1
|
Li S, Li X, Wang K, Liu L, Chen K, Shan W, Liu L, Kahiel M, Li C. Embryo thermal manipulation enhances mitochondrial function in the skeletal muscle of heat-stressed broilers by regulating transient receptor potential V2 expression. Poult Sci 2024; 103:104034. [PMID: 39003798 PMCID: PMC11298950 DOI: 10.1016/j.psj.2024.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Heat stress induces mitochondrial dysfunction, thereby impeding skeletal muscle development and significantly impacting the economic efficiency of poultry production. This study aimed to investigate the effects of embryo thermal manipulation (TM, 41.5°C, 65% RH, 3 h/d during 16-18th embryonic age) on the mitochondrial function of the pectoralis major (PM) in broiler chickens exposed to thermoneutral (24 ± 1°C, 60% RH) or cyclic heat stress (35 ± 1°C, 60% RH, 12 h/d) from day 22 to 28, and to explore potential mechanisms involving transient receptor potential V2 (TRPV2). Additionally, in vitro experiments were conducted to assess the regulatory effects of TRPV2 pharmacological activation and inhibition on mitochondrial function in primary myotubes. The results revealed that TM had no discernible effect on the body weight and feed intake of broiler chickens under heat stress conditions (P > 0.05). However, it did delay the increase in rectal temperature and accelerate the decrease in serum T3 levels (P < 0.05). Furthermore, TM promoted the development of PM muscle fibers, significantly increasing myofiber diameter and cross-sectional area (P < 0.05). Under heat stress conditions, TM significantly upregulated the expression of mitochondrial electron transport chain (ETC) genes and TRPV2 in broiler PM muscle (P < 0.05), with a clear positive correlation observed between the two (P < 0.05). In vitro, pharmacological activation of TRPV2 not only increased its own expression but also enhanced mitochondrial ETC genes expression and oxidative phosphorylation function by upregulating intracellular calcium ion levels (P < 0.05). Conversely, TRPV2 inhibition had the opposite effect. Overall, this study underscores the potential of prenatal thermal manipulation in regulating postnatal broiler skeletal muscle development and mitochondrial function through the modulation of TRPV2 expression.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ketian Chen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Shan
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyao Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed Kahiel
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Della Guardia L, Luzi L, Codella R. Muscle-UCP3 in the regulation of energy metabolism. Mitochondrion 2024; 76:101872. [PMID: 38499130 DOI: 10.1016/j.mito.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Uncoupling protein-3 (UCP3) is a mitochondria-regulatory protein with potential energy- homeostatic functions. This study explores the role of UCP3 in the regulation of muscle- and energy metabolism. UCP3 is critical for tuning substrate utilization, favoring lipid oxidation, particularly in conditions of high-fat availability. While UCP3 is non-essential for lipid oxidation during energy excess, it proves vital during fasting, indicating an energy-homeostatic trait. Preliminary evidence indicates UCP3' promotion of glucose uptake and oxidation, at least in conditions of high glucose/low fat availability. However, the dynamics of how fats and glucose differentially influence UCP3 remain undefined. UCP3 exhibits inducible proton transport and uncoupling activity, operating in a dual manner: a resting state with no/low activity and an activated state in the presence of activators. Uncoupling may enhance thermogenesis in specific conditions and in the presence of activators such as fatty acids, thyroid hormones, and catecholamines. This energy-dissipative activity adapts to varying energy availability, balancing energy dissipation with fatty acid oxidation to optimize whole-body energy homeostasis: fasting triggers UCP3 upregulation, enhancing lipid utilization while suppressing uncoupling. Additionally, UCP3 upregulation induces glucose and lipid disposal from the bloodstream and decreases tri-/diglyceride storage in muscle. This process improves mitochondrial functionality and insulin signaling, leading to enhanced systemicgluco-metabolic balance and protection from metabolic conditions. Reviewed evidence suggests that UCP3 plays a crucial role in adapting the system to changing energy conditions. However, the precise role of UCP3 in regulating metabolism requires further elucidation.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milano, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milano, Italy.
| |
Collapse
|
3
|
Li S, Li X, Wang K, Li Y, Nagaoka K, Li C. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway. J Anim Sci Biotechnol 2023; 14:159. [PMID: 38129919 PMCID: PMC10734199 DOI: 10.1186/s40104-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Broilers have a robust metabolism and high body temperature, which make them less tolerant to high-temperature (HT) environments and more susceptible to challenges from elevated temperatures. Gut microbes, functioning as symbionts within the host, possess the capacity to significantly regulate the physiological functions and environmental adaptability of the host. This study aims to investigate the effects of gut microbial intervention on the body temperature and thermogenesis of broilers at different ambient temperatures, as well as the underlying mechanism involving the "gut-brain" axis. METHODS Broilers were subjected to gut microbiota interference with or without antibiotics (control or ABX) starting at 1 day of age. At 21 day of age, they were divided into 4 groups and exposed to different environments for 7 d: The control and ABX groups at room temperature (RT, 24 ± 1 °C, 60% relative humidity (RH), 24 h/d) and the control-HT and ABX-HT groups at high temperature (HT, 32 ± 1 °C, 60% RH, 24 h/d). RESULTS : The results demonstrated that the antibiotic-induced gut microbiota intervention increased body weight and improved feed conversion in broiler chickens (P < 0.05). Under HT conditions, the microbiota intervention reduced the rectal temperature of broiler chickens (P < 0.05), inhibited the expression of avUCP and thermogenesis-related genes in breast muscle and liver (P < 0.05), and thus decreased thermogenesis capacity. Furthermore, the gut microbiota intervention blunted the hypothalamic‒pituitary‒adrenal axis and hypothalamic-pituitary-thyroid axis activation induced by HT conditions. By analyzing the cecal microbiota composition of control and ABX chickens maintained under HT conditions, we found that Alistipes was enriched in control chickens. In contrast, antibiotic-induced gut microbiota intervention resulted in a decrease in the relative abundance of Alistipes (P < 0.05). Moreover, this difference was accompanied by increased hypothalamic 5-hydroxytryptamine (5-HT) content and TPH2 expression (P < 0.05). CONCLUSIONS These findings underscore the critical role of the gut microbiota in regulating broiler thermogenesis via the gut-brain axis and suggest that the hypothalamic 5-HT pathway may be a potential mechanism by which the gut microbiota affects thermoregulation in broilers.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Davoodi P, Ghaderi-Zefrehei M, Dolatabady MM, Razmkabir M, Kianpour S, Esfahani EN, Smith J. In silico investigation of uncoupling protein function in avian genomes. Front Vet Sci 2023; 9:1085112. [PMID: 36744229 PMCID: PMC9893418 DOI: 10.3389/fvets.2022.1085112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The uncoupling proteins (UCPs) are involved in lipid metabolism and belong to a family of mitochondrial anionic transporters. In poultry, only one UCP homologue has been identified and experimentally shown to be associated with growth, feed conversion ratio, and abdominal fat according to its predominant expression in bird muscles. In endotherm birds, cell metabolic efficiency can be tuned by the rate of mitochondrial coupling. Thus, avUCP may be a key contributor to controlling metabolic rate during particular environmental changes. Methods This study aimed to perform a set of in-silico investigations primarily focused on the structural, biological, and biomimetic functions of avUCP. Thereby, using in silico genome analyses among 8 avian species (chicken, turkey, swallow, manakin, sparrow, wagtail, pigeon, and mallard) and a series of bioinformatic approaches, we provide phylogenetic inference and comparative genomics of avUCPs and investigate whether sequence variation can alter coding sequence characteristics, the protein structure, and its biological features. Complementarily, a combination of literature mining and prediction approaches was also applied to predict the gene networks of avUCP to identify genes, pathways, and biological crosstalk associated with avUCP function. Results The results showed the evolutionary alteration of UCP proteins in different avian species. Uncoupling proteins in avian species are highly conserved trans membrane proteins as seen by sequence alignment, physio-chemical parameters, and predicted protein structures. Taken together, avUCP has the potential to be considered a functional marker for the identification of cell metabolic state, thermogenesis, and oxidative stress caused by cold, heat, fasting, transfer, and other chemical stimuli stresses in birds. It can also be deduced that avUCP, in migrant or domestic birds, may increase heat stress resistance by reducing fatty acid transport/b-oxidation and thermoregulation alongside antioxidant defense mechanisms. The predicted gene network for avUCP highlighted a cluster of 21 genes involved in response to stress and 28 genes related to lipid metabolism and the proton buffering system. Finally, among 11 enriched pathways, crosstalk of 5 signaling pathways including MAPK, adipocytokine, mTOR, insulin, ErbB, and GnRH was predicted, indicating a possible combination of positive or negative feedback among pathways to regulate avUCP functions. Discussion Genetic selection for fast-growing commercial poultry has unintentionally increased susceptibility to many kinds of oxidative stress, and so avUCP could be considered as a potential candidate gene for balancing energy expenditure and reactive oxygen species production, especially in breeding programs. In conclusion, avUCP can be introduced as a pleiotropic gene that requires the contribution of regulatory genes, hormones, pathways, and genetic crosstalk to allow its finely-tuned function.
