1
|
Togre NS, Mekala N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom S, Sriram U, Persidsky Y. Neuroinflammatory responses and blood-brain barrier injury in chronic alcohol exposure: role of purinergic P2 × 7 Receptor signaling. J Neuroinflammation 2024; 21:244. [PMID: 39342243 PMCID: PMC11439317 DOI: 10.1186/s12974-024-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.
Collapse
Affiliation(s)
- Namdev S Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka S Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nikhita Mogadala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Deborah Grove
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Kotnala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Deng W, Zhou Y, Wan Q, Li L, Deng H, Yin Y, Zhou Q, Li Q, Cheng D, Hu X, Wang Y, Feng G. Nano-enzyme hydrogels for cartilage repair effectiveness based on ternary strategy therapy. J Mater Chem B 2024; 12:6242-6256. [PMID: 38842217 DOI: 10.1039/d4tb00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.
Collapse
Affiliation(s)
- Wei Deng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinlin Wan
- Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yong Yin
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qiujiang Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| | - Duo Cheng
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhuang F, Huang S, Liu L. PYCR3 modulates mtDNA copy number to drive proliferation and doxorubicin resistance in triple-negative breast cancer. Int J Biochem Cell Biol 2024; 171:106581. [PMID: 38642827 DOI: 10.1016/j.biocel.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges in treatment due to its aggressive nature and limited therapeutic targets. Understanding the underlying molecular mechanisms driving TNBC progression and chemotherapy resistance is imperative for developing effective therapeutic strategies. Thus, in this study, we aimed to elucidate the role of pyrroline-5-carboxylate reductase 3 (PYCR3) in TNBC pathogenesis and therapeutic response. We observed that PYCR3 is significantly upregulated in TNBC specimens compared to normal breast tissues, correlating with a poorer prognosis in TNBC patients. Knockdown of PYCR3 not only suppresses TNBC cell proliferation but also reverses acquired resistance of TNBC cells to doxorubicin, a commonly used chemotherapeutic agent. Mechanistically, we identified the mitochondrial localization of PYCR3 in TNBC cells and demonstrated its impact on TNBC cell proliferation and sensitivity to doxorubicin through the regulation of mtDNA copy number and mitochondrial respiration. Importantly, Selective reduction of mtDNA copy number using the mtDNA replication inhibitor 2', 3'-dideoxycytidine effectively recapitulates the phenotypic effects observed in PYCR3 knockout, resulting in decreased TNBC cell proliferation and the reversal of doxorubicin resistance through apoptosis induction. Thus, our study underscores the clinical relevance of PYCR3 and highlight its potential as a therapeutic target in TNBC management. By elucidating the functional significance of PYCR3 in TNBC, our findings contribute to a deeper understanding of TNBC biology and provide a foundation for developing novel therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Feifei Zhuang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China
| | - Shaoyan Huang
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China
| | - Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong, China.
| |
Collapse
|
4
|
Togre NS, Melaka N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom SS, Sriram U, Persidsky Y. Neuroinflammatory Responses and Blood-Brain Barrier Injury in Chronic Alcohol Exposure: Role of Purinergic P2X7 Receptor Signaling. RESEARCH SQUARE 2024:rs.3.rs-4350949. [PMID: 38766082 PMCID: PMC11100971 DOI: 10.21203/rs.3.rs-4350949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alcohol consumption leads to neuroinflammation and blood-brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2X7R activation. Therefore, we aimed to evaluate the effect of P2X7r blockade on peripheral and neuro-inflammation in EtOH-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2X7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), plasma P2X7R and P-gp, number of extra-cellular vesicles (EV), serum ATP and EV-ATP levels. Brain microvessel gene expression and EV mtDNA copy numbers were measured by RT2 PCR array and digital PCR, respectively. A RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed animals, which were decreased 15-50-fold in BBG-treated CIE-exposed animals. Plasma P-gp levels and serum P2X7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2X7R decreased P2X7R shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2X7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2X7R inhibition or receptor knockout. These observations suggested that P2X7R signaling plays a critical role in ethanol-induced brain injury. Increased eATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2X7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2X7R signaling in CIE-induced brain injury.
Collapse
|
5
|
Sharma P, Ma JX, Karamichos D. Effects of hypoxia in the diabetic corneal stroma microenvironment. Exp Eye Res 2024; 240:109790. [PMID: 38224848 DOI: 10.1016/j.exer.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.
Collapse
Affiliation(s)
- Purnima Sharma
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
6
|
Mota MN, Matos M, Bahri N, Sá-Correia I. Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 2024; 23:71. [PMID: 38419072 PMCID: PMC10903034 DOI: 10.1186/s12934-024-02309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The improvement of yeast tolerance to acetic, butyric, and octanoic acids is an important step for the implementation of economically and technologically sustainable bioprocesses for the bioconversion of renewable biomass resources and wastes. To guide genome engineering of promising yeast cell factories toward highly robust superior strains, it is instrumental to identify molecular targets and understand the mechanisms underlying tolerance to those monocarboxylic fatty acids. A chemogenomic analysis was performed, complemented with physiological studies, to unveil genetic tolerance determinants in the model yeast and cell factory Saccharomyces cerevisiae exposed to equivalent moderate inhibitory concentrations of acetic, butyric, or octanoic acids. RESULTS Results indicate the existence of multiple shared genetic determinants and pathways underlying tolerance to these short- and medium-chain fatty acids, such as vacuolar acidification, intracellular trafficking, autophagy, and protein synthesis. The number of tolerance genes identified increased with the linear chain length and the datasets for butyric and octanoic acids include the highest number of genes in common suggesting the existence of more similar toxicity and tolerance mechanisms. Results of this analysis, at the systems level, point to a more marked deleterious effect of an equivalent inhibitory concentration of the more lipophilic octanoic acid, followed by butyric acid, on the cell envelope and on cellular membranes function and lipid remodeling. The importance of mitochondrial genome maintenance and functional mitochondria to obtain ATP for energy-dependent detoxification processes also emerged from this chemogenomic analysis, especially for octanoic acid. CONCLUSIONS This study provides new biological knowledge of interest to gain further mechanistic insights into toxicity and tolerance to linear-chain monocarboxylic acids of increasing liposolubility and reports the first lists of tolerance genes, at the genome scale, for butyric and octanoic acids. These genes and biological functions are potential targets for synthetic biology approaches applied to promising yeast cell factories, toward more robust superior strains, a highly desirable phenotype to increase the economic viability of bioprocesses based on mixtures of volatiles/medium-chain fatty acids derived from low-cost biodegradable substrates or lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Madalena Matos
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Nada Bahri
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
| |
Collapse
|
7
|
Wang Y, Wang J, Tao SY, Liang Z, Xie R, Liu NN, Deng R, Zhang Y, Deng D, Jiang G. Mitochondrial damage-associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3733. [PMID: 37823338 DOI: 10.1002/dmrr.3733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
The pathogenesis of diabetes is accompanied by increased levels of inflammatory factors, also known as "metabolic inflammation", which runs through the whole process of the occurrence and development of the disease. Mitochondria, as the key site of glucose and lipid metabolism, is often accompanied by mitochondrial function damage in type 2 diabetes mellitus (T2DM). Damaged mitochondria release pro-inflammatory factors through damage-related molecular patterns that activate inflammation pathways and reactions to oxidative stress, further aggravate metabolic disorders, and form a vicious circle. Currently, the pathogenesis of diabetes is still unclear, and clinical treatment focuses primarily on symptomatic intervention of the internal environment of disorders of glucose and lipid metabolism with limited clinical efficacy. The proinflammatory effect of mitochondrial damage-associated molecular pattern (mtDAMP) in T2DM provides a new research direction for exploring the pathogenesis and intervention targets of T2DM. Therefore, this review covers the most recent findings on the molecular mechanism and related signalling cascades of inflammation caused by mtDAMP in T2DM and discusses its pathogenic role of it in the pathological process of T2DM to search potential intervention targets.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Si-Yu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Rong Xie
- Xinjiang Medical University, Urumqi, China
| | - Nan-Nan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deqiang Deng
- Department of Endocrinology, Urumqi Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Buzzard E, McLaren M, Bragoszewski P, Brancaccio A, Ford H, Daum B, Kuwabara P, Collinson I, Gold V. The consequence of ATP synthase dimer angle on mitochondrial morphology studied by cryo-electron tomography. Biochem J 2024; 481:BCJ20230450. [PMID: 38164968 PMCID: PMC10903453 DOI: 10.1042/bcj20230450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Mitochondrial ATP synthases form rows of dimers, which induce membrane curvature to give cristae their characteristic lamellar or tubular morphology. The angle formed between the central stalks of ATP synthase dimers varies between species. Using cryo-electron tomography and sub-tomogram averaging, we determined the structure of the ATP synthase dimer from the nematode worm C. elegans and show that the dimer angle differs from previously determined structures. The consequences of this species-specific difference at the dimer interface were investigated by comparing C. elegans and S. cerevisiae mitochondrial morphology. We reveal that C. elegans has a larger ATP synthase dimer angle with more lamellar (flatter) cristae when compared to yeast. The underlying cause of this difference was investigated by generating an atomic model of the C. elegans ATP synthase dimer by homology modelling. A comparison of our C. elegans model to an existing S. cerevisiae structure reveals the presence of extensions and rearrangements in C. elegans subunits associated with maintaining the dimer interface. We speculate that increasing dimer angles could provide an advantage for species that inhabit variable-oxygen environments by forming flatter more energetically efficient cristae.
