1
|
Mayol-Troncoso R, Gaspar PA, Verdugo R, Mariman JJ, Maldonado PE. Fixational eye movements and their associated evoked potentials during natural vision are altered in schizophrenia. Schizophr Res Cogn 2024; 38:100324. [PMID: 39238484 PMCID: PMC11375315 DOI: 10.1016/j.scog.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Background Visual exploration is abnormal in schizophrenia; however, few studies have investigated the physiological responses during selecting objectives in more ecological scenarios. This study aimed to demonstrate that people with schizophrenia have difficulties observing the prominent elements of an image due to a deficit mechanism of sensory modulation (active sensing) during natural vision. Methods An electroencephalogram recording with eye tracking data was collected on 18 healthy individuals and 18 people affected by schizophrenia while looking at natural images. These had a prominent color element and blinking produced by changes in image luminance. Results We found fewer fixations when all images were scanned, late focus on prominent image areas, decreased amplitude in the eye-fixation-related potential, and decreased intertrial coherence in the SCZ group. Conclusions The decrease in the visual attention response evoked by the prominence of visual stimuli in patients affected by schizophrenia is generated by a reduction in endogenous attention mechanisms to initiate and maintain visual exploration. Further work is required to explain the relationship of this decrease with clinical indicators.
Collapse
Affiliation(s)
- Rocío Mayol-Troncoso
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Facultad de Psicología, Universidad Alberto Hurtado, Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Pablo A Gaspar
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay, Chile
- Clínica Alemana, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Laboratorio Psiquiatría Traslacional
| | - Roberto Verdugo
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Instituto Psiquiátrico Dr. José Horwitz Barak, Chile
| | - Juan J Mariman
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile
- Nucleus of wellbeing and human development, education research center (CIE-UMCE), Universidad Metropolitana de Ciencias de la educación
| | - Pedro E Maldonado
- Biomedical Neuroscience Institute (BNI)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile
- Nacional Center for Artificial Intelligence (CENIA), Chile
| |
Collapse
|
2
|
Coors A, Imtiaz MA, Boenniger MM, Aziz NA, Breteler MMB, Ettinger U. Polygenic risk scores for schizophrenia are associated with oculomotor endophenotypes. Psychol Med 2023; 53:1611-1619. [PMID: 34412712 PMCID: PMC10009390 DOI: 10.1017/s0033291721003251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schizophrenia is a heterogeneous disorder with substantial heritability. The use of endophenotypes may help clarify its aetiology. Measures from the smooth pursuit and antisaccade eye movement tasks have been identified as endophenotypes for schizophrenia in twin and family studies. However, the genetic basis of the overlap between schizophrenia and these oculomotor markers is largely unknown. Here, we tested whether schizophrenia polygenic risk scores (PRS) were associated with oculomotor performance in the general population. METHODS Analyses were based on the data of 2956 participants (aged 30-95) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Genotyping was performed on Omni-2.5 exome arrays. Using summary statistics from a recent meta-analysis based on the two largest schizophrenia genome-wide association studies to date, we quantified genetic risk for schizophrenia by creating PRS at different p value thresholds for genetic markers. We examined associations between PRS and oculomotor performance using multivariable regression models. RESULTS Higher PRS were associated with higher antisaccade error rate and latency, and lower antisaccade amplitude gain. PRS showed inconsistent patterns of association with smooth pursuit velocity gain and were not associated with saccade rate during smooth pursuit or performance on a prosaccade control task. CONCLUSIONS There is an overlap between genetic determinants of schizophrenia and oculomotor endophenotypes. Our findings suggest that the mechanisms that underlie schizophrenia also affect oculomotor function in the general population.
Collapse
Affiliation(s)
- Annabell Coors
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Meta M. Boenniger
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N. Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Monique M. B. Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | | |
Collapse
|
3
|
Velázquez-Pérez L, Rodríguez-Labrada R, González-Garcés Y, Vázquez-Mojena Y, Pérez-Rodríguez R, Ziemann U. Neurophysiological features in spinocerebellar ataxia type 2: Prospects for novel biomarkers. Clin Neurophysiol 2021; 135:1-12. [PMID: 34998091 DOI: 10.1016/j.clinph.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Electrophysiological biomarkers are useful to assess the degeneration and progression of the nervous system in pre-ataxic and ataxic stages of the Spinocerebellar Ataxia Type 2 (SCA2). These biomarkers are essentially defined by their clinical significance, discriminating patients and/or preclinical subjects from healthy controls in cross-sectional studies, their significant changes over time in longitudinal studies, and their correlation with the cytosine-guanine-adenine (CAG) repeat expansion and/or clinical ataxia scores, time of evolution and time to ataxia onset. We classified electrophysiological biomarkers into three main types: (1) preclinical, (2) disease progression and (3) genetic damage. We review the data that identify sural nerve potential amplitude, maximum saccadic velocity, sleep efficiency, rapid eye movement (REM) sleep percentage, K-complex density, REM sleep without atonia percentage, corticomuscular coherence, central motor conduction time, visual P300 latency, and antisaccadic error correction latency as reliable preclinical, progression and/or genetic damage biomarkers of SCA2. These electrophysiological biomarkers will facilitate the conduction of clinical trials that test the efficacy of emerging treatments in SCA2.