Collapse
Affiliation(s)
- Peymaneh Davoodi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Ghaderi-Zefrehei
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran,*Correspondence: Mostafa Ghaderi-Zefrehei ✉ ; ✉
| | | | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Somayeh Kianpour
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom,Jacqueline Smith ✉
| |
Collapse
|
5
|
Pani P, Bal NC. Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows. Biol Rev Camb Philos Soc 2022; 97:2106-2126. [PMID: 35899483 DOI: 10.1111/brv.12885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Avian cold adaptation is hallmarked by innovative strategies of both heat conservation and thermogenesis. While minimizing heat loss can reduce the thermogenic demands of body temperature maintenance, it cannot eliminate the requirement for thermogenesis. Shivering and non-shivering thermogenesis (NST) are the two synergistic mechanisms contributing to endothermy. Birds are of particular interest in studies of NST as they lack brown adipose tissue (BAT), the major organ of NST in mammals. Critical analysis of the existing literature on avian strategies of cold adaptation suggests that skeletal muscle is the principal site of NST. Despite recent progress, isolating the mechanisms involved in avian muscle NST has been difficult as shivering and NST co-exist with its primary locomotory function. Herein, we re-evaluate various proposed molecular bases of avian skeletal muscle NST. Experimental evidence suggests that sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) and ryanodine receptor 1 (RyR1) are key in avian muscle NST, through their mediation of futile Ca2+ cycling and thermogenesis. More recent studies have shown that SERCA regulation by sarcolipin (SLN) facilitates muscle NST in mammals; however, its role in birds is unclear. Ca2+ signalling in the muscle seems to be common to contraction, shivering and NST, but elucidating its roles will require more precise measurement of local Ca2+ levels inside avian myofibres. The endocrine control of avian muscle NST is still poorly defined. A better understanding of the mechanistic details of avian muscle NST will provide insights into the roles of these processes in regulatory thermogenesis, which could further inform our understanding of the evolution of endothermy among vertebrates.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
6
|
Wang J, Wang N, Qi M, Li J, Tan B. Glutamine, glutamate, and aspartate differently modulate energy homeostasis of small intestine under normal or low energy status in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:216-226. [PMID: 34977390 PMCID: PMC8685906 DOI: 10.1016/j.aninu.2021.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 06/14/2023]
Abstract
Weaning stress may cause reduced energy intake for maintenance of mucosal structure. Gln, Glu, and Asp are major energy sources for the small intestine. This study investigated whether Gln, Glu, and Asp improve the intestinal morphology via regulating the energy metabolism in weaning piglets. A total of 198 weaned piglets were assigned to 3 treatments: Control (Basal diet + 1.59% L-Ala); T1 (Basal diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp); T2 (Low energy diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp). Jejunum and ileum were obtained on d 5 or 21 post-weaning. T1 enhanced growth performance. T1 and T2 treatments improved small intestinal morphology by increasing villus height, goblet cell number and decreasing crypt depth. Days post-weaning affected the efficacy of T2, but not T1, on energy metabolism. At normal energy supplementation, Gln, Glu, and Asp restored small intestinal energy homeostasis via replenishing the Krebs' cycle and down-regulating the AMPK (adenosine monophosphate activated protein kinase) pathway. As these are not sufficient to maintain the intestinal energy-balance of piglets fed with a low energy diet on d 5 post-weaning, the AMPK, glycolysis, beta-oxidation, and mitochondrial biogenesis are activated to meet the high energy demand of enterocytes. These data indicated that Gln, Glu, and Asp could restore the energy homeostasis of intestinal mucosa of weaning piglets under normal energy fed. Low energy feeding may increase the susceptibility of piglets to stress, which may decrease the efficacy of Gln, Glu, and Asp on the restoration of energy balance. These findings provide new information on nutritional intervention for insufficient energy intake in weaning piglets.
Collapse
Affiliation(s)
- Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Animal Nutrition and Human Health Laboratory, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing 10008, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
7
|
Abstract
Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak.
