1
|
Wasim R, Singh A, Islam A, Mohammed S, Anwar A, Mahmood T. High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect. Cardiovasc Toxicol 2024; 24:1268-1286. [PMID: 39242448 DOI: 10.1007/s12012-024-09919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Cardiovascular disease is the deadly disease that can result in sudden death, and inflammation plays an important role in its onset and progression. High mobility group box 1 (HMGB1) is a nuclear protein that regulates transcription, DNA replication, repair, and nucleosome assembly. HMGB1 is released passively by necrotic tissues and actively secreted by stressed cells. Extracellular HMGB1 functions as a damage associated molecular patterns molecule, producing numerous redox forms that induce a range of cellular responses by binding to distinct receptors and interactors, including tissue inflammation and regeneration. Extracellular HMGB1 inhibition reduces inflammation and is protective in experimental models of myocardial ischemia/reperfusion damage, myocarditis, cardiomyopathies caused by mechanical stress, diabetes, bacterial infection, or chemotherapeutic drugs. HMGB1 administration following a myocardial infarction followed by permanent coronary artery ligation improves cardiac function by stimulating tissue regeneration. HMGB1 inhibits contractility and produces hypertrophy and death in cardiomyocytes, while also stimulating cardiac fibroblast activity and promoting cardiac stem cell proliferation and differentiation. Maintaining normal nuclear HMGB1 levels, interestingly, protects cardiomyocytes from apoptosis by limiting DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac injury. Finally, elevated levels of circulating HMGB1 have been linked to human heart disease. As a result, following cardiac damage, HMGB1 elicits both detrimental and helpful responses, which may be due to the formation and stability of the various redox forms, the particular activities of which in this context are mostly unknown. This review covers recent findings in HMGB1 biology and cardiac dysfunction.
Collapse
Affiliation(s)
- Rufaida Wasim
- Department of Pharmacy, Integral University, Lucknow, 226026, India.
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Aditya Singh
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Anas Islam
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Saad Mohammed
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Aamir Anwar
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
2
|
Pernaa N, Vakkuri A, Arvonen M, Kuismin O, Santaniemi W, Glumoff V, Lappi-Blanco E, Lantto U, Okkonen M, Kaikkonen K, Junttila J, Kerkelä R, Åström P, Hautala T. Germline HAVCR2/TIM-3 Checkpoint Inhibitor Receptor Deficiency in Recurrent Autoinflammatory Myocarditis. J Clin Immunol 2024; 44:81. [PMID: 38485795 PMCID: PMC10940375 DOI: 10.1007/s10875-024-01685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Myocarditis can be caused by viral infection, drug reaction or general inflammatory condition. To provide understanding on inflammatory myocarditis, we describe clinical, genetic, and immunological properties of a young male patient who suffered from recurrent myocarditis episodes since the age of four years. Electrocardiography, troponin I/T, echocardiography, myocardial magnetic resonance imaging and histological findings were consistent with recurrent myocarditis episodes. Homozygous c.245 A > G p.Tyr82Cys pathogenic variant in Hepatitis A Virus Cellular Receptor 2 (HAVCR2) gene encoding T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) receptor was found. Peripheral blood mononuclear cells were collected when the patient was asymptomatic; CD4+ and CD8+ T lymphoblasts, CD56+ natural killer cells and CD14+ monocytes were negative for surface TIM-3 expression. In vitro, TLR4 mediated interleukin-1β (IL-1β) response was high after LPS/ATP stimulation. Clinical symptoms responded to IL-1 receptor antagonist anakinra. TIM-3 p.Tyr82Cys CD4+ and CD8+ T cell proliferation in vitro was unrestrained. Findings on IL-2, interferon gamma, regulatory T cells, signal transducer and activator of transcription (STAT) 1, 3 and 4 phosphorylation, and PD-1 and LAG-3 checkpoint inhibitor receptor analyses were comparable to controls. We conclude that TIM-3 deficiency due to homozygous HAVCR2 c.245 A > G p.Tyr82Cys pathogenic variant in the patient described here is associated with autoinflammatory symptoms limited to early onset recurrent febrile myocarditis. Excessive IL-1β production and defective regulation of T cell proliferation may contribute to this clinical condition responsive to anakinra treatment.
Collapse
Affiliation(s)
- Nora Pernaa
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland
| | - Anni Vakkuri
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland
| | - Miika Arvonen
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Oulu University Hospital, Kajaanintie 50, Oulu, 90220, Finland
| | - Wenny Santaniemi
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland
| | - Virpi Glumoff
- Medical Research Laboratory Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Ulla Lantto
- Department of Otorhinolaryngology-Head and Neck Surgery, Oulu University Hospital, Oulu, Finland
| | - Marjo Okkonen
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland
| | - Kari Kaikkonen
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland
| | - Juhani Junttila
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Timo Hautala
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, FIN-90014, Finland.
- Infectious Diseases, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
3
|
Zhuang Y, An Q, Wang F, Han D, Qiao Z, Jiang Q, Liu M, Li Y, Shangguan J, Bi X, Shen D. The role of circulating biomarkers in predicting the 30-day mortality of immune checkpoint inhibitors-related myocarditis: a retrospective cohort study. Intern Emerg Med 2024; 19:377-389. [PMID: 38085435 DOI: 10.1007/s11739-023-03481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/07/2023] [Indexed: 03/21/2024]
Abstract
Immune checkpoint inhibitors-related myocarditis (ICIs-M) is a rare and highly lethal immune-related adverse events (irAEs) in common irAEs. This study aims to find circulating biomarkers that can reflect disease state and prognosis accurately. 48 patients with ICIs-M were enrolled according to the diagnostic criteria for ICIs-related myocarditis. For all enrolled patients, valuable information was extracted retrospectively from the medical system, mainly including demographic information, tumor information and laboratory examination. The follow-up period was defined as 30 days after the first diagnosis of ICIs-M. In this study, the 30-day mortality rate of ICIs-M was 24.4%. After adjusting for potential confounding factors using multivariate analysis tools, we demonstrated the excellent performance of biomarkers in predicting 30-day mortality in patients with ICIs-M, including PLT (hazard ratio (HR), 1.07; 95% confidence interval (95%CI), 1.01-1.14; p = 0.028), ALT (HR, 1.23; 95%CI, 1.06-1.41; p = 0.005), AST(HR, 1.06; 95%CI, 1.01-1.10; p = 0.015), LDH (HR, 1.15; 95%CI, 1.04-1.26; p = 0.004), troponin I(HR, 1.44; 95%CI, 1.09-1.89; p = 0.009), PLR (blood plate/lymphocyte) (HR, 1.04; 95% CI, 1.01-1.07; p = 0.024), LAR (lactate dehydrogenase/albumin) (HR, 1.05; 95%CI, 1.01-1.09; p = 0.012), and AAR (aspartate transaminase/albumin) (HR, 1.18; 95%CI, 1.00-1.39; p = 0.048). The analysis of the receiver operating characteristic showed that biomarkers with area under curve (AUC) greater than or equal to 0.80 were LDH (cutoff value, 724.5; AUC, 0.86; 95%CI, 0.75-0.97), LAR (cutoff value, 18.11; AUC, 0.87; 95%CI, 0.76-0.97), troponin I (cutoff value, 0.87; AUC, 0.80; 95%CI, 0.62-0.99), and AAR(cutoff value, 1.52; AUC, 0.80; 95%CI, 0.61-0.98). LDH, LAR, troponin I, and AAR are a group of promising biomarkers that demonstrate excellent predictive ability in predicting the 30-day mortality rate of immune-related myocarditis.
Collapse
Affiliation(s)
- Yuansong Zhuang
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Quanxu An
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Fuhang Wang
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Dongjian Han
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Zhentao Qiao
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Qingjiao Jiang
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Miaomiao Liu
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yuhang Li
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Jiahong Shangguan
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Xuanye Bi
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Deliang Shen
- Cardiology Department, Key Laboratory of Cardiac Injury and Repair of Henan Province, First Affiliated Hospital of Zhengzhou University, Henan, China.
| |
Collapse
|
4
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
5
|
Jeyalan V, Austin D, Loh SX, Wangsaputra VK, Spyridopoulos I. Fractalkine/CX 3CR1 in Dilated Cardiomyopathy: A Potential Future Target for Immunomodulatory Therapy? Cells 2023; 12:2377. [PMID: 37830591 PMCID: PMC10571889 DOI: 10.3390/cells12192377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a cardiac condition with structural and functional impairment, where either the left ventricle or both ventricular chambers are enlarged, coinciding with reduced systolic pump function (reduced ejection fraction, rEF). The prevalence of DCM is more than 1:250 individuals, and mortality largely due to heart failure in two-third of cases, and sudden cardiac death in one-third of patients. Damage to the myocardium, whether from a genetic or environmental cause such as viruses, triggers inflammation and recruits immune cells to the heart to repair the myocardium. Examination of myocardial biopsy tissue often reveals an inflammatory cell infiltrate, T lymphocyte (T cell) infiltration, or other activated immune cells. Despite medical therapy, adverse outcomes for DCM remain. The evidence base and existing literature suggest that upregulation of CX3CR1, migration of immune cells, together with cytomegalovirus (CMV) seropositivity is associated with worse outcomes in patients with dilated cardiomyopathy. We hypothesise that this potentially occurs through cardiac inflammation and fibrosis, resulting in adverse remodelling. Immune modulators to target this pathway may potentially improve outcomes above and beyond current guideline-recommended therapy.