Collapse
Affiliation(s)
- Luis Velázquez-Pérez
- Cuban Academy of Sciences, Cuba st 460, Between Amargura and Teniente Rey, La Habana Vieja, La Habana, Cuba; Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad st 26, Between 12th and 16th Streets, Holguín, Cuba.
| | | | - Yasmany González-Garcés
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad st 26, Between 12th and 16th Streets, Holguín, Cuba
| | | | - Roberto Pérez-Rodríguez
- Machine Learning Department, Holguin University, Ave Celia Sánchez Between Ave de los Internacionalistas y Final, Hilda Torres, Holguín, Cuba
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Altered Effective Connectivity within an Oculomotor Control Network in Unaffected Relatives of Individuals with Schizophrenia. Brain Sci 2021; 11:brainsci11091228. [PMID: 34573248 PMCID: PMC8467791 DOI: 10.3390/brainsci11091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to rapidly stop or change a planned action is a critical cognitive process that is impaired in schizophrenia. The current study aimed to examine whether this impairment reflects familial vulnerability to schizophrenia across two experiments comparing unaffected first-degree relatives to healthy controls. First, we examined performance on a saccadic stop-signal task that required rapid inhibition of an eye movement. Then, in a different sample, we investigated behavioral and neural responses (using fMRI) during a stop-signal task variant that required rapid modification of a prepared eye movement. Here, we examined differences between relatives and healthy controls in terms of activation and effective connectivity within an oculomotor control network during task performance. Like individuals with schizophrenia, the unaffected relatives showed behavioral evidence for more inefficient inhibitory processes. Unlike previous findings in individuals with schizophrenia, however, the relatives showed evidence for a compensatory waiting strategy. Behavioral differences were accompanied by more activation among the relatives in task-relevant regions across conditions and group differences in effective connectivity across the task that were modulated differently by the instruction to exert control over a planned saccade. Effective connectivity parameters were related to behavioral measures of inhibition efficiency. The results suggest that individuals at familial risk for schizophrenia were engaging an oculomotor control network differently than controls and in a way that compromises inhibition efficiency.
Collapse
|
5
|
Thomas EHX, Steffens M, Harms C, Rossell SL, Gurvich C, Ettinger U. Schizotypy, neuroticism, and saccadic eye movements: New data and meta-analysis. Psychophysiology 2020; 58:e13706. [PMID: 33095460 DOI: 10.1111/psyp.13706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
Deficits on saccade tasks, particularly antisaccade performance, have been reliably reported in schizophrenia. However, less evidence is available on saccade performance in relation to schizotypy, a personality constellation harboring risk for schizophrenia. Here, we report a large empirical study of the associations of schizotypy and neuroticism with antisaccade and prosaccade performance (Study I). Additionally, we carried out meta-analyses of the association between schizotypy and antisaccade error rate (Study II). In Study I, N = 526 healthy individuals from the general population aged 18-54 years completed prosaccade and antisaccade tasks as well as the Schizotypal Personality Questionnaire (SPQ). Schizotypy was significantly associated with increased antisaccade error rate, with the disorganized dimension emerging as strongest predictor (β = .118, p = .007). Neuroticism emerged as a significant predictor for prosaccade gain (β = .103, p = .023) and antisaccade latency (β = .101, p = .025). In Study II, random-effects meta-analyses were performed on the published data and those from Study I. Meta-analyses revealed significant associations (all p ≤ .003) of antisaccade error rate with positive (g = 0.37), negative (g = 0.26), disorganized (g = 0.36) and overall schizotypy (g = 0.37). Overall, the present work replicates the association between antisaccade direction errors and schizotypy. Significant findings from meta-analyses provide further evidence of the antisaccade error rate as a putative schizophrenia spectrum marker.
