1
|
Blume J, Dhanasekara CS, Kahathuduwa CN, Mastergeorge AM. Central Executive and Default Mode Networks: An Appraisal of Executive Function and Social Skill Brain-Behavior Correlates in Youth with Autism Spectrum Disorder. J Autism Dev Disord 2024; 54:1882-1896. [PMID: 36988766 DOI: 10.1007/s10803-023-05961-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Atypical connectivity patterns have been observed for individuals with autism spectrum disorders (ASD), particularly across the triple-network model. The current study investigated brain-behavior relationships in the context of social skills and executive function profiles for ASD youth. We calculated connectivity measures from diffusion tensor imaging using Bayesian estimation and probabilistic tractography. We replicated prior structural equation modeling of behavioral measures with total default mode network (DMN) connectivity to include comparisons with central executive network (CEN) connectivity and CEN-DMN connectivity. Increased within-CEN connectivity was related to metacognitive strengths. Our findings indicate behavior regulation difficulties in youth with ASD may be attributable to impaired connectivity between the CEN and DMN and social skill difficulties may be exacerbated by impaired within-DMN connectivity.
Collapse
Affiliation(s)
- Jessica Blume
- Department of Human Development and Family Sciences, Texas Tech University, P.O. Box 41230, Lubbock, TX, 79409-1230, USA.
| | | | - Chanaka N Kahathuduwa
- Department of Psychiatry and Neurology, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Ann M Mastergeorge
- Department of Human Development and Family Sciences, Texas Tech University, P.O. Box 41230, Lubbock, TX, 79409-1230, USA
| |
Collapse
|
2
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
3
|
Wang X, Zhou X, Li J, Gong Y, Feng Z. A feasibility study of goal-directed network-based real-time fMRI neurofeedback for anhedonic depression. Front Psychiatry 2023; 14:1253727. [PMID: 38125285 PMCID: PMC10732355 DOI: 10.3389/fpsyt.2023.1253727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Anhedonia is a hallmark symptom of depression that often lacks adequate interventions. The translational gap remains in clinical treatments based on neural substrates of anhedonia. Our pilot study found that depressed individuals depended less on goal-directed (GD) reward learning (RL), with reduced reward prediction error (RPE) BOLD signal. Previous studies have found that anhedonia is related to abnormal activities and/or functional connectivities of the central executive network (CEN) and salience network (SN), both of which belong to the goal-directed system. In addition, it was found that real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback (NF) could improve the balance between CEN and SN in healthy individuals. Therefore, we speculate that rt-fMRI NF of the CEN and SN associated with the GD system may improve depressive and/or anhedonic symptoms. Therefore, this study (1) will examine individuals with anhedonic depression using GD-RL behavioral task, combined with functional magnetic resonance imaging and computational modeling to explore the role of CEN/SN deficits in anhedonic depression; and (2) will utilize network-based rt-fMRI NF to investigate whether it is feasible to regulate the differential signals of brain CEN/SN of GD system through rt-fMRI NF to alleviate depressive and/or anhedonic symptoms. This study highlights the need to elucidate the intervention effects of rt-fMRI NF and the underlying computational network neural mechanisms.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Basic Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Xiaoyan Zhou
- Chongqing City Mental Health Center, Southwest University, Chongqing, China
| | - Jing Li
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yushun Gong
- Department of Medical Equipment and Metrology, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Zhengzhi Feng
- School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Servais A, Hurter C, Barbeau EJ. Attentional switch to memory: An early and critical phase of the cognitive cascade allowing autobiographical memory retrieval. Psychon Bull Rev 2023; 30:1707-1721. [PMID: 37118526 DOI: 10.3758/s13423-023-02270-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/30/2023]
Abstract
Remembering and mentally reliving yesterday's lunch is a typical example of episodic autobiographical memory retrieval. In the present review, we reappraised the complex cascade of cognitive processes involved in memory retrieval, by highlighting one particular phase that has received little interest so far: attentional switch to memory (ASM). As attention cannot be simultaneously directed toward external stimuli and internal memories, there has to be an attentional switch from the external to the internal world in order to initiate memory retrieval. We formulated hypotheses and developed hypothetical models of both the cognitive and brain processes that accompany ASM. We suggest that gaze aversion could serve as an objective temporal marker of the point at which people switch their attention to memory, and highlight several fields (neuropsychology, neuroscience, social cognition, comparative psychology) in which ASM markers could be essential. Our review thus provides a new framework for understanding the early stages of autobiographical memory retrieval.
