1
|
Vitale AM, Paladino L, Caruso Bavisotto C, Barone R, Rappa F, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Interplay between the Chaperone System and Gut Microbiota Dysbiosis in Systemic Lupus Erythematosus Pathogenesis: Is Molecular Mimicry the Missing Link between Those Two Factors? Int J Mol Sci 2024; 25:5608. [PMID: 38891798 PMCID: PMC11171487 DOI: 10.3390/ijms25115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by self-immune tolerance breakdown and the production of autoantibodies, causing the deposition of immune complexes and triggering inflammation and immune-mediated damage. SLE pathogenesis involves genetic predisposition and a combination of environmental factors. Clinical manifestations are variable, making an early diagnosis challenging. Heat shock proteins (Hsps), belonging to the chaperone system, interact with the immune system, acting as pro-inflammatory factors, autoantigens, as well as immune tolerance promoters. Increased levels of some Hsps and the production of autoantibodies against them are correlated with SLE onset and progression. The production of these autoantibodies has been attributed to molecular mimicry, occurring upon viral and bacterial infections, since they are evolutionary highly conserved. Gut microbiota dysbiosis has been associated with the occurrence and severity of SLE. Numerous findings suggest that proteins and metabolites of commensal bacteria can mimic autoantigens, inducing autoimmunity, because of molecular mimicry. Here, we propose that shared epitopes between human Hsps and those of gut commensal bacteria cause the production of anti-Hsp autoantibodies that cross-react with human molecules, contributing to SLE pathogenesis. Thus, the involvement of the chaperone system, gut microbiota dysbiosis, and molecular mimicry in SLE ought to be coordinately studied.
Collapse
Affiliation(s)
- Alessandra Maria Vitale
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (L.P.); (C.C.B.); (F.R.); (F.C.); (A.M.G.)
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (L.P.); (C.C.B.); (F.R.); (F.C.); (A.M.G.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (L.P.); (C.C.B.); (F.R.); (F.C.); (A.M.G.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (L.P.); (C.C.B.); (F.R.); (F.C.); (A.M.G.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (L.P.); (C.C.B.); (F.R.); (F.C.); (A.M.G.)
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (L.P.); (C.C.B.); (F.R.); (F.C.); (A.M.G.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (L.P.); (C.C.B.); (F.R.); (F.C.); (A.M.G.)
| |
Collapse
|
2
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
3
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Kireçtepe Aydın AK, Hatemi G. Heat Shock Proteins in Behçet Syndrome. Balkan Med J 2023; 40:314-323. [PMID: 37525514 PMCID: PMC10500141 DOI: 10.4274/balkanmedj.galenos.2023.2023-6-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 08/02/2023] Open
Abstract
Behçet syndrome (BS) is a systemic vasculitis of unknown etiology that affects the skin, mucosa, joints, eyes, central nervous system, gastrointestinal system, arteries, and veins. It is generally believed to have a complex genetic background where both innate and adaptive immune systems are activated through environmental factors, such as infections, and auto-antigens. Heat shock proteins (HSPs) are highly conserved and immunogenic endogenous proteins that are thought to play both an enhancing and regulating role in several autoimmune and inflammatory diseases, such as rheumatoid arthritis, juvenile idiopathic arthritis, and Type I diabetes. There is evidence supporting the role of various microorganisms in BS, which may be using a common pathway to trigger or activate BS through molecular mimicry. The significant homology between microbial and human HSPs suggests that HSPs could serve as a common trigger. This review summarizes the work on the role of HSPs in the pathogenesis of BS. However, it remains unknown whether the HSPs detected in BS lesions play a causative role, their presence is a result of the ongoing inflammation, or they have a protective role against inflammation, as suggested in some other diseases.
Collapse
Affiliation(s)
| | - Gülen Hatemi
- Department of Internal Medicine, Division of Rheumatology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
5
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Mycobacterial Heat Shock Proteins in Sarcoidosis and Tuberculosis. Int J Mol Sci 2023; 24:ijms24065084. [PMID: 36982159 PMCID: PMC10048904 DOI: 10.3390/ijms24065084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Pathological similarities between sarcoidosis (SA) and tuberculosis (TB) suggest the role of mycobacterial antigens in the etiopathogenesis of SA. The Dubaniewicz group revealed that not whole mycobacteria, but Mtb-HSP70, Mtb-HSP 65, and Mtb-HSP16 were detected in the lymph nodes, sera, and precipitated immune complexes in patients with SA and TB. In SA, the Mtb-HSP16 concentration was higher than that of Mtb-HSP70 and that of Mtb-HSP65, whereas in TB, the Mtb-HSP16 level was increased vs. Mtb-HSP70. A high Mtb-HSP16 level, induced by low dose-dependent nitrate/nitrite (NOx), may develop a mycobacterial or propionibacterial genetic dormancy program in SA. In contrast to TB, increased peroxynitrite concentration in supernatants of peripheral blood mononuclear cell cultures treated with Mtb-HSP may explain the low level of NOx detected in SA. In contrast to TB, monocytes in SA were resistant to Mtb-HSP-induced apoptosis, and CD4+T cell apoptosis was increased. Mtb-HSP-induced apoptosis of CD8+T cells was reduced in all tested groups. In Mtb-HSP-stimulated T cells, lower CD8+γδ+IL-4+T cell frequency with increased TNF-α,IL-6,IL-10 and decreased INF-γ,IL-2,IL-4 production were present in SA, as opposed to an increased presence of CD4+γδ+TCR cells with increased TNF-α,IL-6 levels in TB, vs. controls. Mtb-HSP modulating the level of co-stimulatory molecules, regulatory cells, apoptosis, clonal deletion, epitope spread, polyclonal activation and molecular mimicry between human and microbial HSPs may also participate in the induction of autoimmunity, considered in SA. In conclusion, in different genetically predisposed hosts, the same antigens, e.g., Mtb-HSP, may induce the development of TB or SA, including an autoimmune response in sarcoidosis.
Collapse
|
7
|
Zhang W, Liu X, Wang J, Wang X, Zhang Y. Immunogenic Cell Death Associated Molecular Patterns and the Dual Role of IL17RA in Interstitial Cystitis/Bladder Pain Syndrome. Biomolecules 2023; 13:biom13030421. [PMID: 36979355 PMCID: PMC10046465 DOI: 10.3390/biom13030421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
The unclear etiology and pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS) are responsible for the lack of effective treatment and the poor patient prognosis. Various studies show that chronic inflammation and immune responses are important factors contributing to the pathogenesis of IC/BPS. The process of immunogenic cell death (ICD) involves both the immune response and inflammatory process, and the involvement of ICD in IC/BPS pathogenesis has not been explored. Two IC/BPS transcriptome datasets collected from the Gene Expression Omnibus (GEO) database were used to identify distinct ICD-associated molecular patterns (IAMPs). IAMPs and IC/BPS subtypes were found to be related. The inflammatory immune microenvironments (IIME) in different IAMPs were studied. The potential mechanism by which the interleukin 17 receptor A (IL17RA) influences IC/BPS was examined using in vitro assays. The expression of ICD-related genes (IRGs) was upregulated in IC/BPS bladders, compared with normal bladders. Disease prediction models, based on differentially expressed IRGs, could accurately predict IC/BPS. The IC/BPS patients had two distinct IAMPs, each with its own subtype and clinical features and association with remodeling IIME. IL17RA, a well-established IC/BPS bladder biomarker, mediates both the inflammatory insult and the protective responses. In summary, the current study identified different IAMPs in IC/BPS, which may be involved in the pathogenesis of IC/BPS by remodeling the IIME. The chronic inflammatory process in IC/BPS may be prolonged by IL17RA, which could mediate both pro- and anti-inflammatory responses. The IL17RA-associated pathway may play a significant role in the development of IC/BPS and can be used as a therapeutic target.
Collapse
|
8
|
Rose Lukesh N, Middleton DD, Bachelder EM, Ainslie KM. Particle-Based therapies for antigen specific treatment of type 1 diabetes. Int J Pharm 2023; 631:122500. [PMID: 36529362 PMCID: PMC9841461 DOI: 10.1016/j.ijpharm.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is the leading metabolic disorder in children worldwide. Over time, incidence rates have continued to rise with 20 million individuals affected globally by the autoimmune disease. The current standard of care is costly and time-consuming requiring daily injections of exogenous insulin. T1D is mediated by autoimmune effector responses targeting autoantigens expressed on pancreatic islet β-cells. One approach to treat T1D is to skew the immune system away from an effector response by taking an antigen-specific approach to heighten a regulatory response through a therapeutic vaccine. An antigen-specific approach has been shown with soluble agents, but the effects have been limited. Micro or nanoparticles have been used to deliver a variety of therapeutic agents including peptides and immunomodulatory therapies to immune cells. Particle-based systems can be used to deliver cargo into the cell and microparticles can passively target phagocytic cells. Further, surface modification and controlled release of encapsulated cargo can enhance delivery over soluble agents. The induction of antigen-specific immune tolerance is imperative for the treatment of autoimmune diseases such as T1D. This review highlights studies that utilize particle-based platforms for the treatment of T1D.
