1
|
Pei R, Wang J, He P, Yu Q, Zhang S, Shi G, Liu G, Li X. Risk factors for type 2 diabetes mellitus in Chinese rheumatoid arthritis patients from 2018 to 2022: a real-world, single-center, retrospective study. Front Immunol 2024; 15:1445639. [PMID: 39430749 PMCID: PMC11486693 DOI: 10.3389/fimmu.2024.1445639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction In patients with rheumatoid arthritis (RA), the increased risk of concomitant type 2 diabetes mellitus (T2D) is an important contributor to increased mortality and decreased quality of life; however, the mechanisms and pathogenetic factors remain unknown. Methods In this study, we aimed to assess the risk factors for T2D in patients with RA. We recruited 206 healthy controls and 488 patients with RA, 160 of whom had comorbid T2D. General clinical information, disease characteristics, and circulating lymphocyte levels detected using modified flow cytometry were collected from all participants. Logistic regression models adjusted for confounders were fitted to estimate the risk factors of T2D in patients with RA. Results The incidence of RA in patients with T2D was 15.6%. Patients with RA and T2D had a longer disease duration, higher BMI, and a higher incidence of hypertension and a family history of diabetes than those with RA but no T2D. The absolute numbers of T helper 2 cell (Th2) and Regulatory T cells (Treg) decreased in patients with RA and T2D, which led to an increase in the ratios of Th1/Th2 and Th17/Treg cells. Multivariate logistic regression analysis showed that a family history of diabetes, a higher incidence of hypertension, higher neutrophil-lymphocyte ratio (NLR) levels, lower platelet-lymphocyte ratio (PLR) levels, and fewer circulating Th2 and Treg cells were associated with an increased risk of T2D in patients with RA. Discussion The levels of peripheral lymphocytes, especially Th2 and Treg cells, are closely related to the occurrence of T2D in patients with RA; however, the influence of body mass index (BMI), family history of diabetes, and systemic inflammation should not be ignored.
Collapse
Affiliation(s)
- Ruomeng Pei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Gaoxiang Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Geliang Liu
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Zhu FM, Xu J, He QY, Deng YP, Liu MY, Liu Y, Sun J, Zhao H, Fu L, Yang J. Association of serum interleukin-2 with severity and prognosis in hospitalized patients with community-acquired pneumonia: a prospective cohort study. Intern Emerg Med 2024; 19:1929-1939. [PMID: 38967887 PMCID: PMC11467086 DOI: 10.1007/s11739-024-03699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
The prior studies have shown that interleukin-2 (IL-2) exerts important roles in the pathological and physiological processes of lung diseases. However, the role of IL-2 in community-acquired pneumonia (CAP) is still uncertain. Through a prospective cohort study, our research will explore the correlations between serum IL-2 levels and the severity and prognosis in CAP patients. There were 267 CAP patients included. Blood samples were obtained. Serum IL-2 were tested by enzyme-linked immunosorbent assay (ELISA). Demographic traits and clinical characteristics were extracted. Serum IL-2 were gradually elevated with increasing severity scores in CAP patients. Correlation analyses revealed that serum IL-2 were connected with physiological parameters including liver and renal function in CAP patients. According to a logistic regression analysis, serum IL-2 were positively correlated with CAP severity scores. We also tracked the prognostic outcomes of CAP patients. The increased risks of adversely prognostic outcomes, including mechanical ventilation, vasoactive agent usage, ICU admission, death, and longer hospital length, were associated with higher levels of IL-2 at admission. Serum IL-2 at admission were positively associated with severe conditions and poor prognosis among CAP patients, indicated that IL-2 may involve in the initiation and development of CAP. As a result, serum IL-2 may be an available biomarker to guide clinicians in assessing the severity and determining the prognosis of CAP.
Collapse
Affiliation(s)
- Feng-Min Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Juan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - You-Peng Deng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ming-Yan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Furong Road No 678, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
3
|
Chmiel J, Stasiak M, Skrzypkowska M, Samson L, Łuczkiewicz P, Trzonkowski P. Regulatory T lymphocytes as a treatment method for rheumatoid arthritis - Superiority of allogeneic to autologous cells. Heliyon 2024; 10:e36512. [PMID: 39319132 PMCID: PMC11419861 DOI: 10.1016/j.heliyon.2024.e36512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cellular therapies utilizing regulatory T cells (Tregs) have flourished in the autoimmunity space as a new pillar of medicine. These cells have shown a great promise in the treatment of such devastating conditions as type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE) and graft versus host disease (GVHD). Novel treatment protocols, which utilize Tregs-mediated suppressive mechanisms, are based on the two main strategies: administration of immunomodulatory factors affecting Tregs or adoptive cell transfer (ACT). ACT involves extraction, in vitro expansion and subsequent administration of Tregs that could be either of autologous or allogeneic origin. Rheumatoid arthritis (RA) is another autoimmune candidate where this treatment approach is being considered. RA remains an especially challenging adversary since it is one of the most frequent and debilitating conditions among all autoaggressive disorders. Noteworthy, Tregs circulating in RA patients' blood have been proven defective and unable to suppress inflammation and joint destruction. With this knowledge, adoptive transfer of compromised autologous Tregs in the fledgling clinical trials involving RA patients should be reconsidered. In this article we hypothesize that incorporation of healthy donor allogeneic Tregs may provide more lucid and beneficial results.
Collapse
Affiliation(s)
- Joanna Chmiel
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Mariusz Stasiak
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Lucjan Samson
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| |
Collapse
|
4
|
Wu M, Yu S, Yan S, Wu M, Zhang L, Chen S, Shi D, Liu S, Fan Y, Lin X, Shen J. Peroxynitrite reduces Treg cell expansion and function by mediating IL-2R nitration and aggravates multiple sclerosis pathogenesis. Redox Biol 2024; 75:103240. [PMID: 38889621 PMCID: PMC11231601 DOI: 10.1016/j.redox.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
T-helper 17 cells and regulatory T cells (Treg) are critical regulators in the pathogenesis of multiple sclerosis (MS) but the factors affecting Treg/Th17 balance remains largely unknown. Redox balance is crucial to maintaining immune homeostasis and reducing the severity of MS but the underlying mechanisms are unclear yet. Herein, we tested the hypothesis that peroxynitrite, a representative molecule of reactive nitrogen species (RNS), could inhibit peripheral Treg cells, disrupt Treg/Th17 balance and aggravate MS pathology by inducing nitration of interleukin-2 receptor (IL-2R) and down-regulating RAS/JNK-AP-1 signalling pathway. Experimental autoimmune encephalomyelitis (EAE) mouse model and serum samples of MS patients were used in the study. We found that the increases of 3-nitrotyrosine and IL-2R nitration in Treg cells were coincided with disease severity in the active EAE mice. Mechanistically, peroxynitrite-induced IL-2R nitration down-regulated RAS/JNK signalling pathway, subsequently impairing peripheral Treg expansion and function, increasing Teff infiltration into the central nerve system (CNS), aggravating demyelination and neurological deficits in the EAE mice. Those changes were abolished by peroxynitrite decomposition catalyst (PDC) treatment. Furthermore, transplantation of the PDC-treated-autologous Treg cells from donor EAE mice significantly decreased Th17 cells in both axillary lymph nodes and lumbar spinal cord, and ameliorated the neuropathology of the recipient EAE mice. Those results suggest that peroxynitrite could disrupt peripheral Treg/Th17 balance, and aggravate neuroinflammation and neurological deficit in active EAE/MS pathogenesis. The underlying mechanisms are related to induce the nitration of IL-2R and inhibit the RAS/JNK-AP-1 signalling pathway in Treg cells. The study highlights that targeting peroxynitrite-mediated peripheral IL-2R nitration in Treg cells could be a novel therapeutic strategy to restore Treg/Th17 balance and ameliorate MS/EAE pathogenesis. The study provides valuable insights into potential role of peripheral redox balance in maintaining CNS immune homeostasis.
Collapse
MESH Headings
- Peroxynitrous Acid/metabolism
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/immunology
- Mice
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Humans
- Receptors, Interleukin-2/metabolism
- Female
- Signal Transduction/drug effects
- Disease Models, Animal
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Male
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Sulan Yu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shenyu Yan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Minghui Wu
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Lu Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China
| | - Shanlin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China; Free Radical Regulation and Application Research Center of Fudan University, Shanghai, 200000, China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
5
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Lu Y, Pei Y, Gao Y, Zhao F, Wang L, Zhang Y. Unraveling the genetic basis of the causal association between inflammatory cytokines and osteonecrosis. Front Endocrinol (Lausanne) 2024; 15:1344917. [PMID: 38745949 PMCID: PMC11091469 DOI: 10.3389/fendo.2024.1344917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Background Previous studies have reported that the occurrence and development of osteonecrosis is closely associated with immune-inflammatory responses. Mendelian randomization was performed to further assess the causal correlation between 41 inflammatory cytokines and osteonecrosis. Methods Two-sample Mendelian randomization utilized genetic variants for osteonecrosis from a large genome-wide association study (GWAS) with 606 cases and 209,575 controls of European ancestry. Another analysis included drug-induced osteonecrosis with 101 cases and 218,691 controls of European ancestry. Inflammatory cytokines were sourced from a GWAS abstract involving 8,293 healthy participants. The causal relationship between exposure and outcome was primarily explored using an inverse variance weighting approach. Multiple sensitivity analyses, including MR-Egger, weighted median, simple model, weighted model, and MR-PRESSO, were concurrently applied to bolster the final results. Results The results showed that bFGF, IL-2 and IL2-RA were clinically causally associated with the risk of osteonecrosis (OR=1.942, 95% CI=1.13-3.35, p=0.017; OR=0.688, 95% CI=0.50-0.94, p=0.021; OR=1.386, 95% CI=1.04-1.85, p = 0.026). there was a causal relationship between SCF and drug-related osteonecrosis (OR=3.356, 95% CI=1.09-10.30, p=0.034). Conclusion This pioneering Mendelian randomization study is the first to explore the causal link between osteonecrosis and 41 inflammatory cytokines. It conclusively establishes a causal association between osteonecrosis and bFGF, IL-2, and IL-2RA. These findings offer valuable insights into osteonecrosis pathogenesis, paving the way for effective clinical management. The study suggests bFGF, IL-2, and IL-2RA as potential therapeutic targets for osteonecrosis treatment.