Collapse
Affiliation(s)
- Anaïs Servais
- CerCo, CNRS UMR5549-Université de Toulouse, CHU Purpan, Pavillon Baudot, 31052, Toulouse, France.
- ENAC, 7, avenue Edouard Belin, 31055, Toulouse, France.
| | | | - Emmanuel J Barbeau
- CerCo, CNRS UMR5549-Université de Toulouse, CHU Purpan, Pavillon Baudot, 31052, Toulouse, France
| |
Collapse
|
5
|
Barnden L, Thapaliya K, Eaton-Fitch N, Barth M, Marshall-Gradisnik S. Altered brain connectivity in Long Covid during cognitive exertion: a pilot study. Front Neurosci 2023; 17:1182607. [PMID: 37425014 PMCID: PMC10323677 DOI: 10.3389/fnins.2023.1182607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Debilitating Long-Covid symptoms occur frequently after SARS-COVID-19 infection. Methods Functional MRI was acquired in 10 Long Covid (LCov) and 13 healthy controls (HC) with a 7 Tesla scanner during a cognitive (Stroop color-word) task. BOLD time series were computed for 7 salience and 4 default-mode network hubs, 2 hippocampus and 7 brainstem regions (ROIs). Connectivity was characterized by the correlation coefficient between each pair of ROI BOLD time series. We tested for HC versus LCov differences in connectivity between each pair of the 20 regions (ROI-to-ROI) and between each ROI and the rest of the brain (ROI-to-voxel). For LCov, we also performed regressions of ROI-to-ROI connectivity with clinical scores. Results Two ROI-to-ROI connectivities differed between HC and LCov. Both involved the brainstem rostral medulla, one connection to the midbrain, another to a DM network hub. Both were stronger in LCov than HC. ROI-to-voxel analysis detected multiple other regions where LCov connectivity differed from HC located in all major lobes. Most, but not all connections, were weaker in LCov than HC. LCov, but not HC connectivity, was correlated with clinical scores for disability and autonomic function and involved brainstem ROI. Discussion Multiple connectivity differences and clinical correlations involved brainstem ROIs. Stronger connectivity in LCov between the medulla and midbrain may reflect a compensatory response. This brainstem circuit regulates cortical arousal, autonomic function and the sleep-wake cycle. In contrast, this circuit exhibited weaker connectivity in ME/CFS. LCov connectivity regressions with disability and autonomic scores were consistent with altered brainstem connectivity in LCov.
Collapse
Affiliation(s)
- Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| |
Collapse
|
6
|
Shaw SB, Nicholson AA, Ros T, Harricharan S, Terpou B, Densmore M, Theberge J, Frewen P, Lanius RA. Increased top-down control of emotions during symptom provocation working memory tasks following a RCT of alpha-down neurofeedback in PTSD. Neuroimage Clin 2023; 37:103313. [PMID: 36669352 PMCID: PMC9868881 DOI: 10.1016/j.nicl.2023.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) has been found to be associated with emotion under-modulation from the prefrontal cortex and a breakdown of the top-down control of cognition and emotion. Novel adjunct therapies such as neurofeedback (NFB) have been shown to normalize aberrant neural circuits that underlie PTSD psychopathology at rest. However, little evidence exists for NFB-linked neural improvements under emotionally relevant cognitive load. The current study sought to address this gap by examining the effects of alpha-down NFB in the context of an emotional n-back task. METHODS We conducted a 20-week double-blind randomized, sham-controlled trial of alpha-down NFB and collected neuroimaging data before and after the NFB protocol. Participants performed an emotional 1-back and 2-back working memory task, with interleaved trauma-neutral and trauma-relevant cues in the fMRI scanner. Data from 35 participants with a primary diagnosis of PTSD were analyzed in this study (n = 18 in the experimental group undergoing alpha-down NFB, n = 17 in the sham-control group). RESULTS Firstly, within-group analyses showed clinically significant reductions in PTSD symptom severity scores at the post-intervention timepoint and 3-month follow-up for the experimental group, and not for the sham-control group. The neuroimaging analyses revealed that alpha-down NFB enhanced engagement of top-down cognitive and emotional control centers, such as the dorsolateral prefrontal cortex (dlPFC), and improved integration of the anterior and posterior parts of the default mode network (DMN). Finally, our results also indicate that increased alpha-down NFB performance correlated with increased activity in brain regions involved in top-down control and bodily consciousness/embodied processing of self (TPJ and posterior insula). CONCLUSION This is the first study to provide mechanistic insights into how NFB may normalize dysfunctional brain activity and connectivity in PTSD under cognitive load with simultaneous symptom provocation, adding to a growing body of evidence supporting the therapeutic neuromodulatory effects of NFB. This preliminary study highlights the benefits of alpha-down NFB training as an adjunctive therapy for PTSD and warrants further investigation into its therapeutic effects on cognitive and emotion control in those with PTSD.