Collapse
Affiliation(s)
- Ambre M. Bertholet
- Department of Physiology, University of California San Francisco, 600 16 Street, San Francisco, CA 94158, USA,Department of Physiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA,Corresponding authors: ,
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
8
|
Hirschenson J, Melgar-Bermudez E, Mailloux RJ. The Uncoupling Proteins: A Systematic Review on the Mechanism Used in the Prevention of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11020322. [PMID: 35204205 PMCID: PMC8868465 DOI: 10.3390/antiox11020322] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial uncoupling proteins (UCP) 1-3 fulfill many physiological functions, ranging from non-shivering thermogenesis (UCP1) to glucose-stimulated insulin release (GSIS) and satiety signaling (UCP2) and muscle fuel metabolism (UCP3). Several studies have suggested that UCPs mediate these functions by facilitating proton return to the matrix. This would decrease protonic backpressure on the respiratory chain, lowering the production of hydrogen peroxide (H2O2), a second messenger. However, controlling mitochondrial H2O2 production to prevent oxidative stress by activating these leaks through these proteins is still enthusiastically debated. This is due to compelling evidence that UCP2/3 fulfill other function(s) and the inability to reproduce findings that UCP1-3 use inducible leaks to control reactive oxygen species (ROS) production. Further, other studies have found that UCP2/3 may serve as Ca2+. Therefore, we performed a systematic review aiming to summarize the results collected on the topic. A literature search using a list of curated keywords in Pubmed, BIOSIS Citation Index and Scopus was conducted. Potentially relevant references were screened, duplicate references eliminated, and then literature titles and abstracts were evaluated using Rayyan software. A total of 1101 eligible studies were identified for the review. From this total, 416 studies were evaluated based on our inclusion criteria. In general, most studies identified a role for UCPs in preventing oxidative stress, and in some cases, this may be related to the induction of leaks and lowering protonic backpressure on the respiratory chain. However, some studies also generated evidence that UCP2/3 may mitigate oxidative stress by transporting Ca2+ into the matrix, exporting lipid hydroperoxides, or by transporting C-4 metabolites. Additionally, some showed that activating UCP1 or 3 can increase mitochondrial ROS production, even though there is still augmented protection from oxidative stress. Conclusion: Overall, most available studies demonstrate that UCPs, particularly UCP2/3, prevent oxidative stress. However, the mechanism utilized to do so remains elusive and raises the question that UCP2/3 should be renamed, since they may still not be true “uncoupling proteins”.
Collapse
|
9
|
Jastroch M, Seebacher F. Importance of adipocyte browning in the evolution of endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190134. [PMID: 31928187 DOI: 10.1098/rstb.2019.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothermy changes the relationship between organisms and their environment fundamentally, and it is therefore of major ecological and evolutionary significance. Endothermy is characterized by non-shivering thermogenesis, that is metabolic heat production in the absence of muscular activity. In many eutherian mammals, brown adipose tissue (BAT) is an evolutionary innovation that facilitates non-shivering heat production in mitochondria by uncoupling food-derived substrate oxidation from chemical energy (ATP) production. Consequently, energy turnover is accelerated resulting in increased heat release. The defining characteristics of BAT are high contents of mitochondria and vascularization, and the presence of uncoupling protein 1. Recent insights, however, reveal that a range of stimuli such as exercise, diet and the immune system can cause the browning of white adipocytes, thereby increasing energy expenditure and heat production even in the absence of BAT. Here, we review the molecular mechanisms that cause browning of white adipose tissue, and their potential contribution to thermoregulation. The significance for palaeophysiology lies in the presence of adipose tissue and the mechanisms that cause its browning and uncoupling in all amniotes. Hence, adipocytes may have played a role in the evolution of endothermy beyond the more specific evolution of BAT in eutherians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Rupprecht A, Moldzio R, Mödl B, Pohl EE. Glutamine regulates mitochondrial uncoupling protein 2 to promote glutaminolysis in neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:391-401. [PMID: 30885735 DOI: 10.1016/j.bbabio.2019.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/30/2018] [Accepted: 03/14/2019] [Indexed: 01/26/2023]
Abstract
Mitochondrial uncoupling protein 2 (UCP2) is highly abundant in rapidly proliferating cells that utilize aerobic glycolysis, such as stem cells, cancer cells, and cells of the immune system. However, the function of UCP2 has been a longstanding conundrum. Considering the strict regulation and unusually short life time of the protein, we propose that UCP2 acts as a "signaling protein" under nutrient shortage in cancer cells. We reveal that glutamine shortage induces the rapid and reversible downregulation of UCP2, decrease of the metabolic activity and proliferation of neuroblastoma cells, that are regulated by glutamine per se but not by glutamine metabolism. Our findings indicate a very rapid (within 1 h) metabolic adaptation that allows the cell to survive by either shifting its metabolism to the use of the alternative fuel glutamine or going into a reversible, more quiescent state. The results imply that UCP2 facilitates glutamine utilization as an energetic fuel source, thereby providing metabolic flexibility during glucose shortage. The targeting UCP2 by drugs to intervene with cancer cell metabolism may represent a new strategy for treatment of cancers resistant to other therapies.
Collapse
Affiliation(s)
- Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; Institute of Pharmacology and Toxicology, Rostock University Medical Center, Germany.
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Bernadette Mödl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
11
|
Chi Q, Chi X, Hu X, Wang S, Zhang H, Li S. The effects of atmospheric hydrogen sulfide on peripheral blood lymphocytes of chickens: Perspectives on inflammation, oxidative stress and energy metabolism. ENVIRONMENTAL RESEARCH 2018; 167:1-6. [PMID: 30005195 DOI: 10.1016/j.envres.2018.06.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Excessive hydrogen sulfide (H2S) affects poultry health. Exposure to air pollution induces inflammation, oxidative stress, energy metabolism dysfunction and adverse health effects. However, few detailed studies have been conducted on the molecular mechanisms of H2S-induced injury in poultry. To understand how H2S drives its adverse effects on chickens, twenty-four 14-day-old chickens were randomly divided into two groups. The chickens in the control group were raised in a separate chamber without H2S, and the chickens in the treatment group were exposed to 30 ppm H2S. After 14 days of exposure, peripheral blood samples were taken and the lymphocytes were extracted to detect inflammation, oxidative stress and energy metabolism in broilers. Overall, an increase in the inflammatory response was detected in the peripheral blood lymphocytes following H2S exposure compared to the control group, and the expression levels of the heat shock proteins (HSPs) and the transcription factors nuclear factor κB (NF-κB), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were up-regulated in the H2S group, which further suggested that H2S induced an inflammatory response via the NF-κB pathway. Because of the activation of NF-κB, which is a major regulator of oxidative stress, we also observed that reactive oxygen species (ROS) production was elevated under H2S exposure. In addition, we presumed that energy metabolism might be damaged due to the increased ROS production, and we found that H2S down-regulated the expression levels of energy metabolism-related genes, which indicated the occurrence of energy metabolism dysfunction. Altogether, this study suggests that exposure to excessive atmospheric H2S induces an inflammatory response, oxidative stress and energy metabolism dysfunction, providing a reference for comparative medicine.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Hilse KE, Rupprecht A, Egerbacher M, Bardakji S, Zimmermann L, Wulczyn AEMS, Pohl EE. The Expression of Uncoupling Protein 3 Coincides With the Fatty Acid Oxidation Type of Metabolism in Adult Murine Heart. Front Physiol 2018; 9:747. [PMID: 29988383 PMCID: PMC6024016 DOI: 10.3389/fphys.2018.00747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
The involvement of mitochondrial uncoupling proteins 2 and 3 in the pathogenesis of cardiovascular diseases is widely acknowledged. However, contradictory reports show that the functions of UCP2/UCP3 are still disputed. We have previously described that UCP2 is highly abundant in cells that rely on glycolysis, such as stem, cancer and activated immune cells. In contrast, high amounts of UCP3 are present in brown adipose tissue, followed by heart and skeletal muscles - all known to metabolize fatty acids (FA) to a high extent. Using two different models - mouse embryonic stem cell (mESC) differentiation to cardiomyocytes (CM) and murine heart at different developmental stages - we now tested the concept that the expression ratio between UCP2 and UCP3 indicates the metabolism type in CM. Our results revealed the tight correlation between UCP3 abundance, expression of mitochondrial fatty acid oxidation (FAO) markers and presence of multiple connections between mitochondria and lipid droplets. We further demonstrated that the time course of UCP3 expression neither coincided with the onset of the electrical activity in CM, derived from mESC, nor with the expression of respiratory chain proteins, the observation which rendered protein participation in ROS regulation unlikely. The present data imply that UCP3 may facilitate FAO by transporting FAs into mitochondria. In contrast, UCP2 was highly abundant at early stages of heart development and in mESC. Understanding, that the expression patterns of UCP3 and UCP2 in heart during development reflect the type of the cell metabolism is key to the uncovering their different functions. Their expression ratio may be an important diagnostic criterion for the degree of CM differentiation and/or severity of a heart failure.