Collapse
Affiliation(s)
- Yining Lu
- Department of Orthopedic Research Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Orthopedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Pei
- Department of Orthopedic Research Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - YiMing Gao
- Department of Orthopedic Research Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - FeiFei Zhao
- Department of Orthopedic Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ling Wang
- Department of Orthopedic Research Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yingze Zhang
- Department of Orthopedic Research Center, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Orthopedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
8
|
Su R, Zhang T, Wang H, Yan G, Wu R, Zhang X, Gao C, Li X, Wang C. New sights of low dose IL-2: Restoration of immune homeostasis for viral infection. Immunology 2024; 171:324-338. [PMID: 37985960 DOI: 10.1111/imm.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Viral infection poses a significant threat to human health. In addition to the damage caused by viral replication, the immune response it triggers often leads to more serious adverse consequences. After the occurrence of viral infection, in addition to the adverse consequences of infection, chronic infections can also lead to virus-related autoimmune diseases and tumours. At the same time, the immune response triggered by viral infection is complex, and dysregulated immune response may lead to the occurrence of immune pathology and macrophage activation syndrome. In addition, it may cause secondary immune suppression, especially in patients with compromised immune system, which could lead to the occurrence of secondary infections by other pathogens. This can often result in more severe clinical outcomes. Therefore, regarding the treatment of viral infections, restoring the balance of the immune system is crucial in addition to specific antiviral medications. In recent years, scientists have made an interesting finding that low dose IL-2 (ld-IL-2) could potentially have a crucial function in regulating the immune system and reducing the chances of infection, especially viral infection. Ld-IL-2 exerts immune regulatory effects in different types of viral infections by modulating CD4+ T subsets, CD8+ T cells, natural killer cells, and so on. Our review summarised the role of IL-2 or IL-2 complexes in viral infections. Ld-IL-2 may be an effective strategy for enhancing host antiviral immunity and preventing infection from becoming chronic; additionally, the appropriate use of it can help prevent excessive inflammatory response after infection. In the long term, it may reduce the occurrence of infection-related autoimmune diseases and tumours by promoting the restoration of early immune homeostasis. Furthermore, we have also summarised the application of ld-IL-2 in the context of autoimmune diseases combined with viral infections; it may be a safe and effective strategy for restoring immune homeostasis without compromising the antiviral immune response. In conclusion, focusing on the role of ld-IL-2 in viral infections may provide a new perspective for regulating immune responses following viral infections and improving prognosis.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Gaofei Yan
- Second department, Hamony Long Stomatological Hospital, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital/Children's Hospital Boston, Joint Program in Transfusion Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Su Q, Wang X, Li Y, Zhang J, Bai C, Wang X, Yang L, Zhang J, Zhang SX. Efficacy, Safety and the Lymphocyte Subset Changes of Low-Dose IL-2 in Patients with Autoimmune Rheumatic Diseases: A Systematic Review and Meta-Analysis. Rheumatol Ther 2024; 11:79-96. [PMID: 37980696 PMCID: PMC10796881 DOI: 10.1007/s40744-023-00620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023] Open
Abstract
INTRODUCTION Current therapies for autoimmune rheumatic diseases (ARDs) have limited efficacy in certain patients, highlighting the need for the development of novel treatment approaches. This meta-analysis aims to assess the efficacy and safety of low-dose interleukin-2 (LD-IL-2) and evaluate the alterations in lymphocyte subsets in various rheumatic diseases following administration of different dosages of LD-IL-2. METHODS A comprehensive search was conducted in PubMed, Web of Science, the Cochrane Library, Embase databases and CNKI to identify relevant studies. A total of 31 trials were included in this meta-analysis. The review protocols were registered on PROSPERO (CRD42022318916), and the study followed the PRISMA guidelines. RESULTS Following LD-IL-2 treatment, patients with ARDs exhibited a significant increase in the number of Th17 cells and Tregs compared to their pre-treatment levels [standardized mean difference (SMD) = 0.50, 95% confidence interval (CI) (0.33, 0.67), P < 0.001; SMD = 1.13, 95% CI (0.97, 1.29), P < 0.001]. Moreover, the Th17/Tregs ratio showed a significant decrease [SMD = - 0.54, 95% CI (- 0.64, - 0.45), P < 0.001]. In patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), LD-IL-2 injection led to a significant increase in Treg numbers, and the Th17/Tregs ratio and disease activity scores, including Disease Activity Score-28 joints (DAS28), Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI) and Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), were all significantly reduced. No serious adverse events were reported in any of the included studies. Additionally, 54.8% of patients with lupus nephritis achieved distinct clinical remission following LD-IL-2 treatment. Injection site reactions and fever were the most common side effects of LD-IL-2, occurring in 33.1% and 14.4% of patients, respectively. CONCLUSION LD-IL-2 treatment showed promise and was well tolerated in the management of ARDs, as it effectively promoted the proliferation and functional recovery of Tregs. TRIAL REGISTRATION Retrospectively registered (CRD42022318916, 21/04/2022).
Collapse
Affiliation(s)
- Qinyi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382. Wuyi Road, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xinmiao Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yongzhi Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jiexiang Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Cairui Bai
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xuechun Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Liu Yang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jingting Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, 382. Wuyi Road, Taiyuan, Shanxi, China.
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
10
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Zhang J, Liu H, Chen Y, Liu H, Zhang S, Yin G, Xie Q. Augmenting regulatory T cells: new therapeutic strategy for rheumatoid arthritis. Front Immunol 2024; 15:1312919. [PMID: 38322264 PMCID: PMC10844451 DOI: 10.3389/fimmu.2024.1312919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked by inflammation of the joints, degradation of the articular cartilage, and bone resorption. Recent studies found the absolute and relative decreases in circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of cells exhibiting immunosuppressive functions, known for expressing the Foxp3 gene. They are instrumental in maintaining immunological tolerance and preventing autoimmunity. Increasing the absolute number and/or enhancing the function of Tregs are effective strategies for treating RA. This article reviews the studies on the mechanisms and targeted therapies related to Tregs in RA, with a view to provide better ideas for the treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Zi X, Su R, Su R, Wang H, Li B, Gao C, Li X, Wang C. Elevated serum IL-2 and Th17/Treg imbalance are associated with gout. Clin Exp Med 2024; 24:9. [PMID: 38240927 PMCID: PMC10799120 DOI: 10.1007/s10238-023-01253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Gout is considered an auto-inflammatory disorder, and the immunological drivers have not been fully unraveled. This study compared the peripheral lymphocyte and CD4+T cell subsets, and cytokines in gout and healthy controls (HCs) to explore the contributions of T helper 17 (Th17) cells, T regulatory (Treg) cells and cytokines to the pathogenesis of gout. We enrolled 126 gout patients (53 early-onset gout with age of first presentation < 40 years, and 73 late-onset gout with age of first presentation ≥ 40 years) and 77 HCs. Percentage and absolute numbers of peripheral lymphocyte and CD4+T cell subpopulations in each group were detected by flow cytometry. The serum cytokine levels were determined by flow cytometric bead array. For circulating CD4+T cell subsets, Th17/Treg ratio was significantly higher in early-onset gout, late-onset gout and gout without tophus than HCs; Th17 cells were significantly elevated in early-onset gout and gout without tophus, while the percentage of Treg cells was significantly decreased in early-onset and late-onset gout. Additionally, gout patients had significantly higher cytokines levels (including IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ, and TNF-α) than HCs; IL-2 levels were positively correlated with Treg cells and negatively correlated with ESR. ROC analysis showed that disease duration, CRP and fibrinogen, had moderate predictive performances for tophus in gout (the AUCs were 0.753, 0.703 and 0.701, respectively). Our study suggests that early-onset and late-onset gout differ in Th17/Treg imbalance, which in early-onset gout is due to elevated Th17 cells and in late-onset gout is due to decreased Treg cells. And increased serum cytokine levels, especially IL-2, may play an essential role in that. Restoring Th17/Treg balance may be a crucial way to improve the prognosis of gout patients.
Collapse
Affiliation(s)
- Xiaoyu Zi
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Ronghui Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Baochen Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Valdivieso Shephard JL, Alvarez Robles EJ, Cámara Hijón C, Hernandez Breijo B, Novella-Navarro M, Bogas Schay P, Cuesta de la Cámara R, Balsa Criado A, López Granados E, Plasencia Rodríguez C. Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters. Heliyon 2024; 10:e22925. [PMID: 38163219 PMCID: PMC10754867 DOI: 10.1016/j.heliyon.2023.e22925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a heterogeneous disease in which therapeutic strategies used have evolved dramatically. Despite significant progress in treatment strategies such as the development of anti-TNF drugs, it is still not possible to differentiate those patients who will respond from who will not. This can lead to effective-treatment delays and unnecessary costs. The aim of this study was to utilize a profile of the patient's characteristics, clinical parameters, immune status (cytokine profile) and artificial intelligence to assess the feasibility of developing a tool that could allow us to predict which patients will respond to treatment with anti-TNF drugs. Methods This study included 38 patients with RA from the RA-Paz cohort. Clinical activity was measured at baseline and after 6 months of treatment. The cytokines measured before the start of anti-TNF treatment were IL-1, IL-12, IL-10, IL-2, IL-4, IFNg, TNFa, and IL-6. Statistical analyses were performed using the Wilcoxon-Rank-Sum Test and the Benjamini-Hochberg method. The predictive model viability was explored using the 5-fold cross-validation scheme in order to train the logistic regression models. Results Statistically significant differences were found in parameters such as IL-6, IL-2, CRP and DAS-ESR. The predictive model performed to an acceptable level in correctly classifying patients (ROC-AUC 0.804167 to 0.891667), suggesting that it would be possible to develop a clinical classification tool. Conclusions Using a combination of parameters such as IL-6, IL-2, CRP and DAS-ESR, it was possible to develop a predictive model that can acceptably discriminate between remitters and non-remitters. However, this model needs to be replicated in a larger cohort to confirm these findings.
