1
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Friedman L, Lauber M, Behroozmand R, Fogerty D, Kunecki D, Berry-Kravis E, Klusek J. Atypical vocal quality in women with the FMR1 premutation: an indicator of impaired sensorimotor control. Exp Brain Res 2023; 241:1975-1987. [PMID: 37347418 PMCID: PMC10863608 DOI: 10.1007/s00221-023-06653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Women with the FMR1 premutation are susceptible to motor involvement related to atypical cerebellar function, including risk for developing fragile X tremor ataxia syndrome. Vocal quality analyses are sensitive to subtle differences in motor skills but have not yet been applied to the FMR1 premutation. This study examined whether women with the FMR1 premutation demonstrate differences in vocal quality, and whether such differences relate to FMR1 genetic, executive, motor, or health features of the FMR1 premutation. Participants included 35 women with the FMR1 premutation and 45 age-matched women without the FMR1 premutation who served as a comparison group. Three sustained /a/ vowels were analyzed for pitch (mean F0), variability of pitch (standard deviation of F0), and overall vocal quality (jitter, shimmer, and harmonics-to-noise ratio). Executive, motor, and health indices were obtained from direct and self-report measures and genetic samples were analyzed for FMR1 CGG repeat length and activation ratio. Women with the FMR1 premutation had a lower pitch, larger pitch variability, and poorer vocal quality than the comparison group. Working memory was related to harmonics-to-noise ratio and shimmer in women with the FMR1 premutation. Vocal quality abnormalities differentiated women with the FMR1 premutation from the comparison group and were evident even in the absence of other clinically evident motor deficits. This study supports vocal quality analyses as a tool that may prove useful in the detection of early signs of motor involvement in this population.
Collapse
Affiliation(s)
- Laura Friedman
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Meagan Lauber
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Roozbeh Behroozmand
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Daniel Fogerty
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, USA
| | - Dariusz Kunecki
- Department of Pediatrics, Rush University Medical Center, Chicago, USA
| | | | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA.
| |
Collapse
|
3
|
Segal O, Kowal T, Banet-Levi Y, Gabis LV. Executive Function and Working Memory Deficits in Females with Fragile X Premutation. Life (Basel) 2023; 13:life13030813. [PMID: 36983968 PMCID: PMC10053193 DOI: 10.3390/life13030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The Fragile X premutation is a genetic instability of the FMR1 gene caused by 55–199 recurrences of the CGG sequence, whereas there are only 7–54 repeats of the CGG sequence in the normal condition. While males with the premutation of Fragile X were found to have difficulties in executive functions and working memory, little data have been collected on females. This study is among the first to address executive functions and phonological memory in females with the Fragile X premutation. Twenty-three female carriers aged 20–55 years and twelve non carrier females matched in age and levels of education (in years) participated in this study. Executive functions and phonological memory were assessed using the self-report questionnaire The Behavior Rating Inventory of Executive Function (BRIEF) and behavioral measures (nonword repetitions, forward and backward digit span). Females who were carriers of the premutation of the FMR1 gene reported less efficient executive functions in the BRIEF questionnaire compared to the control group. In addition, a relationship was found between the number of repetitions on the CGG sequence of nucleotides, nonword repetitions, and forward digit span. The findings suggest that the premutation of Fragile X in females affects their performance of executive functions and may have impact on everyday functioning.
Collapse
Affiliation(s)
- Osnat Segal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-522998404
| | - Tamar Kowal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | | | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Martins AAS, Paiva GM, Matosinho CGR, Coser EM, Fonseca PADS, Haase VG, Carvalho MRS. Working memory and arithmetic impairments in children with FMR1 premutation and gray zone alleles. Dement Neuropsychol 2022; 16:105-114. [PMID: 35719251 PMCID: PMC9170264 DOI: 10.1590/1980-5764-dn-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022] Open
Abstract
Expansive mutations in familial mental retardation 1 (FMR1) gene have been associated with different phenotypes. Full mutations are associated with intellectual disability and autism spectrum disorder; premutations are associated with math learning difficulties and working memory impairments. In gray zone, neuropsychological development has not yet been described. Objectives This study aimed to describe the frequency of FMR1 premutation and gray zone alleles in a school population sample representing a broad spectrum of variation in math achievement and detail school achievement and cognitive performance in the children identified with FMR1 premutation or gray zone alleles. Methods We described a two-phase study. In the first phase, 2,195 school-age children were screened for math achievement. In the second phase, 378 children with normal intelligence were neuropsychologically assessed and genotyped for FMR1. Of these, 121 children (61 girls) performed below percentile 25 in mathematics (MD group) and 257 children (146 girls) performed above percentile 25 (control group). Results Four pupils presented expanded alleles, one premutation and three gray zone alleles. The girl with the premutation and one boy with a gray zone allele presented impairments in working memory and arithmetic performance below percentile 6, compatible with the diagnosis of developmental dyscalculia. These children's difficulties were not associated with inaccuracy of nonsymbolic number representations or literacy impairments. Dyscalculia in these children seems to be associated mainly with working memory impairments. Conclusions FMR1 expansions in the gray zone may contribute to dyscalculia in otherwise healthy and normally intelligent children.