Collapse
Affiliation(s)
- Saurabh Bhaskar Shaw
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Vector Institute, Toronto, Ontario, Canada; Homewood Research Institute (HRI), Guelph, Ontario, Canada.
| | - Andrew A Nicholson
- School of Psychology, University of Ottawa, Canada; Atlas Institute for Veterans and Families, Royal Ottawa Hospital, Canada; Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tomas Ros
- Departments of Neuroscience and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Sherain Harricharan
- Homewood Research Institute (HRI), Guelph, Ontario, Canada; Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Braeden Terpou
- Homewood Research Institute (HRI), Guelph, Ontario, Canada; Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Jean Theberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Diagnostic Imaging, St. Joseph's Healthcare, London, Ontario, Canada
| | - Paul Frewen
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruth A Lanius
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Homewood Research Institute (HRI), Guelph, Ontario, Canada; St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Ulrich M, Niemann F, Grön G. Role of the right anterior insula for the emergence of flow-A combined task-based fMRI activation and connectivity study. Front Hum Neurosci 2022; 16:1067968. [PMID: 36569474 PMCID: PMC9772033 DOI: 10.3389/fnhum.2022.1067968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of flow is a situation of high salience because externally oriented attention on the task and access to resources for goal-directed behavior are enhanced, while internally oriented or self-related cognition is decreased. The right anterior insula has been reported as a causal out-flow hub of the salience resting-state network, orchestrating the engagement of the central executive network (CEN) and the disengagement of the default-mode network (DMN) during a functional challenge. In the present study, we employed a combined task-based activation and connectivity analysis to investigate the role of the right anterior insula during the emergence of flow. A sample of 41 healthy male subjects was confronted with a functional challenge that permitted the emergence of flow during BOLD-based functional magnetic resonance imaging. Comparing connectivity changes in the right anterior insula during the flow condition against connectivity changes associated with control conditions of boredom and overload, relatively increased couplings were observed with the left and right dorsolateral prefrontal cortex. Activation data for these regions did, however, not show the flow-typical inverted U-shaped (invU) response pattern. Relatively decreased functional couplings encompassed ventral aspects of the striatum, but neither the amygdala nor the medial prefrontal cortex (MPFC). For the ventral striatum, activation data were consistent with the flow-typical U-shaped activation pattern, which supports the notion that under the high salience of autotelic situations, the anterior insula is much less positively coupled with the ventral striatum than under boundary conditions of boredom and overload. Taken together, present functional connectivity results were in alignment with the assumed role of the right anterior insula under conditions of different salience. However, this particular region does not appear to mediate the most typical flow-associated activation patterns.