Collapse
Affiliation(s)
- Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
9
|
Mycobacterium avium subsp. paratuberculosis and microbiome profile of patients in a referral gastrointestinal diseases centre in the Sudan. PLoS One 2022; 17:e0266533. [PMID: 35381037 PMCID: PMC8982859 DOI: 10.1371/journal.pone.0266533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s disease in animals with zoonotic potential; it has been linked to many chronic diseases in humans, especially gastrointestinal diseases (GID). MAP has been extensively studied in Europe and America, but little reports were published from Africa. Sudan is a unique country with close contact between humans and livestock. Despite such interaction, the one health concept is neglected in dealing with cases of humans with GID. In this study, patients admitted to the reference GID hospital in the Sudan over a period of 8 months were screened for presence of MAP in their faeces or colonic biopsies. A total of 86 patients were recruited for this study, but only 67 were screened for MAP, as 19 did not provide the necessary samples for analysis. Both real-time PCR and culture were used to detect MAP in the collected samples and the microbial diversity in patients´ faecal samples was investigated using 16S rDNA nanopore sequencing. In total, 27 (40.3%) patients were MAP positive: they were 15 males and 12 females, of ages between 21 and 80 years. Logistic regression analysis revealed no statistical significance for all tested variables in MAP positive patients (occupation, gender, contact with animal, milk consumption, chronic disease, etc.). A unique microbiome profile of MAP-positive patients in comparison to MAP-negative was found. These findings suggest that a considerable proportion of the population could be MAP infected or carriers. Therefore, increase awareness at community level is urgently needed to decrease the risk of MAP at human/animal interface. This study represents the first report of MAP in humans in the Sudan; nevertheless, a better view of the situation of MAP in humans in the country requires a larger study including patients with other conditions.
Collapse
|
10
|
Rajabi F, Abdollahimajd F, Jabalameli N, Nassiri Kashani M, Firooz A. The Immunogenetics of Alopecia areata. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:19-59. [DOI: 10.1007/978-3-030-92616-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Wang T, Ishikawa T, Sasaki M, Chiba T. Oral and Gut Microbial Dysbiosis and Non-alcoholic Fatty Liver Disease: The Central Role of Porphyromonas gingivalis. Front Med (Lausanne) 2022; 9:822190. [PMID: 35308549 PMCID: PMC8924514 DOI: 10.3389/fmed.2022.822190] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota play many important roles, such as the regulation of immunity and barrier function in the intestine, and are crucial for maintaining homeostasis in living organisms. The disruption in microbiota is called dysbiosis, which has been associated with various chronic inflammatory conditions, food allergies, colorectal cancer, etc. The gut microbiota is also affected by several other factors such as diet, antibiotics and other medications, or bacterial and viral infections. Moreover, there are some reports on the oral-gut-liver axis indicating that the disruption of oral microbiota affects the intestinal biota. Non-alcoholic fatty liver disease (NAFLD) is one of the systemic diseases caused due to the dysregulation of the oral-gut-liver axis. NAFLD is the most common liver disease reported in the developed countries. It includes liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Recently, accumulating evidence supports an association between NAFLD and dysbiosis of oral and gut microbiota. Periodontopathic bacteria, especially Porphyromonas gingivalis, have been correlated with the pathogenesis and development of NAFLD based on the clinical and basic research, and immunology. P. gingivalis was detected in the liver, and lipopolysaccharide from this bacteria has been shown to be involved in the progression of NAFLD, thereby indicating a direct role of P. gingivalis in NAFLD. Moreover, P. gingivalis induces dysbiosis of gut microbiota, which promotes the progression of NAFLD, through disrupting both metabolic and immunologic pathways. Here, we review the roles of microbial dysbiosis in NAFLD. Focusing on P. gingivalis, we evaluate and summarize the most recent advances in our understanding of the relationship between oral-gut microbiome symbiosis and the pathogenesis and progression of non-alcoholic fatty liver disease, as well as discuss novel strategies targeting both P. gingivalis and microbial dysbiosis.
Collapse
Affiliation(s)
- Ting Wang
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- Ting Wang
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Toshimi Chiba
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- *Correspondence: Toshimi Chiba
| |
Collapse
|
12
|
The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells 2021; 10:cells10102626. [PMID: 34685607 PMCID: PMC8533860 DOI: 10.3390/cells10102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Collapse
|
13
|
Using Omics Approaches in the Discovery of Biomarkers for Early Diagnosis of Johne's Disease in Sheep and Goats. Animals (Basel) 2021; 11:ani11071912. [PMID: 34199073 PMCID: PMC8300312 DOI: 10.3390/ani11071912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Johne’s disease (JD) is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is an important and emerging problem in livestock. Most JD research has been carried out on cattle, but interest in the pathogenesis and diagnosis of this disease in sheep and goats is greatest in developing countries. Sheep and goats are also a relevant part of livestock production in Europe and Australia, and these species provide an excellent resource to study and better understand the mechanism of survival of MAP and gain insights into possible approaches to control this disease. This review gives an overview of the literature on paratuberculosis in sheep and goats, highlighting the immunological aspects and the potential for “omics” approaches to identify effective biomarkers for the early detection of infection. Abstract Johne’s disease (JD) is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is an important and emerging problem in livestock; therefore, its control and prevention is a priority to reduce economic losses and health risks. Most JD research has been carried out on cattle, but interest in the pathogenesis and diagnosis of this disease in sheep and goats is greatest in developing countries. Sheep and goats are also a relevant part of livestock production in Europe and Australia, and these species provide an excellent resource to study and better understand the mechanism of survival of MAP and gain insights into possible approaches to control this disease. This review gives an overview of the literature on paratuberculosis in sheep and goats, highlighting the immunological aspects and the potential for “omics” approaches to identify effective biomarkers for the early detection of infection. As JD has a long incubation period before the disease becomes evident, early diagnosis is important to control the spread of the disease.
Collapse
|
14
|
Potential Antiviral Immune Response Against COVID-19: Lessons Learned from SARS-CoV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:149-167. [PMID: 33973177 DOI: 10.1007/978-3-030-63761-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virus and host innate immune system interaction plays a significant role in forming the outcome of viral diseases. Host innate immunity initially recognizes the viral invasion and induces a rapid inflammatory response, and this recognition activates signaling cascades that trigger the release of antiviral mediators. This chapter aims to explore the mechanisms by which newly emerged coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activates the host immune system. Since SARS-CoV-2 shares similarities with SARS-CoV that caused the epidemic of SARS in 2003, the pathogenesis of both viruses could be at least very similar. For this, this chapter provides a synthesis of literature concerning antiviral immunity in SARS-CoV and SARS-CoV-2. It includes the presentation of epitopes linked to SARS-CoV-2 as well as the ability of SARS-CoV-2 to cause proteolytic activation and interact with angiotensin-converting enzyme 2 (ACE2) via molecular mimicry. This chapter characterizes various mechanisms that this virus may engage in escaping the host immunity, ended by a discussion of humoral immune responses against SARS-CoV-2.
Collapse
|
15
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
16
|
Lu YP, Zhang XL, Zheng F, Yun C, Zhu C, Cai W, Liu D, Hong X, Li Q, Hu B, Tang D, Yin LH, Dai Y. Quantitative Proteomic Analyses To Reveal the Key Features of Proteins in New Onset Ankylosing Spondylitis Patients. ACS OMEGA 2020; 5:20153-20161. [PMID: 32832769 PMCID: PMC7439379 DOI: 10.1021/acsomega.0c01776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/08/2020] [Indexed: 05/06/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic immune-mediated disease. Various immune cells play an essential role in the AS pathogenesis. However, the specific pathogenesis of AS has not been well understood. Proteomic profiles of peripheral blood mononuclear cells (PBMCs) were applied to reveal the specific pathogenesis of AS. Quantitative proteomic analyses were performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based methods to investigate the protein profiling of PBMCs from new-onset AS patients (n = 9) and healthy controls (n = 9). We identified 782 differentially expressed proteins (DEPs) and 527 differentially phosphorylated proteins (DPPs) between AS patients and healthy controls. The subcellular location of DEPs and DPPs showed that most of the DEPs were from the cytoplasm (n = 296, 38%), were extracellular (n = 141, 18%), and from the nucleus (n = 114, 15%); most of the DPPs were from the cytoplasm (n = 37, 34%), nucleus (n = 35, 32%), and plasma membrane (n = 10, 9%). We further identified 89 proteins with both expression and phosphorylation differences. The functional annotation of the 89 differentially expressed and phosphorylated proteins enriched in the antigen processing and presentation pathway. Four DEPs with six phosphorylated positions were found in the antigen processing and presentation pathway. The differentially expressed and phosphorylated proteins may be helpful to uncover the pathogenesis of AS. The six AS-specific proteins may serve as candidate markers for AS diagnosis and new treatment targets.
