1
|
Nishihara M, Shinohara K, Ikeda S, Akahoshi T, Tsutsui H. Impact of sympathetic hyperactivity induced by brain microglial activation on organ damage in sepsis with chronic kidney disease. J Intensive Care 2024; 12:31. [PMID: 39223624 PMCID: PMC11367766 DOI: 10.1186/s40560-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sympathetic nerve activity (SNA) plays a central role in the pathogenesis of several diseases such as sepsis and chronic kidney disease (CKD). Activation of microglia in the paraventricular nucleus of the hypothalamus (PVN) has been implicated in SNA. The mechanisms responsible for the adverse prognosis observed in sepsis associated with CKD remain to be determined. Therefore, we aimed to clarify the impact of increased SNA resulting from microglial activation on hemodynamics and organ damage in sepsis associated with CKD. METHODS AND RESULTS In protocol 1, male Sprague-Dawley rats underwent either nephrectomy (Nx) or sham surgery followed by cecal ligation and puncture (CLP) or sham surgery. After CLP, Nx-CLP rats exhibited decreased blood pressure, increased heart rate, elevated serum creatinine and bilirubin levels, and decreased platelet count compared to Nx-Sham rats. Heart rate variability analysis revealed an increased low to high frequency (LF/HF) ratio in Nx-CLP rats, indicating increased SNA. Nx-CLP rats also had higher creatinine and bilirubin levels and lower platelet counts than sham-CLP rats after CLP. In protocol 2, Nx-CLP rats were divided into two subgroups: one received minocycline, an inhibitor of microglial activation, while the other received artificial cerebrospinal fluid (CSF) intracerebroventricularly via an osmotic minipump. The minocycline-treated group (Nx-mino-CLP) showed attenuated hypotensive and increased heart rate responses compared to the CSF-treated group (Nx-CSF-CLP), and the LF/HF ratio was also decreased. Echocardiography showed larger left ventricular dimensions and inferior vena cava in the Nx-mino-CLP group. In addition, creatinine and bilirubin levels were lower and platelet counts were higher in the Nx-mino-CLP group compared to the Nx-CSF-CLP group. CONCLUSIONS In septic rats with concomitant CKD, SNA was significantly enhanced and organ dysfunction was increased. It has been suggested that the mechanism of exacerbated organ dysfunction in these models may involve abnormal systemic hemodynamics, possibly triggered by activation of the central sympathetic nervous system through activation of microglia in the PVN.
Collapse
Affiliation(s)
- Masaaki Nishihara
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan.
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Keisuke Shinohara
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shota Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Akahoshi
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
- Department of Advanced Emergency and Disaster medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- School of Medicine and Graduate School, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
2
|
Shu Q, Zhou J, Zhang B, Zhang F, Zhou X, Wu Y, Chang H, Hu L, Cai R, Yu Q. Electroacupuncture alleviates myocardial ischemia-reperfusion injury by inhibiting hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla. Eur J Neurosci 2024; 60:4861-4876. [PMID: 39054660 DOI: 10.1111/ejn.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/20/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Accumulating evidence suggests that electroacupuncture (EA) has obvious therapeutic effects and unique advantages in alleviating myocardial ischemia-reperfusion injury (MIRI), while the underlying neuromolecular mechanisms of EA intervention for MIRI have not been fully elucidated. The aim of the study is to investigate the role of the neural pathway of hypothalamic paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) in the alleviation of MIRI rats by EA preconditioning. MIRI models were established by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for 2 h. Electrocardiogram recording, chemogenetics, enzyme-linked immunosorbent assay, multichannel physiology recording and haematoxylin-eosin and immunofluorescence staining methods were conducted to demonstrate that the firing frequencies of neurons in the PVN and the expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI) and lactic dehydrogenase (LDH). Virus tracing showed a projection connection between PVN and RVLM. The inhibition of the PVN-RVLM neural pathway could replicate the protective effect of EA pretreatment on MIRI rats. However, the activation of the pathway weakened the effect of EA preconditioning. EA pretreatment alleviated MIRI by regulating PVN neurons projecting to RVLM. This work provides novel evidence of EA pretreatment for alleviating MIRI.