Collapse
Affiliation(s)
- Elizabeth H X Thomas
- Monash Alfred Psychiatry Research Centre (MAPrc), The Alfred Hospital, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Maria Steffens
- Department of Psychology, University of Bonn, Bonn, Germany
| | | | - Susan L Rossell
- Faculty of Health, Arts and Design, School of Health Sciences, Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia.,St Vincent's Mental Health, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre (MAPrc), The Alfred Hospital, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
6
|
Thakkar KN, Rolfs M. Disrupted Corollary Discharge in Schizophrenia: Evidence From the Oculomotor System. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:773-781. [PMID: 31105039 PMCID: PMC6733648 DOI: 10.1016/j.bpsc.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/04/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023]
Abstract
Corollary discharge (CD) signals are motor-related signals that exert an influence on sensory processing. They allow mobile organisms to predict the sensory consequences of their imminent actions. Among the many functions of CD is to provide a means by which we can distinguish sensory experiences caused by our own actions from those with external causes. In this way, they contribute to a subjective sense of agency. A disruption in the sense of agency is central to many of the clinical symptoms of schizophrenia, and abnormalities in CD signaling have been theorized to underpin particularly those agency-related psychotic symptoms of the illness. Characterizing abnormal CD associated with eye movements in schizophrenia and their resulting influence on visual processing and subsequent action plans may have advantages over other sensory and motor systems. That is because the most robust psychophysiological and neurophysiological data regarding the dynamics and influence of CD as well as the neural circuitry implicated in CD generation and transmission comes from the study of eye movements in humans and nonhuman primates. We review studies of oculomotor CD signaling in the schizophrenia spectrum and possible neurobiological correlates of CD disturbances. We conclude by speculating on the ways in which oculomotor CD dysfunction, specifically, may invoke specific experiences, clinical symptoms, and cognitive impairments. These speculations lay the groundwork for empirical study, and we conclude by outlining potentially fruitful research directions.
Collapse
Affiliation(s)
- Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, Michigan; Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, Michigan.
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
7
|
Abstract
Objectives: Antisaccade error rate has been proposed to be one of the most promising endophenotypes for schizophrenia. Increased error rate in patients has been associated with working memory, attention and other executive function impairments. The relationship between antisaccade error rate and other neuropsychological processes in patients compared to healthy controls has not been explored in depth. This study aimed to replicate the finding of heightened antisaccade error rate in patients and determine which cognitive processes were most strongly associated with antisaccade error rate in both patients and controls. In addition, the study investigated whether different antisaccade task paradigms engage different cognitive processes. Methods: One hundred and ninety-one participants (54 patients with schizophrenia/schizoaffective disorder and 137 controls) completed the antisaccade task, which included both gap and step task parameters. Neuropsychological measures were obtained using the MCCB and the Stroop task. Results: The current study replicated a pronounced antisaccade error rate deficit in patients. In patients, working memory variance was most significantly associated with antisaccade errors made during the step condition, while attentional processes were most associated with errors made during the gap condition. In controls, overall global cognitive performance was most associated with antisaccade rates for both gap and step conditions. Conclusions: The current study demonstrates that in schizophrenia patients, but not controls, elevated antisaccade error rate is associated with attention and working memory, but not with global cognitive impairment or psychopathological processes. Our novel findings demonstrate that the gap and step conditions of the antisaccade task engage different cognitive processes. (JINS, 2019, 25, 174-183).
Collapse
|
8
|
Preciado D, Theeuwes J. To look or not to look? Reward, selection history, and oculomotor guidance. J Neurophysiol 2018; 120:1740-1752. [PMID: 30020840 PMCID: PMC6230805 DOI: 10.1152/jn.00275.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 11/24/2022] Open
Abstract
The current eye-tracking study examined the influence of reward on oculomotor performance, and the extent to which learned stimulus-reward associations interacted with voluntary oculomotor control with a modified paradigm based on the classical antisaccade task. Participants were shown two equally salient stimuli simultaneously: a gray and a colored circle, and they were instructed to make a fast saccade to one of them. During the first phase of the experiment, participants made a fast saccade toward the colored stimulus, and their performance determined a (cash) bonus. During the second, participants made a saccade toward the gray stimulus, with no rewards available. On each trial, one of three colors was presented, each associated with high, low or no reward during the first phase. Results from the first phase showed improved accuracy and shorter saccade latencies on high-reward trials, while those from the second replicated well-known effects typical of the antisaccade task, namely, decreased accuracy and increased latency during phase II, even despite the absence of abrupt asymmetric onsets. Crucially, performance differences between phases revealed longer latencies and less accurate saccades during the second phase for high-reward trials, compared with the low- and no-reward trials. Further analyses indicated that oculomotor capture by reward signals is mainly found for saccades with short latencies, while this automatic capture can be overridden through voluntary control with longer ones. These results highlight the natural flexibility and adaptability of the attentional system, and the role of reward in modulating this plasticity. NEW & NOTEWORTHY Typically, in the antisaccade task, participants need to suppress an automatic orienting reflex toward a suddenly appearing peripheral stimulus. Here, we introduce an alternative antisaccade task without such abrupt onsets. We replicate well-known antisaccade effects (more errors and longer latencies), demonstrating the role of reward in developing selective oculomotor biases. Results highlight how reward and selection history facilitate developing automatic biases from goal-driven behavior, and they suggest that this process responds to individual differences in impulsivity.