Collapse
Affiliation(s)
- Visvesh Jeyalan
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough TS4 3BW, UK; (V.J.); (D.A.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - David Austin
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough TS4 3BW, UK; (V.J.); (D.A.)
- Population Health Science Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Shu Xian Loh
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK;
| | - Vincent Kharisma Wangsaputra
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Faculty of Medicine, Universitas Indonesia, Central Jakarta 10430, Indonesia
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK;
| |
Collapse
|
6
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
7
|
Mezzetti E, Costantino A, Leoni M, Pieretti R, Di Paolo M, Frati P, Maiese A, Fineschi V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1364. [PMID: 37629654 PMCID: PMC10456745 DOI: 10.3390/medicina59081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
Autoimmune heart disease is a non-random condition characterised by immune system-mediated aggression against cardiac tissue. Cardiac changes often exhibit nonspecific features and, if unrecognised, can result in fatal outcomes even among seemingly healthy young individuals. In the absence of reliable medical history, the primary challenge lies in differentiating between the various cardiopathies. Numerous immunohistochemical and genetic studies have endeavoured to characterise distinct types of cardiopathies, facilitating their differentiation during autopsy examinations. However, the presence of a standardised protocol that forensic pathologists can employ to guide their investigations would be beneficial. Hence, this summary aims to present the spectrum of autoimmune cardiopathies, including emerging insights such as SARS-CoV-2-induced cardiopathies, and proposes the utilisation of practical tools, such as blood markers, to aid forensic pathologists in their routine practice.
Collapse
Affiliation(s)
- Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Andrea Costantino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Matteo Leoni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Rebecca Pieretti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| |
Collapse
|
8
|
Wang J, Huo L, Lin X, Fang L, Hacker M, Niu N, Li X. Molecular imaging of fibroblast activation in multiple non-ischemic cardiomyopathies. EJNMMI Res 2023; 13:39. [PMID: 37155002 PMCID: PMC10167070 DOI: 10.1186/s13550-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND This pilot study is aimed to perform a pilot visualization study to investigate in vivo fibroblast activation in non-ischemic cardiomyopathies by 68Ga-FAPI-04 PET/CT. METHODS Twenty-nine consecutive patients with symptomatic non-ischemic cardiomyopathies who underwent 68Ga-FAPI-04 PET/CT were prospectively recruited. Clinical characteristics and echocardiographic parameters were recorded. Cardiac uptake was quantified by standardized uptake values (SUVmax, SUVmean, SUVR) and left ventricular metabolism volume. The relationship between 68Ga-FAPI-04 uptake with clinical and echocardiography parameters was investigated. RESULTS Heterogeneous 68Ga-FAPI-04 uptake was observed in different subtypes of non-ischemic cardiomyopathies. Twenty-two (75.9%) patients showed elevated 68Ga-FAPI-04 uptake in the left ventricle, and 10 (34.5%) patients also showed slightly diffuse elevated uptake in the right ventricle. Cardiac uptake values were significantly correlated with enlarged ventricular volume evaluated by echocardiography. CONCLUSION FAPI PET/CT presents a potential value for in vivo visualization and quantification of fibroblast activation on the molecular level. Further study is warranted for investigating the theranostic and prognostic value of elevated FAP signal.
Collapse
Affiliation(s)
- Jingnan Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Xue Lin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ligang Fang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Na Niu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China.
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Frasca L, Ocone G, Palazzo R. Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases, in Patients with Cardiac Issues, and in the Healthy Population. Pathogens 2023; 12:pathogens12020233. [PMID: 36839505 PMCID: PMC9964607 DOI: 10.3390/pathogens12020233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has been a challenge for the whole world since the beginning of 2020, and COVID-19 vaccines were considered crucial for disease eradication. Instead of producing classic vaccines, some companies pointed to develop products that mainly function by inducing, into the host, the production of the antigenic protein of SARS-CoV-2 called Spike, injecting an instruction based on RNA or a DNA sequence. Here, we aim to give an overview of the safety profile and the actual known adverse effects of these products in relationship with their mechanism of action. We discuss the use and safety of these products in at-risk people, especially those with autoimmune diseases or with previously reported myocarditis, but also in the general population. We debate the real necessity of administering these products with unclear long-term effects to at-risk people with autoimmune conditions, as well as to healthy people, at the time of omicron variants. This, considering the existence of therapeutic interventions, much more clearly assessed at present compared to the past, and the relatively lower aggressive nature of the new viral variants.
Collapse
|
10
|
Autoimmune Rheumatic Disease Flares with Myocarditis Following COVID-19 mRNA Vaccination: A Case-Based Review. Vaccines (Basel) 2022; 10:vaccines10101772. [PMID: 36298637 PMCID: PMC9609433 DOI: 10.3390/vaccines10101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022] Open
Abstract
Since the introduction of coronavirus disease 2019 (COVID-19) messenger ribonucleic acid (mRNA) vaccines, there have been multiple reports of post-vaccination myocarditis (mainly affecting young healthy males). We report on four patients with active autoimmune rheumatic diseases (ARDs) and probable or confirmed myocarditis following COVID-19 mRNA vaccination managed at a tertiary hospital in Singapore; we reviewed the literature on post-COVID-19 mRNA vaccination-related myocarditis and ARD flares. Three patients had existing ARD flares (two had systemic lupus erythematosus (SLE), one had eosinophilic granulomatosis polyangiitis (EGPA)), and one had new-onset EGPA. All patients recovered well after receiving immunosuppressants comprising high-dose glucocorticoids, cyclophosphamide, and rituximab. Thus far, only one case of active SLE with myocarditis has been reported post-COVID-19 mRNA vaccination in the literature. In contrast to isolated post-COVID-19 mRNA vaccination myocarditis, our older-aged patients had myocarditis associated with ARD flares post-COVID-19 vaccination (that occurred after one dose of an mRNA vaccine), associated with other features of ARD flares, and required increased immunosuppression to achieve myocarditis resolution. This case series serves to highlight the differences in clinical and therapeutic aspects in ARD patients, heighten the vigilance of rheumatologists for this development, and encourage the adoption of risk reduction strategies in this vulnerable population.
Collapse
|
11
|
Subclinical Myocardial Fibrosis in Systemic Lupus Erythematosus as Assessed by Pulse-Cancellation Echocardiography: A Pilot Study. J Clin Med 2022; 11:jcm11164788. [PMID: 36013027 PMCID: PMC9410017 DOI: 10.3390/jcm11164788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to examine whether scar imaging echocardiography with ultrasound multi-pulse scheme (eSCAR) can detect subclinical myocardial involvement in systemic lupus erythematosus (SLE). We consecutively recruited SLE patients and controls matched for age, sex, and cardiovascular risk factors. Participants with cardiac symptoms or a prior history of heart disease were excluded. All participants underwent eSCAR and speckle tracking echocardiography (STE) with global longitudinal strain (GLS) assessment. SLE patients were assessed for disease activity and were followed up for 12 months. Myocardial scars by eSCAR were observed in 19% of SLE patients, almost exclusively localized at the inferoseptal myocardial segments, and in none of the controls. GLS was significantly lower in most myocardial segments of SLE patients compared with the controls, especially in the inferoseptal segments. eSCAR-positive SLE patients received a higher cumulative and current dose of prednisone, and had significantly higher levels of anti-dsDNA antibodies (p = 0.037). eSCAR-positive patients were at higher risk of having SLE flares over follow-up (hazard ratio: 4.91; 95% CI 1.43–16.83; p = 0.0001). We identified inferoseptal myocardial scars by eSCAR in about one-fifth of SLE patients. Subclinical myocardial involvement was associated with glucocorticoid use and anti-dsDNA antibodies.
Collapse
|
12
|
Oueijan RI, Hill OR, Ahiawodzi PD, Fasinu PS, Thompson DK. Rare Heterogeneous Adverse Events Associated with mRNA-Based COVID-19 Vaccines: A Systematic Review. MEDICINES (BASEL, SWITZERLAND) 2022; 9:43. [PMID: 36005648 PMCID: PMC9416135 DOI: 10.3390/medicines9080043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Background: Since the successful development, approval, and administration of vaccines against SARS-CoV-2, the causative agent of COVID-19, there have been reports in the published literature, passive surveillance systems, and other pharmacovigilance platforms of a broad spectrum of adverse events following COVID-19 vaccination. A comprehensive review of the more serious adverse events associated with the Pfizer-BioNTech and Moderna mRNA vaccines is warranted, given the massive number of vaccine doses administered worldwide and the novel mechanism of action of these mRNA vaccines in the healthcare industry. Methods: A systematic review of the literature was conducted to identify relevant studies that have reported mRNA COVID-19 vaccine-related adverse events. Results: Serious and severe adverse events following mRNA COVID-19 vaccinations are rare. While a definitive causal relationship was not established in most cases, important adverse events associated with post-vaccination included rare and non-fatal myocarditis and pericarditis in younger vaccine recipients, thrombocytopenia, neurological effects such as seizures and orofacial events, skin reactions, and allergic hypersensitivities. Conclusions: As a relatively new set of vaccines already administered to billions of people, COVID-19 mRNA-based vaccines are generally safe and efficacious. Further studies on long-term adverse events and other unpredictable reactions in close proximity to mRNA vaccination are required.