Collapse
Affiliation(s)
- Qi Shu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Zhou
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Zhang
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Fan Zhang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Zhou
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wu
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Huimin Chang
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Hu
- Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
- Institute of Acupuncture and Moxibustion Meridian, Anhui University of Chinese Medicine, Hefei, China
| | - Ronglin Cai
- Institute of Acupuncture and Moxibustion Meridian, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute for Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Qing Yu
- Institute of Acupuncture and Moxibustion Meridian, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Su H, Wu H, Wu S, Zhou M. Effects of electroacupuncture at KI3 and ST36 on the hypothalamic paraventricular nucleus in a rat model of chronic glomerulonephritis. Acupunct Med 2023; 41:307-316. [PMID: 37166069 DOI: 10.1177/09645284231166718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
OBJECTIVE The hypothalamic paraventricular nucleus (PVN) acts as a critical integrating center of endocrine/autonomic responses and regulates visceral functional activities. However, its involvement in electroacupuncture (EA) treatment of chronic glomerulonephritis (CGN) remains unclear. METHODS Over four experiments, we randomized 111 rats into: control, untreated model (CGN) or EA-treated model (CGN + EA) groups, a model group receiving EA after PVN damage (CGN + EA + Lesion) or untreated model groups injected with adeno-associated viral vectors encoding human M4 muscarinic receptor (CGN + hM4D) or enhanced green fluorescent protein (CGN + EGFP). CGN was modeled by intraperitoneal injection of bovine serum albumin for 2 weeks. Rats in the CGN + EA and CGN + EA + Lesion groups received EA at bilateral ST36 and KI3 for 14 days. Urine/serum samples were collected to evaluate inflammatory factors and changes in renal function. RESULTS EA inhibited the release of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β, and decreased urine protein (PRO), creatinine (Cre) and blood urea nitrogen (BUN) levels. PVN damage influenced the effect of EA on the levels of these parameters. EA appeared to inhibit the firing frequency and spectral energy of PVN neurons. In the viral vector experiment, levels of PRO, Cre, IL-6, IL-1β and TNF-α in the CGN group were increased in CGN versus control groups (p < 0.0001), decreased in CGN + hM4D versus CGN groups (p < 0.05) and did not differ between CGN + EGFP and control groups (p > 0.05). CONCLUSION Our findings indicate that EA at ST36 and KI3 improves CGN in this rat model by weakening the activity of PVN neurons, alleviating impairment of renal function impairment and restricting the release of inflammatory factors.
Collapse
Affiliation(s)
- Hang Su
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Haosheng Wu
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shengbing Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Meiqi Zhou
- Anhui Academy of Traditional Medicine, Bozhou Institute of Chinese Medicine, Bozhou, China
| |
Collapse
|
4
|
Taweh O, Moreira JD. Proposed mechanisms of hypertension and risk of adverse cardiovascular outcomes in LGBT communities. Am J Physiol Heart Circ Physiol 2023; 325:H522-H528. [PMID: 37477686 DOI: 10.1152/ajpheart.00346.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Hypertension (HTN), a highly prevalent public issue affecting one in two adults in the United States, has recently been shown to differentially burden individuals belonging to marginalized communities, such as the lesbian, gay, bisexual, and transgender (LGBT) communities. The minority stress theory posits that a unique combination of marginalization-related psychosocial stressors and coping behaviors may underlie the increased burden of diseases like HTN in LGBT populations. Uncontrolled or poorly managed HTN often leads to the development of adverse cardiovascular outcomes, such as heart failure (HF). Despite our understanding of minority stress theory and demonstrated associations between LGBT identities and HTN, the mechanisms whereby psychosocial stress drives HTN in LGBT populations remain unclear. This mini-review discusses the physiological systems governing blood pressure and the epidemiology of HTN across different subgroups of LGBT people. In addition, we propose mechanisms demonstrated in the general population whereby psychological stress has been implicated in elevating blood pressure that may be occurring in LGBT populations. Finally, we discuss the limitations of current studies and methodological frameworks to make suggestions for study designs to better delineate the mechanisms of psychosocial stress-related HTN in LGBT communities.