Collapse
Affiliation(s)
- Karolina E Hilse
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anne Rupprecht
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Bardakji
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lars Zimmermann
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea E M Seiler Wulczyn
- German Centre for the Protection of Laboratory Animals (Bf3R), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Elena E Pohl
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
13
|
Chaudhuri L, Srivastava RK, Kos F, Shrikant PA. Uncoupling protein 2 regulates metabolic reprogramming and fate of antigen-stimulated CD8+ T cells. Cancer Immunol Immunother 2016; 65:869-74. [PMID: 27271549 PMCID: PMC4919150 DOI: 10.1007/s00262-016-1851-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/23/2016] [Indexed: 01/21/2023]
Abstract
Adoptive cell therapy (ACT) employing ex vivo-generated tumor antigen-specific CD8+ T cells shows tumor efficacy when the transferred cells possess both effector and memory functions. New strategies based on understanding of mechanisms that balance CD8+ T cell differentiation toward effector and memory responses are highly desirable. Emerging information confirms a central role for antigen-induced metabolic reprogramming in CD8+ T cell differentiation and clonal expansion. The mitochondrial protein uncoupling protein 2 (UCP2) is induced by antigen stimulation of CD8+ T cells; however, its role in metabolic reprogramming underlying differentiation and clonal expansion has not been reported. Employing genetic (siRNA) and pharmacologic (Genipin) approaches, we note that antigen-induced UCP2 expression reduces glycolysis, fatty acid synthesis and production of reactive oxygen species to balance differentiation with survival of effector CD8+ T cells. Inhibition of UCP2 promotes CD8+ T cell terminal differentiation into short-lived effector cells (CD62L(lo)KLRG1(Hi)IFNγ(Hi)) that undergo clonal contraction. These findings are the first to reveal a role for antigen-induced UCP2 expression in balancing CD8+ T cell differentiation and survival. Targeting UCP2 to regulate metabolic reprogramming of CD8+ T cells is an attractive new approach to augment efficacy of tumor therapy by ACT.
Collapse
Affiliation(s)
- Leena Chaudhuri
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Rupesh K Srivastava
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
- Department of Zoology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, MP, 470003, India
| | - Ferdynand Kos
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Protul A Shrikant
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
14
|
UCPs, at the interface between bioenergetics and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2443-56. [PMID: 27091404 DOI: 10.1016/j.bbamcr.2016.04.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/25/2023]
Abstract
The first member of the uncoupling protein (UCP) family, brown adipose tissue uncoupling protein 1 (UCP1), was identified in 1976. Twenty years later, two closely related proteins, UCP2 and UCP3, were described in mammals. Homologs of these proteins exist in other organisms, including plants. Uncoupling refers to a deterioration of energy conservation between substrate oxidation and ADP phosphorylation. Complete energy conservation loss would be fatal but fine-tuning can be beneficial for processes such as thermogenesis, redox control, and prevention of mitochondrial ROS release. The coupled/uncoupled state of mitochondria is related to the permeability of the inner membrane and the proton transport mediated by activated UCPs underlies the uncoupling activity of these proteins. Proton transport by UCP1 is activated by fatty acids and this ensures thermogenesis. In vivo in absence of this activation UCP1 remains inhibited with no transport activity. A similar situation now seems unlikely for UCP2 and UCP3 and while activation of their proton transport has been described its physiological relevance remains uncertain and their influence can be envisaged as a result of another transport pathway that takes place in the absence of activation. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
15
|
Hilse KE, Kalinovich AV, Rupprecht A, Smorodchenko A, Zeitz U, Staniek K, Erben RG, Pohl EE. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:72-78. [PMID: 26518386 PMCID: PMC7115856 DOI: 10.1016/j.bbabio.2015.10.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 01/14/2023]
Abstract
UCP1 and UCP3 are members of the uncoupling protein (UCP) subfamily and are localized in the inner mitochondrial membrane. Whereas UCP1's central role in non-shivering thermogenesis is acknowledged, the function and even tissue expression pattern of UCP3 are still under dispute. Because UCP3 properties regarding transport of protons are qualitatively identical to those of UCP1, its expression in brown adipose tissue (BAT) alongside UCP1 requires justification. In this work, we tested whether any correlation exists between the expression of UCP1 and UCP3 in BAT by quantification of protein amounts in mouse tissues at physiological conditions, in cold-acclimated and UCP1 knockout mice. Quantification using recombinant UCP3 revealed that the UCP3 amount in BAT (0.51ng/(μg total tissue protein)) was nearly one order of magnitude higher than that in muscles and heart. Cold-acclimated mice showed an approximate three-fold increase in UCP3 abundance in BAT in comparison to mice in thermoneutral conditions. Surprisingly, we found a significant decrease of UCP3 in BAT of UCP1 knockout mice, whereas the protein amount in skeletal and heart muscles remained constant. UCP3 abundance decreased even more in cold-acclimated UCP1 knockout mice. Protein quantification in UCP3 knockout mice revealed no compensatory increase in UCP1 or UCP2 expression. Our results do not support the participation of UCP3 in thermogenesis in the absence of UCP1 in BAT, but clearly demonstrate the correlation in abundance between both proteins. The latter is important for understanding UCP3's function in BAT.
Collapse
Affiliation(s)
- Karolina E Hilse
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Alina Smorodchenko
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Ute Zeitz
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Reinhold G Erben
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
16
|
Boswell W, Boswell M, Titus J, Savage M, Lu Y, Shen J, Walter RB. Sex-specific molecular genetic response to UVB exposure in Xiphophorus maculatus skin. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:76-85. [PMID: 26256120 PMCID: PMC4662892 DOI: 10.1016/j.cbpc.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022]
Abstract
In both Xiphophorus fishes and humans, males are reported to have a higher incidence of melanoma than females. To better understand sex-specific differences in the molecular genetic response to UVB, we performed RNA-Seq experiments in skin of female and male Xiphophorus maculatus Jp 163 B following UVB doses of 8 or 16kJ/m(2) exposure. Male X. maculatus differentially express a significantly larger number of transcripts following exposure to 16kJ/m(2) UVB (1293 genes) compared to 8kJ/m(2) UVB (324 genes). Female skin showed differential gene expression in a larger number of transcripts following 8kJ/m(2) UVB (765) than did males; however, both females and males showed similar numbers of differentially expressed genes at 16kJ/m(2) UVB (1167 and1293, respectively). Although most modulated transcripts after UVB exposure represented the same dominant pathways in both females and males (e.g., DNA repair, circadian rhythm, and fatty acid biosynthesis), we identified genes in several pathways that exhibited opposite modulation in female vs. male skin (e.g., synaptic development, cell differentiation, wound healing, and glucose metabolism). The oppositely modulated genes appear related through uncoupling protein 3 (UCP3) that is involved with the regulation of fatty acid oxidation and serves to balance glucose and lipid metabolism. Overall, these results identify gender-specific differences in UVB-induced genetic profiles in the skin of females and males and show female and male X. maculatus respond to UVB differently through pathways involved in reactive oxygen species, wound healing, and energy homeostasis.