Collapse
Affiliation(s)
- Rana I. Oueijan
- School of Pharmacy, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27501, USA
| | - Olivia R. Hill
- School of Pharmacy, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27501, USA
| | - Peter D. Ahiawodzi
- Department of Public Health, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27501, USA
| | - Pius S. Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dorothea K. Thompson
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27501, USA
| |
Collapse
|
13
|
Montera MW, Marcondes-Braga FG, Simões MV, Moura LAZ, Fernandes F, Mangine S, Oliveira Júnior ACD, Souza ALADAGD, Ianni BM, Rochitte CE, Mesquita CT, de Azevedo Filho CF, Freitas DCDA, Melo DTPD, Bocchi EA, Horowitz ESK, Mesquita ET, Oliveira GH, Villacorta H, Rossi Neto JM, Barbosa JMB, Figueiredo Neto JAD, Luiz LF, Hajjar LA, Beck-da-Silva L, Campos LADA, Danzmann LC, Bittencourt MI, Garcia MI, Avila MS, Clausell NO, Oliveira NAD, Silvestre OM, Souza OFD, Mourilhe-Rocha R, Kalil Filho R, Al-Kindi SG, Rassi S, Alves SMM, Ferreira SMA, Rizk SI, Mattos TAC, Barzilai V, Martins WDA, Schultheiss HP. Brazilian Society of Cardiology Guideline on Myocarditis - 2022. Arq Bras Cardiol 2022; 119:143-211. [PMID: 35830116 PMCID: PMC9352123 DOI: 10.36660/abc.20220412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Fabiana G Marcondes-Braga
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Marcus Vinícius Simões
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, São Paulo, SP - Brasil
| | | | - Fabio Fernandes
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Sandrigo Mangine
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Bárbara Maria Ianni
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Rochitte
- Instituto do Coração (InCor) - Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
| | - Claudio Tinoco Mesquita
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- Hospital Vitória, Rio de Janeiro, RJ - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Evandro Tinoco Mesquita
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- Centro de Ensino e Treinamento Edson de Godoy Bueno / UHG, Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | - Ludhmila Abrahão Hajjar
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Luis Beck-da-Silva
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS - Brasil
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | | | - Marcelo Imbroise Bittencourt
- Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ - Brasil
- Hospital Universitário Pedro Ernesto, Rio de Janeiro, RJ - Brasil
| | - Marcelo Iorio Garcia
- Hospital Universitário Clementino Fraga Filho (HUCFF) da Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | - Monica Samuel Avila
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | | | | | | | - Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals and Case Western Reserve University,Cleveland, Ohio - EUA
| | | | - Silvia Marinho Martins Alves
- Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
- Universidade de Pernambuco (UPE), Recife, PE - Brasil
| | - Silvia Moreira Ayub Ferreira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Stéphanie Itala Rizk
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
- Hospital Sírio Libanês, São Paulo, SP - Brasil
| | | | - Vitor Barzilai
- Instituto de Cardiologia do Distrito Federal, Brasília, DF - Brasil
| | - Wolney de Andrade Martins
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- DASA Complexo Hospitalar de Niterói, Niterói, RJ - Brasil
| | | |
Collapse
|
14
|
Zhu T, Wang M, Quan J, Du Z, Li Q, Xie Y, Lin M, Xu C, Xie Y. Identification and Verification of Feature Biomarkers Associated With Immune Cells in Dilated Cardiomyopathy by Bioinformatics Analysis. Front Genet 2022; 13:874544. [PMID: 35646094 PMCID: PMC9133742 DOI: 10.3389/fgene.2022.874544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: To explore immune-related feature genes in patients with dilated cardiomyopathy (DCM). Methods: Expression profiles from three datasets (GSE1145, GSE21610 and GSE21819) of human cardiac tissues of DCM and healthy controls were downloaded from the GEO database. After data preprocessing, differentially expressed genes (DEGs) were identified by the ‘limma’ package in R software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were then performed to identify biological functions of the DEGs. The compositional patterns of stromal and immune cells were estimated using xCell. Hub genes and functional modules were identified based on protein-protein interaction (PPI) network analysis by STRING webtool and Cytoscape application. Correlation analysis was performed between immune cell subtypes and hub genes. Hub genes with |correlation coefficient| > 0.5 and p value <0.05 were selected as feature biomarkers. A logistic regression model was constructed based on the selected biomarkers and validated in datasets GSE5406 and GSE57338. Results: A total of 1,005 DEGs were identified. Functional enrichment analyses indicated that extracellular matrix remodeling and immune and inflammation disorder played important roles in the pathogenesis of DCM. Immune cells, including CD8+ T-cells, macrophages M1 and Th1 cells, were proved to be significantly changed in DCM patients by immune cell infiltration analysis. In the PPI network analysis, STAT3, IL6, CCL2, PIK3R1, ESR1, CCL5, IL17A, TLR2, BUB1B and MYC were identified as hub genes, among which CCL2, CCL5 and TLR2 were further screened as feature biomarkers by using hub genes and immune cells correlation analysis. A diagnosis model was successfully constructed by using the three biomarkers with area under the curve (AUC) scores 0.981, 0.867 and 0.946 in merged dataset, GSE5406 and GSE57338, respectively. Conclusion: The present study identified three immune-related genes as diagnostic biomarkers for DCM, providing a novel perspective of immune and inflammatory response for the exploration of DCM molecular mechanisms.
Collapse
Affiliation(s)
- Tingfang Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zunhui Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiheng Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xie
- Johns Hopkins University, Baltimore, MD, United States
| | - Menglu Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cathy Xu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucai Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yucai Xie,
| |
Collapse
|
15
|
Jiang P, Feng Z, Sheng L, Hu C, Ma X, Zhang S, Wu L, Xiao X, Wang Q, Guo C, Qiu D, Fang J, Xu J, Gershwin ME, Jiang M, Ma X, Pu J. Morphological, Functional, and Tissue Characterization of Silent Myocardial Involvement in Patients With Primary Biliary Cholangitis. Clin Gastroenterol Hepatol 2022; 20:1112-1121.e4. [PMID: 34461299 DOI: 10.1016/j.cgh.2021.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cirrhotic cardiomyopathy is a major complication and cause of morbidity in end-stage primary biliary cholangitis (PBC). However, it is unclear whether there is clinically silent myocardial involvement at the early stage of PBC before cirrhosis and cardiac manifestations. This prospective, three-center, multi-modality cardiac imaging study on the early identification of myocardial impairment in PBC (EARLY-MYO-PBC) was designed to identify silent myocardial impairment in PBC patients without cardiac manifestations. METHODS A total of 112 subjects (56 with PBC and 56 age- and sex-matched controls) undergoing cardiovascular magnetic resonance (CMR) were enrolled. Demographic, serologic, and cardiac imaging data were prospectively collected. All participants had no cardiac discomfort or previous heart disease and had normal electrocardiographic findings. RESULTS Subclinical myocardial involvement, as evidenced by cardiac morphologic, functional, and tissue characterization changes on CMR, including hyperdynamic left ventricular (LV) ejection fraction (median, 75% in PBC patients vs 69% in controls, P = .029), subclinical myocardial edema by T2-short tau inversion recovery (21% vs 2% in controls, P = .001), elevated extracellular matrix indices (30% vs 26% in controls, P < .001), and impaired myocardial viability by positive late gadolinium enhancement (LGE) (36%), was detected in PBC patients. Importantly, a mid-wall "stripe" at the LV septum was identified as a PBC-specific LGE pattern that differs from other known cardiomyopathies. In multivariate analysis, gp210 positivity (odds ratio [OR] = 9.909, P = .010), lower hemoglobin (OR = 0.919, P = .004), and body mass index (OR = 0.638, P = .005) were independent predictors of cardiac abnormalities in PBC. CONCLUSIONS This study demonstrates clinically silent cardiac impairment with specific CMR patterns in PBC, allowing optimal screening for early myocardial impairment and potentially timely therapies. (Trial registration no.: NCT03545672).