Collapse
Affiliation(s)
| | | | - Piotr Bragoszewski
- Instytut Biologii Doswiadczalnej im Marcelego Nenckiego Polskiej Akademii Nauk, Warsaw, Poland
| | | | - Holly Ford
- University of Bristol, Bristol, United Kingdom
| | | | | | | | - Vicki Gold
- University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
10
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
11
|
Zhang Y, Lei H, Wang P, Zhou Q, Yu J, Leng X, Ma R, Wang D, Dong K, Xing J, Dong Y. Restoration of dysregulated intestinal barrier and inflammatory regulation through synergistically ameliorating hypoxia and scavenging reactive oxygen species using ceria nanozymes in ulcerative colitis. Biomater Res 2023; 27:75. [PMID: 37507801 PMCID: PMC10375752 DOI: 10.1186/s40824-023-00412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. METHODS Ceria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. RESULTS PEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. CONCLUSION This study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Leng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruirui Ma
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Danyang Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
12
|
Rajput P, Kumar D, Krishnamurthy S. Chronic exposure to dim artificial light disrupts the daily rhythm in mitochondrial respiration in mouse suprachiasmatic nucleus. Chronobiol Int 2023; 40:938-951. [PMID: 37483020 DOI: 10.1080/07420528.2023.2236708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/29/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Circadian rhythms of physiology, behavior, and metabolism have an endogenous 24 h period that synchronizes with environmental cycles of light/dark and food availability. Alterations in light cycles are stressful and disrupt such diurnal oscillations. Recently, we witnessed a sudden rise in studies describing the mechanisms behind the interaction between the key characteristics of mitochondrial functions, peripheral clocks, and stress responses. To our knowledge, there is no study in the suprachiasmatic nuclei (SCN) describing the dysregulated mitochondrial bioenergetics under abnormal lighting conditions, which is common in today's modern world. Thus, we aimed to investigate the existence of daily changes in mitochondrial bioenergetics (respiratory control rate, RCR), mitochondrial abundance (mtDNA/nDNA), plasma corticosterone, and to test whether disturbances in the lighting conditions might influence such rhythms. To confirm this, mice were sacrificed, mitochondria were isolated from the suprachiasmatic nuclei in the brain and blood was collected, every 3 h at various time points zeitgeber time/circadian time, (0, 3, 6, 9, 12, 15, 18, 21, and 24 h) under 12:12 h light-dark (LD, 150 lux L: 0 lux D) cycle and chronic artificial dim lighting (LL, 5 lux: 5lux) conditions, of a 24 h period, respectively. Our results demonstrate the existence of robust daily rhythmicity in RCR, mtDNA/nDNA and plasma CORT under a normal LD cycle. However, these rhythms were significantly disrupted and clock genes expressions were dysregulated under chronic dim LL. Furthermore, mitochondrial abundance was significantly reduced during LL compared to their numbers under LD cycle. Our data demonstrate that the circadian clock regulates mitochondrial functions (RCR, number), essential for accomplishing daily energy demands and supply by the SCN neurons. Abnormal light exposure dysregulates mitochondrial functions in the SCN and may alter metabolism, resulting in obesity, diabetes, and other metabolic disorders. Therefore, properly designing lighting conditions in workplaces is essential to mitigate the adverse consequences of light on humans.
Collapse
Affiliation(s)
- Prabha Rajput
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, India
| | | | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, India
| |
Collapse
|
13
|
Kandasamy J, Li R, Vamesu BM, Olave N, Halloran B, Jilling T, Ballinger SW, Ambalavanan N. Mitochondrial DNA Variations Modulate Alveolar Epithelial Mitochondrial Function and Oxidative Stress in Newborn Mice Exposed to Hyperoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541177. [PMID: 37292719 PMCID: PMC10245974 DOI: 10.1101/2023.05.17.541177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress is an important contributor to bronchopulmonary dysplasia (BPD), a form of chronic lung disease that is the most common morbidity in very preterm infants. Mitochondrial functional differences due to inherited and acquired mutations influence the pathogenesis of disorders in which oxidative stress plays a critical role. We previously showed using mitochondrial-nuclear exchange (MNX) mice that mitochondrial DNA (mtDNA) variations modulate hyperoxia-induced lung injury severity in a model of BPD. In this study, we studied the effects of mtDNA variations on mitochondrial function including mitophagy in alveolar epithelial cells (AT2) from MNX mice. We also investigated oxidant and inflammatory stress as well as transcriptomic profiles in lung tissue in mice and expression of proteins such as PINK1, Parkin and SIRT3 in infants with BPD. Our results indicate that AT2 from mice with C57 mtDNA had decreased mitochondrial bioenergetic function and inner membrane potential, increased mitochondrial membrane permeability and were exposed to higher levels of oxidant stress during hyperoxia compared to AT2 from mice with C3H mtDNA. Lungs from hyperoxia-exposed mice with C57 mtDNA also had higher levels of pro-inflammatory cytokines compared to lungs from mice with C3H mtDNA. We also noted changes in KEGG pathways related to inflammation, PPAR and glutamatergic signaling, and mitophagy in mice with certain mito-nuclear combinations but not others. Mitophagy was decreased by hyperoxia in all mice strains, but to a greater degree in AT2 and neonatal mice lung fibroblasts from hyperoxia-exposed mice with C57 mtDNA compared to C3H mtDNA. Finally, mtDNA haplogroups vary with ethnicity, and Black infants with BPD had lower levels of PINK1, Parkin and SIRT3 expression in HUVEC at birth and tracheal aspirates at 28 days of life when compared to White infants with BPD. These results indicate that predisposition to neonatal lung injury may be modulated by variations in mtDNA and mito-nuclear interactions need to be investigated to discover novel pathogenic mechanisms for BPD.
Collapse
|
14
|
Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int J Mol Sci 2022; 23:ijms23169252. [PMID: 36012516 PMCID: PMC9409464 DOI: 10.3390/ijms23169252] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/06/2022] Open
Abstract
Obesity is one of the prominent global health issues, contributing to the growing prevalence of insulin resistance and type 2 diabetes. Chronic inflammation in adipose tissue is considered as a key risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. Macrophages are the most abundant immune cells in adipose tissue and play an important role in adipose tissue inflammation. Mitochondria are critical for regulating macrophage polarization, differentiation, and survival. Changes to mitochondrial metabolism and physiology induced by extracellular signals may underlie the corresponding state of macrophage activation. Macrophage mitochondrial dysfunction is a key mediator of obesity-induced macrophage inflammatory response and subsequent systemic insulin resistance. Mitochondrial dysfunction drives the activation of the NLRP3 inflammasome, which induces the release of IL-1β. IL-1β leads to decreased insulin sensitivity of insulin target cells via paracrine signaling or infiltration into the systemic circulation. In this review, we discuss the new findings on how obesity induces macrophage mitochondrial dysfunction and how mitochondrial dysfunction induces NLRP3 inflammasome activation. We also summarize therapeutic approaches targeting mitochondria for the treatment of diabetes.