Collapse
Affiliation(s)
- Omar Taweh
- T. H. Chan School of Medicine, University of Massachusetts Worcester, Worcester, Massachusetts, United States
| | - Jesse D Moreira
- Q.U.E.E.R. Laboratory, Programs in Human Physiology, Department of Health Sciences, Boston University Sargent College, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Faber J, Milanez MIO, Simões CS, Campos RR. Frequency-coded patterns of sympathetic vasomotor activity are differentially evoked by the paraventricular nucleus of the hypothalamus in the Goldblatt hypertension model. Front Cell Neurosci 2023; 17:1176634. [PMID: 37674868 PMCID: PMC10477436 DOI: 10.3389/fncel.2023.1176634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction The paraventricular nucleus of the hypothalamus (PVN) contains premotor neurons involved in the control of sympathetic vasomotor activity. It is known that the stimulation of specific areas of the PVN can lead to distinct response patterns at different target territories. The underlying mechanisms, however, are still unclear. Recent evidence from sympathetic nerve recording suggests that relevant information is coded in the power distribution of the signal along the frequency range. In the present study, we addressed the hypothesis that the PVN is capable of organizing specific spectral patterns of sympathetic vasomotor activation to distinct territories in both normal and hypertensive animals. Methods To test it, we investigated the territorially differential changes in the frequency parameters of the renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), before and after disinhibition of the PVN by bicuculline microinjection. Subjects were control and Goldblatt rats, a sympathetic overactivity-characterized model of neurogenic hypertension (2K1C). Additionally, considering the importance of angiotensin II type 1 receptors (AT1) in the sympathetic responses triggered by bicuculline in the PVN, we also investigated the impact of angiotensin AT1 receptors blockade in the spectral features of the rSNA and sSNA activity. Results The results revealed that each nerve activity (renal and splanchnic) presents its own electrophysiological pattern of frequency-coded rhythm in each group (control, 2K1C, and 2K1C treated with AT1 antagonist losartan) in basal condition and after bicuculline microinjection, but with no significant differences regarding total power comparison among groups. Additionally, the losartan 2K1C treated group showed no decrease in the hypertensive response triggered by bicuculline when compared to the non-treated 2K1C group. However, their spectral patterns of sympathetic nerve activity were different from the other two groups (control and 2K1C), suggesting that the blockade of AT1 receptors does not totally recover the basal levels of neither the autonomic responses nor the electrophysiological patterns in Goldblatt rats, but act on their spectral frequency distribution. Discussion The results suggest that the differential responses evoked by the PVN were preferentially coded in frequency, but not in the global power of the vasomotor sympathetic responses, indicating that the PVN is able to independently control the frequency and the power of sympathetic discharges to different territories.
Collapse
Affiliation(s)
- Jean Faber
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maycon I. O. Milanez
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cristiano S. Simões
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ruy R. Campos
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Gao JQ, Xu YL, Ye J, Hou SX, Yang W, Li M, Fa JJ, Yang CH, Jin HG, He RQ, Liu ZJ. Effects of renal denervation on cardiac function after percutaneous coronary intervention in patients with acute myocardial infarction. Heliyon 2023; 9:e17591. [PMID: 37483803 PMCID: PMC10362181 DOI: 10.1016/j.heliyon.2023.e17591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Objective To observe the effect of renal artery denervation (RDN) on cardiac function in patients with acute myocardial infarction after percutaneous coronary intervention (AMI-PCI). Methods This is a single-centre, prospective randomized controlled study. A total of 108 AMI-PCI patients were randomly assigned to the RDN group or the control group at 1:1 ratio. All patients received standardized drug therapy after PCI, and patients in the RDN group underwent additional RDN at 4 weeks after the PCI. The follow-up period was 6 months after RDN. Echocardiography-derived parameters, cardiopulmonary exercise testing (CPET) data, Holter electrocardiogram, heart rate variability (HRV) at baseline and at the 6 months-follow up were analyzed. Results Baseline indexes were similar between the two groups (all P > 0.05). After 6 months of follow-up, the echocardiography-derived left ventricular ejection fraction was significantly higher in the RDN group than those in the control group. Cardiopulmonary exercise test indicators VO2Max, metabolic equivalents were significantly higher in the RDN group than in the control group. HRV analysis showed that standard deviation of the normal-to-normal R-R intervals, levels of square root of the mean squared difference of successive RR intervals were significantly higher in the RDN group than those in the control group. Conclusions RDN intervention after PCI in AMI patients is associated with improved cardiac function, improved exercise tolerance in AMI patients post PCI. The underlying mechanism of RDN induced beneficial effects may be related to the inhibition of sympathetic nerve activity and restoration of the sympathetic-vagal balance in these patients.
Collapse
Affiliation(s)
- Jun-Qing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - You-Long Xu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jian Ye
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Shu-Xin Hou
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wei Yang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Min Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jing-Jing Fa
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Cheng-Hao Yang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hui-Gen Jin
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Rui-Qing He
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zong-Jun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Institute of Translational Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
7
|
Ye J, Xiao R, Wang X, He R, Liu Z, Gao J. Effects and mechanism of renal denervation on ventricular arrhythmia after acute myocardial infarction in rats. BMC Cardiovasc Disord 2022; 22:544. [PMID: 36510123 PMCID: PMC9743565 DOI: 10.1186/s12872-022-02980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Renal denervation (RDN) can reduce ventricular arrhythmia after acute myocardial infarction (AMI), but the mechanism is not clear. The purpose of this study is to study its mechanism. METHODS Thirty-two Sprague-Dawley rats were divided into four groups: control group, AMI group, RDN-1d + AMI group, RDN-2w + AMI group. The AMI model was established 1 day after RDN in the RDN-1d + AMI group and 2 weeks after RDN in the RDN-2w + AMI group. At the same time, 8 normal rats were subjected to AMI modelling (the AMI group). The control group consisted of 8 rats without RDN intervention or AMI modelling. RESULTS The study confirmed that RDN can reduce the occurrence of ventricular tachycardia in AMI rats, reduce renal sympathetic nerve discharge, and inhibit the activity of local sympathetic nerves and cell growth factor (NGF) protein expression in the heart after AMI. In addition, RDN decreased the expression of norepinephrine (NE) and glutamate in the hypothalamus,and NE in cerebrospinal fluid, and increased the expression level of γ aminobutyric acid (GABA) in the hypothalamus after AMI. CONCLUSION RDN can effectively reduce the occurrence of ventricular arrhythmia after AMI, and its main mechanism may be via the inhibition of central sympathetic nerve discharge.