Collapse
Affiliation(s)
- Daniel Preciado
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam , The Netherlands
| | - Jan Theeuwes
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam , The Netherlands
| |
Collapse
|
9
|
Hellhammer D, Meinlschmidt G, Pruessner JC. Conceptual endophenotypes: A strategy to advance the impact of psychoneuroendocrinology in precision medicine. Psychoneuroendocrinology 2018; 89:147-160. [PMID: 29396321 DOI: 10.1016/j.psyneuen.2017.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Psychobiological research has generated a tremendous amount of findings on the psychological, neuroendocrine, molecular and environmental processes that are directly relevant for mental and physical health, but have overwhelmed our capacity to meaningfully absorb, integrate, and utilize this knowledge base. Here, we reflect about suitable strategies to improve the translational success of psychoneuroendocrinological research in the era of precision medicine. Following a strategy advocated by the National Research Council and the tradition of endophenotype-based research, we advance here a new approach, termed "conceptual endophenotypes". We define the contextual and formal criteria of conceptual endophenotypes, outline criteria for filtering and selecting information, and describe how conceptual endophenotypes can be validated and implemented at the bedside. As proof-of-concept, we describe some of our findings from research that has adopted this approach in the context of stress-related disorders. We argue that conceptual endophenotypes engineer a bridge between the bench and the bedside. This approach readily lends itself to being continuously developed and implemented. Recent methodological advances, including digital phenotyping, machine learning, grassroots collaboration, and a learning healthcare system, may accelerate the development and implementation of this conceptual endophenotype approach.
Collapse
Affiliation(s)
- Dirk Hellhammer
- Department of Psychology, University of Trier, D-54286 Trier, Germany.
| | - Gunther Meinlschmidt
- Department of Psychosomatic Medicine, Faculty of Medicine, University of Basel and University Hospital Basel, Hebelstrasse 2, CH-4031 Basel, Switzerland; Division of Clinical Psychology and Epidemiology, Department of Psychology, University of Basel, Missionsstrasse 60/62, CH-4055 Basel, Switzerland; Division of Clinical Psychology and Cognitive Behavioral Therapy, International Psychoanalytic University, Stromstrasse 1, D-10555 Berlin, Germany.
| | - Jens C Pruessner
- Department of Psychology, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
10
|
Thakkar KN, Diwadkar VA, Rolfs M. Oculomotor Prediction: A Window into the Psychotic Mind. Trends Cogn Sci 2017; 21:344-356. [PMID: 28292639 PMCID: PMC5401650 DOI: 10.1016/j.tics.2017.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/29/2017] [Accepted: 02/01/2017] [Indexed: 12/27/2022]
Abstract
Psychosis - an impaired contact with reality - is a hallmark of schizophrenia. Many psychotic symptoms are associated with disruptions in agency - the sense that 'I' cause my actions. A failure to predict sensory consequences of one's own actions may underlie agency disturbances. Such predictions rely on corollary discharge (CD) signals, 'copies' of movement commands sent to sensory regions prior to action execution. Here, we make a case that the oculomotor system is a promising model for understanding CD in psychosis, building on advances in our understanding of the behavioral and neurophysiological correlates of CD associated with eye movements. In this opinion article, we provide an overview of recent evidence for disturbed oculomotor CD in schizophrenia, potentially linking bizarre and disturbing psychotic experiences with basic physiological processes.