Collapse
|
15
|
Xiong H, Zhao Y, Xu Q, Xie X, Wu J, Hu B, Chen S, Cai X, Zheng Y, Fan C. Biodegradable Hollow-Structured Nanozymes Modulate Phenotypic Polarization of Macrophages and Relieve Hypoxia for Treatment of Osteoarthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203240. [PMID: 35843877 DOI: 10.1002/smll.202203240] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Nanozymes are widely applied for treating various major diseases, including neurological diseases and tumors. However, the biodegradability of nanozymes remains a great challenge, which hinders their further clinical translation. Based on the microenvironment of osteoarthritis (OA), a representative pH-responsive biodegradable hollow-structured manganese Prussian blue nanozyme (HMPBzyme) is designed and applied for treatment of OA. HMPBzyme with good pH-responsive biodegradability, biocompatibility, and multi-enzyme activities is constructed by bovine serum albumin bubbles as a template-mediated biomineralization strategy. HMPBzyme suppresses hypoxia-inducible factor-1α (HIF-1α) expression and decreases reactive oxygen species (ROS) level in the in vitro experiment. Furthermore, HMPBzyme markedly suppresses the expression of ROS and alleviates the degeneration of cartilage in OA rat models. The results indicate that the biodegradable HMPBzyme inhibits oxidative damage and relieves hypoxia synergistically to suppress inflammation and promote the anabolism of cartilage extracellular matrix by protecting mitochondrial function and down-regulating the expression of HIF-1α, which modulates the phenotypic conversion of macrophages from pro-inflammatory M1 subtype to anti-inflammatory M2 subtype for OA treatment. This research lays a solid foundation for the design, construction, and biomedical application of biodegradable nanozymes and promotes the application of nanozymes in biomedicine.
Collapse
Affiliation(s)
- Hao Xiong
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| | - Yongzheng Zhao
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qinyuan Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xue Xie
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Jianrong Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Bing Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shuai Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| | - Xiaojun Cai
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yuanyi Zheng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cunyi Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, 201306, China
| |
Collapse
|
16
|
Zhang Y, Lu L, Chen C, Field RW, D'Alton M, Kahe K. Does protracted radon exposure play a role in the development of dementia? ENVIRONMENTAL RESEARCH 2022; 210:112980. [PMID: 35189101 PMCID: PMC9081166 DOI: 10.1016/j.envres.2022.112980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 06/10/2023]
Abstract
Radon is a ubiquitous radioactive gas that decays into a series of solid radioactive decay products. Radon, and its decay products, enter the human body primarily through inhalation and can be delivered to various tissues including the brain through systemic circulation. It can also reach the brain by neuronal pathways via the olfactory system. While ionizing radiation has been suggested as a risk factor of dementia for decades, studies exploring the possible role of radon exposure in the development of Alzheimer's Diseases (AD) and other dementias are sparse. We systematically reviewed the literature and found several lines of evidence suggesting that radon decay products (RDPs) disproportionally deposit in the brain of AD patients with selective accumulation within the protein fractions. Ecologic study findings also indicate a significant positive correlation between geographic-level radon distribution and AD mortality in the US. Additionally, pathologic studies of radon shed light on the potential pathways of radon decay product induced proinflammation and oxidative stress that may result in the development of dementia. In summary, there are plausible underlying biological mechanisms linking radon exposure to the risk of dementia. Since randomized clinical trials on radon exposure are not feasible, well-designed individual-level epidemiologic studies are urgently needed to elucidate the possible association between radon (i.e., RDPs) exposure and the onset of dementia.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Liping Lu
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cheng Chen
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - R William Field
- Department of Occupational and Environmental Health and Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Mary D'Alton
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
17
|
Vellers HL, Cho HY, Gladwell W, Gerrish K, Santos JH, Ofman G, Miller-DeGraff L, Mahler TB, Kleeberger SR. NRF2 Alters Mitochondrial Gene Expression in Neonate Mice Exposed to Hyperoxia. Antioxidants (Basel) 2022; 11:antiox11040760. [PMID: 35453445 PMCID: PMC9031618 DOI: 10.3390/antiox11040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Approximately 1 in 10 newborns are born preterm and require supplemental oxygen (O2) in an extrauterine environment following birth. Supplemental O2 can induce oxidative stress that can impair mitochondrial function, resulting in lung injury and increased risk in early life pulmonary diseases. The nuclear factor-erythroid 2 related factor 2 (NRF2) protects the cells from oxidative stress by regulating the expression of genes containing antioxidant response elements and many mitochondrial-associated genes. In this study, we compared Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice to define the role of NRF2 in lung mitochondrial genomic features in late embryonic development in mice (embryonic days, E13.5 and E18.5) versus birth (postnatal day 0, PND0). We also determined whether NRF2 protects lung mitochondrial genome parameters in postnatal mice exposed to a 72 h hyperoxia environment. We found Nrf2−/− embryonic lungs were characterized by decreases in mtDNA copies from E13.5 to E18.5. Interestingly, Nrf2−/− heteroplasmy frequency was significantly higher than Nrf2+/+ at E18.5, though this effect reversed at PND0. In postnatal mice exposed to hyperoxia, we identified three- to four-fold increases in mitochondria-encoded mitochondrial genes, which regulate oxidative phosphorylation. Overall, our findings demonstrate a potentially critical role of NRF2 in mediating long-term effects of hyperoxia on mitochondrial function.
Collapse
Affiliation(s)
- Heather L. Vellers
- Health and Exercise Science Department, University of Oklahoma, Norman, OK 73019, USA
- Correspondence:
| | - Hye-Youn Cho
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (H.-Y.C.); (L.M.-D.); (S.R.K.)
| | - Wesley Gladwell
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (W.G.); (K.G.)
| | - Kevin Gerrish
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (W.G.); (K.G.)
| | - Janine H. Santos
- Division of the National Toxicology Program, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Gaston Ofman
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Laura Miller-DeGraff
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (H.-Y.C.); (L.M.-D.); (S.R.K.)
| | - T. Beth Mahler
- Division of the National Toxicology Program, Comparative and Molecular Pathogenesis Branch, Research Triangle Park, NC 27709, USA;
| | - Steven R. Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (H.-Y.C.); (L.M.-D.); (S.R.K.)
| |
Collapse
|
18
|
Simó R, Simó-Servat O, Bogdanov P, Hernández C. Diabetic Retinopathy: Role of Neurodegeneration and Therapeutic Perspectives. Asia Pac J Ophthalmol (Phila) 2022; 11:160-167. [PMID: 35533335 DOI: 10.1097/apo.0000000000000510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Retinal neurodegeneration plays a significant role in the pathogenesis of diabetic retinopathy, the leading cause of preventable blindness. The hallmarks of diabetes-induced neurodegeneration are neural cell apoptosis and glial activation, which seem even before vascular lesions can be detected by ophthalmoscopic examination. The molecular mediators of retinal neurodegeneration include proinflamma- tory cytokines, oxidative stress, mitochondrial dysfunction, and the molecular pathways closely related to chronic hyperglycemia. In this article, an overview of the main components of neurodegeneration, its key underlying mechanisms, and the more useful experimental models for investigative purposes will be given. In addition, the results of most relevant treatments based on neuroprotection, and the research gaps that should be filled will be critically reviewed.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| |
Collapse
|
19
|
Lim EW, Handzlik MK, Trefts E, Gengatharan JM, Pondevida CM, Shaw RJ, Metallo CM. Progressive alterations in amino acid and lipid metabolism correlate with peripheral neuropathy in PolgD257A mice. SCIENCE ADVANCES 2021; 7:eabj4077. [PMID: 34652935 PMCID: PMC8519573 DOI: 10.1126/sciadv.abj4077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 05/03/2023]
Abstract
Mitochondria are central to metabolic homeostasis, and progressive mitochondrial defects have diverse metabolic consequences that could drive distinct pathophysiological states. Here, we comprehensively characterized metabolic alterations in PolgD257A mice. Plasma alanine increased markedly with time, with other organic acids accumulating to a lesser extent. These changes were reflective of increased Cori and Cahill cycling in PolgD257A mice and subsequent hypoglycemia, which did not occur during normal mouse aging. Tracing with [15N]ammonium further supported this shift in amino acid metabolism with mild impairment of the urea cycle. We also measured alterations in the lipidome, observing a reduction in canonical lipids and accumulation of 1-deoxysphingolipids, which are synthesized from alanine via promiscuous serine palmitoyltransferase activity and correlate with peripheral neuropathy. Consistent with this metabolic link, PolgD257A mice exhibited thermal hypoalgesia. These results highlight the longitudinal changes that occur in intermediary metabolism upon mitochondrial impairment and identify a contributing mechanism to mitochondria-associated neuropathy.