Collapse
Affiliation(s)
- Jian Ye
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Rongxue Xiao
- grid.186775.a0000 0000 9490 772XShanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.186775.a0000 0000 9490 772XThe Fifth School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Xu Wang
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Ruiqing He
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Zongjun Liu
- grid.186775.a0000 0000 9490 772XShanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.186775.a0000 0000 9490 772XThe Fifth School of Clinical Medicine, Anhui Medical University, Shanghai, 200062 People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| | - Junqing Gao
- grid.412540.60000 0001 2372 7462Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062 People’s Republic of China
| |
Collapse
|
8
|
Milanez MIO, Veiga AC, Martins BS, Pontes RB, Bergamaschi CT, Campos RR, Nishi EE. Renal Sensory Activity Regulates the γ-Aminobutyric Acidergic Inputs to the Paraventricular Nucleus of the Hypothalamus in Goldblatt Hypertension. Front Physiol 2020; 11:601237. [PMID: 33384613 PMCID: PMC7769809 DOI: 10.3389/fphys.2020.601237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Renal sensory activity is centrally integrated within brain nuclei involved in the control of cardiovascular function, suggesting that renal afferents regulate basal and reflex sympathetic vasomotor activity. Evidence has shown that renal deafferentation (DAx) evokes a hypotensive and sympathoinhibitory effect in experimental models of cardiovascular diseases; however, the underlying mechanisms involved in this phenomenon need to be clarified, especially those related to central aspects. We aimed to investigate the role of renal afferents in the control of γ-aminobutyric acid (GABA)ergic inputs to the paraventricular nucleus (PVN) of the hypothalamus in renovascular hypertensive (2K1C) rats and their influence in the regulation of cardiovascular function. Hypertension was induced by clipping the left renal artery. After 4 weeks, renal DAx was performed by exposing the left renal nerve to a 33 mM capsaicin solution for 15 min. After 2 weeks of DAx, microinjection of muscimol into the PVN was performed in order to evaluate the influence of GABAergic activity in the PVN and its contribution to the control of renal sympathetic nerve activity (rSNA) and blood pressure (BP). Muscimol microinjected into the PVN triggered a higher drop in BP and rSNA in the 2K1C rats and renal DAx mitigated these responses. These results suggest that renal afferents are involved in the GABAergic changes found in the PVN of 2K1C rats. Although the functional significance of this phenomenon needs to be clarified, it is reasonable to speculate that GABAergic alterations occur to mitigate microglia activation-induced sympathoexcitation in the PVN of 2K1C rats.
Collapse
Affiliation(s)
- Maycon I O Milanez
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda C Veiga
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz S Martins
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Roberto B Pontes
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cassia T Bergamaschi
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ruy R Campos
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Erika E Nishi
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Sata Y, Burke SL, Gueguen C, Lim K, Watson AM, Jha JC, Eikelis N, Jackson KL, Lambert GW, Denton KM, Schlaich MP, Head GA. Contribution of the Renal Nerves to Hypertension in a Rabbit Model of Chronic Kidney Disease. Hypertension 2020; 76:1470-1479. [DOI: 10.1161/hypertensionaha.120.15769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Overactivity of the sympathetic nervous system and high blood pressure are implicated in the development and progression of chronic kidney disease (CKD) and independently predict cardiovascular events in end-stage renal disease. To assess the role of renal nerves, we determined whether renal denervation (RDN) altered the hypertension and sympathoexcitation associated with a rabbit model of CKD. The model involves glomerular layer lesioning and uninephrectomy, resulting in renal function reduced by one-third and diuresis. After 3-week CKD, blood pressure was 13±2 mm Hg higher than at baseline (P<0.001), and compared with sham control rabbits, renal sympathetic nerve activity was 1.2±0.5 normalized units greater (P=0.01). The depressor response to ganglion blockade was also +8.0±3 mm Hg greater, but total norepinephrine spillover was 8.7±3.7 ng/min lower (bothP<0.05). RDN CKD rabbits only increased blood pressure by 8.0±1.5 mm Hg. Renal sympathetic activity, the response to ganglion blockade and diuresis were similar to sham denervated rabbits (non-CKD). CKD rabbits had intact renal sympathetic baroreflex gain and range, as well as normal sympathetic responses to airjet stress. However, hypoxia-induced sympathoexcitation was reduced by −9±0.4 normalized units. RDN did not alter the sympathetic response to hypoxia or airjet stress. CKD increased oxidative stress markers Nox5 and MCP-1 (monocyte chemoattractant protein-1) in the kidney, but RDN had no effect on these measures. Thus, RDN is an effective treatment for hypertension in this model of CKD without further impairing renal function or altering the normal sympathetic reflex responses to various environmental stimuli.