Collapse
Affiliation(s)
- Pan Jiang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zehao Feng
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Sheng
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxi Hu
- Institute of Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Shouyan Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Lianming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Xiao
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qixia Wang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Canjie Guo
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dekai Qiu
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, California
| | - Meng Jiang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiong Ma
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute; Division of Gastroenterology and Hepatology, Division of Cardiology, Key Laboratory of Coronary Heart Disease, Shanghai Municipal Education Commission; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Cheng CY, Baritussio A, Giordani AS, Iliceto S, Marcolongo R, Caforio ALP. Myocarditis in systemic immune-mediated diseases: Prevalence, characteristics and prognosis. A systematic review. Autoimmun Rev 2022; 21:103037. [PMID: 34995763 DOI: 10.1016/j.autrev.2022.103037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022]
Abstract
Many systemic immune-mediated diseases (SIDs) may involve the heart and present as myocarditis with different histopathological pictures, i.e. lymphocytic, eosinophilic, granulomatous, and clinical features, ranging from a completely asymptomatic patient to life-threatening cardiogenic shock or arrhythmias. Myocarditis can be part of some SIDs, such as sarcoidosis, systemic lupus erythematosus, systemic sclerosis, antiphospholipid syndrome, dermato-polymyositis, eosinophilic granulomatosis with polyangiitis and other vasculitis syndromes, but also of some organ-based immune-mediated diseases with systemic expression, such as chronic inflammatory bowel diseases. The aim of this review is to describe the prevalence, main clinical characteristics and prognosis of myocarditis associated with SIDs.
Collapse
Affiliation(s)
- Chun-Yan Cheng
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Anna Baritussio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Andrea Silvio Giordani
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Renzo Marcolongo
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alida L P Caforio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Chaligne C, Mageau A, Ducrocq G, Ou P, Alexandra JF, Mutuon P, Papo T, Sacre K. Acute myocarditis revealing autoimmune and inflammatory disorders: Clinical presentation and outcome. Int J Cardiol 2021; 351:84-88. [PMID: 34979146 DOI: 10.1016/j.ijcard.2021.12.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acute myocarditis (AM) may be the heralding manifestation of autoimmune and inflammatory disorders (AIID). We aimed to describe the clinical presentation and outcome of patients with AM revealing AIID. METHODS All consecutive adult patients with AM admitted in a department of Cardiology (Bichat Hospital, Paris, France) from January 2011 to January 2019 were included. Diagnosis of AM was based on clinical manifestations, elevated Troponin, myocardial inflammation on CMR and no evidence for coronary artery disease. AIID were classified using international criteria. RESULTS Two-hundred and eighteen (35.3 [26.4-47.1] years, 75.2% males) patients with AM were included. Overall, AM revealed AIID in 15 (6.9%), including systemic lupus erythematosus (n = 3), adult onset Still's disease (n = 3), sarcoidosis (n = 2), mixed connective tissue disease (n = 1), anti-Jo1 syndrome (n = 1), eosinophilic granulomatosis with polyangiitis (n = 1), antiphospholipid syndrome (n = 1), reactive arthritis (n = 1), Graves' disease (n = 1) and Crohn's colitis (n = 1). Left ventricular ejection fraction (LVEF) at onset was <30% in 5 (33.3%) patients with AIID. All but 2 patients with AIID were treated with steroids, immunosuppressive and/or immunomodulatory drugs and LVEF normalized in all by the end of follow-up. By comparing patients with AIID to patients with idiopathic AM (n = 203), multivariable analysis showed that pericardial effusion, lack of chest pain and high CRP level at onset were independently associated with AIID. CONCLUSION Acute myocarditis revealing AIID may be life-threatening at the acute phase but has an overall good prognosis under specific treatment. Pericardial effusion and CRP level at admission suggest an AIID as the cause for AM.
Collapse
Affiliation(s)
- Camille Chaligne
- Département de Médecine Interne, Hôpital Bichat, Université de Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Arthur Mageau
- Département de Médecine Interne, Hôpital Bichat, Université de Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gregory Ducrocq
- Département de Cardiologie, Hôpital Bichat, Université de Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Phalla Ou
- Département de Radiologie, Hôpital Bichat, Université de Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Francois Alexandra
- Département de Médecine Interne, Hôpital Bichat, Université de Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Pierre Mutuon
- Département d'Information Médicale, Hôpital Bichat, Université de Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Thomas Papo
- Département de Médecine Interne, Hôpital Bichat, Université de Paris, Assistance Publique Hôpitaux de Paris, Paris, France; INSERM U1149, Paris, France
| | - Karim Sacre
- Département de Médecine Interne, Hôpital Bichat, Université de Paris, Assistance Publique Hôpitaux de Paris, Paris, France; INSERM U1149, Paris, France.
| |
Collapse
|
18
|
Affiliation(s)
- Melina Müller
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leslie T Cooper
- Department of Cardiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Bettina Heidecker
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Coletto LA, Gerosa M, Valentini M, Cimaz R, Caporali R, Meroni PL, Chighizola CB. Myocardial involvement in anti-phospholipid syndrome: Beyond acute myocardial infarction. Autoimmun Rev 2021; 21:102990. [PMID: 34740852 DOI: 10.1016/j.autrev.2021.102990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022]
Abstract
Anti-phospholipid antibodies (aPL) are the serological biomarkers of anti-phospholipid syndrome (APS), an autoimmune disorder characterized by vascular events and/or pregnancy morbidity. APS is a unique condition as thrombosis might occur in arterial, venous or capillary circulations. The heart provides a frequent target for circulating aPL, leading to a wide variety of clinical manifestations. The most common cardiac presentation in APS, valvular involvement, acknowledges a dual etiology comprising both microthrombotic and inflammatory mechanisms. We describe the cases of 4 patients with primary APS who presented a clinically manifest myocardiopathy without epicardial macrovascular distribution. We propose that microthrombotic/inflammatory myocardiopathy might be an overlooked complication of high-risk APS. As extensively hereby reviewed, the literature provides support to this hypothesis in terms of anecdotal case-reports, in some cases with myocardial bioptic specimens. In aPL-positive subjects, microthrombotic/inflammatory myocardial involvement might also clinically manifest as dilated cardiomyopathy, a clinical entity characterized by ventricular dilation and reduced cardiac output. Furthermore, microthrombotic/inflammatory myocardial involvement might be subclinical, presenting as diastolic dysfunction. Currently, there is no single clinical or imaging finding to firmly confirm the diagnosis; an integrated approach including clinical history, clinical assessment, laboratory tests and cardiac magnetic resonance should be pursued in patients with suggestive clinical presentation.
Collapse
Affiliation(s)
- Lavinia Agra Coletto
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Division of Clinical Rheumatology, ASST G. Pini - CTO, Milan, Italy
| | - Maria Gerosa
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Division of Clinical Rheumatology, ASST G. Pini - CTO, Milan, Italy.
| | | | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Rheumatology Unit, ASST G. Pini - CTO, Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Division of Clinical Rheumatology, ASST G. Pini - CTO, Milan, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Cusano Milanino, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Rheumatology Unit, ASST G. Pini - CTO, Milan, Italy
| |
Collapse
|
20
|
Immune Mechanism, Gene Module, and Molecular Subtype Identification of Astragalus Membranaceus in the Treatment of Dilated Cardiomyopathy: An Integrated Bioinformatics Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2252832. [PMID: 34567206 PMCID: PMC8457948 DOI: 10.1155/2021/2252832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Astragalus membranaceus has complex components as a natural drug and has multilevel, multitarget, and multichannel effects on dilated cardiomyopathy (DCM). However, the immune mechanism, gene module, and molecular subtype of astragalus membranaceus in the treatment of DCM are still not revealed. Microarray information of GSE84796 was downloaded from the GEO database, including RNA sequencing data of seven normal cardiac tissues and ten DCM cardiac tissues. A total of 4029 DCM differentially expressed genes were obtained, including 1855 upregulated genes and 2174 downregulated genes. GO/KEGG/GSEA analysis suggested that the activation of T cells and B cells was the primary cause of DCM. WGCNA was used to obtain blue module genes. The blue module genes are primarily ADCY7, BANK1, CD1E, CD19, CD38, CD300LF, CLEC4E, FLT3, GPR18, HCAR3, IRF4, LAMP3, MRC1, SYK, and TLR8, which successfully divided DCM into three molecular subtypes. Based on the CIBERSORT algorithm, the immune infiltration profile of DCM was analyzed. Many immune cell subtypes, including the abovementioned immune cells, showed different levels of increased infiltration in the myocardial tissue of DCM. However, this infiltration pattern was not obviously correlated with clinical characteristics, such as age, EF, and sex. Based on network pharmacology and ClueGO, 20 active components of Astragalus membranaceus and 40 components of DMCTGS were obtained from TCMSP. Through analysis of the immune regulatory network, we found that Astragalus membranaceus effectively regulates the activation of immune cells, such as B cells and T cells, cytokine secretion, and other processes and can intervene in DCM at multiple components, targets, and levels. The above mechanisms were verified by molecular docking results, which confirmed that AKT1, VEGFA, MMP9, and RELA are promising potential targets of DCM.