Collapse
Affiliation(s)
- Aline Aparecida Silva Martins
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Giulia Moreira Paiva
- Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| | - Carolina Guimarães Ramos Matosinho
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Elisângela Monteiro Coser
- Fundação Oswaldo Cruz, Instituto René Rachou, Departamento de Informática de Biossistemas e Genômica, Belo Horizonte MG, Brazil
| | - Pablo Augusto de Souza Fonseca
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| | - Vitor Geraldi Haase
- Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Medicina, Postgraduate Program em Saúde da Criança e do Adolescente Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Faculdade de Filosofia e Ciências Humanas, Departamento de Psicologia, Postgraduate Program em Psicologia, Belo Horizonte MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Cognição, Comportamento e Ensino, São Carlos SP, Brazil
| | - Maria Raquel Santos Carvalho
- Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Postgraduate Program em Genética, Belo Horizonte MG, Brazil.,Universidade Federal de Minas Gerais, Intituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Belo Horizonte MG, Brazil
| |
Collapse
|
5
|
Elevated FMR1-mRNA and lowered FMRP - A double-hit mechanism for psychiatric features in men with FMR1 premutations. Transl Psychiatry 2020; 10:205. [PMID: 32576818 PMCID: PMC7311546 DOI: 10.1038/s41398-020-00863-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a full mutation of the FMR1 gene (>200 CGG repeats and subsequent methylation), such that there is little or no FMR1 protein (FMRP) produced, leading to intellectual disability (ID). Individuals with the premutation allele (55-200 CGG repeats, generally unmethylated) have elevated FMR1 mRNA levels, a consequence of enhanced transcription, resulting in neuronal toxicity and a spectrum of premutation-associated disorders, including the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Here we described 14 patients who had both lowered FMRP and elevated FMR1 mRNA levels, representing dual mechanisms of clinical involvement, which may combine features of both FXS and FXTAS. In addition, the majority of these cases show psychiatric symptoms, including bipolar disorder, and/or psychotic features, which are rarely seen in those with just FXS.
Collapse
|
6
|
Nayar K, McKinney W, Hogan AL, Martin GE, La Valle C, Sharp K, Berry-Kravis E, Norton ES, Gordon PC, Losh M. Language processing skills linked to FMR1 variation: A study of gaze-language coordination during rapid automatized naming among women with the FMR1 premutation. PLoS One 2019; 14:e0219924. [PMID: 31348790 PMCID: PMC6660192 DOI: 10.1371/journal.pone.0219924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023] Open
Abstract
The FMR1 premutation (PM) is relatively common in the general population. Evidence suggests that PM carriers may exhibit subtle differences in specific cognitive and language abilities. This study examined potential mechanisms underlying such differences through the study of gaze and language coordination during a language processing task (rapid automatized naming; RAN) among female carriers of the FMR1 PM. RAN taps a complex set of underlying neuropsychological mechanisms, with breakdowns implicating processing disruptions in fundamental skills that support higher order language and executive functions, making RAN (and analysis of gaze/language coordination during RAN) a potentially powerful paradigm for revealing the phenotypic expression of the FMR1 PM. Forty-eight PM carriers and 56 controls completed RAN on an eye tracker, where they serially named arrays of numbers, letters, colors, and objects. Findings revealed a pattern of inefficient language processing in the PM group, including a greater number of eye fixations (namely, visual regressions) and reduced eye-voice span (i.e., the eyes' lead over the voice) relative to controls. Differences were driven by performance in the latter half of the RAN arrays, when working memory and processing load are the greatest, implicating executive skills. RAN deficits were associated with broader social-communicative difficulties among PM carriers, and with FMR1-related molecular genetic variation (higher CGG repeat length, lower activation ratio, and increased levels of the fragile X mental retardation protein; FMRP). Findings contribute to an understanding of the neurocognitive profile of PM carriers and indicate specific gene-behavior associations that implicate the role of the FMR1 gene in language-related processes.