Collapse
Affiliation(s)
- Yusuke Sata
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Human Neurotransmitters Laboratory (Y.S., M.P.S.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Central Clinical School (Y.S.), Monash University, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia (Y.S.)
| | - Sandra L. Burke
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia (K.L.)
| | - Anna M.D. Watson
- Department of Diabetes, Central Clinical School (A.M.D.W., J.C.J.), Monash University, Melbourne, VIC, Australia
| | - Jay C. Jha
- Department of Diabetes, Central Clinical School (A.M.D.W., J.C.J.), Monash University, Melbourne, VIC, Australia
| | - Nina Eikelis
- Iverson Health Innovation Research Institute and School of Health Science, Swinburne University of Technology, Hawthorn, VIC, Australia (N.E., G.W.L.)
| | - Kristy L. Jackson
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute and School of Health Science, Swinburne University of Technology, Hawthorn, VIC, Australia (N.E., G.W.L.)
| | - Kate M. Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia (K.M.D.)
| | - Markus P. Schlaich
- Human Neurotransmitters Laboratory (Y.S., M.P.S.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia (M.P.S.)
- Departments of Cardiology (M.P.S.), Royal Perth Hospital, Western Australia, Australia
- Nephrology (M.P.S.), Royal Perth Hospital, Western Australia, Australia
| | - Geoffrey A. Head
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology (G.A.H.), Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Impact of gut microbiota: How it could play roles beyond the digestive system on development of cardiovascular and renal diseases. Microb Pathog 2020; 152:104583. [PMID: 33164814 DOI: 10.1016/j.micpath.2020.104583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
In recent years, a significant interest in gut microbiota-host crosstalk has increased due to the involvement of gut bacteria on host health and diseases. Gut dysbiosis, a change in the gut microbiota composition alters host-microbiota interactions and induces gut immune dysregulation that have been associated with pathogenesis of several diseases, including cardiovascular diseases (CVD) and chronic kidney diseases (CKD). Gut microbiota affect the host, mainly through the immunological and metabolism-dependent and metabolism-independent pathways. In addition to these, the production of trimethylamine (TMA)/trimethylamine N-oxide (TMAO), uremic toxins and lipopolysaccharides (LPS) by gut microbiota are involved in the pathogenesis of CVD and CKD. Given the current approaches and challenges that can reshape the bacterial composition by restoring the balance between host and microbiota. In this review, we discuss the complex interplay between the gut microbiota, and the heart and the kidney, and explain the gut-cardiovascular axis and gut-kidney axis on the development and progression of cardiovascular diseases and chronic kidney diseases. In addition, we discuss the interplay between gut and kidney on hypertension or cardiovascular pathology.
Collapse
|
11
|
Milanez MIO, Nishi EE, Bergamaschi CT, Campos RR. Role of spinal neurons in the maintenance of elevated sympathetic activity: a novel therapeutic target? Am J Physiol Regul Integr Comp Physiol 2020; 319:R282-R287. [DOI: 10.1152/ajpregu.00122.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The control of sympathetic vasomotor activity involves a complex network within the brain and spinal circuits. An extensive range of studies has indicated that sympathoexcitation is a common feature in several cardiovascular diseases and that strategies to reduce sympathetic vasomotor overactivity in such conditions can be beneficial. In the present mini-review, we present evidence supporting the spinal cord as a potential therapeutic target to mitigate sympathetic vasomotor overactivity in cardiovascular diseases, focusing mainly on the actions of spinal angiotensin II on the control of sympathetic preganglionic neuronal activity.