Collapse
Affiliation(s)
| | | | | | - Borja Hernandez Breijo
- Immunology-Rheumatology Research Group, Hospital Universitario La Paz-Idipaz, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Wu R, Wang D, Cheng L, Su R, Li B, Fan C, Gao C, Wang C. Impaired immune tolerance mediated by reduced Tfr cells in rheumatoid arthritis linked to gut microbiota dysbiosis and altered metabolites. Arthritis Res Ther 2024; 26:21. [PMID: 38218985 PMCID: PMC10787489 DOI: 10.1186/s13075-023-03260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Patients with rheumatoid arthritis (RA) showed impaired immune tolerance characterized by reduced follicular regulatory T (Tfr) cells, and they also exhibited altered gut microbiotas and their metabolites in RA. However, the association of gut microbiotas and their metabolites with the immune tolerance mediated by Tfr cells in RA remains unclear. METHODS Peripheral blood and stool samples were collected from 32 new-onset RA patients and 17 healthy controls (HCs) in the Second Hospital of Shanxi Medical University between January 2022 and June 2022. The peripheral blood was used to detect the circulating regulatory T (Treg), helper T(Th)17, Tfr, and follicular helper T (Tfh) cells by modified flow cytometry. The stool samples were used to analyze the gut microbiotas and their metabolites via 16S rDNA sequencing and metabolomic profiling. We aimed to characterize the gut microbiotas and their metabolites in RA and identified their association with Tfr cell-mediated immune tolerance. RESULTS The new-onset RA demonstrated reduced Treg and Tfr cells, associated with the disease activity and autoantibodies. There were significant differences in gut microbiotas between the two groups as the results of β diversity analysis (P = 0.039) including 21 differential gut microbiotas from the phylum to genus levels. In which, Ruminococcus 2 was associated with the disease activity and autoantibodies of RA, and it was identified as the potential biomarker of RA [area under curve (AUC) = 0.782, 95% confidence interval (CI) = 0.636-0.929, P = 0.001]. Eleven differential metabolites were identified and participated in four main pathways related to RA. Arachidonic acid might be the potential biomarker of RA (AUC = 0.724, 95% CI = 0.595-0.909, P = 0.038), and it was the core metabolite as the positive association with six gut microbiotas enriched in RA. The reduced Tfr cells were associated with the altered gut microbiotas and their metabolites including the Ruminococcus 2, the arachidonic acid involved in the biosynthesis of unsaturated fatty acid pathway and the 3-methyldioxyindole involved in the tryptophan metabolism pathway. CONCLUSION The breakdown of immune tolerance mediated by reduced Tfr cells was associated with the altered gut microbiotas and their metabolites implying the possible mechanism of RA pathogenesis from the perspective of microecology-metabolism-immune.
Collapse
Affiliation(s)
- Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Dongming Wang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chunxue Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
15
|
Zhao Y, Wang H, Jin L, Zhang Z, Liu L, Zhou M, Zhang X, Zhang L. Targeting fusion proteins of the interleukin family: A promising new strategy for the treatment of autoinflammatory diseases. Eur J Pharm Sci 2024; 192:106647. [PMID: 37984595 DOI: 10.1016/j.ejps.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As a means of communication between immune cells and non-immune cells, Interleukins (ILs) has the main functions of stimulating the proliferation and activation of inflammatory immune cells such as dendritic cells and lymphocytes, promote the development of blood cells and so on. However, dysregulation of ILs expression is a major feature of autoinflammatory diseases. The drugs targeting ILs or IL-like biologics have played an important role in the clinical treatment of autoinflammatory diseases. Nevertheless, the widespread use of IL products may result in significant off-target adverse reactions. Thus, there is a clear need to develop next-generation ILs products in the biomedical field. Fusion proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Over the last 30 years, there has been increasing interest in the use of fusion protein technology for developing anti-inflammatory drugs. In comparison to single-target drugs, fusion proteins, as multiple targets drugs, have the ability to enhance the cytokine therapeutic index, resulting in improved efficacy over classical drugs. The strategy of preparing ILs or their receptors as fusion proteins is increasingly used in the treatment of autoimmune and chronic inflammation. This review focuses on the efficacy of several fusion protein drugs developed with ILs or their receptors in the treatment of autoinflammatory diseases, in order to illustrate the prospects of this new technology as an anti-inflammatory drug development protocol in the future.
Collapse
Affiliation(s)
- Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
16
|
Su Q, Luo J, Wang X, Di J, Cao Y, Zhang S. Efficacy, safety and the lymphocyte subsets changes of low-dose IL-2 in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Immun Inflamm Dis 2024; 12:e1165. [PMID: 38270322 PMCID: PMC10808945 DOI: 10.1002/iid3.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Existing therapies of systemic lupus erythematosus (SLE) are efficacious only in certain patients. Developing new treatment methods is urgent. This meta-analysis aimed to evaluate the efficacy and safety of low-dose IL-2 (LD-IL-2). METHODS According to published data from PubMed, Web of Science, Embase, ClinicalTrials.gov, MEDLINE, MEDLINE, Web of Knowledge, Cochrane Library, and FDA.gov, eight trials were included. RESULTS After the LD-IL-2 treatment, 54.8% of patients had distinct clinical remission. The SRI-4 response rates were 0.819 (95% confidence interval [CI]: 0.745-0.894), and the SELENA-SLEDAI scores were significantly decreased (SMD = -2.109, 95% CI: [-3.271, -0.947], p < .001). Besides, the proportions of CD4+ T (SMD = 0.614, 95% CI: [0.250, 0.979], p = .001) and Treg cells (SMD = 1.096, 95% CI: [0.544, 1.649], p < .001) were increased dramatically after LD-IL-2 treatment, while there were no statistical differences in the proportions of CD8+ T cells, Th1 cells, Th2 cells, and Th17 cells (p > .05). Besides, the proportions of Th17 (SMD = 1.121, 95% CI: [0.709, 1.533], p < .001) and Treg (SMD = 0.655, 95% CI: [0.273, 1.038], p = .001) were significantly increased after receiving subcutaneously 0.5 million IU of LD-IL-2 treatment per day for 5 days, but there were no statistical differences in the proportions of Treg after receiving 1 million IU every other day subcutaneously of LD-IL-2 treatment. Injection site reaction and fever were common side effects of IL-2, which occurred in 33.1% and 14.4% of patients. No serious adverse events were reported. CONCLUSION LD-IL-2 was promising and well-tolerated in treating SLE, which could promote Treg's proliferation and functional recovery. Injecting 0.5 million IU of IL-2 daily can better induce the differentiation of Treg cells and maintain immune homeostasis than injecting 1 million IU every other day.
Collapse
Affiliation(s)
- Qin‐Yi Su
- Department of RheumatologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Provincial Key Laboratory of Rheumatism Immune MicroecologyTaiyuanShanxiChina
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanChina
| | - Jing Luo
- Department of RheumatologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Provincial Key Laboratory of Rheumatism Immune MicroecologyTaiyuanShanxiChina
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanChina
| | - Xin‐Miao Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune MicroecologyTaiyuanShanxiChina
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanChina
| | - Jing‐Kai Di
- Shanxi Provincial Key Laboratory of Rheumatism Immune MicroecologyTaiyuanShanxiChina
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanChina
| | - Yi‐Xin Cao
- Shanxi Provincial Key Laboratory of Rheumatism Immune MicroecologyTaiyuanShanxiChina
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanChina
| | - Sheng‐Xiao Zhang
- Department of RheumatologyThe Second Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Provincial Key Laboratory of Rheumatism Immune MicroecologyTaiyuanShanxiChina
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanChina
| |
Collapse
|
17
|
Xie Y, Zhang T, Su R, Liu L, Jiang L, Xue H, Gao C, Li X, Wang C. Increased serum soluble interleukin-2 receptor levels in dermatomyositis are associated with Th17/Treg immune imbalance. Clin Exp Med 2023; 23:3605-3617. [PMID: 37528249 DOI: 10.1007/s10238-023-01155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Dermatomyositis (DM) represents a multifaceted chronic inflammatory myopathy, primarily manifesting as progressive deterioration of muscular and cutaneous tissues. Despite an incomplete comprehension of DM's etiology and pathogenesis, current evidence implicates the involvement of T lymphocyte infiltration, extensive cytokine release, myositis-specific antibodies, and myositis-associated antibodies in disease development. Serum soluble interleukin-2 receptor (sIL-2R) frequently serves as a marker for T cell activation; however, its role remains elusive. Consequently, this investigation sought to elucidate the association between sIL-2R levels, peripheral blood lymphocyte subset counts, and related cytokines in DM patients, with the aim of uncovering the intricate mechanisms underlying DM and establishing a theoretical foundation for the implementation of precise, targeted, individualized immunomodulatory therapy. In this study, a cohort of 60 dermatomyositis (DM) patients, comprising 32 with inactive DM and 28 with active DM, was enrolled and stratified into inactive and active groups based on the Myositis Disease Activity Visual Analogue Scale (MYOACT). Flow cytometry was employed to quantify the absolute counts of peripheral lymphocyte subsets and CD4+T cell subsets in each group, while a flow cytometry bead array was utilized to measure serum cytokine levels. In a comparative analysis between healthy individuals and patients diagnosed with DM, we observed a marked elevation in serum sIL-2R concentrations (P < 0.001) and T-helper 17 cell/regulatory T cell (Th17/Treg) ratios (P < 0.01) within the latter group. A positive correlation was identified between serum sIL-2R levels and various parameters, including ESR, CRP, VAS, AST, CKMB, LDH, HBDH, PT, APTT, DDi, IL-6, IL-10, and IFN-γlevels (P < 0.05). In contrast, serum sIL-2R levels demonstrated a negative correlation with LY, HGB, ALB, Th17 cell populations, and Th17/Treg cell ratios (P < 0.05). Employing multivariate logistic regression, we identified serum sIL-2R concentrations as an independent risk factor for both disease activity and hepatic involvement in DM patients. Moreover, receiver operating characteristic (ROC) curve analyses revealed that serum sIL-2R levels significantly contributed to the differentiation of disease activity and the detection of liver involvement in DM patients, with areas under the ROC curve (AUC) of 0.757 (95% CI 0.630-0.884, P = 0.001) and 0.826 (95% CI 0.717-0.935, P < 0.001), respectively. This study highlights the potential utility of serum sIL-2R levels as a valuable biomarker for assessing disease activity and liver involvement in dermatomyositis. Elevated serum concentrations of sIL-2R were observed in patients with DM, exhibiting significant associations with Th17 cell populations and Th17/ Treg ratios. These findings indicate that sIL-2R may be implicated in the immunopathogenesis of DM, thereby warranting further investigation to elucidate its role in the disease process.