Collapse
Affiliation(s)
- Esther W. Lim
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Michal K. Handzlik
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Elijah Trefts
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jivani M. Gengatharan
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Carlos M. Pondevida
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Christian M. Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|
20
|
Wang X, Chen Z, Fan X, Li W, Qu J, Dong C, Wang Z, Ji Z, Li Y. Inhibition of DNM1L and mitochondrial fission attenuates inflammatory response in fibroblast-like synoviocytes of rheumatoid arthritis. J Cell Mol Med 2019; 24:1516-1528. [PMID: 31755231 PMCID: PMC6991664 DOI: 10.1111/jcmm.14837] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial fission and fusion are important for mitochondrial function, and dynamin 1-like protein (DNM1L) is a key regulator of mitochondrial fission. We investigated the effect of mitochondrial fission on mitochondrial function and inflammation in fibroblast-like synoviocytes (FLSs) during rheumatoid arthritis (RA). DNM1L expression was determined in synovial tissues (STs) from RA and non-RA patients. FLSs were isolated from STs and treated with a DNM1L inhibitor (mdivi-1, mitochondrial division inhibitor 1) or transfected with DNM1L-specific siRNA. Mitochondrial morphology, DNM1L expression, cell viability, mitochondrial membrane potential, reactive oxygen species (ROS), apoptosis, inflammatory cytokine expression and autophagy were examined. The impact of mdivi-1 treatment on development and severity of collagen-induced arthritis (CIA) was determined in mice. Up-regulated DNM1L expression was associated with reduced mitochondrial length in STs from patients with RA and increased RA severity. Inhibition of DNM1L in FLSs triggered mitochondrial depolarization, mitochondrial elongation, decreased cell viability, production of ROS, IL-8 and COX-2, and increased apoptosis. DNM1L deficiency inhibited IL-1β-mediated AKT/IKK activation, NF-κBp65 nuclear translocation and LC3B-related autophagy, but enhanced NFKBIA expression. Treatment of CIA mice with mdivi-1 decreased disease severity by modulating inflammatory cytokine and ROS production. Our major results are that up-regulated DNM1L and mitochondrial fission promoted survival, LC3B-related autophagy and ROS production in FLSs, factors that lead to inflammation by regulating AKT/IKK/NFKBIA/NF-κB signalling. Thus, inhibition of DNM1L may be a new strategy for treatment of RA.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhufeng Chen
- Department of Orthopaedics, Tangdu Hospital, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xuemei Fan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Qu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuan Dong
- Department of Orthopaedics, Tangdu Hospital, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhixue Wang
- Department of Orthopaedics, Tangdu Hospital, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhenwei Ji
- Department of Orthopaedics, Tangdu Hospital, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Duraisamy AJ, Radhakrishnan R, Seyoum B, Abrams GW, Kowluru RA. Epigenetic Modifications in Peripheral Blood as Potential Noninvasive Biomarker of Diabetic Retinopathy. Transl Vis Sci Technol 2019; 8:43. [PMID: 31871829 PMCID: PMC6924565 DOI: 10.1167/tvst.8.6.43] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Progression of diabetic retinopathy is related to the duration and severity of hyperglycemia, and after 25 years of diabetes, 90% of patients show some signs of retinopathy. Despite initiation of many retinal molecular/biochemical abnormalities, including mitochondrial damage and epigenetic modifications, the disease remains asympotomatic in the initial stages. Our goal is to examine the utility of DNA methylation as a possible biomarker of diabetic retinopathy. METHODS Genomic DNA (gDNA) was isolated from the buffy coat, isolated from blood of diabetic patients with proliferative (PDR) or no retinopathy (No-DR), and nondiabetic subjects (CONT). Methylation of mitochondrial DNA (mtDNA), especially its D-Loop (the site of mtDNA transcription/replication), was quantified by methylated DNA immunoprecipitation and methyl-specific PCR techniques. Results were confirmed in purified mtDNA. The specific D-Loop region with the highest DNA methylation was identified using five overlapping primers, and DNMT1 binding was quantified by chromatin immunoprecipitation. Promoter DNA methylation of DNA mismatch repair (MLH1) and superoxide scavenging (SOD2) enzymes were also quantified. RESULTS Compared to CONT, D-Loop methylation was higher in PDR and No-DR groups, and the D-Loop region responsible for encoding the majority of the mtDNA-encoded genes had significantly higher methylation in the PDR group versus No-DR. Similarly, compared to No-DR, the PDR group also had hypermethylated MHL1 and SOD2 promoters. CONCLUSIONS Blood from PDR patients have higher DNA methylation, than seen in diabetic patients without retinopathy. Thus, DNA methylation can be used as a possible biomarker of diabetic retinopathy. TRANSLATIONAL RELEVANCE DNA methylation status in the blood of diabetic patients could serve as a potential noninvasive biomarker of retinopathy, and also an important readout parameter for testing longitudinal outcome of novel therapeutics for this blinding disease.
Collapse
Affiliation(s)
- Arul J. Duraisamy
- Wayne State University, Department of Ophthalmology, Visual and Anatomical Sciences, Detroit, MI, USA
- PerkinElmer Health Sciences Pvt Ltd., Tharamani, India
| | - Rakesh Radhakrishnan
- Wayne State University, Department of Ophthalmology, Visual and Anatomical Sciences, Detroit, MI, USA
| | | | - Gary W. Abrams
- Wayne State University, Department of Ophthalmology, Visual and Anatomical Sciences, Detroit, MI, USA
| | - Renu A. Kowluru
- Wayne State University, Department of Ophthalmology, Visual and Anatomical Sciences, Detroit, MI, USA
| |
Collapse
|
22
|
Tan YB, Pastukh VM, Gorodnya OM, Mulekar MS, Simmons JD, Machuca TN, Beaver TM, Wilson GL, Gillespie MN. Enhanced Mitochondrial DNA Repair Resuscitates Transplantable Lungs Donated After Circulatory Death. J Surg Res 2019; 245:273-280. [PMID: 31421373 DOI: 10.1016/j.jss.2019.07.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/18/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Transplantation of lungs procured after donation after circulatory death (DCD) is challenging because postmortem metabolic degradation may engender susceptibility to ischemia-reperfusion (IR) injury. Because oxidative mitochondrial DNA (mtDNA) damage has been linked to endothelial barrier disruption in other models of IR injury, here we used a fusion protein construct targeting the DNA repair 8-oxoguanine DNA glycosylase-1 (OGG1) to mitochondria (mtOGG1) to determine if enhanced repair of mtDNA damage attenuates endothelial barrier dysfunction after IR injury in a rat model of lung procurement after DCD. MATERIALS AND METHODS Lungs excised from donor rats 1 h after cardiac death were cold stored for 2 h after which they were perfused ex vivo in the absence and presence of mt-OGG1 or an inactive mt-OGG1 mutant. Lung endothelial barrier function and mtDNA integrity were determined during and at the end of perfusion, respectively. RESULTS AND CONCLUSIONS Mitochondria-targeted OGG1 attenuated indices of lung endothelial dysfunction incurred after a 1h post-mortem period. Oxidative lung tissue mtDNA damage as well as accumulation of proinflammatory mtDNA fragments in lung perfusate, but not nuclear DNA fragments, also were reduced by mitochondria-targeted OGG1. A repair-deficient mt-OGG1 mutant failed to protect lungs from the adverse effects of DCD procurement. CONCLUSIONS These findings suggest that endothelial barrier dysfunction in lungs procured after DCD is driven by mtDNA damage and point to strategies to enhance mtDNA repair in concert with EVLP as a means of alleviating DCD-related lung IR injury.
