1
|
Pajar JA, Otto P, Leonar AL, Döll S, van Dam NM. Dual nematode infection in Brassica nigra affects shoot metabolome and aphid survival in distinct contrast to single-species infection. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7317-7336. [PMID: 39207246 PMCID: PMC11630020 DOI: 10.1093/jxb/erae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Previous studies showed that aphid performance was compromised on Brassica nigra infected by root-lesion nematodes (Pratylenchus penetrans, Pp), but less, or positively influenced by root-knot nematode (Meloidogyne spp.) infection. These experiments were on single-species nematode infections, but roots can be infected naturally with several nematode species simultaneously. We performed greenhouse assays to assess the effects of single [Meloidogyne incognita (Mi) or Pp] and concurrent (MP) nematode infections on aphid performance. Using targeted and untargeted profiling of leaf and phloem metabolomes, we examined how single and concurrent nematode infections affect shoot metabolomes, and elucidated the possible consequences for aphid performance. We found that the metabolic response to double-infection is different from that to single-species infections. Moreover, Mi and Pp infections triggered discrete changes in B. nigra leaf and phloem metabolic profiles. Both Pp and MP infections reduced aphid survival, suggesting that the biological effect could primarily be dominated by Pp-induced changes. This concurred with increased indole glucosinolates and hydroxycinnamic acid levels in the leaves, in particular the putative involvement of salicylic acid-2-O-β-d-glucoside. This study provides evidence that concurrent infection by different nematode species, as is common in natural environments, is associated with distinct changes in aboveground plant metabolomes, which are linked to differences in the survival of an aboveground herbivore.
Collapse
Affiliation(s)
- Jessil Ann Pajar
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Pius Otto
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
| | - April Lyn Leonar
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
| | - Stefanie Döll
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
| | - Nicole M van Dam
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany
- Molecular Interactions Ecology, German Centre for Integrative Biodiversity Research (iDiv), Jena–Halle–Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
2
|
Martín-Cacheda L, Röder G, Abdala-Roberts L, Moreira X. Test of Specificity in Signalling between Potato Plants in Response to Infection by Fusarium Solani and Phytophthora Infestans. J Chem Ecol 2024; 50:562-572. [PMID: 38904862 PMCID: PMC11493820 DOI: 10.1007/s10886-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Plant-plant signalling via volatile organic compounds (VOCs) in response to insect herbivory has been widely studied, but its occurrence and specificity in response to pathogen attack has received much less attention. To fill this gap, we carried out a greenhouse experiment using two fungal pathogens (Fusarium solani and Phytophthora infestans) to test for specificity in VOC induction and signalling between potato plants (Solanum tuberosum). We paired potato plants in plastic cages, one acting as VOC emitter and the other as receiver, and subjected emitters to one of the following treatments: no infection (control), infected by F. solani, or infected by P. infestans. We measured total emission and composition of VOCs released by emitter plants to test for pathogen-specificity in VOC induction, and then conducted a pathogen infection bioassay to assess resistance levels on receiver plants by subjecting half of the receivers of each emitter treatment to F. solani infection and the other half to P. infestans infection. This allowed us to test for specificity in plant VOC signalling by comparing its effects on conspecific and heterospecific sequential infections. Results showed that infection by neither F. solani or P. infestans produced quantitative (total emissions) or qualitative (compositional) changes in VOC emissions. Mirroring these patterns, emitter infection treatment (control vs. pathogen infection) did not produce a significant change in pathogen infection levels on receiver plants in any case (i.e., either for conspecific or heterospecific sequential infections), indicating a lack of signalling effects which precluded pathogen-based specificity in signalling. We discuss possible mechanisms for lack of pathogen effects on VOC emissions and call for future work testing for pathogen specificity in plant-plant signalling and its implications for plant-pathogen interactions under ecologically relevant scenarios involving infections by multiple pathogens.