Collapse
Affiliation(s)
- William Boswell
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Mikki Boswell
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - James Titus
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Markita Savage
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Yuan Lu
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ronald B Walter
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
17
|
UCP-3 uncoupling protein confers hypoxia resistance to renal epithelial cells and is upregulated in renal cell carcinoma. Sci Rep 2015; 5:13450. [PMID: 26304588 PMCID: PMC4548255 DOI: 10.1038/srep13450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/01/2015] [Indexed: 01/17/2023] Open
Abstract
Tumor cells can adapt to a hostile environment with reduced oxygen supply. The present study aimed to identify mechanisms that confer hypoxia resistance. Partially hypoxia/reoxygenation (H/R)-resistant proximal tubular (PT) cells were selected by exposing PT cultures to repetitive cycles of H/R. Thereafter, H/R-induced changes in mRNA and protein expression, inner mitochondrial membrane potential (ΔΨm), formation of superoxide, and cell death were compared between H/R-adapted and control PT cultures. As a result, H/R-adapted PT cells exhibited lower H/R-induced hyperpolarization of ΔΨm and produced less superoxide than the control cultures. Consequently, H/R triggered ΔΨm break-down and DNA degradation in a lower percentage of H/R-adapted than control PT cells. Moreover, H/R induced upregulation of mitochondrial uncoupling protein-3 (UCP-3) in H/R-adapted PT but not in control cultures. In addition, ionizing radiation killed a lower percentage of H/R-adapted as compared to control cells suggestive of an H/R-radiation cross-resistance developed by the selection procedure. Knockdown of UCP-3 decreased H/R- and radioresitance of the H/R-adapted cells. Finally, UCP-3 protein abundance of PT-derived clear cell renal cell carcinoma and normal renal tissue was compared in human specimens indicating upregulation of UCP-3 during tumor development. Combined, our data suggest functional significance of UCP-3 for H/R resistance.
Collapse
|
18
|
New Insights for Oxidative Stress and Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:875961. [PMID: 26064426 PMCID: PMC4443788 DOI: 10.1155/2015/875961] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
The release of reactive oxygen species (ROS) and the generation of oxidative stress are considered critical factors for the pathogenesis of diabetes mellitus (DM), a disorder that is growing in prevalence and results in significant economic loss. New therapeutic directions that address the detrimental effects of oxidative stress may be especially warranted to develop effective care for the millions of individuals that currently suffer from DM. The mechanistic target of rapamycin (mTOR), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), and Wnt1 inducible signaling pathway protein 1 (WISP1) are especially justified to be considered treatment targets for DM since these pathways can address the complex relationship between stem cells, trophic factors, impaired glucose tolerance, programmed cell death pathways of apoptosis and autophagy, tissue remodeling, cellular energy homeostasis, and vascular biology that greatly impact the biology and disease progression of DM. The translation and development of these pathways into viable therapies will require detailed understanding of their proliferative nature to maximize clinical efficacy and limit adverse effects that have the potential to lead to unintended consequences.
Collapse
|
19
|
Krajcova A, Ziak J, Jiroutkova K, Patkova J, Elkalaf M, Dzupa V, Trnka J, Duska F. Normalizing Glutamine Concentration Causes Mitochondrial Uncoupling in an In Vitro Model of Human Skeletal Muscle. JPEN J Parenter Enteral Nutr 2015; 39:180-189. [DOI: 10.1177/0148607113513801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Adela Krajcova
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jakub Ziak
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Katerina Jiroutkova
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jana Patkova
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Moustafa Elkalaf
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Valer Dzupa
- Department of Orthopaedic Surgery, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jan Trnka
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Frantisek Duska
- Laboratory for Metabolism and Bioenergetics, Department of Nutrition, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
20
|
Maiese K. Programming apoptosis and autophagy with novel approaches for diabetes mellitus. Curr Neurovasc Res 2015; 12:173-88. [PMID: 25742566 PMCID: PMC4380829 DOI: 10.2174/1567202612666150305110929] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, diabetes mellitus (DM) in the year 2030 will be ranked the seventh leading cause of death in the world. DM impacts all systems of the body with oxidant stress controlling cell fate through endoplasmic reticulum stress, mitochondrial dysfunction, alterations in uncoupling proteins, and the induction of apoptosis and autophagy. Multiple treatment approaches are being entertained for DM with Wnt1 inducible signaling pathway protein 1 (WISP1), mechanistic target of rapamycin (mTOR), and silent mating type information regulation 2 homolog) 1 (S. cerevisiae) (SIRT1) generating significant interest as target pathways that can address maintenance of glucose homeostasis as well as prevention of cellular pathology by controlling insulin resistance, stem cell proliferation, and the programmed cell death pathways of apoptosis and autophagy. WISP1, mTOR, and SIRT1 can rely upon similar pathways such as AMP activated protein kinase as well as govern cellular metabolism through cytokines such as EPO and oral hypoglycemics such as metformin. Yet, these pathways require precise biological control to exclude potentially detrimental clinical outcomes. Further elucidation of the ability to translate the roles of WISP1, mTOR, and SIRT1 into effective clinical avenues offers compelling prospects for new therapies against DM that can benefit hundreds of millions of individuals throughout the globe.
Collapse
Affiliation(s)
- Kenneth Maiese
- MD, Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
21
|
Manganese superoxide dismutase deficiency triggers mitochondrial uncoupling and the Warburg effect. Oncogene 2014; 34:4229-37. [PMID: 25362851 PMCID: PMC4859767 DOI: 10.1038/onc.2014.355] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/07/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is a mitochondrially localized primary antioxidant enzyme, known to be essential for the survival of aerobic life and to have important roles in tumorigenesis. Here, we show that MnSOD deficiency in skin tissues of MnSOD-heterozygous knockout (Sod2(+/-)) mice leads to increased expresson of uncoupling proteins (UCPs). When MnSOD is deficient, superoxide radical and its resulting reactive oxygen species (ROS) activate ligand binding to peroxisome proliferator-activated receptor alpha (PPARα), suggesting that the activation of PPARα signaling is a major mechanism underlying MnSOD-dependent UCPs expression that consequently triggers the PI3K/Akt/mTOR pathway, leading to increased aerobic glycolysis. Knockdown of UCPs and mTOR suppresses lactate production and increases ATP levels, suggesting that UCPs contribute to increased glycolysis. These results highlight the existence of a free radical-mediated mechanism that activates mitochondria uncoupling to reduce ROS production, which precedes the glycolytic adaptation described as the Warburg Effect.
