrolysis reinforces the purinergic systems role in this cancer. Therefore, even after surgical removal, the purinergic system can develop a chronic inflammatory micro-environment that can influence directly on relapse or metastasis.
Collapse
Affiliation(s)
- Aline Manica
- Campus Santa Maria, Federal University of Santa Maria, Santa Maria RS, Brazil
| | | | | | - Marcelo Moreno
- Campus Chapecó, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Feldbrügge L, Moss AC, Yee EU, Csizmadia E, Mitsuhashi S, Longhi MS, Sandhu B, Stephan H, Wu Y, Cheifetz AS, Müller CE, Sévigny J, Robson SC, Jiang ZG. Expression of Ecto-nucleoside Triphosphate Diphosphohydrolases-2 and -3 in the Enteric Nervous System Affects Inflammation in Experimental Colitis and Crohn's Disease. J Crohns Colitis 2017; 11:1113-1123. [PMID: 28472257 PMCID: PMC5881706 DOI: 10.1093/ecco-jcc/jjx058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/03/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Recent studies have suggested that the enteric nervous system can modulate gut immunity. Ecto-nucleoside triphosphate diphosphohydrolases [E-NTPDases] regulate purinergic signalling by sequential phosphohydrolysis of pro-inflammatory extracellular adenosine 5'-triphosphate [ATP]. Herein, we test the hypothesis that E-NTPDases modulate gut inflammation via neuro-immune crosstalk. DESIGN We determined expression patterns of NTPDase2 and NTPDase3 in murine and human colon. Experimental colitis was induced by dextran sodium sulphate [DSS] in genetically engineered mice deficient in NTPDase2 or NTPDase3. We compared plasma adenosine diphosphatase [ADPase] activity from Crohn's patients and healthy controls, and linked the enzyme activity to Crohn's disease activity. RESULTS NTPDase2 and -3 were chiefly expressed in cells of the enteric nervous system in both murine and human colon. When compared with wild type, DSS-induced colitis was exacerbated in Entpd2, and to a lesser extent, Entpd3 null mice as measured by disease activity score and histology, and marked anaemia was seen in both. Colonic macrophages isolated from Entpd2 null mice displayed a pro-inflammatory phenotype compared with wild type. In human plasma, Crohn's patients had decreases in ADPase activity when compared with healthy controls. The drop in ADPase activity was likely associated with changes in NTPDase2 and -3, as suggested by inhibitor studies, and were correlated with Crohn's disease activity. CONCLUSIONS NTPDase2 and -3 are ecto-enzymes expressed in the enteric nervous system. Both enzymes confer protection against gut inflammation in experimental colitis and exhibit alterations in Crohn's disease. These observations suggest that purinergic signalling modulated by E-NTPDases governs neuro-immune interactions that are relevant in Crohn's disease.
Collapse
Affiliation(s)
- Linda Feldbrügge
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Charité Universitätsmedizin, Berlin, Germany
| | - Alan C Moss
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eric U Yee
- Department of Pathology, OU Medical Center, Oklahoma City, USA
| | - Eva Csizmadia
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuji Mitsuhashi
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Serena Longhi
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bynvant Sandhu
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Holger Stephan
- Helmholtz-Zentrum Dresden–Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Yan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adam S Cheifetz
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jean Sévigny
- Département de Microbiologie-infectiologie et d’Immunologie, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Z Gordon Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Purinergic signaling during intestinal inflammation. J Mol Med (Berl) 2017; 95:915-925. [PMID: 28547076 DOI: 10.1007/s00109-017-1545-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a devastating disease that is associated with excessive inflammation in the intestinal tract in genetically susceptible individuals and potentially triggered by microbial dysbiosis. This illness markedly predisposes patients to thrombophilia and chronic debility as well as bowel, lymphatic, and liver cancers. Development of new therapies is needed to re-establish long-term immune tolerance in IBD patients without increasing the risk of opportunistic infections and cancer. Aberrant purinergic signaling pathways have been implicated in disordered thromboregulation and immune dysregulation, as noted in the pathogenesis of IBD and other gastrointestinal/hepatic autoimmune diseases. Expression of CD39 on endothelial or immune cells allows for homeostatic integration of hemostasis and immunity, which are disrupted in IBD. Our focus in this review is on novel aspects of the functions of CD39 and related NTPDases in IBD. Regulated CD39 activity allows for scavenging of extracellular nucleotides, the maintenance of P2-receptor integrity and coordination of adenosinergic signaling responses. CD39 together with CD73, serves as an integral component of the immunosuppressive machinery of dendritic cells, myeloid cells, T and B cells. Genetic inheritance and environental factors closely regulate the levels of expression and phosphohydrolytic activity of CD39, both on immune cells and released microparticles. Purinergic mechanisms associated with T regulatory and supressor T helper type 17 cells modulate disease activity in IBD, as can be modeled in experimental colitis. As a recent example, upregulation of CD39 is dependent upon ligation of the aryl hydrocarbon receptor (AHR), as with natural ligands such as bilirubin and 2-(1' H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Decreased expression of CD39 and/or dysfunctional AHR signaling, however, abrogates the protective effects of immunosuppressive AHR ligands. These factors could also serve as biomarkers of disease activity in IBD. Heightened thrombosis, inflammation, and immune disturbances as seen in IBD appear to be associated with aberrant purinergic signaling. Ongoing development of therapeutic strategies augmenting CD39 ectonucleotidase bioactivity via cytokines or AHR ligands offers promise for management of thrombophilia, disordered inflammation, and aberrant immune reactivity in IBD.