Collapse
Affiliation(s)
- Maycon I. O. Milanez
- Cardiovascular Physiology Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Erika E. Nishi
- Cardiovascular Physiology Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Cássia T. Bergamaschi
- Cardiovascular Physiology Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Ruy R. Campos
- Cardiovascular Physiology Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Sao Paulo, Brazil
| |
Collapse
|
12
|
Renal Denervation – a Modern Option for Treating Resistant Hypertension. JOURNAL OF INTERDISCIPLINARY MEDICINE 2020. [DOI: 10.2478/jim-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hypertension is one of the main cardiovascular risk factors, and it remains an important health problem, demonstrating an increasing incidence despite new treatment methods. Numerous risk factors that can lead to the development of difficult-to-treat or resistant hypertension have been described in the literature in recent years. In this type of hypertension, an important role is played by the sympathetic nervous system. Especially in these cases, with a sympathetic overactivation, renal denervation has proven its efficacy and safety in lowering blood pressure. In this brief clinical update, we present the results of the main studies regarding the efficacy and safety of the renal denervation technique used in the treatment of resistant hypertension.
Collapse
|
13
|
Milanez MIO, Nishi EE, Rocha AA, Bergamaschi CT, Campos RR. Interaction between angiotensin II and GABA in the spinal cord regulates sympathetic vasomotor activity in Goldblatt hypertension. Neurosci Lett 2020; 728:134976. [PMID: 32304717 DOI: 10.1016/j.neulet.2020.134976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Previous studies have been described changes in brain regions contributing to the sympathetic vasomotor overactivity in Goldblatt hypertension (2K1C). Furthermore, changes in the spinal cord are also involved in the cardiovascular and autonomic dysfunction in renovascular hypertension, as intrathecal (i.t.) administration of Losartan (Los) causes a robust hypotensive/sympathoinhibitory response in 2K1C but not in control rats. The present study evaluated the role of spinal γ-aminobutyric acid (GABA)-ergic inputs in the control of sympathetic vasomotor activity in the 2K1C rats. Hypertension was induced by clipping the renal artery. After six weeks, a catheter (PE-10) was inserted into the subarachnoid space and advanced to the T10-11 vertebral level in urethane-anaesthetized rats. The effects of i.t. injection of bicuculline (Bic) on blood pressure (BP), renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively) were evaluated over 40 consecutive minutes in the presence or absence of spinal AT1 antagonism. I.t. Bic triggered a more intense pressor and sympathoexcitatory response in 2K1C rats, however, these responses were attenuated by previous i.t. Los. No differences in the gene expression of GAD 65 and GABA-A receptors subunits in the spinal cord segments were found. Thus, the sympathoexcitation induced by spinal GABA-A blockade is dependent of local AT1 receptor in 2K1C but not in control rats. Excitatory angiotensinergic inputs to sympathetic preganglionic neurons are tonic controlled by spinal GABAergic actions in Goldblatt hypertension.
Collapse
Affiliation(s)
- Maycon I O Milanez
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Erika E Nishi
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Antônio A Rocha
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Cássia T Bergamaschi
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Ruy R Campos
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
14
|
Milanez MIO, Silva AM, Perry JC, Faber J, Nishi EE, Bergamaschi CT, Campos RR. Pattern of sympathetic vasomotor activity induced by GABAergic inhibition in the brain and spinal cord. Pharmacol Rep 2020; 72:67-79. [PMID: 32016845 DOI: 10.1007/s43440-019-00025-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Knowledge of the central areas involved in the control of sympathetic vasomotor activity has advanced in the last few decades. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammal nervous system, and a microinjection of bicuculline, an antagonist of GABA type A (GABA-A) receptors, into the paraventricular nucleus of the hypothalamus (PVN) alters the pattern of sympathetic activity to the renal, splanchnic and lumbar territories. However, studies are needed to clarify the role of GABAergic inputs in other central areas involved in the sympathetic vasomotor activity. The present work studied the cardiovascular effects evoked by GABAergic antagonism in the PVN, RVLM and spinal cord. METHODS AND RESULTS Bicuculline microinjections (400 pMol in 100 nL) into the PVN and rostral ventrolateral medulla (RVLM) as well as intrathecal administration (1.6 nmol in 2 µL) evoked an increase in blood pressure, heart rate, and renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively), inducing a higher coherence between rSNA and sSNA patterns. However, some of these responses were more intense when the GABA-A antagonism was performed in the RVLM than when the GABA-A antagonism was performed in other regions. CONCLUSIONS Administration of bicuculline into the RVLM, PVN and SC induced a similar pattern of renal and splanchnic sympathetic vasomotor burst discharge, characterized by a low-frequency (0.5 Hz) and high-amplitude pattern, despite different blood pressure responses. Thus, the differential control of sympathetic drive to different targets by each region is dependent, in part, on tonic GABAergic inputs.