Collapse
Affiliation(s)
- Yuhuan Xie
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Lu Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Lei Jiang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
18
|
Rafaqat S, Rafaqat S. Role of IL-2/IL-2 receptor in pathogenesis of autoimmune disorders: Genetic and therapeutic aspects. World J Med Genet 2023; 11:28-38. [DOI: 10.5496/wjmg.v11.i3.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Interleukin-2 (IL-2) is an important cytokine that plays a key role in the immune response. The IL-2 receptor (IL-2R) is composed of three subunits, alpha, beta, and gamma, with the alpha subunit having the highest affinity for IL-2. Several studies reported that immune dysregulation of IL-2 may cause tissue injury as well as damage leading to the pathogenesis of various autoimmune diseases such as acute necrotizing vasculitis in systemic lupus erythematosus (SLE), inflammatory synovitis in rheumatoid arthritis (RA), salivary and lacrimal gland dys-function in Sjogren syndrome (SS), obliterative vasculopathy fibrosis in systemic sclerosis (SSc), and inflammatory demyelination in multiple sclerosis (MS). The aim of this review paper was to examine the role of IL-2/IL-2R in various autoimmune disorders, taking into account recent advancements and discoveries, gaps in the current literature, ongoing debates, and potential avenues for future research. The focus of this review is on systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, sjogren syndrome, and multiple sclerosis, which are all linked to the malfunctioning of IL-2/IL-2R. In genetic studies, gene polymorphisms of IL-2 such as IL-2 330/T, IL-2 330/G, and rs2069763 are involved in increasing the risk of SLE. Furthermore, genetic associations of IL-2/IL-2R such as rs791588, rs2281089, rs2104286, rs11594656, and rs35285258 are significantly associated with RA susceptibility. The IL-2 polymorphism including rs2069762A, rs6822844T, rs6835457G, and rs907715T are significant connections with systemic sclerosis. In addition, rs2104286 (IL-2), rs11594656 (IL-2RA), rs35285258 (IL-2RB) gene polymorphism significant increases the risk of multiple sclerosis. In therapeutic approaches, low-dose IL-2 therapy could regulate Tfr and Tfh cells, resulting in a reduction in disease activity in the SLE patients. In addition, elevated sIL-2R levels in the peripheral blood of SLE patients could be linked to an immunoregulatory imbalance, which may contribute to the onset and progression of SLE. Consequently, sIL-2R could potentially be a target for future SLE therapy. Moreover, Low dose-IL2 was well-tolerated, and low levels of Treg and high levels of IL-21 were associated with positive responses to Ld-IL2 suggested to be a safe and effective treatment for RA. Additionally, low-dose IL-2 treatment improves the exocrine glands' ability to secrete saliva in SS-affected mice. Whereas, Basiliximab targets the alpha chain of the IL-2 receptor suggested as a potential treatment for SSc. Also, pre-and post-treatment with Tregs, MDSCs, and IL-2 may have the potential to prevent EAE induction in patients with MS. It is suggested that further studies should be conducted on IL-2 polymorphism in Sjogren syndrome.
Collapse
Affiliation(s)
- Sana Rafaqat
- Department of Biotechnology (Specialized in Human Genetics), Lahore College for Women University, Lahore 54000, Pakistan
| | - Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan
| |
Collapse
|
19
|
Cheng L, Liu L, Su R, Yan H, Zi X, Gao C, Li X, Wang C. The decreased of peripheral blood natural killer cell is associated with serum IL-2 level in the renal tubular acidosis in patients with primary sjogren's syndrome. BMC Immunol 2023; 24:17. [PMID: 37391717 PMCID: PMC10314557 DOI: 10.1186/s12865-023-00550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Primary Sjogren's Syndrome (pSS) is a lymphoproliferative disease with autoimmune characteristics, which is characterized by lymphocyte infiltration of exocrine glands and involvement and dysfunction of extraglandular organs. Renal tubular acidosis (RTA) is a common renal involvement in pSS. This study investigated the phenotypic characteristics of peripheral blood lymphocyte subsets and cytokines in pSS patients complicated with RTA (pSS-RTA). METHOD This retrospective study included 25 pSS patients complicated with RTA and 54 pSS patients without RTA (pSS-no-RTA). To examine the level of peripheral lymphocytes subsets, flow cytometry analysis was used. The level of serum cytokines were detected by flow cytometry bead array(CBA). The influencing factors related to the occurrence of pSS-RTA were identified through logistic regression analyze. RESULTS The absolute number of CD4 + T cells and Th2 cells in peripheral blood were decreased in pSS-RTA patients than pSS-no-RTA patients. Moreover, the absolute number of NK cells and Treg cells were also decreased in pSS-RTA patients than pSS-no-RTA. The level of serum IL-2 was higher in pSS-RTA patients than pSS-no-RTA patients, and is negatively correlated with the number of NK cells, the number and percentage of Th17 cells, and Th17/Treg. Serum IL-2 level is also correlated with various cytokines. Multivariate logistic analysis proved that elevated ESR and ALP were risk factors for pSS complicated with RTA, while Treg was a protective factor. CONCLUSION The increase of serum IL-2 level and the decrease of peripheral blood NK cells and Treg cells may be the immune mechanism of the development of pSS-RTA disease.
Collapse
Affiliation(s)
- Liyun Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lu Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ronghui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huanhuan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Zi
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
20
|
Yu X, Mai Y, Wei Y, Yu N, Gao T, Yang J. Therapeutic potential of tolerance-based peptide vaccines in autoimmune diseases. Int Immunopharmacol 2023; 116:109740. [PMID: 36696858 DOI: 10.1016/j.intimp.2023.109740] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Autoimmune diseases are caused by the dysfunction of the body's immune regulatory system, which leads to the recognition of self-antigens and the destruction of self-tissues and is mediated by immune cells such as T and B cells, and affects 5-10% of the population worldwide. Current treatments such as non-steroidal anti-inflammatory drugs and glucocorticoids can only relieve symptoms of the disease and are accompanied by serious side effects that affect patient quality of life. The recent rise in antigen-specific therapies, especially vaccines carrying autoantigenic peptides, promises to change this disadvantage, where research has increased dramatically in the last decade. This therapy established specific immune tolerance by delivering peptide fragments containing disease-specific self-antigen epitopes to suppress excessive immune responses, thereby exerting a therapeutic effect, with high safety and specificity. This article presents the latest progress on the treatment of autoimmune diseases with autoantigen peptide vaccines. It includes the construction of peptide vaccine delivery system, the mechanism of inducing immune tolerance and its application.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
21
|
Yan H, Yan H, Liu L, Su R, Gao C, Li X, Wang C. Low-dose interleukin-2 treatment increases the proportion of regulatory T cells in patients with rheumatic diseases: A meta-analysis. Autoimmun Rev 2023; 22:103270. [PMID: 36627065 DOI: 10.1016/j.autrev.2023.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND It is now accepted that immune tolerance disorders caused by inadequate Treg cell function or number are important factors in the development and progression of rheumatic diseases. There is increasing evidence that ld IL-2 treatment increases the proportion of Treg cells in patients' peripheral blood, but this conclusion is still controversial. Here, we performed a meta-analysis of reports documenting the proportion of Treg cells and the rate of adverse events in patients with rheumatic disease before and after the administration of ld IL-2 to better understand its effect and safety on Treg cells in the field of rheumatic diseases. METHODS We systematically searched PubMed, Embase, Scopus, Cochrane Library, and Web of science databases up to 15th November 2022 and identified studies that reported the proportion of peripheral blood Treg cells before and after ld IL-2 treatment in patients with rheumatic disease. Random-effects model was used to perform a meta-analysis of Treg cell proportions before and after ld IL-2 administration, and a meta-regression analysis was performed to explore heterogeneity. Inconsistency was evaluated using the I-squared index (I2), and publication bias was assessed by examining funnel plot asymmetry using the Egger tests. RESULTS Eighteen studies involving 1608 patients were included in the meta-analysis. The proportion of Treg cells in peripheral blood of these patients increased significantly after receiving ld IL-2 treatment [1.07 (95% CI 0.86,1.27), p < 0.001, I2 = 67.3%]. Next, Meta-regression was performed for 5 variables including publish year, disease type, trail type and dosage and duration of the medication. The results suggest that these variables do not lead to high heterogeneity. (p = 0.698, 0.267, 0.502, 0.843, 0.560, respectively). And finally, statistical analysis showed no difference in adverse reactions between ld IL-2 group and control group in treatment [1.06 (95% CI 0.86,1.31), p = 0.586, I2 = 53.8%], which is unreliable because the data is so small. CONCLUSIONS Ld IL-2 does increase the proportion of peripheral blood Treg cells in patients with rheumatism, and single and cumulative doses must be considered when using ld IL-2. In addition, more studies on the safety of ld IL-2 are urgently needed.