Collapse
Affiliation(s)
- Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116,, Yucatán, Itzimná, 97000. Mérida, México
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| |
Collapse
|
3
|
Silva IP, Costa MGC, Costa-Pinto MFF, Silva MAA, Coelho Filho MA, Fancelli M. Volatile compounds in citrus in adaptation to water deficit and to herbivory by Diaphorina citri: How the secondary metabolism of the plant is modulated under concurrent stresses. A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112157. [PMID: 38871029 DOI: 10.1016/j.plantsci.2024.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Citrus plants are grown in diverse regions of the world, from subtropical to semi-arid and humid tropical areas. Through mechanisms essential for their survival, they adapt to the environmental conditions to which they are subjected. Although there is vast literature on adaptation of citrus plants to individual stresses, plant responses to interaction among different types of stresses have not been clearly examined. Abiotic or biotic stresses, or a combination of these stresses, result in reorganization of plant energy resources for defense, whether it be for resistance, tolerance, or prevention of stress. Plants generally respond to these stress factors through production of secondary metabolites, such as volatile compounds, derived from different biosynthesis and degradation pathways, which are released through distinct routes. Volatile compounds vary among plant species, meeting the specific needs of the plant. Simultaneous exposure to the stress factors of water deficit and herbivory leads to responses such as qualitative and quantitative changes in the emission of secondary metabolites, and compounds may accumulate within the leaves or predispose the plant to more quickly respond to the stress brought about by the herbivore. The genetic makeup of citrus plants can contribute to a better response to stress factors; however, studies on the emission of volatile compounds in different citrus genotypes under simultaneous stresses are limited. This review examines the effects of abiotic stress due to water deficit and biotic stress due to herbivory by Diaphorina citri in citrus plants and examines their connection with volatile compounds. A summary is made of advances in knowledge regarding the performance of volatile compounds in plant defense against both stress factors, as well as the interaction between them and possible findings in citrus plants. In addition, throughout this review, we focus on how genetic variation of the citrus species is correlated with production of volatile compounds to improve stress tolerance.
Collapse
Affiliation(s)
- Indiara Pereira Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Monique Ayala Araújo Silva
- Departamento de Biologia, Centro de Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | |
Collapse
|
4
|
Anderson RM, Hennessy AB, Kowalski K, Kessler A, Bagchi R, Singer MS. Phloem-feeding insects create parasitoid-free space for caterpillars. Curr Biol 2024; 34:3665-3672.e3. [PMID: 39053468 DOI: 10.1016/j.cub.2024.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Seemingly small ecological changes can have large, ramifying effects that defy expectations. Such are keystone effects in ecosystems. Phloem-feeding insect herbivores can act as keystone species by altering community structure and species interactions via plant-mediated or ant-mediated mechanisms. Plant responses triggered by phloem feeders can disrupt tri-trophic interactions induced by leaf-chewing herbivores, while ants that tend phloem feeders can deter or prey on other arthropods. Here, we investigate how phloem-feeding herbivores change caterpillar-parasitoid interactions on Quercus alba (white oak) trees in natural forests. We factorially manipulated the presence of phloem-feeding insects as well as ant access on Q. alba branches over multiple years and sites and measured parasitism rates of co-occurring caterpillars. While 19.3% of caterpillars were parasitized when phloem feeders were removed, the presence of phloem feeders completely suppressed parasitism of caterpillars (0%). This stark pattern was consistent across the diverse community of phloem feeders and caterpillars. Our manipulation of ant access had no effect on parasitism of caterpillars, implicating a plant-mediated mechanism. We further assessed the mechanistic hypothesis that phloem feeders suppress plant emission of caterpillar-induced volatile compounds, which could disrupt host-location behavior by parasitoids of caterpillars. Phloem feeders indeed reduced concentrations of four volatile compounds, consistent with the putative plant volatile-mediated mechanism. Given the important role of parasitoids in controlling herbivore populations, this keystone effect of phloem feeders offers novel insight into community dynamics in forests and potentially other terrestrial ecosystems.
Collapse
Affiliation(s)
- Riley M Anderson
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Andrew B Hennessy
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Kiran Kowalski
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Robert Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
5
|
Wimp GM, Morales V. Plant volatiles: Herbivores shush the chatty tree. Curr Biol 2024; 34:R781-R784. [PMID: 39163840 DOI: 10.1016/j.cub.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Plant-insect interactions can be complex and elusive. A new study shows that sap-feeding herbivores reduce tree emissions of specific volatile organic compounds that attract natural enemies. Sap-feeding insects thereby provide enemy-free space for chewing herbivores living on the same tree.