Collapse
Affiliation(s)
- Martin Ulrich
- Section Neuropsychology and Functional Imaging, Department of Psychiatry, Ulm University, Ulm, Germany,*Correspondence: Martin Ulrich,
| | - Filip Niemann
- Cognition, Aging, and Brain Stimulation Lab, Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Grön
- Section Neuropsychology and Functional Imaging, Department of Psychiatry, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Calzolari S, Boneva S, Fernández-Espejo D. Investigating the shift between externally and internally oriented cognition: a novel task-switching paradigm. Neurosci Conscious 2022; 2022:niac016. [PMID: 36415846 PMCID: PMC9675616 DOI: 10.1093/nc/niac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
Despite our constant need to flexibly balance internal and external information, research on cognitive flexibility has focused solely on shifts between externally oriented tasks. In contrast, switches across internally oriented processes (and self-referential cognition specifically) and between internal and external domains have never been investigated. Here, we report a novel task-switching paradigm developed to explore the behavioural signatures associated with cognitive flexibility when self-referential processes, as well as more traditional external processes, are involved. Two hundred healthy volunteers completed an online task. In each trial, participants performed one of four possible tasks on written words, as instructed by a pre-stimulus cue. These included two externally and two internally oriented tasks: assessing whether the third letter was a consonant or the penultimate letter was a vowel versus assessing whether the adjective applied to their personality or if it described a bodily sensation they were currently experiencing. In total, 40% of trials involved switches to another task, and these were equally distributed across within-external, within-internal, internal-to-external and external-to-internal switches. We found higher response times for switches compared to repetitions both in the external and internal domains, thus demonstrating the presence of switch costs in self-referential tasks for the first time. We also found higher response times for between-domain switches compared to switches within each domain. We propose that these effects originate from the goal-directed engagement of different domain-specific cognitive systems that flexibly communicate and share domain-general control features.
Collapse
Affiliation(s)
- Sara Calzolari
- Centre for Human Brain Health, University of Birmingham , 05 CHBH Building, Edgbaston, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham , 05 CHBH Building, Edgbaston, Birmingham B15 2TT, UK
| | - Svetla Boneva
- Centre for Human Brain Health, University of Birmingham , 05 CHBH Building, Edgbaston, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham , 05 CHBH Building, Edgbaston, Birmingham B15 2TT, UK
| | - Davinia Fernández-Espejo
- Centre for Human Brain Health, University of Birmingham , 05 CHBH Building, Edgbaston, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham , 05 CHBH Building, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Nieto-Castanon A. Brain-wide connectome inferences using functional connectivity MultiVariate Pattern Analyses (fc-MVPA). PLoS Comput Biol 2022; 18:e1010634. [PMID: 36378714 PMCID: PMC9707802 DOI: 10.1371/journal.pcbi.1010634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Current functional Magnetic Resonance Imaging technology is able to resolve billions of individual functional connections characterizing the human connectome. Classical statistical inferential procedures attempting to make valid inferences across this many measures from a reduced set of observations and from a limited number of subjects can be severely underpowered for any but the largest effect sizes. This manuscript discusses fc-MVPA (functional connectivity Multivariate Pattern Analysis), a novel method using multivariate pattern analysis techniques in the context of brain-wide connectome inferences. The theory behind fc-MVPA is presented, and several of its key concepts are illustrated through examples from a publicly available resting state dataset, including an analysis of gender differences across the entire functional connectome. Finally, Monte Carlo simulations are used to demonstrate the validity and sensitivity of this method. In addition to offering powerful whole-brain inferences, fc-MVPA also provides a meaningful characterization of the heterogeneity in functional connectivity across subjects. The human connectome comprises billions of functional connections between distant brain areas. In recent years, analyses of functional Magnetic Resonance Imaging (fMRI) data have provided large amounts of information exploring the differences in the human connectome across individuals, developmental trajectories, or mental states. However, scientists’ ability to derive strong conclusions from the analysis of these data are often hindered by the sheer number of connections analyzed, where only connections that show exceptionally large effects are able to stand out against that vast background. This leads to results that tend to overemphasize similarities and mask out differences that are either weaker or distributed across multiple individual connections, potentially misleading conceptual models of the human connectome. This manuscript discusses a novel method for the analysis of the human connectome (functional connectivity Multivariate Pattern Analysis) that addresses these limitations and enables strong conclusions from fMRI data by combining classical statistics with modern pattern analysis techniques. This technique is exemplified using a publicly available database of resting state data to characterize some of the main aspects of the human connectome that differ across individuals, and to identify specific differences in the human connectome across gender.