Collapse
|
21
|
Chen YT, Liu WS, Su KY, Hsu YH, Chang CH. Acute heart failure with dilated cardiomyopathy as the first manifestation of eosinophilic granulomatosis with polyangiitis. J Eur Acad Dermatol Venereol 2021; 36:e125-e128. [PMID: 34553425 DOI: 10.1111/jdv.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Y T Chen
- Department of Dermatology, Skin Institute, Hualian Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - W S Liu
- Department of Cardiovascular Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - K Y Su
- Division of Allergy, Immunology and Rheumatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Y H Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - C H Chang
- Department of Dermatology, Skin Institute, Hualian Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien, Taiwan
| |
Collapse
|
22
|
Wu L, Wang W, Leng Q, Tang N, Zhou N, Wang Y, Wang DW. Focus on Autoimmune Myocarditis in Graves' Disease: A Case-Based Review. Front Cardiovasc Med 2021; 8:678645. [PMID: 34307494 PMCID: PMC8292634 DOI: 10.3389/fcvm.2021.678645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
The manifestations of hyperthyroidism-related myocardial damage are multitudinous, including arrhythmia, dilated cardiomyopathy, valvular diseases, and even cardiogenic shock. Acute myocarditis induced by thyrotoxicosis had been reported in a few studies. However, attention on its prevalence and underlying mechanisms is sorely lacking. Its long-term harm is often ignored, and it may eventually develop into dilated cardiomyopathy and heart failure. We report a case of Graves' disease with a progressive elevation of hypersensitive cardiac troponin-I at several days after discontinuation of the patient's anti-thyroid drugs. Cardiac magnetic resonance imaging (CMRI) showed inflammatory edema of some cardiomyocytes (stranded enhanced signals under T2 mapping), myocardial necrosis (scattered enhanced signals under T1 late gadolinium enhancement) in the medial and inferior epicardial wall, with a decreased left ventricular systolic function (48%), which implied a possibility of acute myocarditis induced by thyrotoxicosis. The patient was then given a transient glucocorticoid (GC) treatment and achieved a good curative effect. Inspired by this case, we aim to systematically elaborate the pathogenesis, diagnosis, and treatment of hyperthyroidism-induced autoimmune myocarditis. Additionally, we emphasize the importance of CMRI and GC therapy in the diagnosis and treatment of hyperthyroidism-related myocarditis.
Collapse
Affiliation(s)
- Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Qianru Leng
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Tang
- Nursing Teaching Office of Internal Medicine, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Meridor K, Shoenfeld Y, Tayer-Shifman O, Levy Y. Lupus acute cardiomyopathy is highly responsive to intravenous immunoglobulin treatment: Case series and literature review. Medicine (Baltimore) 2021; 100:e25591. [PMID: 33950936 PMCID: PMC8104142 DOI: 10.1097/md.0000000000025591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Intravenous immunoglobulin (IVIg) is currently used with considerable success for the treatment of many autoimmune diseases, including systemic lupus erythematosus (SLE). Among its various indications, IVIg has also been found to be beneficial in myocarditis, whether or not it is associated with an autoimmune disease. Nevertheless, data regarding IVIg treatment for myocarditis/cardiomyopathy in patients with SLE are sparse. The objective of this case series was to describe our experience with IVIg as a treatment for lupus myocarditis and to review the literature for IVIg for this indication. PATIENT CONCERNS We report 5 female patients with SLE, who presented with signs of acute heart failure including pulmonary congestion and arrhythmias. DIAGNOSIS Echocardiography demonstrated new reduced left ventricular ejection fraction of 20% to 30%. Two patients underwent coronary artery angiography, which demonstrated normal coronary arteries, supporting the diagnosis of myocarditis or nonischemic cardiomyopathy. INTERVENTIONS High-dose IVIg treatment was initiated in all 5 patients. OUTCOMES Following the treatment, clinical and echocardiographic improvement in cardiac function occurred within a few days to 1 month. This dramatic improvement persisted for several years. CONCLUSION Based on our case series, we believe that IVIg has an important role in the management of lupus acute cardiomyopathy. This safe, well-tolerated optional treatment should be considered, especially in severe cases.
Collapse
Affiliation(s)
- Katya Meridor
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba
- Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel HaShomer
- Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oshrat Tayer-Shifman
- Rheumatology Unit, Meir Medical Center, Kfar Saba
- Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yair Levy
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba
- Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Hahn HJ, Kwak SG, Kim DK, Kim JY. Association of Behçet disease with psoriasis and psoriatic arthritis. Sci Rep 2021; 11:2531. [PMID: 33510251 PMCID: PMC7844410 DOI: 10.1038/s41598-021-81972-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
Behçet disease (BD) is a debilitating multi-systemic vasculitis with a litany of muco-cutaneous manifestations and potentially lethal complications. Meanwhile, psoriasis (PSO) is a cutaneous and systemic inflammatory disorder marked by hyperplastic epidermis and silvery scales, which may be accompanied by a distinct form of arthropathy called psoriatic arthritis (PsA). While the clinical pictures of these two are quite different, they feature some important similarities, most of which may stem from the autoinflammatory components of BD and PSO. Therefore, the aim of this study was to investigate the prospective link between BD and cutaneous and articular manifestations of psoriasis. BD, PSO, and PsA cohorts were extracted using the National Health Insurance Service of Korea database. Using χ2 tests, prevalence of PSO and PsA with respect to BD status was analysed. Relative to non-BD individuals, those with personal history of BD were nearly three times more likely to be diagnosed with PSO. The adjusted odds ratio (aOR) was 2.36 [95% confidence interval (CI), 1.91–2.93, p < 0.001]. Elevated PSO risk was more pronounced in the male BD cohort (aOR = 1.19, 95% CI 1.16–1.23, p < 0.001). In age-group sub-analysis, individuals over 65 years with PSO were one and a half times more likely to be affected with BD, relative to those under 65. The adjusted OR for the older group was 1.51 (95% CI 1.43–1.59, p < 0.001). BD individuals with “healthy” body weight were significantly less likely to be affected by PSO (aOR = 0.59, 95% CI 0.57–0.62, p < 0.001). On the other hand, there was a correlation between BMI and the risk of BD, with the “moderately obese (30–35 kg/m2)” group having an aOR of 1.24 (95% CI 1.12–1.38, p < 0.001). BD patients were also twice more likely to be associated with PsA (aOR = 2.19, 95% CI 1.42–3.38, p < 0.001). However, in contrast to the case of psoriatic disease itself, females were exposed to a greater risk of developing BD compared to the male PsA cohort (aOR = 2.02, 95% CI 1.88–2.16, p < 0.001). As with PSO, older BD patients were exposed to a significantly higher risk of developing PsA (aOR = 3.13, 95% CI 2.90–3.40, p < 0.001). Behçet disease may place an individual at a significantly increased risk of psoriasis, and still greater hazard of being affected with psoriatic arthritis. This added risk was pronounced in the male cohort, and tended to impact senile population, and this phenomenon may be related with the relatively poor prognosis of BD in males and PSO in older patients.
Collapse
Affiliation(s)
- Hyung Jin Hahn
- Department of Dermatology, College of Medicine, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu, Republic of Korea
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, 77 Sakju-ro, Gangwon-do, Chuncheon, 24253, Republic of Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea. .,Department of Biomedical Informatics, College of Medicine, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea. .,Myunggok Medical Research Institutue, College of Mediine, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
25
|
Efficacy of immunosuppressive therapy in myocarditis: A 30-year systematic review and meta analysis. Autoimmun Rev 2020; 20:102710. [PMID: 33197576 DOI: 10.1016/j.autrev.2020.102710] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
AIMS Myocarditis is an inflammation of the heart muscle, due to infectious, toxic or autoimmune causes. Literature reported controversial results in relation to the effect of immunosuppression (IS)/immunomodulation (IM). We aimed at assessing the effect of IS/IM by meta analysis. METHODS AND RESULTS Using the P.R.I.S.M.A. approach, two researchers searched for relevant studies on PubMed, Embase, and the Central Registry of Controlled Trials of the Cochrane Library. Proposed MeSH terms were: "immunotherapy OR immune therapy OR immune modeling OR Immunosuppressive Agents" AND "combination OR combined with OR plus" AND "myocarditis OR cardiomyopathies OR inflammatory cardiomyopathy". The language was restricted to English. Reference lists of included articles and those relevant to the topic were hand searched for the identification of additional, potentially relevant articles. The cutoff date was from 1987 until 30th Nov 2019. Reported survival or mortality events or change of left ventricular ejection fraction (LVEF) after IS/IT were primary outcomes of the study; in addition, improvement of New York Heart Association class, follow-up biopsy (Bx) findings, viral genome clearance on Bx and recurrence of myocarditis were recorded if reported. Statistical analysis was conducted using Review Manager 5.3; 5452 studies were screened, of these 73 were assessed for eligibility, including 8 randomized control studies, 26 retrospective studies, 2 prospective studies and 1 case control study, 34 case reports and 2 case series. In prospective studies, the difference in mortality between the IS and control groups tended to be lower in the combined IS groups (12.5% vs. 18.2%) (95% CI of odds ratio 0.7(0.3, 1.64)) and the pooled difference of the increase of LVEF between the IS and control groups tended to be higher in the combined IS groups (95% CI 7.26 (-2.29, 16.81)). In retrospective studies, the difference of survival between the IS and control group was significantly in favor of IS (95%CI Hazard ratio 0.82(0.69, 0.96)). CONCLUSIONS A tailored IS may be considered in myocarditis, depending on the phase of the disease, and the type of underlying autoimmune or immune-mediated form.