Collapse
|
22
|
Pacini N, Borziani F. Cancer stem cell theory and the warburg effect, two sides of the same coin? Int J Mol Sci 2014; 15:8893-930. [PMID: 24857919 PMCID: PMC4057766 DOI: 10.3390/ijms15058893] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Over the last 100 years, many studies have been performed to determine the biochemical and histopathological phenomena that mark the origin of neoplasms. At the end of the last century, the leading paradigm, which is currently well rooted, considered the origin of neoplasms to be a set of genetic and/or epigenetic mutations, stochastic and independent in a single cell, or rather, a stochastic monoclonal pattern. However, in the last 20 years, two important areas of research have underlined numerous limitations and incongruities of this pattern, the hypothesis of the so-called cancer stem cell theory and a revaluation of several alterations in metabolic networks that are typical of the neoplastic cell, the so-called Warburg effect. Even if this specific “metabolic sign” has been known for more than 85 years, only in the last few years has it been given more attention; therefore, the so-called Warburg hypothesis has been used in multiple and independent surveys. Based on an accurate analysis of a series of considerations and of biophysical thermodynamic events in the literature, we will demonstrate a homogeneous pattern of the cancer stem cell theory, of the Warburg hypothesis and of the stochastic monoclonal pattern; this pattern could contribute considerably as the first basis of the development of a new uniform theory on the origin of neoplasms. Thus, a new possible epistemological paradigm is represented; this paradigm considers the Warburg effect as a specific “metabolic sign” reflecting the stem origin of the neoplastic cell, where, in this specific metabolic order, an essential reason for the genetic instability that is intrinsic to the neoplastic cell is defined.
Collapse
Affiliation(s)
- Nicola Pacini
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| | - Fabio Borziani
- Laboratorio Privato di Biochimica F. Pacini, via trabocchetto 10, 89126 Reggio Calabria, Italy.
| |
Collapse
|
23
|
A novel SP1/SP3 dependent intronic enhancer governing transcription of the UCP3 gene in brown adipocytes. PLoS One 2013; 8:e83426. [PMID: 24391766 PMCID: PMC3877035 DOI: 10.1371/journal.pone.0083426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
Uncoupling protein (UCP) 3 is a mitochondrial inner membrane protein implicated in lipid handling and metabolism of reactive oxygen species. Its transcription is mainly regulated by peroxisome proliferator-activated receptors (PPAR), a family of nuclear hormone receptors. Employing bandshift assays, RNA interference and reporter gene assays we examine an intronic region in the UCP3 gene harboring a cis-element essential for expression in brown adipocytes. We demonstrate binding of SP1 and SP3 to this element which is adjacent to a direct repeat 1 element mediating activation of UCP3 expression by PPARγ agonists. Transactivation mediated by these elements is interdependent and indispensable for UCP3 expression. Systematic deletion uncovered a third binding element, a putative NF1 site, in close proximity to the SP1/3 and PPARγ binding elements. Data mining demonstrated binding of MyoD and Myogenin to this third element in C2C12 cells, and, furthermore, revealed recruitment of p300. Taken together, this intronic region is the main enhancer driving UCP3 expression with SP1/3 and PPARγ as the core factors required for expression.
Collapse
|
24
|
Patel N, Barrientos A, Landgraf R. The growth factor receptor ERBB2 regulates mitochondrial activity on a signaling time scale. J Biol Chem 2013; 288:35253-65. [PMID: 24142693 DOI: 10.1074/jbc.m113.478271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Overexpression of the ERBB2 receptor tyrosine kinase and the mitochondrial inner membrane protein UCP2 occurs frequently in aggressive cancers with dysfunctional mitochondria. Overexpressed ERBB2 signals constitutively and elevated UCP2 can uncouple mitochondria and alleviate oxidative stress. However, the physiological contributions of UCP2 and ERBB2 at the low expression levels that are typical of most tissues, as well as the path to oncogenic deregulation, are poorly understood. We now show that ERBB2 directly controls UCP2 levels, both at low physiological levels and oncogenic overexpression. At low levels of receptor and UCP2, ligand stimulation creates a distinct temporal response pattern driven by the opposing forces of translational suppression of the exceptionally short lived UCP2 protein and a time delayed transcriptional up-regulation. The latter becomes dominant through constitutive signaling by overexpressed ERBB2, resulting in high levels of UCP2 that contribute mitochondrial uncoupling. By contrast, ligand stimulation of non-overexpressed ERBB2 transiently removes UCP2 and paradoxically reduces the mitochondrial membrane potential, oxygen consumption, and OXPHOS on a signaling time scale. However, neither the transporter activity nor down-regulation of already low UCP2 levels drive this reduction in mitochondrial activity. Instead, UCP2 is required to establish mitochondria that are capable of responding to ligand. UCP2 knockdown impairs proliferation at high glucose but its absence specifically impairs ligand-induced growth when glucose levels fluctuate. These findings demonstrate the ability of growth factor signaling to control oxidative phosphorylation on a signaling time scale and point toward a non-transporter role for low levels of UCP2 in establishing dynamic response capability.
Collapse
Affiliation(s)
- Nirav Patel
- From the Department of Biochemistry and Molecular Biology
| | | | | |
Collapse
|
25
|
Kassab A, Piwowar A. Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie 2012; 94:1837-48. [PMID: 22333037 DOI: 10.1016/j.biochi.2012.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Most known pathways of diabetic complications involve oxidative stress. The mitochondria electron transport chain is a significant source of reactive oxygen species (ROS) in insulin secretory cells, insulin peripheral sensitive cells and endothelial cells. Elevated intracellular glucose level induces tricarboxylic acid cycle electron donor overproduction and mitochondrial proton gradient increase leading to an increase in electron transporter lifetime. Subsequently, the electrons leaked combine with respiratory oxygen (O(2)) resulting in superoxide anion ((•)O(2)(-)) production. Advanced glycation end products derive ROS via interaction with their receptors. Elevated diacylglycerol and ROS activate the protein kinase C pathway which, in turn, activates NADPH oxidases. A vicious circle of pathway derived ROS installs. Pathologic pathways induced ROS are activated and persistent though glycemia returns to normal due to hyperglycemia memory. Endothelial nitric oxide synthase may produce both superoxide anion ((•)O(2)(-)) and nitric oxide (NO) leading to peroxynitrite ((•)ONOO(-)) generation. Homocysteine is also implicated in oxidative stress pathogenesis. In this paper we have highlighted the pathologic mechanisms of ROS on atherosclerosis, renal dysfunction, retina dysfunction and nerve dysfunction in type 2 diabetes. Cell oxidant stress delivery have pivotal role in cell dysfunction onset and progression of angiopathies but an early introduction of good glycemic control may protect cells more efficiently than antioxidants.
Collapse
Affiliation(s)
- Asma Kassab
- Biochemistry Laboratory, CHU Farhat Hached, Sousse, Tunisia.
| | | |
Collapse
|
26
|
Park D, Han CZ, Elliott MR, Kinchen JM, Trampont PC, Das S, Collins S, Lysiak JJ, Hoehn KL, Ravichandran KS. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 2011; 477:220-4. [PMID: 21857682 DOI: 10.1038/nature10340] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/28/2011] [Indexed: 01/07/2023]
Abstract
Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.