Collapse
Affiliation(s)
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University, Detroit, MI, USA
| | - Martin Rolfs
- Bernstein Center for Computational Neuroscience and Department of Psychology, Humboldt Universität, 10099 Berlin, Germany
| |
Collapse
|
11
|
Caldani S, Bucci MP, Lamy JC, Seassau M, Bendjemaa N, Gadel R, Gaillard R, Krebs MO, Amado I. Saccadic eye movements as markers of schizophrenia spectrum: Exploration in at-risk mental states. Schizophr Res 2017; 181:30-37. [PMID: 27639418 DOI: 10.1016/j.schres.2016.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 01/27/2023]
Abstract
Schizophrenia is a neurodevelopmental disease with cognitive and motor impairments. Motor dysfunctions, such as eye movements or Neurological Soft Signs (NSS), are proposed as endophenotypic markers. Antisaccade (AS) and memory-guided saccades (MGS), two markers of inhibitory control mechanism, are altered in both patients with schizophrenia and their relatives, although these tools may have different sensitivities. Recently, emphasis has been put on identifying markers predictive of psychosis transition in subjects with ultra-high-risk psychosis in order to develop targeted prevention. This study investigates AS and MGS in 46 patients with schizophrenia, 23 ultra-high-risk subjects, and 39 full siblings compared to 47 healthy volunteers. NSS were assessed as a marker of abnormal neurodevelopment. The results revealed more errors in MGS in patients, ultra-high-risk subjects and siblings, than in controls, and more specifically ultra-high-risk subjects with high NSS scores. By contrast, the error rate in AS was significantly higher only in patients with schizophrenia compared to controls. These findings suggest that MGS could be more accurate to detect deficient inhibitory processes as a marker of vulnerability before the onset of schizophrenia. The use of the different paradigms (AS, MGS) revealed distinct profiles depending on the stage of the disease, indicating that some alterations could be pure endophenotypic markers of vulnerability for schizophrenia, while others could be markers of the disease progression.
Collapse
Affiliation(s)
- Simona Caldani
- UMR 1141 Inserm-Université Paris Diderot, Hôpital Robert Debré, 75019 Paris, France; INSERM U894, Laboratory of Pathophysiology of Psychiatric Diseases, Center of Psychiatry and Neurosciences, Institut de Psychiatrie, GDR3557, France
| | - Maria Pia Bucci
- UMR 1141 Inserm-Université Paris Diderot, Hôpital Robert Debré, 75019 Paris, France
| | - Jean-Charles Lamy
- INSERM U894, Laboratory of Pathophysiology of Psychiatric Diseases, Center of Psychiatry and Neurosciences, Institut de Psychiatrie, GDR3557, France; University Paris Descartes, Faculty of Medicine Paris Descartes, Service Hospitalo-Universitaire, Sainte-Anne Hospital, Paris, France
| | | | - Narjes Bendjemaa
- INSERM U894, Laboratory of Pathophysiology of Psychiatric Diseases, Center of Psychiatry and Neurosciences, Institut de Psychiatrie, GDR3557, France; University Paris Descartes, Faculty of Medicine Paris Descartes, Service Hospitalo-Universitaire, Sainte-Anne Hospital, Paris, France
| | - Rémi Gadel
- INSERM U894, Laboratory of Pathophysiology of Psychiatric Diseases, Center of Psychiatry and Neurosciences, Institut de Psychiatrie, GDR3557, France; University Paris Descartes, Faculty of Medicine Paris Descartes, Service Hospitalo-Universitaire, Sainte-Anne Hospital, Paris, France
| | - Raphael Gaillard
- INSERM U894, Laboratory of Pathophysiology of Psychiatric Diseases, Center of Psychiatry and Neurosciences, Institut de Psychiatrie, GDR3557, France; University Paris Descartes, Faculty of Medicine Paris Descartes, Service Hospitalo-Universitaire, Sainte-Anne Hospital, Paris, France
| | - Marie-Odile Krebs
- INSERM U894, Laboratory of Pathophysiology of Psychiatric Diseases, Center of Psychiatry and Neurosciences, Institut de Psychiatrie, GDR3557, France; University Paris Descartes, Faculty of Medicine Paris Descartes, Service Hospitalo-Universitaire, Sainte-Anne Hospital, Paris, France.
| | - Isabelle Amado
- INSERM U894, Laboratory of Pathophysiology of Psychiatric Diseases, Center of Psychiatry and Neurosciences, Institut de Psychiatrie, GDR3557, France; University Paris Descartes, Faculty of Medicine Paris Descartes, Service Hospitalo-Universitaire, Sainte-Anne Hospital, Paris, France
| |
Collapse
|
12
|
Myles JB, Rossell SL, Phillipou A, Thomas E, Gurvich C. Insights to the schizophrenia continuum: A systematic review of saccadic eye movements in schizotypy and biological relatives of schizophrenia patients. Neurosci Biobehav Rev 2016; 72:278-300. [PMID: 27916709 DOI: 10.1016/j.neubiorev.2016.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 10/05/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
Myles, J.B., S. Rossell, A. Phillipou, Thomas, E and C. Gurvich. A systematic review of saccadic eye movements across the schizophrenia continuum: Characterisation, pathophysiology and genetic associations. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2015. One of the cognitive hallmarks of schizophrenia is impaired eye movements, particularly for the antisaccade task. Less saccade research has been conducted in relation to the broader schizophrenia continuum, that is, people with high schizotypy or first-degree relatives of people with schizophrenia. This systematic review sought to identify, collate and appraise prosaccade, antisaccade and memory-guided saccade studies involving behavioural, neuroimaging and genetic data published between 1980 and September 2016 in individuals with high schizotypy and first-degree relatives. A systematic literature search was conducted, using Ovid MEDLINE, PsycINFO, PubMed and SCOPUS databases. Of 913 references screened, 18 schizotypy, 29 family studies and two schizotypy and relatives articles studies were eligible for inclusion. Antisaccade error rate was the most consistent deficit found for high schizotypy. Relatives had intermediate antisaccade error rates between patients and healthy controls. Results from the limited genetic and neuroimaging studies echoed schizophrenia findings. Confounds were also identified. It was concluded that future research is required to refine the saccade endophenotype and to expand genetic and neuroimaging research.