Collapse
|
26
|
Turgeon PY, Massot M, Beaupré F, Belzile D, Beaudoin J, Bernier M, Bourgault C, Germain V, Laliberté C, Morin J, Gervais P, Trahan S, Charbonneau É, Dagenais F, Sénéchal M. Effect of Acute Immunosuppression on Left Ventricular Recovery and Mortality in Fulminant Viral Myocarditis: A Case Series and Review of Literature. CJC Open 2020; 3:292-302. [PMID: 33778446 PMCID: PMC7985012 DOI: 10.1016/j.cjco.2020.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background Fulminant viral myocarditis (FVM) is a rare cause of cardiogenic shock associated with high morbidity and mortality rates. An inappropriately activated immune system results in severe myocardial inflammation. Acute immunosuppressive therapy for FVM therefore gained in popularity and was described in numerous retrospective studies. Methods We conducted an extensive review of the literature and compared it with our single-centre retrospective review of all cases of FVM from 2009-2019 to evaluate the possible effect of acute immunosuppression with intravenous immunoglobulins and/or high dose corticosteroids in patients with FVM. Results We report on 17 patients with a mean age of 46 ± 15 years with a mean left ventricular ejection fraction (LVEF) of 15 ± 9% at admission. Fourteen (82%) of our patients had acute LVEF recovery to ≥ 45% after a mean time from immunosuppression of 74 ± 49 hours (3.1 days). Extracorporeal membrane oxygenation (ECMO) was required in 35% (6/17) of our patients for an average support of 126 ± 37 hours. Overall mortality was 12% (2/17). No patient needed a long-term left ventricular assist device or heart transplant. All surviving patients achieved complete long-term LVEF recovery. Conclusions Our cohort of 17 severely ill patients received acute immunosuppressive therapy and showed a rapid LVEF recovery, short duration of ECMO support, and low mortality rate. Our suggested scheme of investigation and treatment is presented. These results bring more cases of successfully treated FVM with immunosuppression and ECMO to the literature, which might stimulate further prospective trials or a registry.
Collapse
Affiliation(s)
- Pierre Yves Turgeon
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Montse Massot
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Frédéric Beaupré
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - David Belzile
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Jonathan Beaudoin
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Mathieu Bernier
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Christine Bourgault
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Valérie Germain
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Claudine Laliberté
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Joëlle Morin
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Philippe Gervais
- Department of Infectious Disease, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Sylvain Trahan
- Department of Pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Éric Charbonneau
- Department of Cardiac Surgery, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - François Dagenais
- Department of Cardiac Surgery, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Mario Sénéchal
- Department of Cardiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| |
Collapse
|
27
|
Chang JC, Xiao R, Knight AM, Kimmel SE, Mercer-Rosa LM, Weiss PF. A population-based study of risk factors for heart failure in pediatric and adult-onset systemic lupus erythematosus. Semin Arthritis Rheum 2020; 50:527-533. [PMID: 32446021 PMCID: PMC7492402 DOI: 10.1016/j.semarthrit.2020.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The increased relative risk of heart failure (HF) from systemic lupus erythematosus (SLE) is greatest at younger ages, but the etiology remains unclear. We identified risk factors for HF in children and adults with SLE and evaluated associations between SLE manifestations and HF. METHODS Incident SLE cases without preceding HF were identified using Clinformatics DataMart® (OptumInsight, Eden Prairie, MN) US claims data (2000-2015), and categorized by age of SLE onset (children 5-17, young adults 18-24, adults 25-44 years old). The primary outcome was the first HF ICD-9-CM diagnosis code (428.x), categorized as early-onset (< 6 months) or delayed-onset. Multivariable logistic regression was used to identify factors associated with early or delayed-onset HF. Cox proportional hazards regression was used to identify time-dependent associations between the onset of SLE manifestations and incident HF. RESULTS There were 523 (2.3%) HF cases among 1,466 children, 2,163 young adults and 19,349 adults age 25-44 with SLE. HF in children and young adults was early-onset in 50% and 60% of cases, respectively, compared to 35% of cases in adults 25-44 years old. There was a temporal association between incident myopericarditis and valvular disease diagnoses and early-onset HF, whereas nephritis and hypertension were more strongly associated with delayed-onset HF. Black race remained independently associated with a 1.5-fold increased HF risk at any time. CONCLUSION Hypertension remains an important traditional CV risk factor across all ages and should be managed aggressively even in younger patients with SLE. Cardiac dysfunction due to acute cardiac manifestations of SLE may contribute to the very high relative incidence of early HF diagnoses among younger SLE patients. Therefore, future prospective studies will need to address heterogeneity in the types and severity of heart failure in order to determine etiology and which patients should be monitored.
Collapse
Affiliation(s)
- Joyce C Chang
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Rui Xiao
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea M Knight
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen E Kimmel
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laura M Mercer-Rosa
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pamela F Weiss
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
28
|
De Luca G, Campochiaro C, Sartorelli S, Peretto G, Dagna L. Therapeutic strategies for virus-negative myocarditis: a comprehensive review. Eur J Intern Med 2020; 77:9-17. [PMID: 32402564 DOI: 10.1016/j.ejim.2020.04.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
Virus-negative or autoimmune myocarditis(VNM) is an inflammatory disease affecting the myocardium that may occur as a distinct disease with exclusive cardiac involvement, or in the context of systemic autoimmune or inflammatory disorders. The pathogenesis of VNM involves both innate and acquired immunity and is not completely elucidated: an early immune-mediated pathogenic process lead to subacute and chronic stages and eventually results in tissue remodeling, fibrosis, contractile dysfunction, dilated cardiomyopathy and arrhythmic burden, accounting for a dismal prognosis. Treatment interventions effectively curbing the acute inflammatory process at an early stage can prevent late cardiac remodeling and improve patient's outcome. The mainstay of treatment of VNM remains symptomatic therapy of heart failure and arrhythmia, while the use of immunosuppressive treatments has long been considered controversial until recently, and strategies effectively targeting the inflammatory and immune-mediated substrate of the disease remain elusive. Only steroids and azathioprine have been tested in clinical trials, and nowadays represent the therapy of choice. A substantial proportion of patients are resistant to first line strategies, suggesting that some critical inflammatory mechanisms are not responsive to conventional immunosuppression with steroids and azathioprine, or experience drug-related adverse events. Thus, second-line targeted therapeutic strategies to treat VNM are eagerly awaited. Recent data on the pathogenic mechanisms underlying myocardial inflammation are paving the way to novel, promising treatment strategies for myocarditis, which could reformulate future treatment strategies for VNM. In this review, we summarize the current therapeutic opportunities, beyond corticosteroids, to treat VNM, including conventional and biologic immunosuppressive drugs and cytokine blocking agents.
Collapse
Affiliation(s)
- Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Sartorelli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
29
|
Shao M, Wang D, Zhou Y, Du K, Liu W. Interleukin-10 delivered by mesenchymal stem cells attenuates experimental autoimmune myocarditis. Int Immunopharmacol 2020; 81:106212. [PMID: 32062070 DOI: 10.1016/j.intimp.2020.106212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUNDS Autoimmune myocarditis is characterized by over-activated immune system attacking the cardiomyocytes, resulting in heart function decline. In the current study, we investigated the therapeutic advantages of delivering Interleukin-10 (IL-10) by mesenchymal stem cells (MSCs), both of which had immune suppression functions, in treating experimental autoimmune myocarditis. METHODS The mouse model of autoimmune myocarditis was established by subcutaneous injection of troponin I in A/J mice. Mouse bone marrow derived mesenchymal stem cells (BM-MSCs) with or without IL-10 overexpression, or the recombinant IL-10 protein were delivered into the mice via tail-vein injection. The inflammation and fibrosis levels of the heart were evaluated with qPCR, ELISA and histological staining. Serum level of anti-troponin-I was assessed by ELISA. Heart function analysis was conducted with echocardiography. RESULTS BM-MSCs overexpressing IL-10 had enhanced immune suppression functions. They also showed improved therapeutic effects from the perspective of heart function and cardiac fibrosis. The anti-troponin-I level was significantly reduced by MSCs overexpressing IL-10 when comparing with the MSCs or IL-10 protein injection. CONCLUSION IL-10 delivered by MSCs showed therapeutic advantages in treating experimental autoimmune myocarditis.