Collapse
|
21
|
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology. Front Pharmacol 2017; 8:291. [PMID: 28588493 PMCID: PMC5441391 DOI: 10.3389/fphar.2017.00291] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Adenosine 5′-triphosphate is a well-known extracellular signaling molecule and neurotransmitter known to activate purinergic P2X receptors. Information has been elucidated about the structure and gating of P2X channels following the determination of the crystal structure of P2X4 (zebrafish), however, there is still much to discover regarding the role of this receptor in the central nervous system (CNS). In this review we provide an overview of what is known about P2X4 expression in the CNS and discuss evidence for pathophysiological roles in neuroinflammation and neuropathic pain. Recent advances in the development of pharmacological tools including selective antagonists (5-BDBD, PSB-12062, BX430) and positive modulators (ivermectin, avermectins, divalent cations) of P2X4 will be discussed.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom.,School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Janice A Layhadi
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom
| | - Kshitija Dhuna
- School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| |
Collapse
|
22
|
Cell culture: complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res 2017; 370:1-11. [PMID: 28434079 PMCID: PMC5610203 DOI: 10.1007/s00441-017-2618-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
There is abundant evidence that ATP (adenosine 5′-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.
Collapse
|
23
|
Certal M, Vinhas A, Barros-Barbosa A, Ferreirinha F, Costa MA, Correia-de-Sá P. ADP-Induced Ca 2+ Signaling and Proliferation of Rat Ventricular Myofibroblasts Depend on Phospholipase C-Linked TRP Channels Activation Within Lipid Rafts. J Cell Physiol 2016; 232:1511-1526. [PMID: 27755650 DOI: 10.1002/jcp.25656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023]
Abstract
Nucleotides released during heart injury affect myocardium electrophysiology and remodeling through P2 purinoceptors activation in cardiac myofibroblasts. ATP and UTP endorse [Ca2+ ]i accumulation and growth of DDR-2/α-SMA-expressing myofibroblasts from adult rat ventricles via P2Y4 and P2Y2 receptors activation, respectively. Ventricular myofibroblasts also express ADP-sensitive P2Y1 , P2Y12 , and P2Y13 receptors as demonstrated by immunofluorescence confocal microscopy and western blot analysis, but little information exists on ADP effects in these cells. ADP (0.003-3 mM) and its stable analogue, ADPßS (100 μM), caused fast [Ca2+ ]i transients originated from thapsigargin-sensitive internal stores, which partially declined to a plateau sustained by capacitative Ca2+ entry through transient receptor potential (TRP) channels inhibited by 2-APB (50 μM) and flufenamic acid (100 μM). Hydrophobic interactions between Gq/11 -coupled P2Y purinoceptors and TRP channels were suggested by prevention of the ADP-induced [Ca2+ ]i plateau following PIP2 depletion with LiCl (10 mM) and cholesterol removal from lipid rafts with methyl-ß-cyclodextrin (2 mM). ADP [Ca2+ ]i transients were insensitive to P2Y1 , P2Y12 , and P2Y13 receptor antagonists, MRS2179 (10μM), AR-C66096 (0.1 μM), and MRS2211 (10μM), respectively, but were attenuated by suramin and reactive blue-2 (100 μM) which also blocked P2Y4 receptors activation by UTP. Cardiac myofibroblasts growth and type I collagen production were favored upon activation of MRS2179-sensitive P2Y1 receptors with ADP or ADPßS (30 μM). In conclusion, ADP exerts a dual role on ventricular myofibroblasts: [Ca2+ ]i transients are mediated by fast-desensitizing P2Y4 receptors, whereas the pro-fibrotic effect of ADP involves the P2Y1 receptor activation. Data also show that ADP-induced capacitative Ca2+ influx depends on phospholipase C-linked TRP channels opening in lipid raft microdomains. J. Cell. Physiol. 232: 1511-1526, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariana Certal
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Adriana Vinhas
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Aurora Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
24
|