Collapse
Affiliation(s)
- Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Walker McKinney
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas, United States of America
| | - Abigail L. Hogan
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Gary E. Martin
- St. John’s University, Communication Sciences and Disorders, Queens, New York, United States of America
| | - Chelsea La Valle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Psychology, Boston University, Boston, Massachusetts, United States of America
| | - Kevin Sharp
- Pediatrics, Rush University Medical Center, Chicago, Illinois, United States of America
| | | | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Peter C. Gordon
- Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
7
|
Cregenzán-Royo O, Brun-Gasca C, Fornieles-Deu A. Expressed emotion and impulsiveness in mothers of children with Fragile X Syndrome and Down Syndrome: The relation to behavioral problems in their offspring. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 83:179-189. [PMID: 30240913 DOI: 10.1016/j.ridd.2018.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 04/30/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Fragile X Syndrome (FXS) and Down Syndrome (DS) are common causes of Intellectual Disability (ID). Mothers of individuals with FXS sometimes have the premutation condition which makes them display neurocognitive signs, such as impulsiveness impairments, while mothers of DS individuals, as a group, do not have impairments. Although behavior problems in individuals with ID may be related to high Expressed Emotion (EE) in parents, parenting in families with ID members has been little explored. AIM To explore the relationship between a mother's EE and impulsiveness, in mothers of individuals with FXS and DS, with behavior problems in their offspring. METHOD A questionnaire was developed to collect data about impulsiveness and EE in mothers, along with information about behavior problems in ID individuals. RESULTS EE scores were associated with behavior problems in their offspring for both samples. Mothers with the premutation showed higher scores in EE than mothers of DS individuals. However, impulsiveness scores were not different between both parental groups, and were related to EE scores. CONCLUSIONS EE is a parental feature that is possible to modulate and seems to be related to behavior problems in ID individuals. More research should be carried on to create interventions to reduce this attitude in parents of ID individuals.
Collapse
Affiliation(s)
- Olga Cregenzán-Royo
- Department of Clinical and Health Psychology, Universidad Autonoma de Barcelona, Carrer de Ca n'-Altayó, S/N, 08193, Cerdanyola del Vallès, Spain.
| | - Carme Brun-Gasca
- Department of Clinical and Health Psychology, Universidad Autonoma de Barcelona, Carrer de Ca n'-Altayó, S/N, 08193, Cerdanyola del Vallès, Spain
| | - Albert Fornieles-Deu
- Department of Psychobiology and Methodology of Health Science, Serra Húnter fellow, Universidad Autonoma de Barcelona, Carrer de Can'-Altayó, S/N, 08193, Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Schneider A, Johnston C, Tassone F, Sansone S, Hagerman RJ, Ferrer E, Rivera SM, Hessl D. Broad autism spectrum and obsessive-compulsive symptoms in adults with the fragile X premutation. Clin Neuropsychol 2016; 30:929-43. [PMID: 27355445 DOI: 10.1080/13854046.2016.1189536] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Clinical observations and a limited number of research studies provide evidence that the fragile X premutation may confer risk for autism, executive dysfunction, and psychopathology. The link to autism spectrum symptoms and social cognition deficits with the premutation remains uncertain, and thus was the focus of the present investigation. METHOD Our sample included 131 individuals, 42 men/22 women with the FMR1 premutation (mean age = 31.83 ± 8.59 years) with a normal neurological exam, and 48 men/19 women healthy age-matched controls (mean age = 29.48 ± 7.29 years). Individuals completed a comprehensive neuropsychological battery with additional assessments for social cognition, broad autism spectrum, and obsessive-compulsive (OC) symptoms. RESULTS Premutation carriers self-reported higher rates of autism-related symptoms (Autism Quotient; p = .001). Among males only, premutation carriers showed more atypical social interaction (p < .001) and stereotyped behavior (p = .014) during standardized clinical examination on the Autism Diagnostic Observation Schedule (ADOS) relative to controls. Female premutation carriers reported significantly higher rates of OC symptoms compared to control females (p = .012). Molecular measures defining the expanded premutation (FMR1 CGG repeat length and/or mRNA) were significantly associated with a measure of theory of mind (Reading the Mind in the Eyes Task). CONCLUSIONS The results of this study indicate a higher rate of broad autism spectrum symptoms in some males with the premutation and provide evidence for an obsessive-compulsive subtype in female premutation carriers.