Collapse
Affiliation(s)
- Minkun Shao
- Department of Newborn, Shangqiu First People's Hospital, Shangqiu 476100, Henan, China
| | - Dong Wang
- Department of Newborn, Shangqiu First People's Hospital, Shangqiu 476100, Henan, China
| | - Yan Zhou
- Department of Newborn, Shangqiu First People's Hospital, Shangqiu 476100, Henan, China
| | - Kun Du
- Department of Newborn, Shangqiu First People's Hospital, Shangqiu 476100, Henan, China
| | - Wei Liu
- Department of Newborn, Shangqiu First People's Hospital, Shangqiu 476100, Henan, China.
| |
Collapse
|
30
|
Arbustini E, Narula N, Giuliani L, Di Toro A. Genetic Basis of Myocarditis: Myth or Reality? MYOCARDITIS 2020. [PMCID: PMC7122345 DOI: 10.1007/978-3-030-35276-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genetic basis of myocarditis remains an intriguing concept, at least as long as the definition of myocarditis constitutes the definitive presence of myocardial inflammation sufficient to cause the observed ventricular dysfunction in the setting of cardiotropic infections. Autoimmune or immune-mediated myocardial inflammation constitutes a complex area of clinical interest, wherein numerous and not yet fully understood role of hereditary auto-inflammatory diseases can result in inflammation of the pericardium and myocardium. Finally, myocardial involvement in hereditary immunodeficiency diseases, cellular and humoral, is a possible trigger for infections which may complicate the diseases themselves. Whether the role of constitutional genetics can make the patient susceptible to myocardial inflammation remains yet to be explored.
Collapse
|
31
|
De Luca G, Campochiaro C, Sartorelli S, Peretto G, Sala S, Palmisano A, Esposito A, Candela C, Basso C, Rizzo S, Thiene G, Della Bella P, Dagna L. Efficacy and safety of mycophenolate mofetil in patients with virus-negative lymphocytic myocarditis: A prospective cohort study. J Autoimmun 2020; 106:102330. [DOI: 10.1016/j.jaut.2019.102330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
|
32
|
Subcutaneous immunoglobulin in inflammatory myopathies: efficacy in different organ systems. Autoimmun Rev 2019; 19:102426. [PMID: 31734407 DOI: 10.1016/j.autrev.2019.102426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
MGD and CG were responsible for the study's conception and design. VP and DM contributed to data acquisition. VP and DB planned and performed the statistical analyses. All Authors contributed to data interpretation. MGD, CG, VP and DM drafted the manuscript. AG and DB revised the manuscript critically for intellectual content. All authors gave their final approval of the version of the manuscript to be published.
Collapse
|
33
|
von Kemp B, Michiels V, Cosyns B. Inflammatory Cardiomyopathy After Delivery. Circulation 2019; 140:1354-1358. [PMID: 31609654 DOI: 10.1161/circulationaha.119.041693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Berlinde von Kemp
- Cardiology Department, Centrum Hart- en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Vincent Michiels
- Cardiology Department, Centrum Hart- en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bernard Cosyns
- Cardiology Department, Centrum Hart- en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
34
|
Razzano D, Fallon JT. Myocarditis: somethings old and something new. Cardiovasc Pathol 2019; 44:107155. [PMID: 31760237 DOI: 10.1016/j.carpath.2019.107155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
"Since the pathological conditions take place at the cellular level, viral myocarditis and postinfectious autoimmunity can be suggested but not diagnosed clinically. All clinical methods including imaging techniques are misleading if infectious agents are involved. Accurate diagnosis demands simultaneous histologic, immunohistochemical, and molecular biological workup of the tissue. If the primary infectious or immune-mediated causes of the disease are carefully defined by clinical and biopsy-based tools, specific antiviral treatment options in addition to basic symptomatic therapy are available under certain conditions. These may allow a tailored cause-specific treatment that improves symptoms and prognosis of patients with acute and chronic disease." Uwe Kühl; Heinz-Peter SchultheissViral myocarditis.Swiss Medical Weekly. 144():w14010, JAN 2014 DOI:10.4414/smw.2014.14010.
Collapse
Affiliation(s)
- Dana Razzano
- New York Medical College at Westchester Medical Center, Valhalla, NY, 10595, USA.
| | | |
Collapse
|
35
|
Cannie DE, Akhtar MM, Elliott P. Hidden in Heart Failure. Eur Cardiol 2019; 14:89-96. [PMID: 31360229 PMCID: PMC6659034 DOI: 10.15420/ecr.2019.19.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Current diagnostic strategies fail to illuminate the presence of rare disease in the heart failure population. One-third of heart failure patients are categorised as suffering an idiopathic dilated cardiomyopathy, while others are labelled only as heart failure with preserved ejection fraction. Those affected frequently suffer from delays in diagnosis, which can have a significant impact on quality of life and prognosis. Traditional rhetoric argues that delineation of this patient population is superfluous to treatment, as elucidation of aetiology will not lead to a deviation from standard management protocols. This article emphasises the importance of identifying genetic, inflammatory and infiltrative causes of heart failure to enable patients to access tailored management strategies.
Collapse
Affiliation(s)
- Douglas Ewan Cannie
- University College London Institute for Cardiovascular Science London, UK.,Barts Heart Centre, Barts Health NHS Trust London, UK
| | - Mohammed Majid Akhtar
- University College London Institute for Cardiovascular Science London, UK.,Barts Heart Centre, Barts Health NHS Trust London, UK
| | - Perry Elliott
- University College London Institute for Cardiovascular Science London, UK.,Barts Heart Centre, Barts Health NHS Trust London, UK
| |
Collapse
|
36
|
The spectrum of myocarditis: from pathology to the clinics. Virchows Arch 2019; 475:279-301. [DOI: 10.1007/s00428-019-02615-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
|
37
|
Imaging for screening cardiovascular involvement in patients with systemic rheumatologic diseases: more questions than answers. Eur Heart J Cardiovasc Imaging 2019; 20:967-978. [DOI: 10.1093/ehjci/jez171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cardiovascular involvement due to systemic rheumatologic diseases (SRDs) remains largely underdiagnosed despite causing excess mortality and limiting the favourable effect of therapeutic developments on survival. Traditional risk scoring systems are poorly calibrated for SRD patients. There is an unmet need to develop a cardiovascular (CV) risk stratification tool and screening algorithm for CV involvement dedicated to asymptomatic patients with SRDs. Even though accelerated atherosclerosis is the most prominent cause of major CV events, a more comprehensive approach is crucial to detect different pathological processes associated with SRDs that are leading to CV complications. In that regard, incorporation of imaging parameters obtained from echocardiography and carotid ultrasound (CUS) might help to improve risk models, to detect and monitor subclinical CV involvement. These two imaging modalities should be an integral part of screening SRD patients with suspicion of CV involvement on top of electrocardiogram (ECG). Cardiac magnetic resonance and multi-slice computerized tomography angiography and nuclear imaging modalities seem very important to complement echocardiography and CUS for further evaluation. However, to answer the question ‘Should asymptomatic patients with SRDs undergo screening with echocardiography and CUS on top of ECG?’ necessitates large studies performing cardiac screening with a standard approach by using these imaging methods to obtain longitudinal data with hard CV outcomes.
Collapse
|
38
|
Wu J, Liu M, Mang G, Yu S, Chen Q, Li T, Wang Y, Meng Y, Tang X, Zheng Y, Sun Y, Zhang M, Yu B. Protosappanin A protects against experimental autoimmune myocarditis, and induces metabolically reprogrammed tolerogenic DCs. Pharmacol Res 2019; 146:104269. [PMID: 31078745 DOI: 10.1016/j.phrs.2019.104269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Autoimmune myocarditis is an immune-mediated myocardial injury that evolves into dilated cardiomyopathy (DCM). Protosappanin A (PrA), an immunosuppressive compound, induces immune tolerance in cardiac transplantation. However, whether PrA confers protective immunosuppression on experimental autoimmune myocarditis (EAM) is unknown. In this study, PrA treatment remarkably suppressed cardiac inflammatory cell infiltration and ameliorated cardiac remodeling in EAM mice. Additionally, PrA treatment reduced splenic T cells response, and induced expansion of immunosuppressive regulatory T cells (Tregs). Meanwhile, PrA induced the splenic dendritic cells (DCs) into a tolerogenic state with reduced co-stimulatory molecules, increased the production of tolerogenic cytokines in vivo. PrA also reprogrammed the metabolism of splenic DCs to a more glycolytic phenotype. To further investigate the effect of PrA on the functional and metabolic phenotype of DCs, the compound was added into the in vitro culture of MyHC-α-loaded DCs. These cells switched to a tolerogenic state and a metabolic profile similar to that found in cells during in ex vivo experiments. Treatment with glycolytic inhibitor 2-DG significantly reversed PrA-mediated DC tolerogenic properties, suggesting that glycolysis is indispensable for PrA-conditioned DCs to maintain their tolerogenic properties. Notably, PrA-conditioned DC vaccinations dampened EAM progress, and promoted Tregs expansion. Similarly, tolerogenic and metabolic patterns were also observed in PrA-modified human DC. In conclusion, PrA endows DC with a tolerogenic profile via glycolytic reprogramming, thereby inducing expansion of immunosuppressive Tregs, and preventing EAM progress. Our results suggested that PrA may confer immunosuppressive and protective effects on EAM by metabolically reprogramming DCs, which could contribute to the development of a new potential immunotherapy for the treatment of EAM and immune-related disorders.