Puchałowicz K, Baranowska-Bosiacka I, Dziedziejko V, Chlubek D. Purinergic signaling and the functioning of the nervous system cells. Cell Mol Biol Lett 2016; 20:867-918. [PMID: 26618572 DOI: 10.1515/cmble-2015-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Purinergic signaling in the nervous system has been the focus of a considerable number of studies since the 1970s. The P2X and P2Y receptors are involved in the initiation of purinergic signaling. They are very abundant in the central and peripheral nervous systems, where they are expressed on the surface of neurons and glial cells--microglia, astrocytes, oligodendrocytes and Schwann cells and the precursors of the latter two. Their ligands--extracellular nucleotides--are released in the physiological state by astrocytes and neurons forming synaptic connections, and are essential for the proper functioning of nervous system cells. Purinergic signaling plays a crucial role in neuromodulation, neurotransmission, myelination in the CNS and PNS, intercellular communication, the regulation of ramified microglia activity, the induction of the response to damaging agents, the modulation of synaptic activity and other glial cells by astrocytes, and the induction of astrogliosis. Understanding these mechanisms and the fact that P2 receptors and their ligands are involved in the pathogenesis of diseases of the nervous system may help in the design of drugs with different and more effective mechanisms of action.
Collapse
|
25
|
Ma L, Trinh T, Ren Y, Dirksen RT, Liu X. Neuronal NTPDase3 Mediates Extracellular ATP Degradation in Trigeminal Nociceptive Pathway. PLoS One 2016; 11:e0164028. [PMID: 27706204 PMCID: PMC5051867 DOI: 10.1371/journal.pone.0164028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023] Open
Abstract
ATP induces pain via activation of purinergic receptors in nociceptive sensory nerves. ATP signaling is terminated by ATP hydrolysis mediated by cell surface-localized ecto-nucleotidases. Using enzymatic histochemical staining, we show that ecto-ATPase activity is present in mouse trigeminal nerves. Using immunofluorescence staining, we found that ecto-NTPDase3 is expressed in trigeminal nociceptive neurons and their projections to the brainstem. In addition, ecto-ATPase activity and ecto-NTPDase3 are also detected in the nociceptive outermost layer of the trigeminal subnucleus caudalis. Furthermore, we demonstrate that incubation with anti-NTPDase3 serum reduces extracellular ATP degradation in the nociceptive lamina of both the trigeminal subnucleus caudalis and the spinal cord dorsal horn. These results are consistent with neuronal NTPDase3 activity modulating pain signal transduction and transmission by affecting extracellular ATP hydrolysis within the trigeminal nociceptive pathway. Thus, disruption of trigeminal neuronal NTPDase3 expression and localization to presynaptic terminals during chronic inflammation, local constriction and injury may contribute to the pathogenesis of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Lihua Ma
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Department of Dentistry, School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Thu Trinh
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Yanfang Ren
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Xiuxin Liu
- Department of Dentistry, Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
26
|
Durnin L, Moreland N, Lees A, Mutafova-Yambolieva VN. A commonly used ecto-ATPase inhibitor, ARL-67156, blocks degradation of ADP more than the degradation of ATP in murine colon. Neurogastroenterol Motil 2016; 28:1370-81. [PMID: 27060478 PMCID: PMC5002237 DOI: 10.1111/nmo.12836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/14/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Adenosine 5'-triphosphate (ATP) is released extracellularly as a neurotransmitter and an autocrine or paracrine mediator in numerous systems, including the gastrointestinal tract. It is rapidly degraded to active and inactive metabolites by membrane-bound enzymes. Investigators frequently use inhibitors of ATP hydrolysis such as ARL-67156 and POM-1 to suppress the catabolism of ATP and prolong its effects in pharmacological studies. Our aim was to investigate directly the effects of ARL-67156 and POM-1 on the degradation of ATP and adenosine 5'-diphosphate (ADP) in mouse colonic muscles. METHODS The degradation of ATP and ADP was evaluated by superfusing tissues with 1,N(6) -etheno-ATP (eATP) and 1,N(6) -etheno-ADP (eADP) as substrates and monitoring the decrease in substrate and increase in products (i.e., eADP, eAMP, and e-adenosine) by high-performance liquid chromatography techniques with fluorescence detection. Relaxation responses to etheno-derivatized and non-derivatized ATP and ADP were examined in isometric tension experiments. KEY RESULTS ARL-67156 inhibits the degradation of ADP but not of ATP, whereas POM-1 inhibits the degradation of ATP but not of ADP in murine colonic muscles. Consequently, ARL-67156 enhances relaxation responses to both ATP and ADP, whereas POM-1 reduces relaxation to ATP and does not affect relaxation to ADP. CONCLUSIONS & INFERENCES Studies that use ARL-67156 to inhibit ATP degradation in smooth muscle likely evaluate responses to accumulated ADP rather than ATP. POM-1 appears to be a more selective inhibitor of ATP degradation in the mouse colon. The choice of pharmacological tools in studies on extracellular ATP signaling may affect the interpretation of experimental data in functional studies.