Collapse
Affiliation(s)
- Alfonso Nieto-Castanon
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Su J, Thapaliya K, Eaton-Fitch N, Marshall-Gradisnik SM, Barnden LR. Connectivity between Salience and Default Mode Networks and subcortical nodes distinguishes between two classes of ME/CFS. Brain Connect 2022; 13:164-173. [PMID: 36352819 DOI: 10.1089/brain.2022.0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with unknown pathophysiology. Functional magnetic resonance imaging (fMRI) studies in ME/CFS have reported disparate connectivities for the brain salience (SA) network and default mode network (DMN). Materials and Methods: In this study, we acquired resting-state and task fMRI with an advanced scanner for improved subject numbers: 24 healthy controls (HC) and 42 ME/CFS patients, 18 meeting the International Consensus Criteria (ICC) and 24 meeting the Fukuda criteria. We evaluated mean functional connectivity between the SA network and DMN hubs and subcortical regions known to be involved in ME/CFS. We tested the hypothesis that ME/CFS connectivity differed from HC and the ICC and Fukuda classes are distinguished by different connectivities with HC for different pairs of SA network, DMN, or subcortical hubs. Results: During resting-state fMRI, only two connections differed from HC, both for Fukuda ME/CFS and both with an SA network hub. During task fMRI, 10 ME/CFS connections differed from HC, 5 for ICC, and 5 for Fukuda. None was common to both classes. Eight of the 10 different connections involved an SA network hub, six of the 10 were weaker in ME/CFS, and 4 were stronger. SA network connections to the hippocampus and brainstem reticular activation system (RAS) differed from and were stronger than HC. Conclusions: The SA network mediates the relative activity of the DMN and executive networks and an imbalance will have functional consequences. The RAS and hippocampus modulate cortical activation. Different regulatory connections are consistent with the impaired cognitive performance and sleep-wake cycle of ME/CFS. Different neuropathologies are involved in ICC and Fukuda classes. Impact statement Criteria for the diagnosis of the debilitating myalgic encephalitis/chronic fatigue syndrome (ME/CFS) condition have evolved over two decades. Physicians are now instructed that the recent, more stringent (ICC) questionnaire criteria define a disease that is distinct from those remaining subjects defined by the previous Fukuda criteria. This work reports the remarkable finding that functional magnetic resonance imaging connectivity can differentiate between these two classes of ME/CFS. This is the first objective medical evidence that the questionnaire-based diagnosis does indeed differentiate between two different disease states. This facilitates a clearer understanding of ME/CFS and can better direct research and therapy development.
Collapse
Affiliation(s)
- Jiasheng Su
- Griffith University Griffith Health, 97562, NCNED, Gold Coast, Queensland, Australia
| | - Kiran Thapaliya
- Griffith University - Gold Coast Campus, 63617, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - Natalie Eaton-Fitch
- Griffith University - Gold Coast Campus, 63617, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - Sonya M Marshall-Gradisnik
- Griffith University - Gold Coast Campus, 63617, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - Leighton R Barnden
- Griffith University - Gold Coast Campus, 63617, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, G40, Griffith University, Southport, Queensland, Australia, 4222
| |
Collapse
|
11
|
Warren A. Heightened emotion processing as a compensatory mechanism in persons with Alzheimer's disease: Psychological insights from the tri-network model. FRONTIERS IN DEMENTIA 2022; 1:983331. [PMID: 39081476 PMCID: PMC11285592 DOI: 10.3389/frdem.2022.983331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 08/02/2024]
Abstract
Social and emotional communication is an integral tenant of life quality and well-being. Aberrations in functional connectivity can alter social emotional behavior in numerous disease states, including dementia. This paper aims to review the major network changes observed in Alzheimer's disease, with a focus on the tri-network model. The central executive network, default mode network, and principally the salience network will be discussed as they relate to both pathology and compensatory behavioral manifestations in persons with dementia. The psychological and behavioral correlates of these network changes will be reviewed with the intent of increasing understanding about the conscious experience and communication modalities utilized by persons with dementia, the understanding of which may promote meaningful communication with care providers and loved ones. This paper further seeks to reframe social emotional communication methods used by persons with dementia by marrying current knowledge of neuroscience, psychology, and person-centered care. In this way, a perspective is offered that considers the heightened emotional states experienced by persons with dementia as a potential compensatory mechanism that may hold practical value under some circumstances. The many ways in which the brain adapts to physical and psychological changes, aging, and injury are still under exploration. Emotion processing may provide clinical insight into the subjective experience of dementia in this regard. Emotions, therefore, may serve to promote social bonds, provide an avenue for non-verbal communication, and act as a construct to maintain agency in persons who ultimately lose autonomy.