Collapse
Affiliation(s)
- A Schneider
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,c Department of Pediatrics , UC Davis School of Medicine , Sacramento , CA , USA
| | - C Johnston
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,b Department of Psychiatry and Behavioral Sciences , UC Davis School of Medicine , Sacramento , CA , USA
| | - F Tassone
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,f Department of Biochemistry and Molecular Medicine , UC Davis , Davis , CA , USA
| | - S Sansone
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,g Department of Human Development , UC Davis , Davis , CA , USA
| | - R J Hagerman
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,c Department of Pediatrics , UC Davis School of Medicine , Sacramento , CA , USA
| | - E Ferrer
- d Department of Psychology , UC Davis , Davis , CA , USA
| | - S M Rivera
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,d Department of Psychology , UC Davis , Davis , CA , USA.,e Center for Mind and Brain, UC Davis , Davis , CA , USA
| | - D Hessl
- a MIND Institute, UC Davis Medical Center , Sacramento , CA , USA.,b Department of Psychiatry and Behavioral Sciences , UC Davis School of Medicine , Sacramento , CA , USA
| |
Collapse
|
9
|
Shelton AL, Cornish KM, Godler DE, Clough M, Kraan C, Bui M, Fielding J. Delineation of the working memory profile in female FMR1 premutation carriers: the effect of cognitive load on ocular motor responses. Behav Brain Res 2015; 282:194-200. [PMID: 25591477 DOI: 10.1016/j.bbr.2015.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 01/10/2023]
Abstract
Fragile X mental retardation 1 (FMR1) premutation carriers (PM-carriers) are characterised as having mid-sized expansions of between 55 and 200 CGG repeats in the 5' untranslated region of the FMR1 gene. While there is evidence of executive dysfunction in PM-carriers, few studies have explicitly explored working memory capabilities in female PM-carriers. 14 female PM-carriers and 13 age- and IQ-matched healthy controls completed an ocular motor n-back working memory paradigm. This task examined working memory ability and the effect of measured increases in cognitive load. Female PM-carriers were found to have attenuated working memory capabilities. Increasing the cognitive load did not elicit the expected reciprocal increase in the task errors for female PM-carriers, as it did in controls. However female PM-carriers took longer to respond than controls, regardless of the cognitive load. Further, FMR1 mRNA levels were found to significantly predict PM-carrier response time. Although preliminary, these findings provide further evidence of executive dysfunction, specifically disruption to working memory processes, which were found to be associated with increases in FMR1 mRNA expression in female PM-carriers. With future validation, ocular motor paradigms such as the n-back paradigm will be critical to the development of behavioural biomarkers for identification of PM-carrier cognitive-affective phenotypes.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Kim M Cornish
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David E Godler
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Meaghan Clough
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Claudine Kraan
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne 3010, VIC, Australia
| | - Joanne Fielding
- School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Birch RC, Cornish KM, Hocking DR, Trollor JN. Understanding the neuropsychiatric phenotype of fragile X-associated tremor ataxia syndrome: a systematic review. Neuropsychol Rev 2014; 24:491-513. [PMID: 24828430 DOI: 10.1007/s11065-014-9262-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/22/2014] [Indexed: 11/28/2022]
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a recently identified X-linked neurodegenerative disorder affecting a proportion of premutation carriers of the Fragile X Mental Retardation 1 (FMR1) gene. Previous research suggests that cognitive and psychiatric features of FXTAS may include primary impairments in executive function and increased vulnerability to mood and anxiety disorders. A number of these reports, however, are based on overlapping cohorts or have produced inconsistent findings. A systematic review was therefore conducted to further elucidate the neuropsychiatric features characteristic of FXTAS. Fourteen papers met inclusion criteria for the review and were considered to represent nine independent FXTAS cohorts. Findings from the review suggest that the neuropsychiatric phenotype of FXTAS is characterised primarily by poorer performance on measures of executive function, working memory, information processing speed, and fine motor control when compared to matched comparison groups. Two studies were identified in which psychiatric symptoms in FXTAS were compared with controls, and these yielded mixed results. Overall the results of this review support previous reports that the neuropsychiatric profile of FXTAS is consistent with a dysexecutive fronto-subcortical syndrome. However, additional controlled studies are required to progress our understanding of FXTAS and how the neuropsychiatric profile relates to underlying pathological mechanisms.