Collapse
Affiliation(s)
- Yong-Ping Lu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou CN 510632, China
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology),
University Medical Centre Mannheim, University
of Heidelberg, Mannheim, Baden-Württemberg DE 68135, Germany
| | - Xiao-Li Zhang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology),
University Medical Centre Mannheim, University
of Heidelberg, Mannheim, Baden-Württemberg DE 68135, Germany
| | - Fengping Zheng
- The First Affiliated Hospital of Southern
University of Science and Technology, the Second Clinical Medical
College of Jinan University, Shenzhen People’s
Hospital, Shenzhen CN 518020, China
| | - Chen Yun
- Department of Nephrology, Charité−Universitätsmedizin Berlin, Campus Mitte, Berlin DE 10117, Germany
| | - Chengxin Zhu
- The First Affiliated Hospital of Southern
University of Science and Technology, the Second Clinical Medical
College of Jinan University, Shenzhen People’s
Hospital, Shenzhen CN 518020, China
| | - Wanxia Cai
- The First Affiliated Hospital of Southern
University of Science and Technology, the Second Clinical Medical
College of Jinan University, Shenzhen People’s
Hospital, Shenzhen CN 518020, China
| | - Dongzhou Liu
- The First Affiliated Hospital of Southern
University of Science and Technology, the Second Clinical Medical
College of Jinan University, Shenzhen People’s
Hospital, Shenzhen CN 518020, China
| | - Xiaoping Hong
- The First Affiliated Hospital of Southern
University of Science and Technology, the Second Clinical Medical
College of Jinan University, Shenzhen People’s
Hospital, Shenzhen CN 518020, China
| | - Qiang Li
- Department of Nephrology, Dongguan Hospital of Traditional Chinese Medicine, Dongguan CN 523000, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou CN 510632, China
| | - Donge Tang
- The First Affiliated Hospital of Southern
University of Science and Technology, the Second Clinical Medical
College of Jinan University, Shenzhen People’s
Hospital, Shenzhen CN 518020, China
- . Phone: +86 0755-22942106
| | - Liang-Hong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou CN 510632, China
| | - Yong Dai
- The First Affiliated Hospital of Southern
University of Science and Technology, the Second Clinical Medical
College of Jinan University, Shenzhen People’s
Hospital, Shenzhen CN 518020, China
- . Phone: +86 0755-22942780
| |
Collapse
|
17
|
Joo JY, Cha GS, Kim HJ, Lee JY, Choi J. Atheroprotective nasal immunization with a heat shock protein 60 peptide from Porphyromonas gingivalis. J Periodontal Implant Sci 2020; 50:159-170. [PMID: 32617181 PMCID: PMC7321712 DOI: 10.5051/jpis.2020.50.3.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Immunization with Porphyromonas gingivalis heat shock protein 60 (PgHSP60) may have an immunoregulatory effect on atherogenesis. The aim of this study was to determine whether nasal immunization with a PgHSP60 peptide could reduce atherosclerotic plaque formation in apolipoprotein E knockout (ApoE KO) mice. Methods Seven-week-old male ApoE KO mice were assigned to receive a normal diet, a Western diet, a Western diet and challenge with PgHSP60-derived peptide 14 (Pep14) or peptide 19 (Pep19), or a Western diet and immunization with Pep14 or Pep19 before challenge with Pep14 or Pep19. Results Atherosclerotic plaques were significantly smaller in mice that received a Western diet with Pep14 nasal immunization than in mice that received a Western diet and no Pep14 immunization with or without Pep14 challenge. An immunoblot profile failed to detect serum reactivity to Pep14 in any of the study groups. Stimulation by either Pep14 or Pep19 strongly promoted the induction of CD4+CD25+forkhead box P3 (FoxP3)+ human regulatory T cells (Tregs) in vitro. However, the expression of mouse splenic CD4+CD25+FoxP3+ Tregs was lower in the Pep14-immunized mice than in the Pep14-challenged or Pep19-immunized mice. Levels of serum interferon gamma (IFN-γ) and transforming growth factor beta were higher and levels of interleukin (IL) 10 were lower in the Pep14-immunized mice than in the other groups. Induction of CD25− IL-17+ T helper 17 (Th17) cells was attenuated in the Pep14-immunized mice. Conclusions Nasal immunization with Pep14 may be a mechanism for attenuating atherogenesis by promoting the secretion of IFN-γ and/or suppressing Th17-mediated immunity.
Collapse
Affiliation(s)
- Ji-Young Joo
- Periodontal Disease Signaling Network Research Center, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| | - Gil-Sun Cha
- Periodontal Disease Signaling Network Research Center, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea
| | - Hyun-Joo Kim
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Pusan National University School of Dentistry, Yangsan, Korea
| |
Collapse
|
18
|
DNA vaccine encoding heat shock protein 90 protects from murine lupus. Arthritis Res Ther 2020; 22:152. [PMID: 32571400 PMCID: PMC7310240 DOI: 10.1186/s13075-020-02246-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies to multiple self-antigens, including heat shock proteins (HSP). Because of the increased expression of HSP90 and abnormal immune responses to it in SLE, we investigated whether an HSP90 DNA vaccine could modulate the development and clinical manifestations of SLE in lupus-prone mice. METHODS (NZB x NZW)F1 (NZB/W) mice were vaccinated with DNA constructs encoding HSP90 or control plasmids or vehicle. The mice were then monitored for survival, circulating anti-dsDNA autoantibodies, and immune phenotypes. Renal disease was evaluated by immunohistochemistry and by the measurement of proteinuria. RESULTS Vaccination with HSP90 DNA reduced lupus disease manifestations and prolonged the survival of NZB/W mice. The protective effects of the HSP90 DNA vaccine associated with the induction of tolerogenic dendritic cells (DCs) and an expansion of T regulatory cells (Tregs). CONCLUSIONS The beneficial effects of DNA vaccination with HSP90 in murine SLE support the possibility of HSP90-based therapeutic modalities of intervention in SLE.
Collapse
|
19
|
Liu A, Ferretti C, Shi FD, Cohen IR, Quintana FJ, La Cava A. DNA Vaccination With Hsp70 Protects Against Systemic Lupus Erythematosus in (NZB × NZW)F1 Mice. Arthritis Rheumatol 2020; 72:997-1002. [PMID: 31943822 DOI: 10.1002/art.41202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To address whether a targeted modulation of the abnormal expression of Hsp70 and autoantibodies against this molecule in systemic lupus erythematosus can influence disease. METHODS Lupus-prone (NZB × NZW)F1 mice that had been DNA-vaccinated with plasmids encoding Hsp70 and controls were monitored for lupus disease parameters including anti-double stranded DNA (anti-dsDNA) autoantibodies and cytokines using enzyme-linked immunosorbent assay, and for kidney function and pathology. The phenotypic and numerical changes in relevant immune cells were evaluated by flow cytometry, and cell function was assessed. RESULTS Mice that had been DNA-vaccinated with Hsp70 displayed marked suppression of anti-dsDNA antibody production, reduced renal disease, and antiinflammatory responses that are associated with a significantly extended survival, compared to controls. These protective effects in Hsp70-vaccinated mice were associated with an induction of tolerogenic immune responses and an expansion of functional Treg cells. CONCLUSION DNA vaccination with Hsp70 suppresses murine lupus by inducing tolerogenic immune responses and antiinflammatory immune responses associated with reduced disease manifestations and increased mouse survival.