Collapse
Affiliation(s)
- L. Durnin
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno NV USA
| | - N. Moreland
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno NV USA
| | - A. Lees
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno NV USA
| | | |
Collapse
|
27
|
Mitrović N, Zarić M, Drakulić D, Martinović J, Stanojlović M, Sévigny J, Horvat A, Nedeljković N, Grković I. 17β-Estradiol upregulates ecto-5'-nucleotidase (CD73) in hippocampal synaptosomes of female rats through action mediated by estrogen receptor-α and -β. Neuroscience 2016; 324:286-96. [PMID: 26987957 DOI: 10.1016/j.neuroscience.2016.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023]
Abstract
17β-Estradiol (E2) crucially affects several processes in the hippocampus of both sexes. E2 acts upon estradiol receptors ERα and ERβ, influencing target gene expression and/or modulates intracellular signaling cascades. Another potent modulator of hippocampal function is nucleoside adenosine, the final product of ectonucleotidase cascade, enzymes which hydrolyze extracellular ATP to adenosine. The last and rate-limiting step of the hydrolysis is catalyzed by membrane-bound ecto-5'-nucleotidase (eN). Previous findings obtained on adenosine metabolism in brain suggest that eN may be modulated by ovarian steroids. Therefore, the present study reports that the activity and protein abundance of membrane-bound eN fluctuates across the estrus cycle in the hippocampal synaptosomes of female rats. Further, we analyzed the role of E2 and its intracellular receptors on the expression of eN in ovariectomized females. We found that E2 upregulated eN activity and protein abundance in the hippocampal synaptosomes. Application of nonspecific ER antagonist, ICI 182,780 and selective ERα and ERβ agonists, PPT and DPN, respectively, demonstrated the involvement of both receptor subtypes in observed actions. Selective ERα receptor agonist, PPT, induced upregulation of both the protein level and activity of eN, while application of selective ERβ receptor agonist, DPN, increased only the activity of eN. In both cases, E2 entered into the intracellular compartment and activated ER(s), which was demonstrated by membrane impermeable E2-BSA conjugate. Together these results imply that E2-induced effects on connectivity and functional properties of the hippocampal synapses may be in part mediated through observed effect on eN.
Collapse
Affiliation(s)
- N Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - M Zarić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - D Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - J Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - M Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - J Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, QC, Canada; Centre de recherche du CHU de Québec - Université Laval, G1V 4G2 QC, Canada
| | - A Horvat
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - N Nedeljković
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia
| | - I Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| |
Collapse
|
28
|
Jafari B, Yelibayeva N, Ospanov M, Ejaz SA, Afzal S, Khan SU, Abilov ZA, Turmukhanova MZ, Kalugin SN, Safarov S, Lecka J, Sévigny J, Rahman Q, Ehlers P, Iqbal J, Langer P. Synthesis of 2-arylated thiadiazolopyrimidones by Suzuki–Miyaura cross-coupling: a new class of nucleotide pyrophosphatase (NPPs) inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra22750c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over expression of nucleotide pyrophosphatase (NPPs) activity is associated with chondrocalcinosis, osteoarthritis, type 2 diabetes, neurodegenerative diseases, allergies and cancer metastasis.
Collapse
|