Collapse
Affiliation(s)
- R C Birch
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
11
|
Hippolyte L, Battistella G, Perrin AG, Fornari E, Cornish KM, Beckmann JS, Niederhauser J, Vingerhoets FJG, Draganski B, Maeder P, Jacquemont S. Investigation of memory, executive functions, and anatomic correlates in asymptomatic FMR1 premutation carriers. Neurobiol Aging 2014; 35:1939-46. [PMID: 24612675 DOI: 10.1016/j.neurobiolaging.2014.01.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/30/2013] [Accepted: 01/30/2014] [Indexed: 01/26/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset movement disorder associated with FMR1 premutation alleles. Asymptomatic premutation (aPM) carriers have preserved cognitive functions, but they present subtle executive deficits. Current efforts are focusing on the identification of specific cognitive markers that can detect aPM carriers at higher risk of developing FXTAS. This study aims at evaluating verbal memory and executive functions as early markers of disease progression while exploring associated brain structure changes using diffusion tensor imaging. We assessed 30 aPM men and 38 intrafamilial controls. The groups perform similarly in the executive domain except for decreased performance in motor planning in aPM carriers. In the memory domain, aPM carriers present a significant decrease in verbal encoding and retrieval. Retrieval is associated with microstructural changes of the white matter (WM) of the left hippocampal fimbria. Encoding is associated with changes in the WM under the right dorsolateral prefrontal cortex, a region implicated in relational memory encoding. These associations were found in the aPM group only and did not show age-related decline. This may be interpreted as a neurodevelopmental effect of the premutation, and longitudinal studies are required to better understand these mechanisms.
Collapse
Affiliation(s)
- Loyse Hippolyte
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Giovanni Battistella
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Aline G Perrin
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Eleonora Fornari
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Centre d'Imagerie Biomédicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kim M Cornish
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Jacques S Beckmann
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Julien Niederhauser
- Centre d'Imagerie Biomédicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - François J G Vingerhoets
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- LREN-Departement des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philippe Maeder
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sébastien Jacquemont
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Shelton AL, Cornish K, Kraan C, Georgiou-Karistianis N, Metcalfe SA, Bradshaw JL, Hocking DR, Archibald AD, Cohen J, Trollor JN, Fielding J. Exploring inhibitory deficits in female premutation carriers of fragile X syndrome: through eye movements. Brain Cogn 2014; 85:201-8. [PMID: 24424424 DOI: 10.1016/j.bandc.2013.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023]
Abstract
There is evidence which demonstrates that a subset of males with a premutation CGG repeat expansion (between 55 and 200 repeats) of the fragile X mental retardation 1 gene exhibit subtle deficits of executive function that progressively deteriorate with increasing age and CGG repeat length. However, it remains unclear whether similar deficits, which may indicate the onset of more severe degeneration, are evident in female PM-carriers. In the present study we explore whether female PM-carriers exhibit deficits of executive function which parallel those of male PM-carriers. Fourteen female fragile X premutation carriers without fragile X-associated tremor/ataxia syndrome and fourteen age, sex, and IQ matched controls underwent ocular motor and neuropsychological tests of select executive processes, specifically of response inhibition and working memory. Group comparisons revealed poorer inhibitory control for female premutation carriers on ocular motor tasks, in addition to demonstrating some difficulties in behaviour self-regulation, when compared to controls. A negative correlation between CGG repeat length and antisaccade error rates for premutation carriers was also found. Our preliminary findings indicate that impaired inhibitory control may represent a phenotype characteristic which may be a sensitive risk biomarker within this female fragile X premutation population.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Kim Cornish
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Claudine Kraan
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Sylvia A Metcalfe
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3025, Australia
| | - John L Bradshaw
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Darren R Hocking
- Olga Tennison Autism Research Centre, School of Psychological Science, La Trobe University, Bundoora 3086, Australia
| | - Alison D Archibald
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3025, Australia; Victorian Clinical Genetics Services, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Jonathan Cohen
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria 3052, Australia; Centre for Developmental Disability Health Victoria, Monash University, Clayton, Victoria 3800, Australia; Fragile X Alliance Inc., Clinic and Resource Centre, 263 Glen Eira Road, North Caulfield, Victoria 3161, Australia
| | - Julian N Trollor
- Department of Developmental Disability Neuropsychiatry and Centre for Health Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia
| | - Joanne Fielding
- School of Psychiatry and Psychology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
13
|
Polussa J, Schneider A, Hagerman R. Molecular Advances Leading to Treatment Implications for Fragile X Premutation Carriers. BRAIN DISORDERS & THERAPY 2014; 3:1000119. [PMID: 25436181 PMCID: PMC4245015 DOI: 10.4172/2168-975x.1000119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment. Here we review the clinical problems of carriers and treatment recommendations.