Collapse
Affiliation(s)
| | | | - Fu-Dong Shi
- Barrow Neurological Institute, Phoenix, Arizona
| | - Irun R Cohen
- The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
20
|
Tran-Nguyen TK, Chandra D, Yuan K, Patibandla PK, Nguyen KT, Sethu P, Zhang Y, Xue J, Mobley JA, Kim YI, Shoushtari A, Leader JK, Bon J, Sciurba FC, Duncan SR. Glucose-Regulated Protein 78 Autoantibodies Are Associated with Carotid Atherosclerosis in Chronic Obstructive Pulmonary Disease Patients. Immunohorizons 2020; 4:108-118. [PMID: 32086320 PMCID: PMC7430561 DOI: 10.4049/immunohorizons.1900098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/01/2020] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis prevalence is increased in chronic obstructive pulmonary disease (COPD) patients, independent of other risk factors. The etiology of the excess vascular disease in COPD is unknown, although it is presumably related to an underlying (if cryptic) systemic immune response. Autoantibodies with specificity for glucose-regulated protein 78 (GRP78), a multifunctional component of the unfolded protein response, are common in COPD patients and linked to comorbidities of this lung disease. We hypothesized anti-GRP78 autoreactivity might also be a risk factor for atherosclerosis in COPD patients. Carotid intima-medial thickness (cIMT) was measured in 144 current and former smokers by ultrasound. Concentrations of circulating IgG autoantibodies against full-length GRP78, determined by ELISA, were greater among subjects with abnormally increased cIMT (p <, 0.01). Plasma levels of autoantibodies against a singular GRP78 peptide segment, amino acids 246–260 (anti-GRP78aa 246–260), were even more highly correlated with cIMT, especially among males with greater than or equal to moderate COPD (rs = 0.62, p = 0.001). Anti-GRP78aa 246–260 concentrations were independent of CRP, IL-6, and TNF-α levels. GRP78 autoantigen expression was upregulated among human aortic endothelial cells (HAECs) stressed by incubation with tunicamycin (an unfolded protein response inducer) or exposure to culture media flow disturbances. Autoantibodies against GRP78aa 246–260, isolated from patient plasma by immunoprecipitation, induced HAEC production of proatherosclerotic mediators, including IL-8. In conclusion, anti-GRP78 autoantibodies are highly associated with carotid atherosclerosis in COPD patients and exert atherogenic effects on HAECs. These data implicate Ag-specific autoimmunity in the pathogenesis of atherosclerosis among COPD patients and raise possibilities that directed autoantibody reduction might ameliorate vascular disease in this high-risk population.
Collapse
Affiliation(s)
- Thi K Tran-Nguyen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kaiyu Yuan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Phani K Patibandla
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Khanh T Nguyen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Palaniappan Sethu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jianmin Xue
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - James A Mobley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Young-Il Kim
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ali Shoushtari
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Joseph K Leader
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213; and
| | - Jessica Bon
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213.,Department of Medicine, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213
| | - Frank C Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Steven R Duncan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
21
|
Feng Y, Hu Y, Hou Z, Sun Q, Jia Y, Zhao R. Chronic corticosterone exposure induces liver inflammation and fibrosis in association with m 6A-linked post-transcriptional suppression of heat shock proteins in chicken. Cell Stress Chaperones 2020; 25:47-56. [PMID: 31745845 PMCID: PMC6985306 DOI: 10.1007/s12192-019-01034-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous study had shown that chronic corticosterone (CORT) exposure causes excessive fat deposition in chicken liver, yet it remains unknown whether it is associated with inflammation and fibrosis. In general, heat shock proteins (HSPs) are activated in response to acute stress to play a cytoprotective role, and this activation is associated with m6A-mediated post-transcriptional regulation. However, changes of HSPs and the m6A methylation on their mRNAs in response to chronic CORT treatment in chicken liver have not been reported. In this study, chronic CORT exposure induced inflammation and fibrosis in chicken liver, associated with significantly modulated expression of HSPs that was significantly upregulated at mRNA level yet downregulated at protein level. Concurrently, m6A methyltransferases METTL3 content was upregulated together with the level of m6A methylation on HSPs transcripts. The m6A-seq analysis revealed 2-6 significantly (P < 0.05) hypermethylated m6A peaks in the mRNA of 4 different species of HSPs in CORT-treated chicken liver. HSP90B1 transcript had 6 differentially methylated m6A peaks among which peaks on exon 16 and exon 17 showed 3.14- and 4.72-fold of increase, respectively. Mutation of the 8 predicted m6A sites on exon 16 and exon 17 resulted in a significant (P < 0.05) increase in eGFP-fused content of HSP90B1 exon 16 and exon 17 fragment in 293 T cells, indicating a possible role of m6A in post-transcriptional regulation of HSPs. In conclusion, chronic CORT exposure induces inflammation and fibrosis in chicken liver along with an increase in the levels and m6A methylation of several HSPs mRNAs; HSPs levels were however reduced under the indicated conditions. Results presented suggest that the reduction in HSPs levels may be associated with m6A methylation in CORT-exposed chickens.
Collapse
Affiliation(s)
- Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhen Hou
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qinwei Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing, 210095, People's Republic of China.
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing, 210095, People's Republic of China
| |
Collapse
|
22
|
Del Carmen Domínguez M, Cabrales A, Lorenzo N, Padrón G, Gonzalez LJ. Biodistribution and pharmacokinetic profiles of an altered peptide ligand derived from heat-shock proteins 60 in Lewis rats. Cell Stress Chaperones 2020; 25:133-140. [PMID: 31802366 PMCID: PMC6985321 DOI: 10.1007/s12192-019-01054-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
Human heat-shock protein 60 (HSP60) is an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA). Epitopes derived from HSP60 can trigger activation of regulatory T cells (Treg). CIGB-814 is an altered peptide ligand (APL) derived from HSP60. In preclinical models, this peptide had anti-inflammatory effects and increased Treg. The results from phase I clinical trial indicated that CIGB-814 was safe and activated mechanisms associated with induction of tolerance. Biodistribution profile for inducers of tolerance is crucial for triggering its effects. The primary goal of this study in Lewis rats was to identify (1) the target organs of CIGB-814 and (2) the pharmacokinetics (PK) profile. 125I-CIGB-814 administered subcutaneously at three dose levels was distributed in the thyroid gland, but also at considerable levels to the stomach and small and large intestines. In addition, concentration of CIGB-814 was increased in lymph nodes (LNs) at 24 h, compared with 4-h post-administration. Small intestine and LNs are excellent sites for induction of tolerance, due to the characteristics of dendritic cells in these tissues. Maximum concentration of CIGB-814 in blood of Lewis rats at 0.5 to 1 h agrees with PK profile determined for patients. Altogether, these results support therapeutic possibilities of CIGB-814 for RA.
Collapse
Affiliation(s)
- María Del Carmen Domínguez
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 11300, Havana, Cuba.
| | - Ania Cabrales
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 11300, Havana, Cuba
| | - Norailys Lorenzo
- Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Gabriel Padrón
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 11300, Havana, Cuba
| | - L J Gonzalez
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 11300, Havana, Cuba
| |
Collapse
|
23
|
Roesner LM, Ernst M, Chen W, Begemann G, Kienlin P, Raulf MK, Lepenies B, Werfel T. Human thioredoxin, a damage-associated molecular pattern and Malassezia-crossreactive autoallergen, modulates immune responses via the C-type lectin receptors Dectin-1 and Dectin-2. Sci Rep 2019; 9:11210. [PMID: 31371767 PMCID: PMC6671947 DOI: 10.1038/s41598-019-47769-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 07/23/2019] [Indexed: 12/27/2022] Open
Abstract
Human thioredoxin (hTrx), which can be secreted from cells upon stress, functions in allergic skin inflammation as a T cell antigen due to homology and cross-reactivity with the fungal allergen Mala s13 of the skin-colonizing yeast Malassezia sympodialis. Recent studies have shown that cell wall polysaccharides of Malassezia are detected by the immune system via the C-type lectin receptors Dectin-1 and Dectin-2, which are expressed on myeloid cells. Therefore, this study aimed to investigate a putative interaction between Dectin-1, Dectin-2 and the allergens Mala s13 and hTrx. Stimulation of human monocyte-derived dendritic cells or macrophages with Mala s13 or hTrx resulted in remarkable secretion of IL-1β and IL-23. Blocking experiments suggest that hTrx induces IL-23 by Dectin-1 binding and IL-1β by binding to either Dectin-1 or Dectin-2. Regarding Mala s13, Dectin-1 appears to be involved in IL-1β signaling. Interference of Syk kinase function was performed to investigate downstream signaling, which led to diminished hTrx responses. In our experiments, we observed rapid internalization of Mala s13 and hTrx upon cell contact and we were able to confirm direct interaction with Dectin-1 as well as Dectin-2 applying a fusion protein screening platform. We hypothesize that this cytokine response may result in a Th2/Th17-polarizing milieu, which may play a key role during the allergic sensitization in the skin, where allergen presentation to T cells is accompanied by microbial colonization and skin inflammation.