Collapse
Affiliation(s)
- Daeho Park
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Increasing evidences have suggested that oxidative stress plays a major role in the pathogenesis of diabetes mellitus (DM). Oxidative stress also appears to be the pathogenic factor in underlying diabetic complications. Reactive oxygen species (ROS) are generated by environmental factors, such as ionizing radiation and chemical carcinogens, and also by endogenous processes, including energy metabolism in mitochondria. ROS produced either endogenously or exogenously can attack lipids, proteins and nucleic acids simultaneously in living cells. There are many potential mechanisms whereby excess glucose metabolites traveling along these pathways might promote the development of DM complication and cause pancreatic β cell damage. However, all these pathways have in common the formation of ROS, that, in excess and over time, causes chronic oxidative stress, which in turn causes defective insulin gene expression and insulin secretion as well as increased apoptosis. Various methods for determining biomarkers of cellular oxidative stress have been developed, and some have been proposed for sensitive assessment of antioxidant defense and oxidative damage in diabetes and its complications. However, their clinical utility is limited by less than optimal standardization techniques and the lack of sufficient large-sized, multi-marker prospective trials.
Collapse
Affiliation(s)
- Hui Yang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Ministry of Health, Beijing, PR China
| | | | | | | |
Collapse
|
28
|
Li H, Brahi OHD, Zhao X, Xu N, Zhao X. Association of pig UCP3 gene mutations and back fat thickness in the sixth and seventh rib. Mol Biol Rep 2011; 39:1823-9. [PMID: 21643758 DOI: 10.1007/s11033-011-0924-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/24/2011] [Indexed: 12/22/2022]
Abstract
Accumulated studies have documented extensive links between UCP3 polymorphisms and pig productive traits, and quantitative trait loci linkage results, on the other hand, provided extensive evidences showing that UCP3 was in the core of several QTLs for carcass and meat quality traits. In this research, we screened two substitutions in coding sequence and one 9-base continuous mutated site in 3'UTR of pig UCP3 gene using the reference population of 293 pigs which were F (2) generation of hybrids between Chinese native Jinhua pigs and European Pietrain. The two missense mutations of G1406A in Exon 3 and T3602C in Exon 5 which led to changes in the G150R and M259T, respectively, were digested by SmaI and introduced Tth111I separately for genotype analysis, and the 9-base continuous mutated site in the 3'UTR was analyzed by an AvaI cleavage. As a result, the 9-base continuous mutated site of 3'UTR manifested significantly close association with the backfat thickness at the sixth and seventh rib, but the polymorphisms of G1406A and T3602C were not associated significantly with any of the seven carcass traits. The same results were shown by RT-qPCR and western blotting. These findings inferred that UCP3 probably has tissue-specific effects on pig carcass traits.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
29
|
Joubert R, Métayer-Coustard S, Crochet S, Cailleau-Audouin E, Dupont J, Duclos MJ, Tesseraud S, Collin A. Regulation of the expression of the avian uncoupling protein 3 by isoproterenol and fatty acids in chick myoblasts: possible involvement of AMPK and PPARalpha? Am J Physiol Regul Integr Comp Physiol 2011; 301:R201-8. [PMID: 21508290 DOI: 10.1152/ajpregu.00087.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The avian uncoupling protein 3 (UCP3), mainly expressed in muscle tissue, could be involved in fatty acid (FA) metabolism, limitation of reactive oxygen species production, and/or nonshivering thermogenesis. We recently demonstrated that UCP3 mRNA expression was increased by isoproterenol (Iso), a β-agonist, in chicken Pectoralis major. This upregulation was associated with changes in FA metabolism and variations in the activation of AMP-activated protein kinase (AMPK) and in the expression of the transcription factors peroxisome proliferator-activated receptor (PPAR)α, PPARβ/δ, and PPARγ coactivator-1α (PGC-1α). The aim of the present study was to elucidate the mechanisms involving AMPK and PPARα in UCP3 regulation in primary cultures of chick myoblasts. Avian UCP3 mRNA expression, associated with p38 mitogen-activated protein kinase (p38 MAPK) activation, was increased by Iso and/or FAs. The PKA pathway mediated the effects of Iso on UCP3 expression. FA stimulation also led to AMPK activation. Furthermore, the direct involvement of AMPK on UCP3 regulation was shown by using 5-aminoimidazole-4-carboxyamide ribonucleoside and Compound C. The use of the p38 MAPK inhibitor SB202190, which was associated with AMPK activation, also dramatically enhanced UCP3 mRNA expression. Finally the PPARα agonist WY-14643 strongly increased UCP3 mRNA expression. This study highlights the control of UCP3 expression by the β-adrenergic system and FA in chick myoblasts and demonstrates that its expression is directly regulated by AMPK and by PPARα. Overexpression of avian UCP3 might modulate energy utilization or limit oxidative stress when mitochondrial metabolism of FA is triggered by catecholamines.
Collapse
Affiliation(s)
- Romain Joubert
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Senese R, Valli V, Moreno M, Lombardi A, Busiello RA, Cioffi F, Silvestri E, Goglia F, Lanni A, de Lange P. Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways. Pflugers Arch 2010; 461:153-64. [DOI: 10.1007/s00424-010-0892-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/10/2010] [Accepted: 10/04/2010] [Indexed: 11/30/2022]
|
31
|
Skelton D, Goodyear A, Ni D, Walton WJ, Rolle M, Hare JT, Logan TM. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells. JOURNAL OF BIOMOLECULAR NMR 2010; 48:93-102. [PMID: 20683638 DOI: 10.1007/s10858-010-9440-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/17/2010] [Indexed: 05/26/2023]
Abstract
NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-¹³C-glucose and ¹⁵N-glutamate as labeled precursors. This study suggests that uniformly ¹⁵N,¹³C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.
Collapse
Affiliation(s)
- David Skelton
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Aguirre E, Cadenas S. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1716-26. [PMID: 20599679 DOI: 10.1016/j.bbabio.2010.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/15/2010] [Accepted: 06/19/2010] [Indexed: 12/17/2022]
Abstract
The lipid peroxidation product 4-hydroxynonenal (HNE) increases the proton conductance of the inner mitochondrial membrane through effects on uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT); however, the relative contribution of the two carriers to these effects is unclear. To clarify this we isolated mitochondria from skeletal muscle and heart of wild-type and Ucp3 knockout (Ucp3KO) mice. To increase UCP3 expression, some mice were i.p. injected with LPS (12mg/kg body weight). In spite of the increased UCP3 expression levels, basal proton conductance did not change. HNE increased the proton conductance of skeletal muscle and heart mitochondria. In skeletal muscle, this increase was lower in Ucp3KO mice and higher in LPS-treated wild-type mice, and was partially abolished by GDP (UCPs inhibitor) and completely abolished by carboxyatractylate (ANT inhibitor) or addition of both inhibitors. GDP had no effect on HNE-induced conductance in heart mitochondria, but carboxyatractylate or administration of both inhibitors had a partial effect. GDP-mediated inhibition of HNE-activated proton conductance in skeletal muscle mitochondria was not observed in Ucp3KO mice, indicating that GDP is specific for UCP3, at least in muscle. Carboxyatractylate was able to inhibit UCP3, probably through an indirect mechanism. Our results are consistent with the conclusion that, in skeletal muscle, HNE-induced increase in proton conductance is mediated by UCP3 (30%) and ANT, whereas in the heart the increase is mediated by ANT and other carriers, possibly including UCP3.