Collapse
Affiliation(s)
- Jonathan Polussa
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
14
|
Language dysfluencies in females with the FMR1 premutation. Brain Cogn 2013; 82:84-9. [PMID: 23523717 DOI: 10.1016/j.bandc.2013.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 11/21/2022]
Abstract
Recent evidence suggests that there are age-related neurocognitive implications for fragile X premutation carriers, including deficits in executive function, and that such deficits are more common in male than female premutation carriers. The purpose of the current study is to examine one aspect of executive function, language dysfluencies, in a group of 193 women with the premutation, and to contrast them with a comparison group (mothers of children with autism spectrum disorders). Our results demonstrate a linguistic profile in the female premutation carriers characterized by dysfluencies associated with deficits in organization and planning, with a clear impact of age. The comparison group, matched on both age and education level, did not demonstrate the age effect. Our results suggest dysfluencies could be an early indicator of cognitive aging in some female premutation carriers, and could be used to target early intervention.
Collapse
|
15
|
Neurobehavioural evidence for the involvement of the FMR1 gene in female carriers of fragile X syndrome. Neurosci Biobehav Rev 2013; 37:522-47. [DOI: 10.1016/j.neubiorev.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 12/19/2022]
|
16
|
Young adult male carriers of the fragile X premutation exhibit genetically modulated impairments in visuospatial tasks controlled for psychomotor speed. J Neurodev Disord 2012; 4:26. [PMID: 23148490 PMCID: PMC3506571 DOI: 10.1186/1866-1955-4-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023] Open
Abstract
Background A previous study reported enhanced psychomotor speed, and subtle but significant cognitive impairments, modulated by age and by mutations in the fragile X mental retardation 1 (FMR1) gene in adult female fragile X premutation carriers (fXPCs). Because male carriers, unlike females, do not have a second, unaffected FMR1 allele, male fXPCs should exhibit similar, if not worse, impairments. Understanding male fXPCs is of particular significance because of their increased risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS). Methods Male fXPCs (n = 18) and healthy control (HC) adults (n = 26) aged less than 45 years performed two psychomotor speed tasks (manual and oral) and two visuospatial tasks (magnitude comparison and enumeration). In the magnitude comparison task, participants were asked to compare and judge which of two bars was larger. In the enumeration task, participants were shown between one and eight green bars in the center of the screen, and asked to state the total number displayed. Enumeration typically proceeds in one of two modes: subitizing, a fast and accurate process that works only with a small set of items, and counting, which requires accurate serial-object detection and individuation during visual search. We examined the associations between the performance on all tasks and the age, full-scale intelligent quotient, and CGG repeat length of participants. Results We found that in the magnitude comparison and enumeration tasks, male fXPCs exhibited slower reaction times relative to HCs, even after controlling for simple reaction time. Conclusions Our results indicate that male fXPCs as a group show impairments (slower reaction times) in numerical visuospatial tasks, which are consistent with previous findings. This adds to a growing body of literature characterizing the phenotype in fXPCs who are asymptomatic for FXTAS. Future longitudinal studies are needed to determine how these impairments relate to risk of developing FXTAS.