Collapse
Affiliation(s)
- L M Roesner
- Hannover Medical School, Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover, Germany.
| | - M Ernst
- Hannover Medical School, Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover, Germany
| | - W Chen
- Hannover Medical School, Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover, Germany
| | - G Begemann
- Hannover Medical School, Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover, Germany
| | - P Kienlin
- Hannover Medical School, Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover, Germany
| | - M K Raulf
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany.,University of Veterinary Medicine Hannover, Institute for Parasitology, Hannover, Germany
| | - B Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany
| | - T Werfel
- Hannover Medical School, Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover, Germany
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To provide an update about the interactions between infections and autoimmune diseases (AIDs), from the molecular perspective to the clinical spectrum and the differentiation between infection and disease activity. RECENT FINDINGS Any kind of infection may modify the innate and adaptive immune response through the following mechanisms: molecular mimicry, superantigens, epitope spreading and B-cell activation. The consequence is the overproduction of antibodies shared with those found in AIDs. Viral infections, especially HIV and hepatitis C virus, can stimulate the production of antiphospholipid antibodies and confer an increased risk to develop antiphospholipid syndrome. SUMMARY The identification of risk factors to develop infections in patients with AIDs is remarkable to prevent them. These factors are the use of steroids and immunosuppressants, the involvement of a major organ (lungs, brain and kidney) and severe activity. Biomarkers to differentiate infection from disease activity are scarce, but the combination of procalcitonine and C-reactive protein seems to have higher specificity and sensibility to identify infections in patients with AIDs. Finally, the clinical judgment is the hallmark to differentiate between infections and disease activity.
Collapse
|
25
|
Maguire G, Paler L, Green L, Mella R, Valcarcel M, Villace P. Rescue of degenerating neurons and cells by stem cell released molecules: using a physiological renormalization strategy. Physiol Rep 2019; 7:e14072. [PMID: 31050222 PMCID: PMC6497969 DOI: 10.14814/phy2.14072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Lee Paler
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Linda Green
- BioRegenerative Sciences, Inc.San DiegoCalifornia
| | | | | | | |
Collapse
|
26
|
Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun 2018; 9:3209. [PMID: 30097565 PMCID: PMC6086830 DOI: 10.1038/s41467-018-05681-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2018] [Indexed: 01/18/2023] Open
Abstract
Glaucoma is the most prevalent neurodegenerative disease and a leading cause of blindness worldwide. The mechanisms causing glaucomatous neurodegeneration are not fully understood. Here we show, using mice deficient in T and/or B cells and adoptive cell transfer, that transient elevation of intraocular pressure (IOP) is sufficient to induce T-cell infiltration into the retina. This T-cell infiltration leads to a prolonged phase of retinal ganglion cell degeneration that persists after IOP returns to a normal level. Heat shock proteins (HSP) are identified as target antigens of T-cell responses in glaucomatous mice and human glaucoma patients. Furthermore, retina-infiltrating T cells cross-react with human and bacterial HSPs; mice raised in the absence of commensal microflora do not develop glaucomatous T-cell responses or the associated neurodegeneration. These results provide compelling evidence that glaucomatous neurodegeneration is mediated in part by T cells that are pre-sensitized by exposure to commensal microflora.
Collapse
|
27
|
Barrera MJ, Aguilera S, Castro I, González S, Carvajal P, Molina C, Hermoso MA, González MJ. Endoplasmic reticulum stress in autoimmune diseases: Can altered protein quality control and/or unfolded protein response contribute to autoimmunity? A critical review on Sjögren's syndrome. Autoimmun Rev 2018; 17:796-808. [PMID: 29890347 DOI: 10.1016/j.autrev.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
For many years, researchers in the field of autoimmunity have focused on the role of the immune components in the etiopathogenesis of autoimmune diseases. However, some studies have demonstrated the importance of target tissues in their pathogenesis and the breach of immune tolerance. The immune system as well as target tissue cells (plasmatic, β-pancreatic, fibroblast-like synoviocytes, thyroid follicular and epithelial cells of the lachrymal glands, salivary glands, intestine, bronchioles and renal tubules) share the characteristic of secretory cells with an extended endoplasmic reticulum (ER). The function of these cells depends considerably on a normal ER function and calcium homeostasis, so they can produce and secrete their main components, which include glycoproteins involved in antigenic presentation such as major histocompatibility complex (MHC) class I and II. All these proteins are synthesized and modified in the ER, and for this reason disturbances in the normal functions of this organelle such as protein folding, protein quality control, calcium homeostasis and redox balance, promote accumulation of unfolded or misfolded proteins, a condition known as ER stress. Autoimmune diseases are characterized by inflammation, which has been associated with an ER stress condition. Interestingly, patients with these diseases contain circulating auto-antibodies against chaperone proteins (such as Calnexin and GRP94), thus affecting the folding and assembly of MHC class I and II glycoproteins and their loading with peptide. The main purpose of this article is to review the involvement of the protein quality control and unfolded protein response (UPR) in the ER protein homeostasis (proteostasis) and their alterations in autoimmune diseases. In addition, we describe the interaction between ER stress and inflammation and evidences are shown of how autoimmune diseases are associated with an ER stress condition, with a special emphasis on the second most prevalent autoimmune rheumatic disease, Sjögren's syndrome.
Collapse
Affiliation(s)
- María-José Barrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Escuela de Postgrado, Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Marcela A Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
28
|
Ulusoy H, Akgol G, Gulkesen A, Kaya A, Ayden Kal G, Kaman D, Tuncer T. Serum heat-shock protein-65 antibody levels are elevated but not associated with disease activity in patients with rheumatoid arthritis and ankylosing spondylitis. Open Access Rheumatol 2018; 10:55-60. [PMID: 29872356 PMCID: PMC5973434 DOI: 10.2147/oarrr.s162512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives Heat-shock proteins (HSPs) have gained increased interest for their role in autoimmune disorders. These proteins are targeted by the immune system in various autoimmune diseases. The aim of this study was to assess the serum heat-shock protein-65 antibody (anti-HSP65) levels and their clinical significance in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Patients and methods A total of 30 patients with RA, 30 patients with AS, and 30 healthy controls were enrolled in this study. All patients were assessed using routine clinical and laboratory evaluations. Serum anti-HSP65 levels were determined by ELISA. Results Serum anti-HSP65 levels of both RA and AS patients were significantly higher than those of controls (p=0.014 and p=0.001, respectively). No association was found between serum anti-HSP65 levels and disease activity in either RA or AS patients. There was a significant correlation between anti-HSP65 and anti-cyclic citrullinated peptide levels in patients with RA (p=0.024). Conclusion In this study, serum anti-HSP65 levels were increased, but not associated with disease activity in both RA and AS patients. These results suggest that HSP antigens may play a role in the pathogenesis. However, further follow-up studies are needed. Identification of target antigens such as HSP65 is vital to developing new immunotherapeutic agents.
Collapse
Affiliation(s)
- Hasan Ulusoy
- Department of Rheumatology, Medicana International Samsun Hospital, Samsun, Turkey
| | - Gurkan Akgol
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Firat University, Faculty of Medicine, Elazig, Turkey
| | - Arif Gulkesen
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Firat University, Faculty of Medicine, Elazig, Turkey
| | - Arzu Kaya
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Firat University, Faculty of Medicine, Elazig, Turkey
| | - Gul Ayden Kal
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Firat University, Faculty of Medicine, Elazig, Turkey
| | - Dilara Kaman
- Department of Biochemistry, Firat University, Faculty of Medicine, Elazig, Turkey
| | - Turkan Tuncer
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Firat University, Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
29
|
Lima D, ZÁrate-Bladés C, Souza P, Trombone A, Santos-Junior R, Brandão L, Masson A, Bonato V, Coelho-Castelo A, Sartori A, Vendramini M, Soares E, Benvenutti L, Silva C, Coelho V. No Evidence of Pathological Autoimmunity following Mycobacterium Leprae Heat-Shock Protein 65-Dna Vaccination in Mice. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x0900700204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Heat-shock proteins (HSPs) are currently one of the most promising targets for the development of immunotherapy against tumours and autoimmune disorders. This protein family has the capacity to activate or modulate the function of different immune system cells. They induce the activation of monocytes, macrophages and dendritic cells, and contribute to cross-priming, an important mechanism of presentation of exogenous antigen in the context of MHC class I molecules. These various immunological properties of HSP have encouraged their use in several clinical trials. Nevertheless, an important issue regarding these proteins is whether the high homology among HSPs across different species may trigger the breakdown of immune tolerance and induce autoimmune diseases. We have developed a DNA vaccine codifying the Mycobacterium leprae Hsp65 (DNAhsp65), which showed to be highly immunogenic and protective against experimental tuberculosis. Here, we address the question of whether DNAhsp65 immunization could induce pathological autoimmunity in mice. Our results show that DNAhsp65 vaccination induced antibodies that can recognize the human Hsp60 but did not induce harmful effects in 16 different organs analysed by histopathology up to 210 days after vaccination. We also showed that anti-DNA antibodies were not elicited after DNA vaccination. The results are important for the development of both HSP and DNA-based immunomodulatory agents.