Collapse
Affiliation(s)
- Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Mingyang Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Tingting Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yongchen Wang
- Department of General Practice, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ying Meng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - XinYue Tang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yong Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| |
Collapse
|
39
|
Transient left bundle branch block and left ventricular dysfunction in a patient with NLRP1-associated autoinflammation with arthritis and dyskeratosis syndrome. Cardiol Young 2019; 29:435-438. [PMID: 30681047 DOI: 10.1017/s1047951118002342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The NLRP1-associated autoinflammation with arthritis and dyskeratosis syndrome is a rare novel autoinflammatory disorder. Cardiac involvement has not been previously reported. We present a 12-year-old girl with NLRP1-associated autoinflammation with arthritis and dyskeratosis syndrome who was diagnosed with severely impaired left ventricular function and complete left bundle branch block during an exacerbation of the disease. Cardiac dysfunction proved to be rapidly reversible after initiation of high-dose methylprednisolone.
Collapse
|
40
|
Raucci A, Di Maggio S, Scavello F, D'Ambrosio A, Bianchi ME, Capogrossi MC. The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol Life Sci 2019; 76:211-229. [PMID: 30306212 PMCID: PMC6339675 DOI: 10.1007/s00018-018-2930-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022]
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein involved in transcription regulation, DNA replication and repair and nucleosome assembly. HMGB1 is passively released by necrotic tissues or actively secreted by stressed cells. Extracellular HMGB1 acts as a damage-associated molecular pattern (DAMPs) molecule and gives rise to several redox forms that by binding to different receptors and interactors promote a variety of cellular responses, including tissue inflammation or regeneration. Inhibition of extracellular HMGB1 in experimental models of myocardial ischemia/reperfusion injury, myocarditis, cardiomyopathies induced by mechanical stress, diabetes, bacterial infection or chemotherapeutic drugs reduces inflammation and is protective. In contrast, administration of HMGB1 after myocardial infarction induced by permanent coronary artery ligation ameliorates cardiac performance by promoting tissue regeneration. HMGB1 decreases contractility and induces hypertrophy and apoptosis in cardiomyocytes, stimulates cardiac fibroblast activities, and promotes cardiac stem cell proliferation and differentiation. Interestingly, maintenance of appropriate nuclear HMGB1 levels protects cardiomyocytes from apoptosis by preventing DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac damage. Finally, higher levels of circulating HMGB1 are associated to human heart diseases. Hence, during cardiac injury, HMGB1 elicits both harmful and beneficial responses that may in part depend on the generation and stability of the diverse redox forms, whose specific functions in this context remain mostly unexplored. This review summarizes recent findings on HMGB1 biology and heart dysfunctions and discusses the therapeutic potential of modulating its expression, localization, and oxidative-dependent activities.
Collapse
Affiliation(s)
- Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy.
| | - Stefania Di Maggio
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Francesco Scavello
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Alessandro D'Ambrosio
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marco E Bianchi
- Chromatin Dynamics Unit, Università Vita-Salute San Raffaele, Milan, Italy
| | - Maurizio C Capogrossi
- Department of Cardiology, Ochsner Medical Center, New Orleans, USA
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, USA
| |
Collapse
|
41
|
De Luca G, Cavalli G, Campochiaro C, Tresoldi M, Dagna L. Myocarditis: An Interleukin-1-Mediated Disease? Front Immunol 2018; 9:1335. [PMID: 29951067 PMCID: PMC6008311 DOI: 10.3389/fimmu.2018.01335] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Moreno Tresoldi
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
42
|
Aryl Hydrocarbon Receptor: A New Player of Pathogenesis and Therapy in Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6058784. [PMID: 29984241 PMCID: PMC6015699 DOI: 10.1155/2018/6058784] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 01/04/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a DNA binding protein that acts as a nuclear receptor mediating xenobiotic metabolism and environmental responses. Owing to the evolutionary conservation of this gene and its widespread expression in the immune and circulatory systems, AhR has for many years been almost exclusively studied by the pharmacological/toxicological field for its role in contaminant toxicity. More recently, the functions of AhR in environmental adaption have been examined in the context of the occurrence, development, and therapy of cardiovascular diseases. Increasing evidence suggests that AhR is involved in maintaining homeostasis or in triggering pathogenesis by modulating the biological responses of critical cell types in the cardiovascular system. Here, we describe the structure, distribution, and ligands of AhR and the AhR signaling pathway and review the impact of AhR on cardiovascular physiology. We also discuss the potential contribution of AhR as a new potential factor in the targeted treatment of cardiovascular diseases.
Collapse
|
43
|
Roles of Host Immunity in Viral Myocarditis and Dilated Cardiomyopathy. J Immunol Res 2018; 2018:5301548. [PMID: 29854842 PMCID: PMC5964556 DOI: 10.1155/2018/5301548] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of viral myocarditis includes both the direct damage mediated by viral infection and the indirect lesion resulted from host immune responses. Myocarditis can progress into dilated cardiomyopathy that is also associated with immunopathogenesis. T cell-mediated autoimmunity, antibody-mediated autoimmunity (autoantibodies), and innate immunity, working together, contribute to the development of myocarditis and dilated cardiomyopathy.
Collapse
|
44
|
Casciaro M, Di Salvo E, Brizzi T, Rodolico C, Gangemi S. Involvement of miR-126 in autoimmune disorders. Clin Mol Allergy 2018; 16:11. [PMID: 29743819 PMCID: PMC5930861 DOI: 10.1186/s12948-018-0089-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Micro-RNA represent a great family of small non-condign ribonucleic acid molecules; in particular microRNA-126 is an important member of this family and is expressed in many human cells such as cardiomyocytes, endothelial and lung cells. Some studies have shown the implication of miR-126 in cancer, but recently significant progresses have also been made in determining the role of miR-126 regulating immune-related diseases; probably, in a near future, they could potentially serve as diagnostic biomarkers or therapeutic targets. OBJECTIVE The purpose of this review is to investigate the role of miR-126 in autoimmune diseases, so as to offer innovative therapies. RESULTS According literature, it was concluded that miRNAs, especially miR-126, are involved in many pathologies and that their expression levels increase in autoimmune diseases because they interfere with the transcription of the proteins involved. Since microRNAs can be detected from several biological sources, they may be attractive as potential biomarkers for the diagnosis, prognosis, disease activity and severity of various diseases. In fact, once confirmed the involvement of miR-126 in autoimmune diseases, it was speculated that it could be used as a promising biomarker. These discovers implicate that miR-126 have a central role in many pathways leading to the development and sustain of autoimmune diseases. Its key role make this microRNA a potential therapeutic target in autoimmunity. CONCLUSION Although miR-126 relevant role in several immune-related diseases, further studies are needed to clear its molecular mechanisms; the final step of these novel researches could be the blockage or the prevention of the diseases onset by creating of new targeted therapy.
Collapse
Affiliation(s)
- Marco Casciaro
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Messina University Hospital, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Teresa Brizzi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Messina University Hospital, 98125 Messina, Italy
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
45
|
Zhou N, Yue Y, Xiong S. Sex Hormone Contributes to Sexually Dimorphic Susceptibility in CVB3-Induced Viral Myocarditis via Modulating IFN-γ + NK Cell Production. Can J Cardiol 2018; 34:492-501. [DOI: 10.1016/j.cjca.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
|
46
|
Cardiovascular disease in patients with autoinflammatory syndromes. Rheumatol Int 2017; 38:37-50. [DOI: 10.1007/s00296-017-3854-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
|
47
|
Liu N, Su H, Zhang Y, Liu Z, Kong J. Cholecalciterol cholesterol emulsion attenuates experimental autoimmune myocarditis in mice via inhibition of the pyroptosis signaling pathway. Biochem Biophys Res Commun 2017; 493:422-428. [DOI: 10.1016/j.bbrc.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
|
48
|
Dhakal BP, Kim CH, Al-Kindi SG, Oliveira GH. Heart failure in systemic lupus erythematosus. Trends Cardiovasc Med 2017; 28:187-197. [PMID: 28927572 DOI: 10.1016/j.tcm.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a constellation of cardiovascular (CV) and non-CV manifestations. Even though CV complications such as accelerated atherosclerosis and elevated risk of myocardial infarction (MI) have been recognized for many years, there is limited evidence regarding SLE and its association with heart failure (HF). Traditional risk factors of atherosclerotic CV disease, as well as various SLE manifestations and therapies, independently or together, increase the risk of HF in this population. There is a need for sufficiently powered intervention studies focusing on specific risk factors to improve CV outcomes in SLE patients.
Collapse
Affiliation(s)
- Bishnu P Dhakal
- Division of Heart Failure and Cardiac Transplant, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Mailstop LKS 5038, Cleveland, OH 44106
| | - Chang H Kim
- Division of Heart Failure and Cardiac Transplant, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Mailstop LKS 5038, Cleveland, OH 44106
| | - Sadeer G Al-Kindi
- Division of Heart Failure and Cardiac Transplant, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Mailstop LKS 5038, Cleveland, OH 44106
| | - Guilherme H Oliveira
- Division of Heart Failure and Cardiac Transplant, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Mailstop LKS 5038, Cleveland, OH 44106.
| |
Collapse
|