Collapse
Affiliation(s)
- Jessica B Myles
- Monash Alfred Psychiatry research centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia
| | - Susan L Rossell
- Monash Alfred Psychiatry research centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia; Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Melbourne, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Australia
| | - Andrea Phillipou
- Department of Psychiatry, St Vincent's Hospital, Melbourne, Australia; Department of Psychiatry, The University of Melbourne, Melbourne, Australia; Department of Mental Health, The Austin Hospital, Melbourne, Australia
| | - Elizabeth Thomas
- Monash Alfred Psychiatry research centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry research centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia.
| |
Collapse
|
13
|
Alhusaini S, Whelan CD, Sisodiya SM, Thompson PM. Quantitative magnetic resonance imaging traits as endophenotypes for genetic mapping in epilepsy. NEUROIMAGE-CLINICAL 2016; 12:526-534. [PMID: 27672556 PMCID: PMC5030372 DOI: 10.1016/j.nicl.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Over the last decade, the field of imaging genomics has combined high-throughput genotype data with quantitative magnetic resonance imaging (QMRI) measures to identify genes associated with brain structure, cognition, and several brain-related disorders. Despite its successful application in different psychiatric and neurological disorders, the field has yet to be advanced in epilepsy. In this article we examine the relevance of imaging genomics for future genetic studies in epilepsy from three perspectives. First, we discuss prior genome-wide genetic mapping efforts in epilepsy, considering the possibility that some studies may have been constrained by inherent theoretical and methodological limitations of the genome-wide association study (GWAS) method. Second, we offer a brief overview of the imaging genomics paradigm, from its original inception, to its role in the discovery of important risk genes in a number of brain-related disorders, and its successful application in large-scale multinational research networks. Third, we provide a comprehensive review of past studies that have explored the eligibility of brain QMRI traits as endophenotypes for epilepsy. While the breadth of studies exploring QMRI-derived endophenotypes in epilepsy remains narrow, robust syndrome-specific neuroanatomical QMRI traits have the potential to serve as accessible and relevant intermediate phenotypes for future genetic mapping efforts in epilepsy. QMRI traits have the potential to serve as robust intermediate phenotypes for brain-related disorders. Hippocampal volume is the most promising neuroimaging endophenotype for MTLE + HS. Imaging genomics holds great promise in advancing epilepsy genetic research. Studies are encouraged to explore the validity of QMRI traits as endophenotypes for epilepsy.
Collapse
Affiliation(s)
- Saud Alhusaini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher D Whelan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Meyhöfer I, Bertsch K, Esser M, Ettinger U. Variance in saccadic eye movements reflects stable traits. Psychophysiology 2015; 53:566-78. [DOI: 10.1111/psyp.12592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/09/2015] [Accepted: 11/03/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Inga Meyhöfer
- Department of Psychology; University of Bonn; Bonn Germany
| | - Katja Bertsch
- Department of General Psychiatry; Center for Psychosocial Medicine, Heidelberg University Hospital; Heidelberg Germany
| | - Moritz Esser
- Department of Psychology; University of Bonn; Bonn Germany
| | | |
Collapse
|
15
|
Schwab S, Jost M, Altorfer A. Impaired top-down modulation of saccadic latencies in patients with schizophrenia but not in first-degree relatives. Front Behav Neurosci 2015; 9:44. [PMID: 25759644 PMCID: PMC4338814 DOI: 10.3389/fnbeh.2015.00044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/06/2015] [Indexed: 02/03/2023] Open
Abstract
Impaired eye movements have a long history in schizophrenia research and meet the criteria of a reliable biomarker. However, the effects of cognitive load and task difficulty on saccadic latencies (SL) are less understood. Recent studies showed that SL are strongly task dependent: SL are decreased in tasks with higher cognitive demand, and increased in tasks with lower cognitive demand. The present study investigates SL modulation in patients with schizophrenia and their first-degree relatives. A group of 13 patients suffering from ICD-10 schizophrenia, 10 first-degree relatives, and 24 control subjects performed two different types of visual tasks: a color task and a Landolt ring orientation task. We used video-based oculography to measure SL. We found that patients exhibited a similar unspecific SL pattern in the two different tasks, whereas controls and relatives exhibited 20–26% shorter average latencies in the orientation task (higher cognitive demand) compared to the color task (lower cognitive demand). Also, classification performance using support vector machines suggests that relatives should be assigned to the healthy controls and not to the patient group. Therefore, visual processing of different content does not modulate SL in patients with schizophrenia, but modulates SL in the relatives and healthy controls. The results reflect a specific oculomotor attentional dysfunction in patients with schizophrenia that is a potential state marker, possibly caused by impaired top-down disinhibition of the superior colliculus by frontal/prefrontal areas such as the frontal eye fields.