Collapse
Affiliation(s)
- D.S. Lima
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - C.R. ZÁrate-Bladés
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - P.R.M. Souza
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - A.P. Trombone
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - R.R. Santos-Junior
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo
| | - Lt. Brandão
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - A.P. Masson
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - V.L. Bonato
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - A.A.M. Coelho-Castelo
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - A. Sartori
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Botucatu, São Paulo
| | - M. Vendramini
- Department of Pathology, University of São Paulo Medical School, São Paulo
| | - E.G. Soares
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo
| | - L.A. Benvenutti
- Department of Pathology, University of São Paulo Medical School, São Paulo
| | - C.L. Silva
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - V. Coelho
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo
- Institute for Investigation in Immunology, National Institute of Science and Technology -INCT, São Paulo, Brazil
| |
Collapse
|
30
|
Gong Y, Li T, Yu C, Sun S. Candida albicans Heat Shock Proteins and Hsps-Associated Signaling Pathways as Potential Antifungal Targets. Front Cell Infect Microbiol 2017; 7:520. [PMID: 29312897 PMCID: PMC5742142 DOI: 10.3389/fcimb.2017.00520] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/07/2017] [Indexed: 11/28/2022] Open
Abstract
In recent decades, the incidence of invasive fungal infections has increased notably. Candida albicans (C. albicans), a common opportunistic fungal pathogen that dwells on human mucosal surfaces, can cause fungal infections, especially in immunocompromised and high-risk surgical patients. In addition, the wide use of antifungal agents has likely contributed to resistance of C. albicans to traditional antifungal drugs, increasing the difficulty of treatment. Thus, it is urgent to identify novel antifungal drugs to cope with C. albicans infections. Heat shock proteins (Hsps) exist in most organisms and are expressed in response to thermal stress. In C. albicans, Hsps control basic physiological activities or virulence via interaction with a variety of diverse regulators of cellular signaling pathways. Moreover, it has been demonstrated that Hsps confer drug resistance to C. albicans. Many studies have shown that disrupting the normal functions of C. albicans Hsps inhibits fungal growth or reverses the tolerance of C. albicans to traditional antifungal drugs. Here, we review known functions of the diverse Hsp family, Hsp-associated intracellular signaling pathways and potential antifungal targets based on these pathways in C. albicans. We hope this review will aid in revealing potential new roles of C. albicans Hsps in addition to canonical heat stress adaptions and provide more insight into identifying potential novel antifungal targets.
Collapse
Affiliation(s)
- Ying Gong
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
31
|
Celastrol and Its Role in Controlling Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:267-289. [PMID: 27671821 DOI: 10.1007/978-3-319-41334-1_12] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.
Collapse
|
32
|
Görtz AL, Peferoen LAN, Gerritsen WH, van Noort JM, Bugiani M, Amor S. Heat shock protein expression in cerebral X-linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss. Neuropathol Appl Neurobiol 2017; 44:363-376. [DOI: 10.1111/nan.12399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A. L. Görtz
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - L. A. N. Peferoen
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - W. H. Gerritsen
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | | | - M. Bugiani
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Department of Child Neurology; Neuroscience Campus Amsterdam; VU University Medical Centre; Amsterdam The Netherlands
| | - S. Amor
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Queen Mary University of London; Blizard Institute; Barts and The London School of Medicine and Dentistry; London UK
| |
Collapse
|
33
|
Joo JY, Cha GS, Chung J, Lee JY, Kim SJ, Choi J. Peptide 19 of Porphyromonas gingivalis Heat Shock Protein Is a Potent Inducer of Low-Density Lipoprotein Oxidation. J Periodontol 2017; 88:e58-e64. [DOI: 10.1902/jop.2016.160402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Wu C, Guo S, Niu Y, Yang L, Liu B, Jiang N, Su M, Wang L. Heat-shock protein 60 of Porphyromonas gingivalis may induce dysfunction of human umbilical endothelial cells via regulation of endothelial-nitric oxide synthase and vascular endothelial-cadherin. Biomed Rep 2016; 5:243-247. [PMID: 27446550 PMCID: PMC4950585 DOI: 10.3892/br.2016.693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/27/2016] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has established that periodontitis was an independent risk factor for coronary heart disease (CAD). Porphyromonus gingivalis (P. gingivalis), a major periodontal pathogen, has already been shown to have a significant role in the inflammatory response of CAD in vivo. The aim of the present study was to identify whether P. gingivalis heat-shock protein 60 (HSP60) induced the dysfunction of human umbilical vein endothelial cells (HUVECs) in vitro. HUVECs were stimulated with a range of P. gingivalis HSP60 concentrations (1, 10 and 100 ng/l) at different time-points. The levels of vascular endothelial (VE)-cadherin, endothelial nitric oxide synthase (eNOS) and cysteinyl aspartate-specific protease-3 (caspase-3) were measured using western blot analysis. The apoptotic rate of HUVECs was detected using flow cytometry. P. gingivalis HSP60 at a concentration of 10 ng/l significantly decreased the expression levels of VE-cadherin and eNOS protein at 24 h stimulation, whereas no difference in these proteins was identified following a low dose of P. gingivalis HSP60 (1 ng/l). P. gingivalis HSP60 at 100 ng/l significantly downregulated the expression levels of VE-cadherin and eNOS protein at 12 h in HUVECs. However, the cleavage of caspase-3 showed an opposing change at different concentrations. Consistently, P. gingivalis HSP60 induced apoptosis of HUVECs in a concentration-dependent manner. These results indicated that P. gingivalis HSP60 may induce dysfunction and apoptosis in HUVECs via downregulating the expression levels of VE-cadherin and eNOS, and promoting the cleavage of caspase-3.
Collapse
Affiliation(s)
- Cunjin Wu
- Department of Geratology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Shijie Guo
- Department of Geratology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Limin Yang
- Department of Geratology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Bainian Liu
- Department of Geratology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ming Su
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Lin Wang
- Department of Geratology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
35
|
The clearance of dying cells: table for two. Cell Death Differ 2016; 23:915-26. [PMID: 26990661 PMCID: PMC4987729 DOI: 10.1038/cdd.2015.172] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells of the immune system must constantly survey for, recognize, and efficiently clear the billions of cellular corpses that arise as a result of development, stress, infection, or normal homeostasis. This process, termed efferocytosis, is critical for the prevention of autoimmune and inflammatory disorders, and persistence of dead cells in tissue is characteristic of many human autoimmune diseases, notably systemic lupus erythematosus. The most notable characteristic of the efferocytosis of apoptotic cells is its ‘immunologically silent' response. Although the mechanisms by which phagocytes facilitate engulfment of dead cells has been a well-studied area, the pathways that coordinate to process the ingested corpse and direct the subsequent immune response is an area of growing interest. The recently described pathway of LC3 (microtubule-associated protein 1A/1B-light chain 3)-associated phagocytosis (LAP) has shed some light on this issue. LAP is triggered when an extracellular particle, such as a dead cell, engages an extracellular receptor during phagocytosis, induces the translocation of autophagy machinery, and ultimately LC3 to the cargo-containing phagosome, termed the LAPosome. In this review, we will examine efferocytosis and the impact of LAP on efferocytosis, allowing us to reimagine the impact of the autophagy machinery on innate host defense mechanisms.
Collapse
|
36
|
Zuo D, Subjeck J, Wang XY. Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Front Immunol 2016; 7:75. [PMID: 26973652 PMCID: PMC4771732 DOI: 10.3389/fimmu.2016.00075] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) of eukaryotes are evolutionarily conserved molecules present in all the major intracellular organelles. They mainly function as molecular chaperones and participate in maintenance of protein homeostasis in physiological state and under stressful conditions. Despite their relative abundance, the large HSPs, i.e., Hsp110 and glucose-regulated protein 170 (Grp170), have received less attention compared to other conventional HSPs. These proteins are distantly related to the Hsp70 and belong to Hsp70 superfamily. Increased sizes of Hsp110 and Grp170, due to the presence of a loop structure, result in their exceptional capability in binding to polypeptide substrates or non-protein ligands, such as pathogen-associated molecules. These interactions that occur in the extracellular environment during tissue injury or microbial infection may lead to amplification of an immune response engaging both innate and adaptive immune components. Here, we review the current advances in understanding these large HSPs as molecular chaperones in proteostasis control and immune modulation as well as their therapeutic implications in treatment of cancer and neurodegeneration. Given their unique immunoregulatory activities, we also discuss the emerging evidence of their potential involvement in inflammatory and immune-related diseases.