Collapse
|
17
|
Wang JM, Koldewyn K, Hashimoto RI, Schneider A, Le L, Tassone F, Cheung K, Hagerman P, Hessl D, Rivera SM. Male carriers of the FMR1 premutation show altered hippocampal-prefrontal function during memory encoding. Front Hum Neurosci 2012; 6:297. [PMID: 23115550 PMCID: PMC3483622 DOI: 10.3389/fnhum.2012.00297] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/08/2012] [Indexed: 01/17/2023] Open
Abstract
Previous functional MRI (fMRI) studies have shown that fragile X mental retardation 1 (FMR1) fragile X premutation allele carriers (FXPCs) exhibit decreased hippocampal activation during a recall task and lower inferior frontal activation during a working memory task compared to matched controls. The molecular characteristics of FXPCs includes 55–200 CGG trinucleotide expansions, increased FMR1 mRNA levels, and decreased FMRP levels especially at higher repeat sizes. In the current study, we utilized MRI to examine differences in hippocampal volume and function during an encoding task in young male FXPCs. While no decreases in either hippocampal volume or hippocampal activity were observed during the encoding task in FXPCs, FMRP level (measured in blood) correlated with decreases in parahippocampal activation. In addition, activity in the right dorsolateral prefrontal cortex during correctly encoded trials correlated negatively with mRNA levels. These results, as well as the established biological effects associated with elevated mRNA levels and decreased FMRP levels on dendritic maturation and axonal growth, prompted us to explore functional connectivity between the hippocampus, prefrontal cortex, and parahippocampal gyrus using a psychophysiological interaction analysis. In FXPCs, the right hippocampus evinced significantly lower connectivity with right ventrolateral prefrontal cortex (VLPFC) and right parahippocampal gyrus. Furthermore, the weaker connectivity between the right hippocampus and VLPFC was associated with reduced FMRP in the FXPC group. These results suggest that while FXPCs show relatively typical brain response during encoding, faulty connectivity between frontal and hippocampal regions may have subsequent effects on recall and working memory.
Collapse
Affiliation(s)
- John M Wang
- Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University Roanoke, VA, USA ; Department of Psychology, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Losh M, Klusek J, Martin GE, Sideris J, Parlier M, Piven J. Defining genetically meaningful language and personality traits in relatives of individuals with fragile X syndrome and relatives of individuals with autism. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:660-8. [PMID: 22693142 PMCID: PMC3740587 DOI: 10.1002/ajmg.b.32070] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 05/02/2012] [Indexed: 12/17/2022]
Abstract
Substantial phenotypic overlap exists between fragile X syndrome (FXS) and autism, suggesting that FMR1 (the gene causing FXS) poses a significant risk for autism. Cross-population comparisons of FXS and autism therefore offer a potentially valuable method for refining the range of phenotypes associated with variation in FMR1. This study adopted a broader phenotype approach, focusing on parents who are at increased genetic liability for autism or FXS. Women who were carriers of FMR1 in its premutation state were compared with mothers of individuals with autism, and controls in an attempt to determine whether subtle features of the broad autism phenotype may express at elevated rates among FMR1 premutation carriers. The principal personality and language features comprising the broad autism phenotype (i.e., rigid and aloof personality, and particular patterns of pragmatic language use) were assessed among 49 premutation carriers who were mothers of individuals with FXS, 89 mothers of individuals with autism, and 23 mothers of typically developing individuals. Relative to controls, the autism and premutation parent groups showed elevated rates of certain personality and language characteristics of the broad autism phenotype. Findings suggest partially overlapping personality and language profiles among autism and premutation parent groups, with rigid personality style and patterns of pragmatic language use emerging as features most clearly shared between groups. These results provide further evidence for the overlap of autism and FXS, and may implicate FMR1 in some of the subtle features comprising the broad autism phenotype.
Collapse
Affiliation(s)
- Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
| | - Jessica Klusek
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill,Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill
| | - Gary E. Martin
- Division of Speech and Hearing Sciences, Department of Allied Health Sciences, University of North Carolina at Chapel Hill,Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill
| | - John Sideris
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill
| | - Morgan Parlier
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill
| |
Collapse
|
19
|
Berman RF, Murray KD, Arque G, Hunsaker MR, Wenzel HJ. Abnormal dendrite and spine morphology in primary visual cortex in the CGG knock-in mouse model of the fragile X premutation. Epilepsia 2012; 53 Suppl 1:150-60. [PMID: 22612820 DOI: 10.1111/j.1528-1167.2012.03486.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fragile X mental retardation 1 gene (Fmr1) is polymorphic for CGG trinucleotide repeat number in the 5'-untranslated region, with repeat lengths <45 associated with typical development and repeat lengths >200 resulting in hypermethylation and transcriptional silencing of the gene and mental retardation in the fragile X Syndrome (FXS). Individuals with CGG repeat expansions between 55 and 200 are carriers of the fragile X premutation (PM). PM carriers show a phenotype that can include anxiety, depression, social phobia, and memory deficits. They are also at risk for developing fragile X-associated tremor/ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by tremor, ataxia, cognitive impairment, and neuropathologic features including intranuclear inclusions in neurons and astrocytes, loss of Purkinje cells, and white matter disease. However, very little is known about dendritic morphology in PM or in FXTAS. Therefore, we carried out a Golgi study of dendritic complexity and dendritic spine morphology in layer II/III pyramidal neurons in primary visual cortex in a knock-in (KI) mouse model of the PM. These CGG KI mice carry an expanded CGG trinucleotide repeat on Fmr1, and model many features of the PM and FXTAS. Compared to wild-type (WT) mice, CGG KI mice showed fewer dendritic branches proximal to the soma, reduced total dendritic length, and a higher frequency of longer dendritic spines. The distribution of morphologic spine types (e.g., stubby, mushroom, filopodial) did not differ between WT and KI mice. These findings demonstrate that synaptic circuitry is abnormal in visual cortex of mice used to model the PM, and suggest that such changes may underlie neurologic features found in individuals carrying the PM as well as in individuals with FXTAS.