Collapse
Affiliation(s)
- Huanhuan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Huer Yan
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lu Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women' Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
22
|
Heng H, Li D, Su W, Liu X, Yu D, Bian Z, Li J. Exploration of comorbidity mechanisms and potential therapeutic targets of rheumatoid arthritis and pigmented villonodular synovitis using machine learning and bioinformatics analysis. Front Genet 2023; 13:1095058. [PMID: 36685864 PMCID: PMC9853060 DOI: 10.3389/fgene.2022.1095058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease. Pigmented villonodular synovitis (PVNS) is a tenosynovial giant cell tumor that can involve joints. The mechanisms of co-morbidity between the two diseases have not been thoroughly explored. Therefore, this study focused on investigating the functions, immunological differences, and potential therapeutic targets of common genes between RA and PVNS. Methods: Through the dataset GSE3698 obtained from the Gene Expression Omnibus (GEO) database, the differentially expressed genes (DEGs) were screened by R software, and weighted gene coexpression network analysis (WGCNA) was performed to discover the modules most relevant to the clinical features. The common genes between the two diseases were identified. The molecular functions and biological processes of the common genes were analyzed. The protein-protein interaction (PPI) network was constructed using the STRING database, and the results were visualized in Cytoscape software. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) logistic regression and random forest (RF) were utilized to identify hub genes and predict the diagnostic efficiency of hub genes as well as the correlation between immune infiltrating cells. Results: We obtained a total of 107 DEGs, a module (containing 250 genes) with the highest correlation with clinical characteristics, and 36 common genes after taking the intersection. Moreover, using two machine learning algorithms, we identified three hub genes (PLIN, PPAP2A, and TYROBP) between RA and PVNS and demonstrated good diagnostic performance using ROC curve and nomogram plots. Single sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the biological functions in which three genes were mostly engaged. Finally, three hub genes showed a substantial association with 28 immune infiltrating cells. Conclusion: PLIN, PPAP2A, and TYROBP may influence RA and PVNS by modulating immunity and contribute to the diagnosis and therapy of the two diseases.
Collapse
Affiliation(s)
- Hongquan Heng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xinyue Liu
- Department of Radiology, Wangjiang Hospital of Sichuan University, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| | - Zhengjun Bian
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| | - Jian Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| |
Collapse
|
23
|
Qi J, Liu C, Bai Z, Li X, Yao G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front Immunol 2023; 14:1178792. [PMID: 37187757 PMCID: PMC10175690 DOI: 10.3389/fimmu.2023.1178792] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
T follicular helper (Tfh) cells are heterogeneous and mainly characterized by expressing surface markers CXCR5, ICOS, and PD-1; cytokine IL-21; and transcription factor Bcl6. They are crucial for B-cell differentiation into long-lived plasma cells and high-affinity antibody production. T follicular regulatory (Tfr) cells were described to express markers of conventional T regulatory (Treg) cells and Tfh cells and were able to suppress Tfh-cell and B-cell responses. Evidence has revealed that the dysregulation of Tfh and Tfr cells is positively associated with the pathogenic processes of autoimmune diseases. Herein, we briefly introduce the phenotype, differentiation, and function of Tfh and Tfr cells, and review their potential roles in autoimmune diseases. In addition, we discuss perspectives to develop novel therapies targeting Tfh/Tfr balance.
Collapse
Affiliation(s)
- Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| | - Chang Liu
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- *Correspondence: Genhong Yao, ; Jingjing Qi,
| |
Collapse
|
24
|
Liu H, Yu B, Deng Z, Zhao H, Zeng A, Li R, Fu M. Role of immune cell infiltration and small molecule drugs in adhesive capsulitis: Novel exploration based on bioinformatics analyses. Front Immunol 2023; 14:1075395. [PMID: 36875119 PMCID: PMC9976580 DOI: 10.3389/fimmu.2023.1075395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background Adhesive capsulitis (AC) is a type of arthritis that causes shoulder joint pain, stiffness, and limited mobility. The pathogenesis of AC is still controversial. This study aims to explore the role of immune related factors in the occurrence and development of AC. Methods The AC dataset was downloaded from Gene Expression Omnibus (GEO) data repository. Differentially expressed immune-related genes (DEIRGs) were obtained based on R package "DESeq2" and Immport database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to explore the functional correlation of DEIRGs. MCC method and Least Absolute Shrinkage and Selection Operator (LASSO) regression were conducted to identify the hub genes. The immune cell infiltration in shoulder joint capsule between AC and control was evaluated by CIBERSORTx, and the relationship between hub genes and infiltrating immune cells was analyzed by Spearman's rank correlation. Finally, potential small molecule drugs for AC were screened by the Connectivity Map database (CMap) and further verified by molecular docking. Results A total of 137 DEIRGs and eight significantly different types of infiltrating immune cells (M0 macrophages, M1 macrophages, regulatory T cells, Tfh cells, monocytes, activated NK cells, memory resting CD4+T cells and resting dendritic cells) were screened between AC and control tissues. MMP9, FOS, SOCS3, and EGF were identified as potential targets for AC. MMP9 was negatively correlated with memory resting CD4+T cells and activated NK cells, but positively correlated with M0 macrophages. SOCS3 was positively correlated with M1 macrophages. FOS was positively correlated with M1 macrophages. EGF was positively correlated with monocytes. Additionally, dactolisib (ranked first) was identified as a potential small-molecule drug for the targeted therapy of AC. Conclusions This is the first study on immune cell infiltration analysis in AC, and these findings may provide a new idea for the diagnosis and treatment of AC.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baoxi Yu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zengfa Deng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhao
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China
| | - Anyu Zeng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiyun Li
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ming Fu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Wang J, Zhang SX, Chang JS, Cheng T, Jiang XJ, Su QY, Zhang JQ, Luo J, Li XF. Low-dose IL-2 improved clinical symptoms by restoring reduced regulatory T cells in patients with refractory rheumatoid arthritis: A randomized controlled trial. Front Immunol 2022; 13:947341. [PMID: 36524114 PMCID: PMC9744779 DOI: 10.3389/fimmu.2022.947341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Regulatory T cells (Tregs) have been found to play crucial roles in immune tolerance. However, the status of Tregs in refractory rheumatoid arthritis (RA) is still unclear. Moreover, low-dose interleukin-2 (IL-2) has been reported to selectively promote the expansion of Tregs. This study investigated the status of CD4+ Tregs and low-dose IL-2 therapy in patients with refractory RA. Methods The absolute number of CD4+CD25+FOXP3+ Treg (CD4 Treg), CD4+IL17+ T (Th17), and other subsets in peripheral blood (PB) from 41 patients with refractory RA and 40 healthy donors was characterized by flow cytometry combined with an internal microsphere counting standard. Twenty-six patients with refractory RA were treated with daily subcutaneous injections of 0.5 million IU of human IL-2 for five consecutive days. Then, its effects on CD4 Treg and Th17 cells in PB were analyzed. Results A decrease in the absolute number of PB CD4 Tregs rather than the increase in the number of Th17 was found to contribute to an imbalance between Th17 and CD4 Tregs in these patients, suggesting an essential role of CD4 Tregs in sustained high disease activity. Low-dose IL-2 selectively increased the number of CD4 Tregs and rebalanced the ratio of Th17 and CD4 Tregs, leading to increased clinical symptom remission without the observed side effects. Conclusions An absolute decrease of PB CD4 Tregs in patients with refractory RA was associated with continuing disease activation but not the increase of Th17 cells. Low-dose IL-2, a potential therapeutic candidate, restored decreased CD4 Tregs and promoted the rapid remission of patients with refractory RA without overtreatment and the observed side effects. Clinical trial registration http://www.chictr.org.cn/showproj.aspx?proj=13909, identifier ChiCTR-INR-16009546.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jia-Song Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiao-Jing Jiang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jia-Qi Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| |
Collapse
|
26
|
Wang W, Xiang T, Yang Y, Wang Z, Xie J. E3 ubiquitin ligases STUB1/CHIP contributes to the Th17/Treg imbalance via the ubiquitination of aryl hydrocarbon receptor in rheumatoid arthritis. Clin Exp Immunol 2022; 209:280-290. [PMID: 35943876 PMCID: PMC9521662 DOI: 10.1093/cei/uxac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
STIP1-homologous U-Box containing protein 1 (STUB1) is involved in the development of immune pathologies and the regulation of T cell. However, the potential role of STUB1 in the pathogenesis of rheumatoid arthritis (RA), especially in the regulation of T cells, remains elusive. Here we show that STUB1 promotes the imbalance of Th17/Treg cells through non-degradative ubiquitination of aryl hydrocarbon receptor (AHR). Using Western blot and flow cytometry analysis, we observe that the level of STUB1 was increased in RA patients compared with healthy controls. In particular, the expression of STUB1 protein was different in Th17 cells and Treg cells of RA patients. We also demonstrated that STUB1 facilitates Th17/Treg imbalance by up- or downregulating the expression of STUB1. In a subsequent series of in vitro experiments, we revealed that STUB1 promoted the imbalance of Th17 and Treg cells through non-degradative ubiquitination of AHR. Both knockdown of the AHR expression by siRNA and assays of CYP1A1 enzymatic activity by ethoxyresorufin-O-deethylase (EROD) supported this conclusion. Furthermore, we explored the ubiquitination sites of AHR responsible for STUB1-mediated ubiquitination and revealed that STUB1 promotes ubiquitination of AHR via K63 chains. Together, STUB1 may induce the imbalance of Th17/Treg cells via ubiquitination of AHR and serve as a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Wen Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Xiang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yachen Yang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zitao Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianmin Xie
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Zheng X, Su R, Hu F, Liu Y, Li X, Gao C, Wang C. Low-dose IL-2 therapy restores imbalance between Th17 and regulatory T cells in patients with the dermatomyositis combined with EBV/CMV viremia. Autoimmun Rev 2022; 21:103186. [PMID: 36084894 DOI: 10.1016/j.autrev.2022.103186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Dermatomyositis (DM) is closely associated with infection, the levels of peripheral lymphocyte subpopulations are rarely studied in patients with DM combined with Epstein-Barr virus (EBV)/cytomegalovirus (CMV) infection. Here, we aimed to observe the level of lymphocyte subsets, especially Th17, regulatory T (Treg) cells in DM combined with EBV/CMV viremia, and explore the effects of short-term low-dose IL-2. METHODS 34 DM patients combined with EBV/CMV viremia (DM infection group), 31 DM patients without infection (DM non-infection group) and 20 healthy controls were entrolled in our study. In DM infection group, 13 patients received low-dose IL-2 at 0.50 Million IU/day for a five-day course on the basis of conventional treatment. All subjects had completed the decetion of the absolute numbers of lymphocytes subsets in peripheral blood by flow cytometry. RESULTS The infection group had significant decreases levels of total T, total B, NK, CD4 + T cells and CD4 + T subsets (Th1, Th2, Th17, Treg cells). Compare to the healthy controls, Th17 cells was significantly reduced in the infection group, but not in the non-infection group (P < 0.001 vs. P = 0.171). After low-dose IL-2 therapy, the levels of Treg (P = 0.001) cells and Th17 cells were significantly elevated, re-balancing the Th17 and Treg proportions. CONCLUSIONS The absolute numbers of Th17 and Treg cells in DM patients with EBV/CMV viremia is further reduced. In addition to Treg cells, a decrease in Th17 cells may be also a crucial feature. Low-dose IL-2 treatment may be beneficial and safe prospect immunomodulatory therapy to restores imbalance between Th17 and Treg cells for these patients. Low-dose IL-2 therapy may be a new prospect field with some challenges such as long-term immunoregulatory utility in various virus infection.