Collapse
Affiliation(s)
- Maycon I O Milanez
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Adilson M Silva
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Juliana C Perry
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Jean Faber
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Erika E Nishi
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Cássia T Bergamaschi
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil
| | - Ruy R Campos
- Cardiovascular Division, Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, Ground Floor, CEP 04023-060, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2019; 14:442-456. [PMID: 29760448 DOI: 10.1038/s41581-018-0018-2] [Citation(s) in RCA: 433] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Turossi Amorim ED, de Jager L, Martins AB, Rodrigues AT, Cruz Lucchetti BF, Ariza D, Pinge‐Filho P, Crestani CC, Uchoa ET, Martins‐Pinge MC. Glutamate and GABA neurotransmission are increased in paraventricular nucleus of hypothalamus in rats induced to 6-OHDA parkinsonism: Involvement of nNOS. Acta Physiol (Oxf) 2019; 226:e13264. [PMID: 30716212 DOI: 10.1111/apha.13264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 02/02/2023]
Abstract
AIM Parkinson's disease (PD) is a progressive neurodegenerative disease that manifests itself clinically after reaching an advanced pathological stage. Besides motor signals, PD patients present cardiovascular and autonomic alterations. Recent data showed that rats induced to Parkinsonism by 6-hydroxydopamine (6-OHDA) administration in the substantia nigra pars compacta (SNpc) showed lower mean arterial pressure (MAP) and heart rate (HR), as reduction in sympathetic modulation. The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic and cardiovascular control, and amino acid neurotransmission has a central role. We evaluate PVN amino acid neurotransmission in cardiovascular and autonomic effects of 6-OHDA Parkinsonism. METHODS Male Wistar rats were submitted to guide cannulas implantation into the PVN. 6-OHDA or sterile saline (sham) was administered bilaterally in the SNpc. After 7 days, cardiovascular recordings in conscious state was performed. RESULTS Bicuculline promoted an increase in MAP and HR in sham group and exacerbated those effects in 6-OHDA group. NBQX (non-NMDA inhibitor) did not promote changes in sham as in 6-OHDA group. On the other hand, PVN microinjection of LY235959 (NMDA inhibitor) in sham group did not induced cardiovascular alterations, but decreased MAP and HR in 6-OHDA group. Compared to Sham group, 6-OHDA lesion increased the number of neuronal nitric oxide synthase (nNOS)-immunoreactive neurons in the PVN and, nNOS inhibition promoted higher increases in MAP and HR. CONCLUSION Our data suggest that the decreased baseline blood pressure and heart rate in animals with Parkinsonism may be due to an increased GABAergic tone via nNOS in the PVN.
Collapse
Affiliation(s)
- Eric Diego Turossi Amorim
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Lorena de Jager
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Andressa Busetti Martins
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Ananda Totti Rodrigues
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | | | - Deborah Ariza
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Phileno Pinge‐Filho
- Departament of Pathological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Carlos Cesar Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences UNESP ‐ Univ Estadual Paulista Araraquara Brazil
| | - Ernane Torres Uchoa
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| | - Marli Cardoso Martins‐Pinge
- Departament of Physiological Sciences, Center of Biological Sciences State University of Londrina Londrina Brazil
| |
Collapse
|
17
|
Nishihara M, Takesue K, Hirooka Y. Olmesartan combined with renal denervation reduces blood pressure in association with sympatho-inhibitory and aldosterone-reducing effects in hypertensive mice with chronic kidney disease. Clin Exp Hypertens 2018; 41:211-219. [DOI: 10.1080/10641963.2018.1465075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Masaaki Nishihara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ko Takesue
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University, Fukuoka, Japan
- Department of Medical Science Technology, International University of Health and Welfare School of Health Sciences at Fukuoka, Okawa City, Japan
| |
Collapse
|
18
|
Tromp TR, Mahesh D, Joles JA, Ramchandra R. Direct Recording of Cardiac and Renal Sympathetic Nerve Activity Shows Differential Control in Renovascular Hypertension. Hypertension 2018; 71:1108-1116. [PMID: 29686011 DOI: 10.1161/hypertensionaha.117.10749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/27/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that hypertension is initiated and maintained by elevated sympathetic tone. Increased sympathetic drive to the heart is linked to cardiac hypertrophy in hypertension and worsens prognosis. However, cardiac sympathetic nerve activity (SNA) has not previously been directly recorded in hypertension. We hypothesized that directly recorded cardiac SNA levels would be elevated during hypertension and that baroreflex control of cardiac SNA would be impaired during hypertension. Adult ewes either underwent unilateral renal artery clipping (n=12) or sham surgery (n=15). Two weeks later, electrodes were placed in the contralateral renal and cardiac nerves to record SNA. Baseline levels of SNA and baroreflex control of heart rate and sympathetic drive were examined. Unilateral renal artery clipping induced hypertension (mean arterial pressure 109±2 versus 91±3 mm Hg in shams; P<0.001). The heart rate baroreflex curve was shifted rightward but remained intact. In the hypertensive group, cardiac sympathetic burst incidence (bursts/100 beats) was increased (39±14 versus 25±9 in normotensives; P<0.05), whereas renal sympathetic burst incidence was decreased (69±20 versus 93±8 in normotensives; P<0.01). The renal sympathetic baroreflex curve was shifted rightward and showed increased gain, but there was no change in the cardiac sympathetic baroreflex gain. Renovascular hypertension is associated with differential control of cardiac and renal SNA; baseline cardiac SNA is increased, whereas renal SNA is decreased.