Collapse
Affiliation(s)
- Alison Warren
- The Department of Clinical Research and Leadership, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
12
|
DeMaster D, Godlewska BR, Liang M, Vannucci M, Bockmann T, Cao B, Selvaraj S. Effective connectivity between resting-state networks in depression. J Affect Disord 2022; 307:79-86. [PMID: 35331822 DOI: 10.1016/j.jad.2022.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE Although depression has been widely researched, findings characterizing how brain regions influence each other remains scarce, yet this is critical for research on antidepressant treatments and individual responses to particular treatments. OBJECTIVES To identify pre-treatment resting state effective connectivity (rsEC) patterns in patients with major depressive disorder (MDD) and explore their relationship with treatment response. METHODS Thirty-four drug-free MDD patients had an MRI scan and were subsequently treated for 6 weeks with an SSRI escitalopram 10 mg daily; the response was defined as ≥50% decrease in Hamilton Depression Rating Scale (HAMD) score. RESULTS rsEC networks in default mode, central executive, and salience networks were identified for patients with depression. Exploratory analyses indicated higher connectivity strength related to baseline depression severity and response to treatment. CONCLUSIONS Preliminary analyses revealed widespread dysfunction of rsEC in depression. Functional rsEC may be useful as a predictive tool for antidepressant treatment response. A primary limitation of the current study was the small size; however, the group was carefully chosen, well-characterized, and included only medication-free patients. Further research in large samples of placebo-controlled studies would be required to confirm the results.
Collapse
Affiliation(s)
- Dana DeMaster
- Children's Learning Institute, Department of Pediatrics, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| | - Beata R Godlewska
- Department of Psychiatry, Medical Sciences Division, University of Oxford, United Kingdom.; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Mingrui Liang
- Department of Statistics, Rice University, Houston, TX, USA
| | | | - Taya Bockmann
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Bo Cao
- University of Alberta, Department of Psychiatry, Edmonton, Canada
| | - Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
13
|
Shaw SB, Levy Y, Mizzi A, Herman G, McKinnon MC, Heisz JJ, Becker S. Combined Aerobic Exercise and Neurofeedback Lead to Improved Task-Relevant Intrinsic Network Synchrony. Front Hum Neurosci 2022; 16:838614. [PMID: 35774480 PMCID: PMC9237564 DOI: 10.3389/fnhum.2022.838614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Lifestyle interventions such as exercise and mindfulness training have the potential to ameliorate mental health symptoms and restore dysregulated intrinsic connectivity network (ICN) dynamics, seen in many psychopathologies. Multiple lifestyle interventions, in combination, may interact synergistically for enhanced benefits. While the impacts of lifestyle interventions on subjective measures of mood are well-documented, their impacts on ICN dynamics are not well-established. In this study, we assessed the validity of EEG-derived measures of ICN dynamics as potential markers of mood disorders, by tracking ICN dynamics and mood symptoms through the course of a longitudinal exercise intervention. Specifically, we investigated the separate and combined effects of aerobic exercise and mindfulness-like neurofeedback training on task-linked ICN dynamics of the default mode network (DMN), central executive network (CEN), and salience network (SN). Participants were assigned pseudo-randomly into four experimental conditions—Control, Running, Neurofeedback, and Combined, performing the corresponding intervention for 16 sessions across 8 weeks. Intervention-linked changes in ICN dynamics were studied using EEG-based neuroimaging scans before and after the 8-week intervention, during which participants performed multiple blocks of autobiographical memory recall (AM) and working memory (WM) trials, designed to activate the DMN and CEN, respectively, and to activate the SN in conjunction with the task-appropriate network. The EEG-based features for classification of the three core networks had been identified in our prior research from simultaneously recorded EEG and fMRI during the same AM and WM tasks. We categorized participants as “responders” or “non-responders” based on whether the exercise intervention increased their aerobic capacity (VO2-max) (Running/Combined group), and/or neurofeedback increased the percentage time spent in the calm mindfulness state (Neurofeedback/Combined group). In responders, compared to each intervention alone, the combined exercise-neurofeedback intervention resulted in a more healthy CEN-SN synchrony pattern. Interestingly, non-responders to neurofeedback exhibited a maladaptive pattern of persistent, task-inappropriate DMN-SN synchrony which we speculate could be linked to depressive rumination. Furthermore, the CEN-SN synchrony at baseline predicted NFB response with up to 80% accuracy, demonstrating the potential utility of such network-based biomarkers in personalizing intervention plans.