Collapse
Affiliation(s)
- Gina M Wimp
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | - Vanessa Morales
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
6
|
Kutty NN, Mishra M. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. FRONTIERS IN PLANT SCIENCE 2023; 14:1135000. [PMID: 37416879 PMCID: PMC10322200 DOI: 10.3389/fpls.2023.1135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Plants are continuously threatened by a plethora of biotic stresses caused by microbes, pathogens, and pests, which often act as the major constraint in crop productivity. To overcome such attacks, plants have evolved with an array of constitutive and induced defense mechanisms- morphological, biochemical, and molecular. Volatile organic compounds (VOCs) are a class of specialized metabolites that are naturally emitted by plants and play an important role in plant communication and signaling. During herbivory and mechanical damage, plants also emit an exclusive blend of volatiles often referred to as herbivore-induced plant volatiles (HIPVs). The composition of this unique aroma bouquet is dependent upon the plant species, developmental stage, environment, and herbivore species. HIPVs emitted from infested and non-infested plant parts can prime plant defense responses by various mechanisms such as redox, systemic and jasmonate signaling, activation of mitogen-activated protein (MAP) kinases, and transcription factors; mediate histone modifications; and can also modulate the interactions with natural enemies via direct and indirect mechanisms. These specific volatile cues mediate allelopathic interactions leading to altered transcription of defense-related genes, viz., proteinase inhibitors, amylase inhibitors in neighboring plants, and enhanced levels of defense-related secondary metabolites like terpenoids and phenolic compounds. These factors act as deterrents to feeding insects, attract parasitoids, and provoke behavioral changes in plants and their neighboring species. This review presents an overview of the plasticity identified in HIPVs and their role as regulators of plant defense in Solanaceous plants. The selective emission of green leaf volatiles (GLVs) including hexanal and its derivatives, terpenes, methyl salicylate, and methyl jasmonate (MeJa) inducing direct and indirect defense responses during an attack from phloem-sucking and leaf-chewing pests is discussed. Furthermore, we also focus on the recent developments in the field of metabolic engineering focused on modulation of the volatile bouquet to improve plant defenses.
Collapse
|
7
|
Deng QQ, Ye M, Wu XB, Song J, Wang J, Chen LN, Zhu ZY, Xie J. Damage of brown planthopper (BPH) Nilaparvata lugens and rice leaf folder (LF) Cnaphalocrocis medinalis in parent plants lead to distinct resistance in ratoon rice. PLANT SIGNALING & BEHAVIOR 2022; 17:2096790. [PMID: 35876337 PMCID: PMC9318313 DOI: 10.1080/15592324.2022.2096790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/02/2023]
Abstract
Herbivore-induced defense responses are often specific, whereas plants could induce distinct defense responses corresponding to infestation by different herbivorous insects. Brown plant hopper (BPH) Nilaparvata lugens, a phloem-feeding insect, and rice leaf folder (LF) Cnaphalocrocis medinalis, a chewing insect, are both specialist herbivores on rice. To characterize the distinct resistance primed by prior damage to these two specialist herbivores, we challenged rice plants with two herbivores during vegetative growth of parent plants and assessed plant resistance in subsequent ratoons. Here, we show that LF and BPH induce different suites of defense responses in parent rice plants, LF induced higher level of JA accumulation and OsAOS, OsCOI1 transcripts, while BPH induced higher accumulation of SA and OsPAL1 transcripts. Moreover, an apparent loss of LF resistance was observed in OsAOS, OsCOI1 RNAi lines. Ratoon plants generated from parents receiving prior LF infestation exhibited higher jasmonic acid (JA) levels and elevated levels of transcripts of defense-related genes associated with JA signaling, while ratoon generated from parents receiving prior BPH infestation exhibited higher salicylic acid (SA) levels and elevated levels of transcripts of defense-related genes associated with SA signaling. Moreover, previous LF infestation obviously elevated ratoons resistance to LF, while previous infestation by BPH led to enhanced resistance in ratoons to BPH. Pre-priming of ratoons defense to LF was significantly reduced in OsAOS and OsCOI1 RNAi plant, but silencing OsAOS and OsCOI1 did not attenuate ratoons resistance to BPH. These results suggest that infestation of two specialist herbivores with different feeding styles in parent crop led to distinct defense responses in subsequent rations, and the acquired resistance to LF in ratoons is associated with priming of jasmonic acid-dependent defense responses.