Collapse
Affiliation(s)
- Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
37
|
Bellipanni G, Cappello F, Scalia F, Conway de Macario E, Macario AJ, Giordano A. Zebrafish as a Model for the Study of Chaperonopathies. J Cell Physiol 2016; 231:2107-14. [DOI: 10.1002/jcp.25319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
| | - Francesco Cappello
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Federica Scalia
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Alberto J.L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| |
Collapse
|
38
|
Antibodies against small heat-shock proteins in Alzheimer's disease as a part of natural human immune repertoire or activation of humoral response? J Neural Transm (Vienna) 2015; 123:455-61. [PMID: 26566902 PMCID: PMC4805726 DOI: 10.1007/s00702-015-1477-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022]
Abstract
Characterization of autoantibodies specific for some disease-related proteins, would allow to better assess their role as diagnostic and prognostic markers. In the light of increasing evidence for both humoral and cellular adaptive immune responses in the pathophysiology of Alzheimer’s disease (AD), and data on the increased small heat-shock proteins (sHSP) expression in this disease, it seemed justified to assess humoral response against sHSP in AD patients. The aim of the study was to check whether AD has the ability to elicit immune response against small HSP, which could also serve as disease biomarkers. IgG and IgM autoantibodies against alpha B-crystallin and anti-HSP 60 IgG autoantibodies were assessed in 59 AD patients and 59 healthy subjects. Both IgM and IgG autoantibodies against alpha B-crystallin in AD patients were significantly higher compared to healthy controls (p < 0.05). No statistically significant differences were found between AD patients and healthy subjects were found in anti-HSP60 IgG autoantibody titers (p = 0.29). Anti-HSP60 antibodies present in AD patients may indeed belong to natural human immune repertoire, and chronic neurodegenerative process does not have significant inducing effect on the systemic immunoreactivity against HSP60. Increased titers of IgM and IgG autoantibodies against alpha B-crystallin in AD patients may reflect activation of humoral immune response in the course of this chronic disease, probably secondary to its increased expression. Further prospective studies, on larger group of AD patients and measuring a change in antibodies titers with disease progression are necessary to assess the exact role of these antibodies in AD.
Collapse
|
39
|
Temajo NO, Howard N. The virus-induced HSPs regulate the apoptosis of operatus APCs that result in autoimmunity, not in homeostasis. Immunol Res 2015; 60:208-18. [PMID: 25403694 DOI: 10.1007/s12026-014-8585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The viruses stand salient as environmental factors that trigger autoimmunity. The virus realizes its effects through induction of heat-shock proteins (HSPs) as well as by the viral IE-axis-mediated conversion of organ epithelial cells into virgin de novo professional antigen-presenting cells (APCs). The HSP is the accomplished operator in homeostasis by the logic of it being the regulator of apoptosis. By virtue of its regulation of apoptosis, the HSP is also involved in autoimmunity: (1) adornment of viral IE-axis-generated virgin de novo professional APCs with HSP-induced co-stimulatory molecules which transform these otherwise epithelial cells to competent antigen presenters, the operatus APCs, liable to apoptosis that becomes the initiator of organ damages; (2) molecular mimicry mechanism: epitopes on the HSP may be mistaken for viral peptides and be presented by operatus APCs to autoreactive TCRs resulting in the apoptosis of the operatus APCs; (3) regulation of MHC class II DR-mediated apoptosis of operatus APCS which can result in organ-specific autoimmune syndromes. We should remember, however, that Nature's intended purpose for apoptosis of the professional APCs is benevolence: as a principal regulator of immune homeostasis. But the apoptosis of our postulated operatus APCs can result in autoimmunity. The transformation of virgin de novo professional APCs to operatus APCs mirrors the maturation of DCs through their acquisition of HSP-induced costimulatory molecules. What happens to mature DCs as antigen presenters that end in homeostasis is replicated by what happens to operatus APCs that ends instead in autoimmunity.
Collapse
Affiliation(s)
- Norbert O Temajo
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia,
| | | |
Collapse
|
40
|
Lu L, Wang S, Fu L, Liu D, Zhu Y, Xu A. Bilobalide protection of normal human melanocytes from hydrogen peroxide-induced oxidative damage via promotion of antioxidase expression and inhibition of endoplasmic reticulum stress. Clin Exp Dermatol 2015; 41:64-73. [PMID: 26178968 DOI: 10.1111/ced.12664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- L. Lu
- Third People's Hospital of Hangzhou; Hangzhou China
| | - S. Wang
- Third People's Hospital of Hangzhou; Hangzhou China
| | - L. Fu
- Third People's Hospital of Hangzhou; Hangzhou China
| | - D. Liu
- Third People's Hospital of Hangzhou; Hangzhou China
| | - Y. Zhu
- Third People's Hospital of Hangzhou; Hangzhou China
| | - A. Xu
- Third People's Hospital of Hangzhou; Hangzhou China
| |
Collapse
|
41
|
Abstract
Mycobacterial infections can cause a variety of different manifestations. The increasing incidence of these infections worldwide brought another medical dilemma: immunological manifestations characterized by the presence of many autoantibodies and concomitant presence of autoimmune diseases. The burden of tuberculosis reactivation that emerged with immunosuppressive therapy worsened with the growing use of biological disease-modifying antirheumatic drugs (DMARDs). This review will address the relationship between the immune system and mycobacteria.
Collapse
Affiliation(s)
- F Machado Ribeiro
- Department of Rheumatology, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - T Goldenberg
- Department of Pneumology/ENSP-Fundação Oswaldo Cruz, RJ, Brazil
| |
Collapse
|
42
|
Jeong E, Kim K, Kim JH, Cha GS, Kim SJ, Kang HS, Choi J. Porphyromonas gingivalis HSP60 peptides have distinct roles in the development of atherosclerosis. Mol Immunol 2015; 63:489-96. [DOI: 10.1016/j.molimm.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/05/2014] [Indexed: 01/22/2023]
|
43
|
Papuć E, Kurys-Denis E, Krupski W, Rejdak K. Humoral response against small heat shock proteins in Parkinson's disease. PLoS One 2015; 10:e0115480. [PMID: 25629316 PMCID: PMC4309535 DOI: 10.1371/journal.pone.0115480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Introduction In the light of evidence for the increased heat shock proteins (HSP) expression in neurodegenerative disorders, the presence of the adaptive humoral response of the immune system can be expected. The aim of the study was to check whether Parkinson’s disease (PD) has the ability to elicit immune response against small heat shock proteins. Methods IgG and IgM autoantibodies against alpha B-crystallin were assessed in 26 PD patients 26 healthy subjects. For the assessment of anti-HSP IgG autoantibodies serum samples from 31 parkinsonian patients and 31 healthy control subjects were collected. Serum samples from PD patients and healthy control subjects were collected twice, at baseline and after mean of 13 months follow up. Results Both IgM and IgG autoantibodies against alpha ß-crystallin in PD patients were significantly higher compared to healthy controls (p<0.05). We also found statistically significant increase in antibodies titers against alpha ß-crystallin over the time of 13 months, both for IgG (p = 0.021) and for IgM (p<0.0001). Additionally, PD patients presented higher levels of anti-HSP IgG autoantibodies than healthy controls (p = 0.02). Conclusions Increase of IgG and IgM autoantibodies against alpha B-crystallin in PD patients over time may suggest their involvement in the disease pathogenesis and progression. Further studies are required to confirm the role of this antibody as a biomarker of the disease progression.
Collapse
Affiliation(s)
- Ewa Papuć
- Chair and Department of Neurology of Medical University, Lublin, Poland
- * E-mail:
| | - Ewa Kurys-Denis
- 2nd Department of Radiology, Medical University, Lublin, Poland
| | - Witold Krupski
- 2nd Department of Radiology, Medical University, Lublin, Poland
| | - Konrad Rejdak
- Chair and Department of Neurology of Medical University, Lublin, Poland
| |
Collapse
|
44
|
Chen P, Shi L, Jiang Y, Ji Y, Yan H, Sun S, Xun Y, Chen G, Wang X, Chen W, Du H. Identification of heat shock protein 27 as a novel autoantigen of Behçet's disease. Biochem Biophys Res Commun 2014; 456:866-71. [PMID: 25529454 DOI: 10.1016/j.bbrc.2014.12.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/13/2014] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The aim of this study was to identify candidate pathogenic autoantigens of Behçet's disease (BD) in pathogen-stimulated target cells. METHODS First, three cell lines were used as target cells to screen autoantibody. Second, selected target cells were simulated with pathogens. Third, western blotting was used for detecting the auto-antigens in cell extracts. Next, immunoprecipitation was performed and the amino-acid sequences of target antigens were analyzed by LC-MALDI-TOF/TOF. Then, the potential target antigen was expressed, purified, and immunologically confirmed. And finally, an ELISA kit was developed and clinically validated through the assessments of 456 clinical samples with BD. RESULTS One antigen with a molecular weight of approximately 27-kDa was identified as heat shock protein 27 (HSP27). The reactivity of serum IgG against recombinant human HSP27 was detected in 52 of 91 BD patients (57%), 66 of 92 rheumatoid arthritis (RA) patients (72%), 32 of 90 Sjogren syndrome (SS) patients (36%), 22 of 92 systemic lupus erythematosus (SLE) patients (24%) and 0 of 91 healthy controls (HC). The reactivity of BD serum IgG antibodies against HSP27 was significantly higher than SLE (P<0.0001) SS (P<0.0001) and HC (P<0.0001). CONCLUSIONS This study identified HSP27 as a candidate endothelial cell autoantigen of BD, which is interesting and probably worth further exploration.