Collapse
Affiliation(s)
- Yong B Tan
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Viktor M Pastukh
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Olena M Gorodnya
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Madhuri S Mulekar
- Department of Mathematics and Statistics, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jon D Simmons
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, Alabama; Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Tiago N Machuca
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Thomas M Beaver
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | | | - Mark N Gillespie
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama.
| |
Collapse
|
23
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. ACS Synth Biol 2019; 8:787-795. [PMID: 30856339 DOI: 10.1021/acssynbio.8b00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Energy metabolism plays an important role in the growth and central metabolic pathways of cells. Manipulating energy metabolism is an efficient strategy to improve the formation of target products and to understand the effects of altering intracellular energy levels on global metabolic networks. Candida glabrata, as a dominant yeast strain for producing pyruvate, principally converts glucose to pyruvate through the glycolytic pathway. However, this process can be severely inhibited by a high intracellular ATP content. Here, in combination with the physiological characteristics of C. glabrata, efforts have been made to construct an ATP futile cycle system (ATP-FCS) in C. glabrata to decrease the intracellular ATP level without destroying F0F1-ATPase function. ATP-FCS was capable of decreasing the intracellular ATP level by 51.0% in C. glabrata. The decrease in the ATP level directly led to an increased pyruvate production and glycolysis efficiency. Moreover, we further optimized different aspects of the ATP-FCS to maximize pyruvate accumulation. Combining ATP-FCS with further genetic optimization strategies, we achieved a final pyruvate titer of 40.2 g/L, with 4.35 g pyruvate/g dry cell weight and a 0.44 g/g substrate conversion rate in 500 mL flasks, which represented increases of 98.5%, 322.3%, and 160%, respectively, compared with the original strain. Thus, these strategies hold great potential for increasing the synthesis of other organic acids in microbes.
Collapse
|
24
|
McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 2018; 125:15-24. [PMID: 29601945 DOI: 10.1016/j.freeradbiomed.2018.03.042] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory Arthritis is characterized by synovial proliferation, neovascularization and leukocyte extravasation leading to joint destruction and functional disability. Efficiency of oxygen supply to the synovium is poor due to the highly dysregulated synovial microvasculature. This along with the increased energy demands of activated infiltrating immune cells and inflamed resident cells leads to an hypoxic microenvironment and mitochondrial dysfunction. This favors an increase of reactive oxygen species, leading to oxidative damage which further promotes inflammation. In this adverse microenvironment synovial cells adapt to generate energy and switch their cell metabolism from a resting regulatory state to a highly metabolically active state which allows them to produce essential building blocks to support their proliferation. This metabolic shift results in the accumulation of metabolic intermediates which act as signaling molecules that further dictate the inflammatory response. Understanding the complex interplay between hypoxia-induced signaling pathways, oxidative stress and mitochondrial function will provide better insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Trudy McGarry
- The Department of Molecular Rheumatology, Trinity College Dublin, Ireland
| | - Monika Biniecka
- The Centre for Arthritis and Rheumatic Disease, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Douglas J Veale
- The Centre for Arthritis and Rheumatic Disease, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Ursula Fearon
- The Department of Molecular Rheumatology, Trinity College Dublin, Ireland.
| |
Collapse
|
25
|
Abstract
Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA.
| |
Collapse
|
26
|
Lawrence SJ, Wimalasena TT, Nicholls SM, Box WG, Boulton C, Smart KA. Incidence and Characterization of Petites Isolated from Lager Brewing YeastSaccharomyces CerevisiaePopulations. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0917-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Stephen J. Lawrence
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Tithira T. Wimalasena
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Sarah M. Nicholls
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Wendy G. Box
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Chris Boulton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Katherine A. Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|
27
|
Abstract
Ataxia is one of the most frequent symptoms of mitochondrial disease. In most cases it occurs as part of a syndromic disorder and the combination of ataxia with other neurologic involvement such as epilepsy is common. Mitochondrial ataxias can be caused by disturbance of the cerebellum and its connections, involvement of proprioception (i.e., sensory ataxia) or a combination of both (spinocerebellar). There are no specific features that define an ataxia as mitochondrial, except perhaps the tendency for it to occur together with involvement of multiple other sites, both in the nervous system and outside. In this review we will concentrate on the mitochondrial disorders in which ataxia is a prominent and consistent feature and focus on the clinical features and genetic causes.
Collapse
Affiliation(s)
- Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen and Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
28
|
Bogdanov P, Solà-Adell C, Hernández C, García-Ramírez M, Sampedro J, Simó-Servat O, Valeri M, Pasquali C, Simó R. Calcium dobesilate prevents the oxidative stress and inflammation induced by diabetes in the retina of db/db mice. J Diabetes Complications 2017; 31:1481-1490. [PMID: 28847447 DOI: 10.1016/j.jdiacomp.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
AIM Calcium dobesilate (CaD) is beneficial in early stages of diabetic retinopathy (DR), but its mechanisms of action remains to be elucidated. The aim was to investigate the effect of CaD on proinflammatory cytokines and oxidative stress. METHODS db/db mice were randomly assigned to daily oral treatment with CaD (200mg/kg/day) or vehicle for 15days. Biomarkers of oxidative stress (dihydroethidium, malondialdehyde), NF-κB, and proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α, MCP-1) were examined in the retina by immunohistochemical analysis. Cultures of human retinal endothelial cells (HRECs) were used for complementary experiments. RESULTS CaD significantly reduced the biomarkers of oxidative stress in the retina of db/db mice. In addition, CaD prevented the increase of NF-κB, IL-6, IL-8, TNF-α and MCP-1 induced by diabetes. CaD inhibited the activation of NF-kβ induced by IL-1β by preventing IKKB-α phosphorylation in HRECs and reduced the upregulation of IL-6 and IL-18 induced by TNF-α in a dose-dependent manner. CONCLUSION Our results suggest that antioxidant and antiinflammatory effects are crucial in accounting for the effectiveness of CaD for treating DR.
Collapse
Affiliation(s)
- Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain
| | - Cristina Solà-Adell
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain
| | - Marta García-Ramírez
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain
| | - Joel Sampedro
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain
| | - Marta Valeri
- Unit of High Technology, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
29
|
Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae. PLoS One 2017; 12:e0180153. [PMID: 28678842 PMCID: PMC5497989 DOI: 10.1371/journal.pone.0180153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/09/2017] [Indexed: 11/25/2022] Open
Abstract
Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria.
Collapse
|
30
|
Shaheen A, Aljebali AMA. A hypothetical model to solve the controversy over the involvement of UCP2 in palmitate-induced β-cell dysfunction. Endocrine 2016; 54:276-283. [PMID: 27491555 DOI: 10.1007/s12020-016-1051-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/04/2016] [Indexed: 11/24/2022]
Abstract
The aim of this article is to solve an existing controversy over the involvement of uncoupling protein-2 in the impairment of glucose-stimulated insulin secretion induced by chronic exposure of β-cells to palmitate. We analyzed and compared the results of studies that support and that deny the involvement of uncoupling protein-2 in this impairment. We observed that this impairment could occur in multiple stages. We provide a model in which palmitate-induced impairment of glucose-stimulated insulin secretion is proposed to occur in two stages, early stage and late stage, depending on the integrity of electron supply (glycolysis and Krebs cycle) and transport system through electron transport chain after palmitate treatment. Prolonged exposure of β-cells to palmitate can impair this system. Early-stage impairment occurs due to uncoupling by uncoupling protein-2 when this system is still intact. When this system becomes impaired, late-stage impairment occurs mainly due to reduced glucose-stimulated adenosine triphosphate production independent of uncoupling by uncoupling protein-2. The change in glucose-stimulated oxygen uptake after palmitate treatment reflects the integrity of this system and can be used to differentiate between the two stages. Some β-cells lines and islets appear to be more resistant to palmitate-induced impairment of electron supply and transport system than others, and therefore early stage is prominent in the more resistant cell lines and less prominent or absent in the less resistant cell lines. This may help to resolve the pathogenesis of diabetes and to monitor the progression of palmitate-induced β-cell dysfunction.