Collapse
Affiliation(s)
- Qian-Qian Deng
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Mao Ye
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Xiao-Bao Wu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jia Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jun Wang
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Li-Na Chen
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Zhong-Yan Zhu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jing Xie
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| |
Collapse
|
8
|
Piesik D, Bocianowski J, Kotwica K, Lemańczyk G, Piesik M, Ruzsanyi V, Mayhew CA. Responses of Adult Hypera rumicis L. to Synthetic Plant Volatile Blends. Molecules 2022; 27:molecules27196290. [PMID: 36234827 PMCID: PMC9572268 DOI: 10.3390/molecules27196290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The behavioral responses of Hypera rumicis L. adults to varying blends of synthetic plant volatiles (SPVs) at various concentrations in lieu of single compounds are reported for the first time. For this study, Rumex confertus plants were treated with two blends of SPVs at different quantities that act as either attractants or repellents to insects. Blend 1 (B1) consisted of five green leaf volatiles (GLVs), namely (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexenol, (E)-2-hexenol, and (Z)-3-hexen-1-yl acetate. Blend 2 (B2) contained six plant volatiles, namely (Z)-ocimene, linalool, benzyl acetate, methyl salicylate, β-caryophyllene, and (E)-β-farnesene. Each blend was made available in four different amounts of volatiles, corresponding to each compound being added to 50 µL of hexane in amounts of 1, 5, 25 and 125 ng. The effects of the two blends at the different concentrations on the insects were evaluated using a Y-tube olfactometer. Both sexes of the insects were found to be significantly repelled by the highest volatile levels of B1 and by two levels of B2 (25 and 125 ng). Females were also observed to be repelled using B2 with 5 ng of each volatile. Attraction was observed for both sexes only for B1 at the three lower volatile levels (1, 5 and 25 ng). In additional experiments, using only attractants, unmated females were found to be attracted to males, whereas mated females were only attracted to B1. Both unmated and mated males (previously observed in copula) were attracted only to females.
Collapse
Affiliation(s)
- Dariusz Piesik
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
- Correspondence: (D.P.); (C.A.M.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego, 60-637 Poznań, Poland
| | - Karol Kotwica
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
| | - Grzegorz Lemańczyk
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
| | - Magdalena Piesik
- Oncology Center of F. Łukaszczyk in Bydgoszcz, 2 I. Romanowskiej St., 85-796 Bydgoszcz, Poland
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
- Correspondence: (D.P.); (C.A.M.)
| |
Collapse
|
9
|
Zheng S, Chen R, Wang L, Pan S, Liu W, Zhu X, Gao X, Luo J, Cui J. Effect of Metabolic Changes in Aphis gossypii-Damaged Cotton Plants on Oviposition Preference and Larval Development of Subsequent Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9584-9595. [PMID: 35861328 DOI: 10.1021/acs.jafc.2c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aphis gossypii and Helicoverpa armigera are two important agricultural pests in cotton plants. However, whether early colonization of A. gossypii affects subsequent H. armigera is unknown. We implemented ecological experiments to reveal that A. gossypii-damaged cotton plants [Bacillus thuringiensis (Bt) and non-Bt] had a significant avoidance effect on the oviposition preference of H. armigera adults. However, A. gossypii-damaged cotton plants (non-Bt) increased the weight and pupation rate and reduced the mortality of H. armigera larvae. Transcriptomic and metabolomic analyses showed that 13 and 9 genes were significantly upregulated to be involved in salicylic acid (SA) and indole acetic acid (IAA) biosynthesis, and SA and IAA contents were significantly increased, respectively. However, 15 genes involved in jasmonic acid (JA) biosynthesis were significantly downregulated as a result of the antagonism of SA and JA. Moreover, there was significant upregulation in multiple genes involved in the biosynthesis of l-histidine, fructose, maltotetraose, melezitose, lecithin, stearidonic acid, and mannitol, in which metabolites were confirmed to promote the growth and development of H. armigera. Our study is a reference for investigating the evolutionary relationships and provides insights into implementing effective insect biocontrol between H. armigera and A. gossypii.
Collapse
Affiliation(s)
- Shuaichao Zheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ruifang Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Lisha Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Shaodong Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Weijiao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, People's Republic of China
| |
Collapse
|