Collapse
Affiliation(s)
- Peng Chen
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Lili Shi
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Yun Jiang
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Yuting Ji
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Hai Yan
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Shutao Sun
- Core Facility, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Xun
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Guangyu Chen
- ImmunoHunt Corporation, 139 Fengtai Rd, Beijing 100071, China
| | - Xiaoxu Wang
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Weiyang Chen
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biotechnology Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
45
|
Kim MJ, Jeong EK, Kwon EY, Joo JY, Lee JY, Choi J. Human CD103(+) dendritic cells promote the differentiation of Porphyromonas gingivalis heat shock protein peptide-specific regulatory T cells. J Periodontal Implant Sci 2014; 44:235-41. [PMID: 25368812 PMCID: PMC4216400 DOI: 10.5051/jpis.2014.44.5.235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/24/2014] [Indexed: 11/15/2022] Open
Affiliation(s)
- Myung-Jin Kim
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Eui-Kyong Jeong
- Department of Molecular Biology, Pusan University College of Natural Sciences, Yangsan, Korea
| | - Eun-Young Kwon
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| |
Collapse
|
46
|
Temajo NO, Howard N. The virus-induced HSPs regulate the apoptosis of operatus APCs that results in autoimmunity, not in homeostasis. Autoimmun Rev 2014; 13:1013-9. [PMID: 25183243 DOI: 10.1016/j.autrev.2014.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022]
Abstract
The viruses are salient in the roles of environmental factors that trigger autoimmunity. The virus realizes its effects by the power of its induction of heat shock proteins (HSPs) as well as by the viral IE-axis-mediated conversion of organ epithelial cells into virgin de novo professional antigen-presenting cells (APCs). The HSP is the accomplished operator in homeostasis by the logic of it being the regulator of apoptosis. That HSP which regulates and controls different points in the pathways of apoptosis is rationally propitious as both HSP and apoptosis are highly conserved in multicellular organisms. By virtue of its regulation of apoptosis, the HSP is also involved in human autoimmunity and this involvement is tripartite: (i) adornment of viral IE-axis-generated virgin de novo professional APCs with HSP-induced co-stimulatory molecules which transform these otherwise epithelial cells to achieve the status of fledged competent antigen-presenters, the operatus APCs, which are liable to apoptosis that becomes the initiator of organ damages that can culminate in the autoimmune syndrome(s); apoptosis is a routine fate that befalls all APCs following their antigen presentation; (ii) molecular mimicry mechanism: epitopes on the HSP may be mistaken for viral peptides and be presented by operatus APCs to autoreactive TCRs resulting in the apoptosis of the operatus APCs; and (iii) regulation of MHC class II-DR-mediated apoptosis of operatus APCs which can ultimately consequent in organ-specific autoimmune syndromes. We should remember, however, that Nature's intended purpose for the apoptosis of the professional APCs is benevolence: as a principal regulator of homeostasis. It is only from the apoptosis of our postulated operatus APCs that the apoptotic consequence can be deleterious, an autoimmune syndrome(s). The transformation of virgin de novo professional APCs to operatus APCs mirrors the maturation of DCs, through their acquisition of HSP-induced co-stimulatory molecules; and what happens to mature DCs as antigen-presenters that ends in homeostasis is replicated by what happens to operatus APCs that ends instead in autoimmune syndromes (Fig. 1).
Collapse
Affiliation(s)
- Norbert O Temajo
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | - Neville Howard
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Sziksz E, Pap D, Veres G, Fekete A, Tulassay T, Vannay &A. Involvement of heat shock proteins in gluten-sensitive enteropathy. World J Gastroenterol 2014; 20:6495-6503. [PMID: 24914370 PMCID: PMC4047334 DOI: 10.3748/wjg.v20.i21.6495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier.
Collapse
|
48
|
Yokota S, Kikuchi M, Nozawa T, Kanetaka T, Sato T, Yamazaki K, Sakurai N, Hara R, Mori M. Pathogenesis of systemic inflammatory diseases in childhood: "Lessons from clinical trials of anti-cytokine monoclonal antibodies for Kawasaki disease, systemic onset juvenile idiopathic arthritis, and cryopyrin-associated periodic fever syndrome". Mod Rheumatol 2014; 25:1-10. [PMID: 24842480 DOI: 10.3109/14397595.2014.902747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inflammation has often been considered to be a nonspecific response and to play a bridging role in the activation of adaptive immunity. However, it is now accepted that inflammation is the product of an independent innate immune system closely linked to the adaptive immune system. The key mediators of inflammation are inflammatory cytokines, as determined by multiple lines of evidence both in vitro and in vivo. Due to the crucial role of inflammatory cytokines in the pathogenesis of autoimmune disorders, anti-cytokine treatment has been developed as a therapy for rheumatoid arthritis, juvenile idiopathic arthritis (JIA), and inflammatory bowel diseases. We recently completed several clinical trials of anti-cytokine treatment for children with systemic inflammatory diseases: anti-IL-6 receptor monoclonal antibody (tocilizumab) for children with two subtypes of JIA (poly-JIA and systemic JIA), anti-TNF-α monoclonal antibody (infliximab) for children with Kawasaki disease, and anti-IL-1-β monoclonal antibody (canakinumab) for children with cryopyrin-associated periodic syndrome. This review summarizes the basis of inflammation in terms of innate immunity and adaptive immunity in these systemic inflammatory diseases, clinical efficacy, and tolerability of these biologic agents, and attempts to determine the roles of individual inflammatory cytokines in disease pathogenesis.
Collapse
Affiliation(s)
- Shumpei Yokota
- Department of Pediatrics, Yokohama City University School of Medicine , Kanagawa , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Noelker C, Morel L, Osterloh A, Alvarez-Fischer D, Lescot T, Breloer M, Gold M, Oertel WH, Henze C, Michel PP, Dodel RC, Lu L, Hirsch EC, Hunot S, Hartmann A. Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. J Neuroinflammation 2014; 11:86. [PMID: 24886419 PMCID: PMC4018945 DOI: 10.1186/1742-2094-11-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that inflammation associated with microglial cell activation in the substantia nigra (SN) of patients with Parkinson disease (PD) is not only a consequence of neuronal degeneration, but may actively sustain dopaminergic (DA) cell loss over time. We aimed to study whether the intracellular chaperone heat shock protein 60 (Hsp60) could serve as a signal of CNS injury for activation of microglial cells. METHODS Hsp60 mRNA expression in the mesencephalon and the striatum of C57/BL6 mice treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and the Hsp60/TH mRNA ratios in the SN of PD patients and aged-matched subjects were measured. To further investigate a possible link between the neuronal Hsp60 response and PD-related cellular stress, Hsp60 immunoblot analysis and quantification in cell lysates from SH-SY5Y after treatment with 100 μM MPP+ (1-methyl-4-phenylpyridinium) at different time points (6, 12, 24 and 48 hours) compared to control cells were performed. Additional MTT and LDH assay were used. We next addressed the question as to whether Hsp60 influences the survival of TH+ neurons in mesencephalic neuron-glia cultures treated either with MPP+ (1 μM), hHsp60 (10 μg/ml) or a combination of both. Finally, we measured IL-1β, IL-6, TNF-α and NO-release by ELISA in primary microglial cell cultures following treatment with different hHsp60 preparations. Control cultures were exposed to LPS. RESULTS In the mesencephalon and striatum of mice treated with MPTP and also in the SN of PD patients, we found that Hsp60 mRNA was up-regulated. MPP+, the active metabolite of MPTP, also caused an increased expression and release of Hsp60 in the human dopaminergic cell line SH-SY5Y. Interestingly, in addition to being toxic to DA neurons in primary mesencephalic cultures, exogenous Hsp60 aggravated the effects of MPP+. Yet, although we demonstrated that Hsp60 specifically binds to microglial cells, it failed to stimulate the production of pro-inflammatory cytokines or NO by these cells. CONCLUSIONS Overall, our data suggest that Hsp60 is likely to participate in DA cell death in PD but via a mechanism unrelated to cytokine release.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stéphane Hunot
- CR-ICM, INSERM UMR_S1127, Université Pierre et Marie Curie Paris 06 UMR_S1127, CNRS UMR 7225, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France.
| | | |
Collapse
|
50
|
Dolasik I, Birtas Atesoglu E, Tarkun P, Mehtap O, Keski H, Dogru A, Hacihanefioglu A. Decreased serum heat shock protein 60 levels in newly diagnosed immune thrombocytopenia patients. Platelets 2014; 26:220-3. [DOI: 10.3109/09537104.2014.898746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|