Collapse
Affiliation(s)
- Alaa Shaheen
- Kafr El-Sharakwa Medical Center, Kafr El-Sharakwa, Aga, Dakahlia, Egypt.
| | - Ahmad M A Aljebali
- Department of Zoology, Faculty of Science, Omar Al Mukhtar University, Bayda, Libya
| |
Collapse
|
31
|
Wang D, Zhang J, Lu Y, Luo Q, Zhu L. Nuclear respiratory factor-1 (NRF-1) regulated hypoxia-inducible factor-1α (HIF-1α) under hypoxia in HEK293T. IUBMB Life 2016; 68:748-55. [PMID: 27491637 DOI: 10.1002/iub.1537] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/05/2016] [Indexed: 12/26/2022]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a master regulator of oxygen homeostasis. Under hypoxia, the active HIF1-α subunits are mainly regulated through increased protein stabilization. Little is known concerning HIF-1α transcriptional regulation. Nuclear respiratory factor 1 (NRF-1) is a DNA-binding transcription factor that regulates mitochondrial biogenesis. In this study, we showed that NRF-1was a repressor of HIF-1α. The cellular depletion of NRF-1 by siRNA targeting leads to increased HIF-1αtranscriptional activity. EMSA, ChIP and luciferase activity allowed the identification of two functional NRF-1 binding sites within HIF-1α promoter. This study therefore identifies NRF-1 as a novel regulator of HIF-1α. © 2016 IUBMB Life, 68(9):748-755, 2016.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| | - Jie Zhang
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| | - Yapeng Lu
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| | - Qianqian Luo
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| | - Li Zhu
- Department of Biochemistry, 9 Se Yuan Road, Nantong, Jiangsu, 226019, China
| |
Collapse
|
32
|
Mishra M, Lillvis J, Seyoum B, Kowluru RA. Peripheral Blood Mitochondrial DNA Damage as a Potential Noninvasive Biomarker of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2016; 57:4035-44. [PMID: 27494345 PMCID: PMC4986770 DOI: 10.1167/iovs.16-19073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/22/2016] [Indexed: 01/08/2023] Open
Abstract
PURPOSE In the development of diabetic retinopathy, retinal mitochondria become dysfunctional, and mitochondrial DNA (mtDNA) is damaged. Because retinopathy is a progressive disease, and circulating glucose levels are high in diabetes, our aim was to investigate if peripheral blood mtDNA damage can serve as a potential biomarker of diabetic retinopathy. METHODS Peripheral blood mtDNA damage was investigated by extended-length PCR in rats and mice, diabetic for 10 to 12 months (streptozotocin-induced, type 1 model), and in 12- and 40-week-old Zucker diabetic fatty rats (ZDF, type 2). Mitochondrial copy number (in gDNA) and transcription (in cDNA) were quantified by qPCR. Similar parameters were measured in blood from diabetic patients with/without retinopathy. RESULTS Peripheral blood from diabetic rodents had significantly increased mtDNA damage and decreased copy numbers and transcription. Lipoic acid administration in diabetic rats, or Sod2 overexpression or MMP-9 knockdown in mice, the therapies that prevent diabetic retinopathy, also ameliorated blood mtDNA damage and restored copy numbers and transcription. Although blood from 40-week-old ZDF rats had significant mtDNA damage, 12-week-old rats had normal mtDNA. Diabetic patients with retinopathy had increased blood mtDNA damage, and decreased transcription and copy numbers compared with diabetic patients without retinopathy and nondiabetic individuals. CONCLUSIONS Type 1 diabetic rodents with oxidative stress modulated by pharmacologic/genetic means, and type 2 animal model and patients with/without diabetic retinopathy, demonstrate a strong relation between peripheral blood mtDNA damage and diabetic retinopathy, and suggest the possibility of use of peripheral blood mtDNA as a noninvasive biomarker of diabetic retinopathy.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - John Lillvis
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - Berhane Seyoum
- Department of Endocrinology, Wayne State University, Detroit, Michigan, United States
| | - Renu A. Kowluru
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
- Department of Endocrinology, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
33
|
Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 2016; 12:385-97. [DOI: 10.1038/nrrheum.2016.69] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Prastowo S, Amin A, Rings F, Held E, Wondim DS, Gad A, Neuhoff C, Tholen E, Looft C, Schellander K, Tesfaye D, Hoelker M. Fateful triad of reactive oxygen species, mitochondrial dysfunction and lipid accumulation is associated with expression outline of the AMP-activated protein kinase pathway in bovine blastocysts. Reprod Fertil Dev 2016; 29:RD15319. [PMID: 26907741 DOI: 10.1071/rd15319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/17/2015] [Indexed: 12/11/2022] Open
Abstract
Low cryotolerance is considered as the major drawback of in vitro-produced bovine embryos and is frequently associated with a triad encompassing increased cytoplasmic lipid accumulation, enhanced levels of reactive oxygen species (ROS) and mitochondrial dysfunction. The aim of the present study was to explore the role of the AMP-activated protein kinase (AMPK) pathway in the process resulting such phenotypes. Comparative analysis under different environmental conditions revealed downregulation of AMP-activated protein kinase cytalytic subunit 1alpha (AMPKA1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1A) and carnitine palmitoyltransferase 1 (CPT1) genes and upregulation of acetyl-CoA carboxylase α (ACC). In contrast, the presence of fatty acids within the culture medium resulted in a distinct molecular profile in the embryo associated with enhanced levels of ROS, mitochondrial dysfunction and elevated lipid accumulation in bovine embryos. Because AMPKA1 regulates PGC1A, CPT1 and ACC, the results of the present study reveal that AMPK in active its form is the key enzyme promoting lipolysis. Because AMPK1 activity is, in turn, controlled by the AMP : ATP ratio, it is possible to speculate that excessive uptake of exogenous free fatty acids could increase cellular ATP levels as a result of the disturbed β-oxidation of these external fatty acids and could therefore bypass that molecular feedback mechanism. Subsequently, this condition would cause enhanced generation of ROS, which negatively affect mitochondrial activity. Both enhanced generation of ROS and low mitochondrial activity are suggested to enhance the accumulation of lipids in bovine embryos.
Collapse
|
35
|
Akhmedov AT, Marín-García J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem 2015; 409:283-305. [DOI: 10.1007/s11010-015-2532-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
|
36
|
Clark-Matott J, Saleem A, Dai Y, Shurubor Y, Ma X, Safdar A, Beal MF, Tarnopolsky M, Simon DK. Metabolomic analysis of exercise effects in the POLG mitochondrial DNA mutator mouse brain. Neurobiol Aging 2015; 36:2972-2983. [PMID: 26294258 DOI: 10.1016/j.neurobiolaging.2015.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 01/09/2023]
Abstract
Mitochondrial DNA (mtDNA) mutator mice express a mutated form of mtDNA polymerase gamma that results an accelerated accumulation of somatic mtDNA mutations in association with a premature aging phenotype. An exploratory metabolomic analysis of cortical metabolites in sedentary and exercised mtDNA mutator mice and wild-type littermate controls at 9-10 months of age was performed. Pathway analysis revealed deficits in the neurotransmitters acetylcholine, glutamate, and aspartate that were ameliorated by exercise. Nicotinamide adenine dinucleotide (NAD) depletion and evidence of increased poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)activity were apparent in sedentary mtDNA mutator mouse cortex, along with deficits in carnitine metabolites and an upregulated antioxidant response that largely normalized with exercise. These data highlight specific pathways that are altered in the brain in association with an accelerated age-related accumulation of somatic mtDNA mutations. These results may have relevance to age-related neurodegenerative diseases associated with mitochondrial dysfunction, such as Alzheimer's disease and Parkinson's disease and provide insights into potential mechanisms of beneficial effects of exercise on brain function.