Collapse
Affiliation(s)
- Tycho R Tromp
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.)
| | - Darvina Mahesh
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.)
| | - Jaap A Joles
- and Department of Nephrology and Hypertension, University Medical Centre Utrecht, The Netherlands (T.R.T., J.A.J.)
| | - Rohit Ramchandra
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.);
| |
Collapse
|
19
|
Wang Y, Dinh TN, Nield A, Krishna SM, Denton K, Golledge J. Renal Denervation Promotes Atherosclerosis in Hypertensive Apolipoprotein E-Deficient Mice Infused with Angiotensin II. Front Physiol 2017; 8:215. [PMID: 28450836 PMCID: PMC5390019 DOI: 10.3389/fphys.2017.00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
Objective: To determine the effect of renal denervation (RDN) on the severity of atherosclerosis and aortic aneurysm in hypertensive mice. Methods: Hypertension, atherosclerosis and aortic aneurysm were induced by subcutaneous infusion of angiotensin II (1 μg/kg/min) for 28 days in apolipoprotein E-deficient mice. RDN was conducted using combined surgical and local chemical denervation. The norepinephrine concentration in the kidney was measured by high-performance liquid chromatography. Blood pressure was measured by the tail-cuff method. Atherosclerosis was assessed by Sudan IV staining of the aortic arch. The aortic diameter was measured by the morphometric method. The mRNA expression of genes associated with atherosclerosis and aortic aneurysm were analyzed by quantitative PCR. Results: RDN decreased the median norepinephrine content in the kidney by 93.4% (n = 5-7, P = 0.003) 5 days after the procedure, indicating that the RDN procedure was successful. RDN decreased systolic blood pressure in apolipoprotein E-deficient mice. Mice that had RDN had more severe aortic arch atherosclerosis (median percentage of Sudan IV positive area: 13.2% in control mice, n = 12, and 25.4% in mice having RDN, n = 12, P = 0.028). The severity of the atherosclerosis was negatively correlated with the renal norepinephrine content (spearman r = -0.6557, P = 0.005). RDN did not affect the size of aortic aneurysms formed or the incidence of aortic rupture in mice receiving angiotensin II. RDN significantly increased the aortic mRNA expression of matrix metalloproteinase-2 (MMP-2). Conclusion: RDN promoted atherosclerosis in apolipoprotein E-deficient mice infused with angiotensin II associated with upregulation of MMP-2. The higher MMP-2 expression could be the results of the greater amount of atheroma in the RDN mice. The findings suggest further research is needed to assess potentially deleterious effects of RDN in patients.
Collapse
Affiliation(s)
- Yutang Wang
- School of Applied and Biomedical Science, Federation University AustraliaBallarat, VIC, Australia.,The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook UniversityTownsville, QLD, Australia
| | - Tam N Dinh
- School of Applied and Biomedical Science, Federation University AustraliaBallarat, VIC, Australia.,The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook UniversityTownsville, QLD, Australia
| | - Alexander Nield
- School of Applied and Biomedical Science, Federation University AustraliaBallarat, VIC, Australia
| | - Smriti M Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook UniversityTownsville, QLD, Australia
| | - Kate Denton
- Cardiovascular and Renal Physiology, Department of Physiology, Monash UniversityClayton, VIC, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook UniversityTownsville, QLD, Australia.,Department of Vascular and Endovascular Surgery, The Townsville HospitalTownsville, QLD, Australia
| |
Collapse
|
20
|
Phillips JK, Campos RR. Role of renal nerves in normal and pathophysiological conditions. Auton Neurosci 2017; 204:1-3. [PMID: 28131564 DOI: 10.1016/j.autneu.2016.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Ruy R Campos
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|