Collapse
Affiliation(s)
- Xinyu Zheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China; Department of Rheumatology, Linyi Central Hospital, Linyi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Fangyuan Hu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Yue Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China.
| |
Collapse
|
28
|
Roodenrijs NMT, Welsing PMJ, van Roon J, Schoneveld JLM, van der Goes MC, Nagy G, Townsend MJ, van Laar JM. Mechanisms underlying DMARD inefficacy in difficult-to-treat rheumatoid arthritis: a narrative review with systematic literature search. Rheumatology (Oxford) 2022; 61:3552-3566. [PMID: 35238332 PMCID: PMC9434144 DOI: 10.1093/rheumatology/keac114] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Management of RA patients has significantly improved over the past decades. However, a substantial proportion of patients is difficult-to-treat (D2T), remaining symptomatic after failing biological and/or targeted synthetic DMARDs. Multiple factors can contribute to D2T RA, including treatment non-adherence, comorbidities and co-existing mimicking diseases (e.g. fibromyalgia). Additionally, currently available biological and/or targeted synthetic DMARDs may be truly ineffective ('true' refractory RA) and/or lead to unacceptable side effects. In this narrative review based on a systematic literature search, an overview of underlying (immune) mechanisms is presented. Potential scenarios are discussed including the influence of different levels of gene expression and clinical characteristics. Although the exact underlying mechanisms remain largely unknown, the heterogeneity between individual patients supports the assumption that D2T RA is a syndrome involving different pathogenic mechanisms.
Collapse
Affiliation(s)
- Nadia M T Roodenrijs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Paco M J Welsing
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Joël van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| | | | - Marlies C van der Goes
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
- Department of Rheumatology, Meander Medical Center, Amersfoort, The Netherlands
| | - György Nagy
- Department of Rheumatology & Clinical Immunology
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Michael J Townsend
- Biomarker Discovery OMNI, Genentech Research & Early Development, South San Francisco, CA, USA
| | - Jacob M van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| |
Collapse
|
29
|
Computation-Based Discovery of Potential Targets for Rheumatoid Arthritis and Related Molecular Screening and Mechanism Analysis of Traditional Chinese Medicine. DISEASE MARKERS 2022; 2022:1905077. [PMID: 35707715 PMCID: PMC9190478 DOI: 10.1155/2022/1905077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022]
Abstract
This study is aimed at screening potential therapeutic ingredients in traditional Chinese medicine (TCM) and identifying the key rheumatoid arthritis (RA) targets using computational simulations. Data for TCM-active ingredients with clear pharmacological effects were collected. Absorption, distribution, metabolism, excretion, and toxicity were evaluated. Potential RA targets were identified using the Gene Expression Omnibus (GEO) database, protein–protein interaction network, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and potential TCM ingredients using AutoDock Vina. To examine the mechanisms underlying small molecules, target prediction, Gene Ontology, KEGG, and network modeling analyses were conducted; the effects were verified in rat synovial cells using cell proliferation assay. The activities of tumor necrosis factor TNF-α and IL-1β and alterations in cellular target protein levels were detected by ELISA and Western blotting, respectively. In total, data for 432 TCM active ingredients with clear pharmacological effects were obtained. Five critical RA-related genes were identified; CCL5 and CXCL10 were selected for molecular docking. Target prediction and network-based proximity analysis showed that dioscin could modulate 22 known RA clinical targets. Dioscin, asiaticoside, and ginsenoside Re could effectively inhibit in vitro cell proliferation and secretion of TNF-α and IL-1β in RA rat synovial cells. Using bioinformatics and computer-aided drug design, the potential small anti-RA molecules and their mechanisms of action were comprehensively identified. Dioscin could significantly inhibit proliferation and induce apoptosis in RA rat synovial cells by reducing TNF-α and IL-1β secretion and inhibiting abnormal CCL5, CXCL10, CXCR2, and IL2 expression.
Collapse
|
30
|
Zhao Z, Hua Z, Luo X, Li Y, Yu L, Li M, Lu C, Zhao T, Liu Y. Application and pharmacological mechanism of methotrexate in rheumatoid arthritis. Biomed Pharmacother 2022; 150:113074. [PMID: 35658215 DOI: 10.1016/j.biopha.2022.113074] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Methotrexate (MTX) has been used for the treatment of rheumatoid arthritis (RA) for about forty years and to date MTX remains the part of global standard of treatment for RA. The efficacy of MTX in RA is the result of multiple mechanisms of action. In order to summarize the possible pharmacological mechanisms of MTX in the treatment of RA, this review will elaborate on folate antagonism, promotion of adenosine accumulation, regulation of inflammatory signaling pathways, bone protection and maintenance of immune system function.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
31
|
Han Y, Bian ZH, Yang SY, Wang CB, Li L, Yang YQ, Ansari AA, Gershwin ME, Zeng X, Lian ZX, Zhao ZB. Single-Cell Characterization of Hepatic CD8 + T Cells in a Murine Model of Primary Biliary Cholangitis. Front Immunol 2022; 13:860311. [PMID: 35514982 PMCID: PMC9065443 DOI: 10.3389/fimmu.2022.860311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Primary biliary cholangitis (PBC), an organ-specific autoimmune disease, is characterized by injury to small bile ducts, inflammatory cell infiltrates within the liver, progressive cholestasis, and in some cases, cirrhosis with unclear pathogenesis. We aimed to clarify the importance role of hepatic immunce cells in the pathogenesis of human and experimental PBC.The dominant-negative TGFβ receptor type II transgenic (dnTGFβRII) mice, a well-studied and established murine model of PBC were used to identify changes of immune cells, especially the pathogenic CD8+ T cells. The high-throughput single-cell RNA sequencing technology were applied and found functional heterogeneity among the hepatic CD8+ T cells subsets in dnTGFβRII mice. CD8+ T cells were confirmed the key cells leading to the pathogenesis of PBC in dnTGFβRII mice, and identified the terminally differentiated CD8αα T cells and CD8αβ T cell subsets in the liver of dnTGFβRII mice. While terminally differentiated CD8αα T cells have higher cytokine production ability and cytotoxicity, the terminally differentiated CD8αβ T cells retain their proliferative profile. Our work suggests that there are developmental and differentiated trajectories of pathogenic CD8+ T cell subsets in the pathogenesis of PBC. A further clarification of their roles would be helpful to our understanding of the pathogenesis of PBC and may potentially lead to identifying novel therapeutic modalities.