Collapse
Affiliation(s)
- Joanne Clark-Matott
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Ying Dai
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yevgeniya Shurubor
- Brain and Mind Institute, Weill Medical College, Cornell University, New York, NY, USA
| | - Xiaoxing Ma
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Adeel Safdar
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Myron Flint Beal
- Brain and Mind Institute, Weill Medical College, Cornell University, New York, NY, USA
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2015; 48:40-61. [PMID: 25975734 DOI: 10.1016/j.preteyeres.2015.05.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy remains the major cause of blindness among working age adults. Although a number of metabolic abnormalities have been associated with its development, due to complex nature of this multi-factorial disease, a link between any specific abnormality and diabetic retinopathy remains largely speculative. Diabetes increases oxidative stress in the retina and its capillary cells, and overwhelming evidence suggests a bidirectional relationship between oxidative stress and other major metabolic abnormalities implicated in the development of diabetic retinopathy. Due to increased production of cytosolic reactive oxygen species, mitochondrial membranes are damaged and their membrane potentials are impaired, and complex III of the electron transport system is compromised. Suboptimal enzymatic and nonenzymatic antioxidant defense system further aids in the accumulation of free radicals. As the duration of the disease progresses, mitochondrial DNA (mtDNA) is damaged and the DNA repair system is compromised, and due to impaired transcription of mtDNA-encoded proteins, the integrity of the electron transport system is encumbered. Due to decreased mtDNA biogenesis and impaired transcription, superoxide accumulation is further increased, and the vicious cycle of free radicals continues to self-propagate. Diabetic milieu also alters enzymes responsible for DNA and histone modifications, and various genes important for mitochondrial homeostasis, including mitochondrial biosynthesis, damage and antioxidant defense, undergo epigenetic modifications. Although antioxidant administration in animal models has yielded encouraging results in preventing diabetic retinopathy, controlled longitudinal human studies remain to be conducted. Furthermore, the role of epigenetic in mitochondrial homeostasis suggests that regulation of such modifications also has potential to inhibit/retard the development of diabetic retinopathy.
Collapse
|
38
|
Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res 2015; 48:160-80. [PMID: 25936649 DOI: 10.1016/j.preteyeres.2015.04.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy remains as a leading cause of blindness in developed countries. Current treatments target late stages of DR when vision has already been significantly affected. A better understanding of the pathogenesis of DR would permit the development of more efficient preventional/interventional strategies against early stages of DR. In this article a critical review of the state of the art of this issue is provided along with a discussion of problems which have yet to be overcome. Neuroprotection as a new approach for the treatment of the early stages of DR has been particularly emphasized. The development and progression of DR is not homogeneous and, apart from blood glucose levels and blood pressure, it depends on genetic factors which remain to be elucidated. In addition, the role of the pathogenic pathways is not the same in all patients. All these factors should be taken into account in the near future when an individualized oriented treatment for DR could become feasible. The new techniques in retinal imaging acquisition, the identification of useful circulating biomarkers and the individualized analysis of biological samples could facilitate the development of early and personalized therapy in the setting of DR. Finally, it should be noted that only a coordinated action among ophthalmologists, diabetologists, basic researchers, experts in pharmaco-economics and health care providers addressed to the design of rational strategies targeting prevention and the early stages of DR will be effective in reducing the burden and improving the clinical outcome of this devastating complication of diabetes.
Collapse
Affiliation(s)
- Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain.
| | - Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
39
|
|
40
|
Mishra M, Kowluru RA. Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy, and its continued progression after termination of hyperglycemia. Invest Ophthalmol Vis Sci 2014; 55:6960-7. [PMID: 25249609 DOI: 10.1167/iovs.14-15020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mitochondrial DNA (mtDNA) is damaged in the retina in diabetes, and mitochondria copy numbers are decreased. The displacement-loop (D-loop) of the mtDNA, the region with transcription/replication elements, experiences more damage than other regions of mtDNA. Our aim was to examine the role of DNA mismatch repair (MMR) in mitochondria homeostasis in diabetic retinopathy, and in its continued progression after cessation of hyperglycemia. METHODS Effect of hyperglycemia on sequence variants in the D-loop region was investigated in retinal endothelial cells and in the retina from streptozotocin-induced diabetic rats using mismatch-specific surveyor nuclease. The role of MMR machinery in mtDNA damage and mitochondrial respiration was investigated in retinal endothelial cells overexpressing Mlh1, an MMR enzyme mainly associated with mtDNA polymerase gamma, or Msh2 (associated with nuclear polymerase beta). RESULTS Hyperglycemia increased sequence variants in the D-loop region. While overexpression of Mlh1 in endothelial cells ameliorated glucose-induced increase in D-loop sequence variants, decrease in respiration rate and increase in apoptosis, overexpression of Msh2 did not protect the mitochondria damage. Termination of hyperglycemia failed to reverse decrease in MMR enzymes and increase in D-loop sequence variants. CONCLUSIONS Due to a compromised MMR system, the sequence variants in the D-loop region were not repaired, and that resulted in impaired mtDNA transcription. Mitochondria become dysfunctional, and they continued to be dysfunctional even after hyperglycemia was terminated, contributing to the development, and progression of diabetic retinopathy. Thus, strategies targeting mitochondrial MMR machinery could help maintain mitochondria homeostasis, and inhibit the development of diabetic retinopathy and its continued progression.
Collapse
Affiliation(s)
- Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
41
|
Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Mutat Res 2012; 740:21-33. [PMID: 23276591 DOI: 10.1016/j.mrfmmm.2012.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome.
Collapse
Affiliation(s)
- Piotr Dzierzbicki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
42
|
Vasilaki A, Simpson D, McArdle F, McLean L, Beynon RJ, Van Remmen H, Richardson AG, McArdle A, Faulkner JA, Jackson MJ. Formation of 3-nitrotyrosines in carbonic anhydrase III is a sensitive marker of oxidative stress in skeletal muscle. Proteomics Clin Appl 2012; 1:362-72. [PMID: 21136689 DOI: 10.1002/prca.200600702] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidation of skeletal muscle proteins has been reported to occur following contractions, with ageing, and with a variety of disease states, but the nature of the oxidised proteins has not been identified. A proteomics approach was utilised to identify major proteins that contain carbonyls and/or 3-nitrotyrosine (3-NT) groups in the gastrocnemius (GTN) muscles of adult (5-11 months of age) and old (26-28 months of age) wild type (WT) mice and adult mice lacking copper, zinc superoxide dismutase (Sod1(-/-) mice), manganese superoxide dismutase (Sod2(+/-) mice) or glutathione peroxidase 1 (GPx1(-/-) mice). In quiescent GTN muscles of adult and old WT mice, protein carbonylation and/or formation of 3-NT occurred in several proteins involved in glycolysis, as well as creatine kinase and carbonic anhydrase III. Following contractions, the 3-NT intensity was increased in specific protein bands from GTN muscles of both adult and old WT mice. In quiescent GTN muscles from adult Sod1(-/-) , Sod2(+/-) or GPx1(-/-) mice compared with age-matched WT mice only carbonic anhydrase III showed a greater 3-NT content. We conclude that formation of 3-NT occurs readily in response to oxidative stress in carbonic anhydrase III and this may provide a sensitive measure of oxidative damage to muscle proteins.