Collapse
Affiliation(s)
- Robert F Berman
- Department of Neurological Surgery, School of Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616-8519, U.S.A.
| | | | | | | | | |
Collapse
|
20
|
Current world literature. Curr Opin Pediatr 2011; 23:700-7. [PMID: 22068136 DOI: 10.1097/mop.0b013e32834dda34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Berger-Sweeney J. Cognitive deficits in Rett syndrome: What we know and what we need to know to treat them. Neurobiol Learn Mem 2011; 96:637-46. [DOI: 10.1016/j.nlm.2011.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/04/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
|
22
|
Hunsaker MR, von Leden RE, Ta BT, Goodrich-Hunsaker NJ, Arque G, Kim K, Willemsen R, Berman RF. Motor deficits on a ladder rung task in male and female adolescent and adult CGG knock-in mice. Behav Brain Res 2011; 222:117-21. [PMID: 21440572 DOI: 10.1016/j.bbr.2011.03.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
Abstract
The fragile X premutation is a tandem CGG trinucleotide repeat expansion on the FMR1 gene between 55 and 200 repeats in length. A CGG knock-in (CGG KI) mouse with CGG trinucleotide repeat lengths between 70 and 350 has been developed and used to model the histopathology and cognitive deficits reported in carriers of the fragile X premutation. Previous studies have shown that CGG KI mice show progressive deficits in processing spatial and temporal information. To characterize the motor deficits associated with the fragile X premutation, male and female CGG KI mice ranging from 2 to 16 months of age with trinucleotide repeats ranging from 72 to 240 CGG in length were tested for their ability to perform a skilled ladder rung walking test. The results demonstrate that both male and female CGG KI mice showed a greater number of foot slips as a function of increased CGG repeat length, independent of the age of the animal or general activity level.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, School of Medicine, University of California, Davis; Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hagerman R, Hoem G, Hagerman P. Fragile X and autism: Intertwined at the molecular level leading to targeted treatments. Mol Autism 2010; 1:12. [PMID: 20858229 PMCID: PMC2954865 DOI: 10.1186/2040-2392-1-12] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/21/2010] [Indexed: 01/17/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by an expanded CGG repeat (> 200 repeats) in the 5' untranslated portion of the fragile mental retardation 1 gene (FMR1), leading to deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA carrier protein that controls the translation of several other genes that regulate synaptic development and plasticity. Autism occurs in approximately 30% of FXS cases, and pervasive developmental disorder, not otherwise specified (PDD-NOS) occurs in an additional 30% of cases. Premutation repeat expansions (55 to 200 CGG repeats) may also give rise to autism spectrum disorders (ASD), including both autism and PDD-NOS, through a different molecular mechanism that involves a direct toxic effect of the expanded CGG repeat FMR1 mRNA. RNA toxicity can also lead to aging effects including tremor, ataxia and cognitive decline, termed fragile X-associated tremor ataxia syndrome (FXTAS), in premutation carriers in late life. In studies of mice bearing premutation expansions, there is evidence of early postnatal neuronal cell toxicity, presenting as reduced cell longevity, decreased dendritic arborization and altered synaptic morphology. There is also evidence of mitochondrial dysfunction in premutation carriers. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in autism without fragile X mutations. Research regarding dysregulation of neurotransmitter systems in FXS, including the metabotropic glutamate receptor (mGluR)1/5 pathway and γ aminobutyric acid (GABA)A pathways, have led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.
Collapse
Affiliation(s)
- Randi Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, USA
- MIND Institute, University of California, Davis, Health System, Sacramento, California, USA
| | - Gry Hoem
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromso, Norway
| | - Paul Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, USA
| |
Collapse
|