Collapse
Affiliation(s)
- Yichen Han
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhen-Hua Bian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Si-Yu Yang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Cheng-Bo Wang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan-Qing Yang
- Department of Oncology of the First Affiliated Hospital, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aftab A. Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, United States
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, United States
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhe-Xiong Lian
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Bin Zhao
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
32
|
Yang Y, Wang C, Shi L, Yang S, Liu Y, Luo J, Wang C. Clinical Characteristics and CD4+ T Cell Subsets in IgG4-Related Disease. Front Immunol 2022; 13:825386. [PMID: 35432312 PMCID: PMC9010737 DOI: 10.3389/fimmu.2022.825386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives To characterize the clinical features of IgG4-related disease (IgG4-RD) and analyze the peripheral T lymphocyte subsets and cytokine levels. Methods A total of 52 patients with newly diagnosed IgG4-RD were enrolled in the retrospective study. Baseline clinical characteristics and examinational findings were systematically reviewed. Results IgG4-RD patients had a male predominance, with an average age of 57.4 ± 10.3 years (range 27-81). The mean number of involved organs was 2.7 (range 1-8). Submandibular gland (57.7%) and lacrimal gland/orbit (40.4%) were the most commonly involved organs. Serum IgG4 increased in 97.9% of the patients, the median level was 1300 (585.25, 1975) mg/dl. Decreased C3 and C4 accounted for 77.8% and 55.6% of this patient cohort, respectively. Receiver operating characteristic (ROC) test indicated the possibility of lung/pleura involvement when C3 was less than 0.570 g/l (AUC = 0.788, P = 0.014), and kidney involvement when C3 was less than 0.545 g/l (AUC = 0.796, P = 0.014). Compared with healthy controls (HC), the absolute Th1 counts were higher in IgG4-RD patients (157.58 cells/μl vs. 130.54 cells/μl, P = 0.038), while the absolute counts of Th2, Th17 and T regulatory (Treg) cells, as well as Th17/Treg ratio were not statistically different. The levels of serum IL-4, IL-6, IL-10, IL-17, TNF-α, and IFN-γ were higher in patients with IgG4-RD as compared with HC (P < 0.001). Serum IL-10 was positively correlated with IL-4, TNF-α and IFN-γ, but uncorrelated with Treg cells. Serum IgG4 level was positively associated with the number of affected organs, eosinophil counts, and ESR, whereas inversely associated with C3, C4, IgM, and IgA. Conclusion Submandibular and lacrimal glands are the most commonly involved organs in IgG4-RD. Serum C3 level could be a predictor of lung/pleura and kidney involvement in the disease process. Elevated Th1 cells are probably related to chronic inflammation and fibrosis. Treg cells are unlikely to play an important role in the pathogenesis of IgG4-RD.
Collapse
Affiliation(s)
- Yan Yang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chen Wang
- Department of Pathology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Shi
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuoran Yang
- Department of Oral and Maxillofacial Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Luo
- Department of Rheumatology Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Caihong Wang,
| |
Collapse
|
33
|
Qin Y, Gao C, Luo J. Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Front Immunol 2022; 13:828191. [PMID: 35281063 PMCID: PMC8913504 DOI: 10.3389/fimmu.2022.828191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
The abnormal number and functional deficiency of immune cells are the pathological basis of various diseases. Recent years, the imbalance of Th17/regulatory T (Treg) cell underlies the occurrence and development of inflammation in autoimmune diseases (AID). Currently, studies have shown that material and energy metabolism is essential for maintaining cell survival and normal functions and the altered metabolic state of immune cells exists in a variety of AID. This review summarizes the biology and functions of Th17 and Treg cells in AID, with emphasis on the advances of the roles and regulatory mechanisms of energy metabolism in activation, differentiation and physiological function of Th17 and Treg cells, which will facilitate to provide targets for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Yan Qin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
34
|
Alves MDDJ, Silva DDS, Pereira EVM, Pereira DD, de Sousa Fernandes MS, Santos DFC, Oliveira DPM, Vieira-Souza LM, Aidar FJ, de Souza RF. Changes in Cytokines Concentration Following Long-Distance Running: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:838069. [PMID: 35250639 PMCID: PMC8893166 DOI: 10.3389/fphys.2022.838069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Long-distance running is an exhausting effort for the whole organism. Prolonged aerobic exercise induces changes in inflammatory markers. However, predicting muscle damage in response has limitations in terms of selecting biomarkers used to measure inflammatory status. The present study conducts a systematic review and meta-analysis of articles focusing in ultra-marathon, marathon, and half-marathon and levels of cytokines. The search was conducted in PubMed, Web of Science, and Scopus databases, resulting in the inclusion of 76 articles. IL-6 was highlighted, evaluated in 62 studies and show increase in the standard mean difference (SMD): half-marathon (SMD −1.36; IC 95%: −1.82, −0.89, Ch2:0.58; tau2:0.00; p < 0.0001), marathon (SMD −6.81; IC 95%: −9.26, −4.37; Ch2:481.37 tau2:11.88; p < 0.0001) and ultra-marathon (SMD −8.00 IC 95%: −10.47, −5.53; Ch2:328.40; tau2:14.19; p < 0.0001). In contrast meta-regression analysis did not show relationship to the running distance (p = 0.864). The meta-analysis evidenced increase in the concentration of IL-1ra (p < 0.0001), IL-1B (p < 0.0001), IL-8 (p < 0.0001), IL-10 (p < 0.0001) and TNF-α (p < 0.0001). Reduction in IL-2 (p < 0.0001) and INF-y (p < 0.03) and no change in the IL-4 (p < 0.56). The number of studies evaluating the effect of adipokines was limited, however Leptin and Resistin were recurrent. The effects of an acute bout of prolonged aerobic exercise will protect against chronic systemic inflammation. The time to return to baseline values showed a substantial and dose-dependent relationship with run volume. The concentration of IL-6 was robustly studied and the marathon running was the most explored. Network of endocrine interactions in which circulating factors, released in extreme exercises, interplay through inter-organ crosstalk and physiologic changes were expressed. The running volume variability was able to modulate compounds that play a fundamental role in the maintenance of homeostasis and cell signaling.
Collapse
Affiliation(s)
- Micael Deivison de Jesus Alves
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Graduate Program in Physical Education, Postgraduate Program in Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe (UFS), São Cristovão, Brazil
| | - Devisson dos Santos Silva
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Graduate Program in Physical Education, Postgraduate Program in Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe (UFS), São Cristovão, Brazil
| | - Erika Vitoria Moura Pereira
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe (UFS), São Cristovão, Brazil
| | - Danielle Dutra Pereira
- Department of Physiology and Pharmacology, Biological Sciences Course, Federal University of Piauí, Teresina, Brazil
| | - Matheus Santos de Sousa Fernandes
- Graduate Program, Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | | | - Lucio Marques Vieira-Souza
- Graduate Program in Physical Education, Postgraduate Program in Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Physical Education Course, State University of Minas Gerais-UEMG, Passos, Brazil
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Graduate Program in Physical Education, Postgraduate Program in Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe (UFS), São Cristovão, Brazil
| | - Raphael Fabricio de Souza
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Graduate Program in Physical Education, Postgraduate Program in Physical Education, Federal University of Sergipe (UFS), São Cristóvão, Brazil
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe (UFS), São Cristovão, Brazil
- *Correspondence: Raphael Fabricio de Souza
| |
Collapse
|
35
|
Li N, Li X, Su R, Wu R, Niu HQ, Luo J, Gao C, Li X, Wang C. Low-Dose Interleukin-2 Altered Gut Microbiota and Ameliorated Collagen-Induced Arthritis. J Inflamm Res 2022; 15:1365-1379. [PMID: 35241924 PMCID: PMC8887675 DOI: 10.2147/jir.s344393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Low-dose interleukin-2 (ld-IL-2) has been shown to regulate the balance between effector T and regulatory T (Treg) cells and has been used in several clinical trials to treat autoimmune diseases including rheumatoid arthritis (RA). In this study, we investigated the effects of ld-IL-2 on collagen-induced arthritis (CIA) in mice. Methods Arthritis severity in CIA mice was measured using the arthritis index (AI), radiographs, and hematoxylin and eosin staining. Cytokines were detected using enzyme-linked immunosorbent assay. Gut microbiota alterations and short-chain fatty acid production were analyzed through 16S rRNA sequencing and gas chromatography. Results The AI scores of CIA mice treated with ld-IL-2 were significantly lower compared to the model group, which significantly reduced the severity of arthritis. Ld-IL-2 also altered the gut microbiota in CIA mice. The diversity, composition, and dominant species of gut microbiota were altered by ld-IL-2 treatment. Ld-IL-2 also increased short-chain fatty acid levels. There was a strong correlation between ld-IL-2 treatment and improved gut microbiota. Conclusion Ld-IL-2 significantly ameliorated joint inflammation and bone damage and improved gut microbial dysbiosis in CIA, indicating that it may be a promising therapy for RA patients.
Collapse
Affiliation(s)
- Na Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xuefei Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Hong-Qing Niu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Correspondence: Caihong Wang, Tel +8613603515399, Fax +863513365551, Email
| |
Collapse
|
36
|
Kmiołek T, Paradowska-Gorycka A. miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Cells 2022; 11:cells11030452. [PMID: 35159262 PMCID: PMC8834522 DOI: 10.3390/cells11030452] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Within the past years, more and more attention has been devoted to the epigenetic dysregulation that provides an additional window for understanding the possible mechanisms involved in the pathogenesis of autoimmune rheumatic diseases. Rheumatoid arthritis (RA) is a heterogeneous disease where a specific immunologic and genetic/epigenetic background is responsible for disease manifestations and course. In this field, microRNAs (miRNA; miR) are being identified as key regulators of immune cell development and function. The identification of disease-associated miRNAs will introduce us to the post-genomic era, providing the real probability of manipulating the genetic impact of autoimmune diseases. Thereby, different miRNAs may be good candidates for biomarkers in disease diagnosis, prognosis, treatment and other clinical applications. Here, we outline not only the role of miRNAs in immune and inflammatory responses in RA, but also present miRNAs as diagnostic/prognostic biomarkers. Research into miRNAs is still in its infancy; however, investigation into these novel biomarkers could progress the use of personalized medicine in RA treatment. Finally, we discussed the possibility of miRNA-based therapy in RA patients, which holds promise, given major advances in the therapy of patients with inflammatory arthritis.