Collapse
Affiliation(s)
- Aphrodite Vasilaki
- Division of Metabolic and Cellular Medicine, School of Clinical Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Structural changes and abnormal function of mitochondria have been documented in Down's syndrome (DS) cells, patients, and animal models. DS cells in culture exhibit a wide array of functional mitochondrial abnormalities including reduced mitochondrial membrane potential, reduced ATP production, and decreased oxido-reductase activity. New research has also brought to central stage the prominent role of oxidative stress in this condition. This review focuses on recent advances in the field with a particular emphasis on novel translational approaches involving the utilization of coenzyme Q(10) (CoQ(10) ) to treat a variety of clinical phenotypes associated with DS that are linked to increased oxidative stress and energy deficits. CoQ(10) has already provided promising results in several different conditions associated with altered energy metabolism and oxidative stress in the CNS. Two studies conducted in Ancona investigated the effect of CoQ(10) treatment on DNA damage in DS patients. Although the effect of CoQ(10) was evidenced only at single cell level, the treatment affected the distribution of cells according to their content in oxidized bases. In fact, it produced a strong negative correlation linking cellular CoQ(10) content and the amount of oxidized purines. Results suggest that the effect of CoQ(10) treatment in DS not only reflects antioxidant efficacy, but likely modulates DNA repair mechanisms.
Collapse
Affiliation(s)
- Luca Tiano
- Department of Biochemistry, Biology and Genetics, Polytechnic University of the Marche, Ancona, Italy.
| | | |
Collapse
|
44
|
Mitochondria impairment correlates with increased sensitivity of aging RPE cells to oxidative stress. J Ocul Biol Dis Infor 2011; 3:92-108. [PMID: 22833778 DOI: 10.1007/s12177-011-9061-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 12/22/2022] Open
Abstract
Impairment of mitochondria function and cellular antioxidant systems are linked to aging and neurodegenerative diseases. In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment that contributes to age-related visual dysfunction. Here, we examined changes in mitochondrial function in human RPE cells and sensitivity to oxidative stress with increased chronological age. Primary RPE cells from young (9-20)-, mid-age (48-60)-, and >60 (62-76)-year-old donors were grown to confluency and examined by electron microscopy and flow cytometry using several mitochondrial functional assessment tools. Susceptibility of RPE cells to H(2)O(2) toxicity was determined by lactate dehydrogenase and cytochrome c release, as well as propidium iodide staining. Reactive oxygen species, cytoplasmic Ca(2+) [Ca(2+)](c), and mitochondrial Ca(2+) [Ca(2+)](m) levels were measured using 2',7'-dichlorodihydrofluorescein diacetate, fluo-3/AM, and Rhod-2/AM, respectively, adenosine triphosphate (ATP) levels were measured by a luciferin/luciferase-based assay and mitochondrial membrane potential (ΔΨm) estimated using 5,5',6,6'-tetrachloro 1,1'3,3'-tetraethylbenzimid azolocarbocyanine iodide. Expression of mitochondrial and antioxidant genes was determined by real-time polymerase chain reaction. RPE cells show greater sensitivity to oxidative stress, reduction in expression of mitochondrial heat shock protein 70, uncoupling protein 2, and superoxide dismutase 3, and greater expression of superoxide dismutase 2 levels with increased chronological age. Changes in mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity were more prominent in samples obtained from >60 years old compared to mid-age and younger donors. These mitochondria abnormalities correlated with lower ATP levels, reduced ΔΨm, decreased [Ca(2+)](c), and increased sequestration of [Ca(2+)](m) in cells with advanced aging. Our study provides evidence for mitochondrial decay, bioenergetic deficiency, weakened antioxidant defenses, and increased sensitivity of RPE cells to oxidative stress with advanced aging. Our findings suggest that with increased severity of mitochondrial decay and oxidative stress, RPE function may be altered in some individuals in a way that makes the retina more susceptible to age-related injury.
Collapse
|
45
|
Malik AN, Shahni R, Rodriguez-de-Ledesma A, Laftah A, Cunningham P. Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun 2011; 412:1-7. [PMID: 21703239 DOI: 10.1016/j.bbrc.2011.06.067] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/08/2011] [Indexed: 02/07/2023]
Abstract
Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a "dilution bias" when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.
Collapse
Affiliation(s)
- Afshan N Malik
- King's College London, Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, UK.
| | | | | | | | | |
Collapse
|
46
|
Clark J, Dai Y, Simon DK. Do somatic mitochondrial DNA mutations contribute to Parkinson's disease? PARKINSONS DISEASE 2011; 2011:659694. [PMID: 21603185 PMCID: PMC3096076 DOI: 10.4061/2011/659694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/01/2011] [Indexed: 12/21/2022]
Abstract
A great deal of evidence supports a role for mitochondrial dysfunction in the pathogenesis of Parkinson's disease (PD), although the origin of the mitochondrial dysfunction in PD remains unclear. Expression of mitochondrial DNA (mtDNA) from PD patients in “cybrid” cell lines recapitulates the mitochondrial defect, implicating a role for mtDNA mutations, but the specific mutations responsible for the mitochondrial dysfunction in PD have been difficult to identify. Somatic mtDNA point mutations and deletions accumulate with age and reach high levels in substantia nigra (SN) neurons. Mutations in mitochondrial DNA polymerase γ (POLG) that lead to the accumulation of mtDNA mutations are associated with a premature aging phenotype in “mutator” mice, although overt parkinsonism has not been reported in these mice, and with parkinsonism in humans. Together these data support, but do not yet prove, the hypothesis that the accumulation of somatic mtDNA mutations in SN neurons contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Joanne Clark
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, E/CLS-628, Boston, MA 02215, USA
| | | | | |
Collapse
|
47
|
Santos JM, Mohammad G, Zhong Q, Kowluru RA. Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol 2011; 12:352-61. [PMID: 20939803 PMCID: PMC3214730 DOI: 10.2174/138920111794480507] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/31/2010] [Indexed: 01/01/2023]
Abstract
Retinopathy, the leading cause of acquired blindness in young adults, is one of the most feared complications of diabetes, and hyperglycemia is considered as the major trigger for its development. The microvasculature of the retina is constantly bombarded by high glucose, and this insult results in many metabolic, structural and functional changes. Retinal mitochondria become dysfunctional, its DNA is damaged and proteins encoded by its DNA are decreased. The electron transport chain system becomes compromised, further producing superoxide and providing no relief to the retina from a continuous cycle of damage. Although the retina attempts to initiate repair mechanisms by inducing gene expressions of the repair enzymes, their mitochondrial accumulation remains deficient. Understanding the molecular mechanism of mitochondrial damage should help identify therapies to treat/retard this sight threatening complication of diabetes. Our hope is that if the retinal mitochondria are maintained healthy with adjunct therapies, the development and progression of diabetic retinopathy can be inhibited.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
48
|
DNA repair in organelles: Pathways, organization, regulation, relevance in disease and aging. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:186-200. [DOI: 10.1016/j.bbamcr.2010.10.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 12/20/2022]
|
49
|
Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal 2010; 13:797-805. [PMID: 20088705 PMCID: PMC2935337 DOI: 10.1089/ars.2009.2932] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic retinopathy does not halt after hyperglycemia is terminated; the retina continues to experience increased oxidative stress, suggesting a memory phenomenon. Mitochondrial DNA (mtDNA) is highly sensitive to oxidative damage. The goal is to investigate the role of mtDNA damage in the development of diabetic retinopathy, and in the metabolic memory. mtDNA damage and its functional consequences on electron transport chain (ETC) were analyzed in the retina from streptozotocin-diabetic rats maintained in poor control (PC, glycated hemoglobin >11%) for 12 months or PC for 6 months followed by good control (GC, GHb < 6.5%) for 6 months. Diabetes damaged retinal mtDNA and elevated DNA repair enzymes (glycosylase). ETC proteins that were encoded by the mitochondrial genome and the glycosylases were compromised in the mitochondria. Re-institution of GC after 6 months of PC failed to protect mtDNA damage, and ETC proteins remained subnormal. Thus, mtDNA continues to be damaged even after PC is terminated. Although the retina tries to overcome mtDNA damage by inducing glycosylase, they remain deficient in the mitochondria with a compromised ETC system. The process is further exacerbated by subsequent increased mtDNA damage providing no relief to the retina from a continuous cycle of damage, and termination of hyperglycemia fails to arrest the progression of retinopathy.
Collapse
|
50
|
|