Collapse
Affiliation(s)
- Saurabh Bhaskar Shaw
- Department of Psychiatry, Western University, London, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
| | - Yarden Levy
- Department of Psychology Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), Department of Linguistics and Languages, McMaster University, Hamilton, ON, Canada
| | - Allison Mizzi
- Department of Psychology Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), Department of Linguistics and Languages, McMaster University, Hamilton, ON, Canada
| | - Gabrielle Herman
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Margaret C. McKinnon
- Homewood Research Institute, Guelph, ON, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Jennifer J. Heisz
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Suzanna Becker
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Department of Psychology Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), Department of Linguistics and Languages, McMaster University, Hamilton, ON, Canada
- *Correspondence: Suzanna Becker
| |
Collapse
|
14
|
Teng C, Liu T, Zhang N, Zhong Y, Wang C. Cognitive behavioral therapy may rehabilitate abnormally functional communication pattern among the triple-network in major depressive disorder: A follow-up study. J Affect Disord 2022; 304:28-39. [PMID: 35192866 DOI: 10.1016/j.jad.2022.02.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cognitive behavioral therapy (CBT) is an established treatment for Major Depressive Disorder (MDD). MDD is characterized by imbalanced communication patterns among three networks: the central executive network (CEN), the default mode network (DMN) and the salience network (SN). The effect of CBT in restoring communications among these networks in MDD is unknown. METHODS Thirty-three patients with MDD and 27 healthy controls (HC) participated in the study. Patients were treated with CBT. Resting-state functional magnetic resonance imaging (rs-fMRI) data were obtained in patients at three stages (T0: before treatment; T1: after 6 weeks CBT; T2: after 28 weeks CBT) and in HC (only T0). Both independent component analysis (ICA) and granger causality analysis (GCA) were used to explore dynamic causal communication patterns among the three networks (CEN, DMN, SN) over a course of CBT treatment. RESULTS In the HC group, the SN had an inhibitory causal effect on CEN; the CEN and DMN had an excitatory causal effect on the SN. The SN had an inhibitory causal effect on the CEN and the DMN; only the DMN had an excitatory causal effect on the SN in the MDD patients at the T0 stage. As the CBT treatment went on for MDD patients, the CEN restored excitatory causal effect on the SN, and the SN lost inhibitory effect on the DMN. This result mimicked the one found in the HC group. Four regions, left ventromedial prefrontal cortex (lvmPFC), posterior cingulate gyrus (PCC), right inferior parietal lobule (rIPL) and right insula, were implicated in mediating network communications. LIMITATIONS The findings should be considered preliminary given the small sample sizes, and assessed only one stage in HC subjects. CONCLUSION CBT may enhance the regulatory function of the SN, and rehabilitate the imbalanced brain network communication mode in the MDD. PCC, lvmPFC and rIPL may all be potential targets of CBT.
Collapse
Affiliation(s)
- Changjun Teng
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianchen Liu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China; School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China; School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Palaniyappan L. Dissecting the neurobiology of linguistic disorganisation and impoverishment in schizophrenia. Semin Cell Dev Biol 2021; 129:47-60. [PMID: 34507903 DOI: 10.1016/j.semcdb.2021.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Schizophrenia provides a quintessential disease model of how disturbances in the molecular mechanisms of neurodevelopment lead to disruptions in the emergence of cognition. The central and often persistent feature of this illness is the disorganisation and impoverishment of language and related expressive behaviours. Though clinically more prominent, the periodic perceptual distortions characterised as psychosis are non-specific and often episodic. While several insights into psychosis have been gained based on study of the dopaminergic system, the mechanistic basis of linguistic disorganisation and impoverishment is still elusive. Key findings from cellular to systems-level studies highlight the role of ubiquitous, inhibitory processes in language production. Dysregulation of these processes at critical time periods, in key brain areas, provides a surprisingly parsimonious account of linguistic disorganisation and impoverishment in schizophrenia. This review links the notion of excitatory/inhibitory (E/I) imbalance at cortical microcircuits to the expression of language behaviour characteristic of schizophrenia, through the building blocks of neurochemistry, neurophysiology, and neurocognition.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry,University of Western Ontario, London, Ontario, Canada; Robarts Research Institute,University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|