Collapse
|
37
|
Kellar D, Register T, Lockhart SN, Aisen P, Raman R, Rissman RA, Brewer J, Craft S. Intranasal insulin modulates cerebrospinal fluid markers of neuroinflammation in mild cognitive impairment and Alzheimer's disease: a randomized trial. Sci Rep 2022; 12:1346. [PMID: 35079029 PMCID: PMC8789895 DOI: 10.1038/s41598-022-05165-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Intranasal insulin (INI) has shown promise as a treatment for Alzheimer's disease (AD) in pilot clinical trials. In a recent phase 2 trial, participants with mild cognitive impairment (MCI) or AD who were treated with INI with one of two delivery devices showed improved cerebral spinal fluid (CSF) biomarker profiles and slower symptom progression compared with placebo. In the cohort which showed benefit, we measured changes in CSF markers of inflammation, immune function and vascular integrity and assessed their relationship with changes in cognition, brain volume, and CSF amyloid and tau concentrations. The insulin-treated group had increased CSF interferon-γ (p = 0.032) and eotaxin (p = 0.049), and reduced interleukin-6 (p = 0.048) over the 12 month trial compared to placebo. Trends were observed for increased CSF macrophage-derived chemokine for the placebo group (p = 0.083), and increased interleukin-2 in the insulin-treated group (p = 0.093). Insulin-treated and placebo groups showed strikingly different patterns of associations between changes in CSF immune/inflammatory/vascular markers and changes in cognition, brain volume, and amyloid and tau concentrations. In summary, INI treatment altered the typical progression of markers of inflammation and immune function seen in AD, suggesting that INI may promote a compensatory immune response associated with therapeutic benefit.
Collapse
Affiliation(s)
- Derek Kellar
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas Register
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel N Lockhart
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
| | - Rema Raman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
| | - Robert A Rissman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, USA
| | - James Brewer
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, USA
| | - Suzanne Craft
- Department of Internal Medicine-Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
38
|
Beurier P, Ricard L, Eshagh D, Malard F, Siblany L, Fain O, Mohty M, Gaugler B, Mekinian A. TFH cells in systemic sclerosis. J Transl Med 2021; 19:375. [PMID: 34461933 PMCID: PMC8407089 DOI: 10.1186/s12967-021-03049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis is an autoimmune disease characterized by excessive dermal fibrosis with progression to internal organs, vascular impairment and immune dysregulation evidenced by the infiltration of inflammatory cells in affected tissues and the production of auto antibodies. While the pathogenesis remains unclear, several data highlight that T and B cells deregulation is implicated in the disease pathogenesis. Over the last decade, aberrant responses of circulating T follicular helper cells, a subset of CD4 T cells which are able to localise predominantly in the B cell follicles through a high level of chemokine receptor CXCR5 expression are described in pathogenesis of several autoimmune diseases and chronic graft-versus-host-disease. In the present review, we summarized the observed alteration of number and frequency of circulating T follicular helper cells in systemic sclerosis. We described their role in aberrant B cell activation and differentiation though interleukine-21 secretion. We also clarified T follicular helper-like cells involvement in fibrogenesis in both human and mouse model. Finally, because T follicular helper cells are involved in both fibrosis and autoimmune abnormalities in systemic sclerosis patients, we presented the different strategies could be used to target T follicular helper cells in systemic sclerosis, the therapeutic trials currently being carried out and the future perspectives from other auto-immune diseases and graft-versus-host-disease models.
Collapse
Affiliation(s)
- Pauline Beurier
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Laure Ricard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Deborah Eshagh
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Florent Malard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Lama Siblany
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Olivier Fain
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Mohamad Mohty
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Béatrice Gaugler
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France
| | - Arsène Mekinian
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France. .,Sorbonne Université, Paris, France. .,Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), AP-HP, Hôpital Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
39
|
Su R, Wang Y, Hu F, Li B, Guo Q, Zheng X, Liu Y, Gao C, Li X, Wang C. Altered Distribution of Circulating T Follicular Helper-Like Cell Subsets in Rheumatoid Arthritis Patients. Front Med (Lausanne) 2021; 8:690100. [PMID: 34350197 PMCID: PMC8326448 DOI: 10.3389/fmed.2021.690100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Recent studies on follicular regulatory T (Tfr) and follicular helper T (Tfh) cells suggest that they may participate in the pathogenesis of rheumatoid arthritis (RA). Here, we examine Tfr-like and Tfh-like cells and their subsets in RA and assess the correlations between these subsets with B cells and cytokines related to the pathogenesis of RA and their clinical significance. Methods: The study population consisted of 18 healthy controls and 47 RA patients (17 new onset, 57.00 ± 11.73 years; 30 treated RA patients, 57.56 ± 1.97 years). Disease activity scores in 28 joints were calculated. The positive rates of rheumatoid factor (RF) and anticyclic citrullinated peptide antibodies (anti-CCP) were 82.9 and 89.4%, respectively. Cell subsets were analyzed using flow cytometry, and serum cytokine levels were measured using cytometric bead array. Results: Tfh-like and PD-1+ Tfh-like cells were elevated, and the distribution of Tfh-like cell subsets was altered with increased Tfh17-like and Tfh1/17-like cells in RA patients. The receiver operating characteristics curves for Tfh-like, Tfh17-like, Tfh1/17-like, and PD-1+ Tfh-like cells indicate improved RA diagnostic potential. RA patients had decreased regulatory T (Treg), Tfr-like, and memory Tfr-like (mTfr-like) cells and increased Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios. Tfh-like cells and their subsets, including Tfh1-like, Tfh2-like, Tfh1/17-like, and PD-1+ Tfh-like cells, were positively correlated with B cells. Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios were positively correlated with B cells in new-onset RA. Interleukin (IL)-2, IL-4, IL-17, interferon-γ, and tumor necrosis factor-α were positively correlated with Tfr-like and mTfr-like cells. IL-2 and IL-10 were positively correlated with Tfh-like and Tfh2-like cells. IL-4 was positively correlated with Tfh-like cells. Conclusions: Tfh-like and PD-1+ Tfh-like cells are increased, whereas Treg, Tfr-like, and mTfr-like cells are decreased in RA, leading to an imbalance in Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios. Tfh-like cells and a portion of their subsets as well as Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios are closely related to B cells. Dysfunction of cell subsets leads to abnormal levels of cytokines involved in the pathogenesis of RA. The altered distributions of Tfh-like cell subsets, especially Tfh1/17-like cells, represent potential therapeutic targets for treatment of RA.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fangyuan Hu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiaoling Guo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyu Zheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital Boston, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
40
|
|
41
|
Lu J, Wu J, Xia X, Peng H, Wang S. Follicular helper T cells: potential therapeutic targets in rheumatoid arthritis. Cell Mol Life Sci 2021; 78:5095-5106. [PMID: 33880615 PMCID: PMC11073436 DOI: 10.1007/s00018-021-03839-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with joint and systemic inflammation that is accompanied by the production of autoantibodies, such as rheumatoid factor and anti-cyclic citrullinated peptide (anti-CCP) antibodies. Follicular helper T (Tfh) cells, which are a subset of CD4+ T cells, facilitate germinal center (GC) reactions by providing signals required for high-affinity antibody production and the generation of long-lived antibody-secreting plasma cells. Uncontrolled expansion of Tfh cells is observed in various systemic autoimmune diseases. Particularly, the frequencies of circulating Tfh-like (cTfh-like) cells, their subtypes and synovial-infiltrated T helper cells correlate with disease activity in RA patients. Therefore, reducing autoantibody production and restricting excessive Tfh cell responses are ideal ways to control RA pathogenesis. The present review summarizes current knowledge of the involvement of Tfh cells in RA pathogenesis and highlights the potential of these cells as therapeutic targets.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jing Wu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Xueli Xia
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
42
|
Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and Role of Regulatory T Cells in Rheumatoid Arthritis. Front Immunol 2021; 12:626193. [PMID: 33868244 PMCID: PMC8047316 DOI: 10.3389/fimmu.2021.626193] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and heterogeneous autoimmune disease with symmetrical polyarthritis as its critical clinical manifestation. The basic cause of autoimmune diseases is the loss of tolerance to self or harmless antigens. The loss or functional deficiency of key immune cells, regulatory T (Treg) cells, has been confirmed in human autoimmune diseases. The pathogenesis of RA is complex, and the dysfunction of Tregs is one of the proposed mechanisms underlying the breakdown of self-tolerance leading to the progression of RA. Treg cells are a vital component of peripheral immune tolerance, and the transcription factor Foxp3 plays a major immunosuppressive role. Clinical treatment for RA mainly utilizes drugs to alleviate the progression of disease and relieve disease activity, and the ideal treatment strategy should be to re-induce self-tolerance before obvious tissue injury. Treg cells are one of the ideal options. This review will introduce the classification, mechanism of action, and characteristics of Treg cells in RA, which provides insights into clinical RA treatment.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Qi Liu
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Mukhatayev Z, Ostapchuk YO, Fang D, Le Poole IC. Engineered antigen-specific regulatory T cells for autoimmune skin conditions. Autoimmun Rev 2021; 20:102761. [PMID: 33476816 DOI: 10.1016/j.autrev.2021.102761] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) are a subset of T cells responsible for the regulation of immune responses, thereby maintaining immune homeostasis and providing immune tolerance to both self and non-self-antigens. An increasing number of studies revealed Treg numbers and functions in a variety of autoimmune diseases. Treg deficiency can cause the development of several autoimmune skin diseases including vitiligo, alopecia areata, pemphigoid and pemphigus, psoriasis, and systemic sclerosis. Many clinical trials have been performed for autoimmune conditions using polyclonal Tregs, but efficiency can be significantly improved using antigen-specific Tregs engineered using T cell receptor (TCR) or chimeric antigen receptor (CAR) constructs. In this review, we systematically reviewed altered frequencies, impaired functions, and phenotypic features of Tregs in autoimmune skin conditions. We also summarized new advances in TCR and CAR based antigen-specific Tregs tested both in animal models and in clinics. The advantages and limitations of each approach were carefully discussed emphasizing possible clinical relevance to patients with autoimmune skin diseases. Moreover, we have reviewed potential approaches for engineering antigen-specific Tregs, and strategies for overcoming possible hurdles in clinical applications. Thereby, antigen-specific Tregs can be infused using autologous adoptive cell transfer to restore Treg numbers and to provide local immune tolerance for autoimmune skin disorders.
Collapse
Affiliation(s)
- Zhussipbek Mukhatayev
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Deyu Fang
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|