Collapse
Affiliation(s)
- Simon Schwab
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| | - Miriam Jost
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| | - Andreas Altorfer
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern , Bern , Switzerland
| |
Collapse
|
16
|
Executive deficit in spinocerebellar ataxia type 2 is related to expanded CAG repeats: Evidence from antisaccadic eye movements. Brain Cogn 2014; 91:28-34. [DOI: 10.1016/j.bandc.2014.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022]
|
17
|
Reilly JL, Frankovich K, Hill S, Gershon ES, Keefe RSE, Keshavan MS, Pearlson GD, Tamminga CA, Sweeney JA. Elevated antisaccade error rate as an intermediate phenotype for psychosis across diagnostic categories. Schizophr Bull 2014; 40:1011-21. [PMID: 24080895 PMCID: PMC4133662 DOI: 10.1093/schbul/sbt132] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Elevated antisaccade error rate, reflecting problems with inhibitory behavioral control, is a promising intermediate phenotype for schizophrenia. Here, we consider whether it marks liability across psychotic disorders via common or different neurophysiological mechanisms and whether it represents a neurocognitive risk indicator apart from the generalized cognitive deficit. METHODS Schizophrenia (n = 267), schizoaffective (n = 150), and psychotic bipolar (n = 202) probands, their first-degree relatives (ns = 304, 193, 242, respectively), and healthy controls (n = 244), participating in the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium, performed antisaccade and prosaccade tasks and completed a neuropsychological battery. RESULTS Antisaccade error rate was elevated in proband groups with greatest deficit observed in schizophrenia and was unrelated to symptoms and antipsychotic treatment. Increased error rate was also observed among relatives, even those without history of psychosis or psychosis spectrum personality traits. Relatives' deficits were similar across proband diagnoses. Error rate was familial and remained elevated in proband and relative groups after accounting for generalized cognitive impairment. Speed of attentional shifting, indexed by prosaccade latency, was similarly influenced in all groups by manipulations that freed vs increasingly engaged attention systems and was inversely associated with antisaccade error rate in all but schizophrenia probands. CONCLUSIONS These findings indicate that elevated antisaccade error rate represents an intermediate phenotype for psychosis across diagnostic categories, and that it tracks risk beyond that attributable to the generalized cognitive deficit. The greater severity of antisaccade impairment in schizophrenia and its independence from attention shifting processes suggest more severe and specific prefrontal inhibitory control deficits in this disorder.
Collapse
Affiliation(s)
- James L. Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,*To whom correspondence should be addressed; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 East Ontario Street, Suite. 7-100, Chicago, IL 60611, US; tel: 312-503-4809, fax: 312-503-0527, e-mail:
| | - Kyle Frankovich
- Center for Mind and Brain and Department of Psychology, University of California at Davis, Davis, CA
| | - Scot Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL
| | - Elliot S. Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | | | - Matcheri S. Keshavan
- Beth Israel Deaconess Hospital and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Yale School of Medicine, New Haven, CT;,Department of Psychiatry, Institute of Living/Hartford Hospital, Hartford, CT
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX
| |
Collapse
|
18
|
Aichert DS, Derntl B, Wöstmann NM, Groß JK, Dehning S, Cerovecki A, Möller HJ, Habel U, Riedel M, Ettinger U. Intact emotion–cognition interaction in schizophrenia patients and first-degree relatives: Evidence from an emotional antisaccade task. Brain Cogn 2013; 82:329-36. [DOI: 10.1016/j.bandc.2013.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 01/01/2023]
|
19
|
Egaña JI, Devia C, Mayol R, Parrini J, Orellana G, Ruiz A, Maldonado PE. Small Saccades and Image Complexity during Free Viewing of Natural Images in Schizophrenia. Front Psychiatry 2013; 4:37. [PMID: 23730291 PMCID: PMC3657715 DOI: 10.3389/fpsyt.2013.00037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/05/2013] [Indexed: 11/22/2022] Open
Abstract
In schizophrenia, patients display dysfunctions during the execution of simple visual tasks such as antisaccade or smooth pursuit. In more ecological scenarios, such as free viewing of natural images, patients appear to make fewer and longer visual fixations and display shorter scanpaths. It is not clear whether these measurements reflect alterations in their proficiency to perform basic eye movements, such as saccades and fixations, or are related to high-level mechanisms, such as exploration or attention. We utilized free exploration of natural images of different complexities as a model of an ecological context where normally operative mechanisms of visual control can be accurately measured. We quantified visual exploration as Euclidean distance, scanpaths, saccades, and visual fixation, using the standard SR-Research eye tracker algorithm (SR). We then compared this result with a computation that includes microsaccades (EM). We evaluated eight schizophrenia patients and corresponding healthy controls (HC). Next, we tested whether the decrement in the number of saccades and fixations, as well as their increment in duration reported previously in schizophrenia patients, resulted from the increasing occurrence of undetected microsaccades. We found that when utilizing the standard SR algorithm, patients displayed shorter scanpaths as well as fewer and shorter saccades and fixations. When we employed the EM algorithm, the differences in these parameters between patients and HC were no longer significant. On the other hand, we found that image complexity plays an important role in exploratory behaviors, demonstrating that this factor explains most of differences between eye-movement behaviors in schizophrenia patients. These results help elucidate the mechanisms of visual motor control that are affected in schizophrenia and contribute to the finding of adequate markers for diagnosis and treatment for this condition.
Collapse
Affiliation(s)
- Jose Ignacio Egaña
- Laboratorio de Neurosistemas, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de ChileSantiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
- Departamento de Anestesiología y Reanimación, Hospital Clínico Universidad de ChileSantiago, Chile
| | - Christ Devia
- Laboratorio de Neurosistemas, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de ChileSantiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Rocío Mayol
- Laboratorio de Neurosistemas, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de ChileSantiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Javiera Parrini
- Departamento de Psiquiatría y Salud Mental, Campus Oriente, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Gricel Orellana
- Departamento de Psiquiatría y Salud Mental, Campus Oriente, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Aida Ruiz
- Departamento de Psiquiatría y Salud Mental, Campus Norte, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Pedro E. Maldonado
- Laboratorio de Neurosistemas, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de ChileSantiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile
| |
Collapse
|
20
|
Affiliation(s)
- Gregory A. Miller
- Department of Psychology, University of Delaware, Newark, Delaware 19716;
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
- Department of Psychology and Beckman Institute, University of Illinois at Urbana-Champaign, Illinois 61820
| | - Brigitte Rockstroh
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany;
| |
Collapse
|
21
|
Bittencourt J, Velasques B, Teixeira S, Basile LF, Salles JI, Nardi AE, Budde H, Cagy M, Piedade R, Ribeiro P. Saccadic eye movement applications for psychiatric disorders. Neuropsychiatr Dis Treat 2013; 9:1393-409. [PMID: 24072973 PMCID: PMC3783508 DOI: 10.2147/ndt.s45931] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE The study presented here analyzed the patterns of relationship between oculomotor performance and psychopathology, focusing on depression, bipolar disorder, schizophrenia, attention-deficit hyperactivity disorder, and anxiety disorder. METHODS Scientific articles published from 1967 to 2013 in the PubMed/Medline, ISI Web of Knowledge, Cochrane, and SciELO databases were reviewed. RESULTS Saccadic eye movement appears to be heavily involved in psychiatric diseases covered in this review via a direct mechanism. The changes seen in the execution of eye movement tasks in patients with psychopathologies of various studies confirm that eye movement is associated with the cognitive and motor system. CONCLUSION Saccadic eye movement changes appear to be heavily involved in the psychiatric disorders covered in this review and may be considered a possible marker of some disorders. The few existing studies that approach the topic demonstrate a need to improve the experimental paradigms, as well as the methods of analysis. Most of them report behavioral variables (latency/reaction time), though electrophysiological measures are absent.
Collapse
Affiliation(s)
- Juliana Bittencourt
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil ; Institute of Applied Neuroscience, Rio de Janeiro, Brazil ; Neurophysiology and Neuropsychology of Attention, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil ; Laboratory of Physical Therapy, Veiga de Almeida University, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|