Collapse
Affiliation(s)
- Enara Aguirre
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | |
Collapse
|
33
|
Emre Y, Nübel T. Uncoupling protein UCP2: When mitochondrial activity meets immunity. FEBS Lett 2010; 584:1437-42. [DOI: 10.1016/j.febslet.2010.03.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/20/2010] [Accepted: 03/10/2010] [Indexed: 11/26/2022]
|
34
|
Joubert R, Métayer Coustard S, Swennen Q, Sibut V, Crochet S, Cailleau-Audouin E, Buyse J, Decuypere E, Wrutniak-Cabello C, Cabello G, Tesseraud S, Collin A. The beta-adrenergic system is involved in the regulation of the expression of avian uncoupling protein in the chicken. Domest Anim Endocrinol 2010; 38:115-25. [PMID: 19782502 DOI: 10.1016/j.domaniend.2009.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/16/2009] [Accepted: 08/05/2009] [Indexed: 12/31/2022]
Abstract
Avian uncoupling protein (avUCP) is orthologous to UCP3, which is suggested to be involved in fatty acid metabolism and to limit the mitochondrial production of reactive oxygen species in mammals. In the chicken, the role and regulation of avUCP remain to be clarified. The aim of this study was to explore the control of avUCP expression by the beta-adrenergic system, known to be involved in avian thermoregulation and lipid utilization, and in UCP expression in mammals. Therefore, we measured the expression of avUCP mRNA and protein in the Pectoralis major muscle of chickens injected with the beta(2) agonist isoproterenol, and we investigated the potential pathways involved in the regulation of avUCP mRNA expression. Avian UCP mRNA expression was increased 7-fold 4h after isoproterenol injection, leading to a tendency to a 40% increase in avUCP protein 24h post-injection. This increase was preceded, 30 min after isoproterenol injection, by changes in the chicken thyroid status and in the muscular expression of PPARalpha, PPARbeta/delta, and PPARgamma coactivator-1alpha (PGC-1alpha). Moreover, the analysis of the avUCP promoter sequence suggested potential binding sites for PPARs and for thyroid hormone receptors. We also detected the activation of AMP-activated protein kinase, which has recently been reported to be involved in UCP3 regulation in mammals. This study presents for the first time evidence of beta-adrenergic control on avUCP messenger expression in chicken muscle and suggests the potential involvement of AMPK and several transcription factors in this regulation.
Collapse
Affiliation(s)
- R Joubert
- INRA, UR83 Recherches Avicoles, 37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mitochondrial uncoupling protein-2 (UCP2) mediates leptin protection against MPP+ toxicity in neuronal cells. Neurotox Res 2009; 17:332-43. [PMID: 19763737 PMCID: PMC2946553 DOI: 10.1007/s12640-009-9109-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is involved in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). Uncoupling proteins (UCPs) delink ATP production from biofuel oxidation in mitochondria to reduce oxidative stress. UCP2 is expressed in brain, and has neuroprotective effects under various toxic insults. We observed induction of UCP2 expression by leptin in neuronal cultures, and hypothesize that leptin may preserve neuronal survival via UCP2. We showed that leptin preserved cell survival in neuronal SH-SY5Y cells against MPP+ toxicity (widely used in experimental Parkinsonian models) by maintaining ATP levels and mitochondrial membrane potential (MMP); these effects were accompanied by increased UCP2 expression. Leptin had no effect in modulating reactive oxygen species levels. Stable knockdown of UCP2 expression reduced ATP levels, and abolished leptin protection against MPP+-induced mitochondrial depolarization, ATP deficiency, and cell death, indicating that UCP2 is critical in mediating these neuroprotective effects of leptin against MPP+ toxicity. Interestingly, UCP2 knockdown increased UCP4 expression, but not of UCP5. Our findings show that leptin preserves cell survival by maintaining MMP and ATP levels mediated through UCP2 in MPP+-induced toxicity.
Collapse
|
36
|
Abstract
SUMMARY
Endothermy is significant in vertebrate evolution because it changes the relations between animals and their environment. How endothermy has evolved in archosaurs (birds, crocodiles and dinosaurs) is controversial especially because birds do not possess brown adipose tissue, the specialized endothermic tissue of mammals. Internal heat production is facilitated by increased oxidative metabolic capacity, accompanied by the uncoupling of aerobic metabolism from energy (ATP) production. Here we show that the transition from an ectothermic to an endothermic metabolic state in developing chicken embryos occurs by the interaction between increased basal ATP demand(Na+/K+-ATPase activity and gene expression), increased oxidative capacity and increased uncoupling of mitochondria; this process is controlled by thyroid hormone via its effect on PGC1α and adenine nucleotide translocase (ANT) gene expression. Mitochondria become more uncoupled during development, but unlike in mammals, avian uncoupling protein(avUCP) does not uncouple electron transport from oxidative phosphorylation and therefore plays no role in heat production. Instead, ANT is the principal uncoupling protein in birds. The relationship between oxidative capacity and uncoupling indicates that there is a continuum of phenotypes that fall between the extremes of selection for increased heat production and increased aerobic activity, whereas increased cellular ATP demand is a prerequisite for increased oxidative capacity.
Collapse
Affiliation(s)
- Isabel Walter
- Integrative Physiology, School of Biological Sciences A08, The University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- Integrative Physiology, School of Biological Sciences A08, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
37
|
Funalot B, Desport JC, Sturtz F, Camu W, Couratier P. High metabolic level in patients with familial amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 10:113-7. [PMID: 18792852 DOI: 10.1080/17482960802295192] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An abnormally elevated level of resting energy expenditure (REE, measured by indirect calorimetry) has been reported in a subset of patients with sporadic amyotrophic lateral sclerosis (SALS). Hypermetabolism (measured REE/calculated REE (cREE)> or =1.1, or 110%) has also been observed in transgenic mice harbouring ALS-causing mutations in the SOD1 gene. By contrast, the REE of patients with familial amyotrophic lateral sclerosis (FALS) has never been assessed. Our objective was to evaluate the metabolic and nutritional parameters of FALS patients and to compare them with those of SALS patients, and search for correlations with clinical parameters. Eleven patients with FALS (from 10 different families, none carrying a SOD1 mutation) were evaluated by indirect calorimetry in our centre. As a control group, we used a sample of 33 patients with SALS, matched for age and sex with the FALS patients. 11/11 (100%) patients with FALS were hypermetabolic, compared to 17/33 (52%) patients with SALS (p=0.009). Measured REE (mREE) and mREE/cREE (metabolic level) were significantly higher in FALS patients than in SALS patients (p=0.03 and p=0.0008, respectively). No correlation was found between metabolic measures and neurological or respiratory parameters. In conclusion, hypermetabolism appears to be a common feature of subjects with FALS, suggesting that this impairment of energy homeostasis may be genetically driven. The high metabolic level of FALS patients should be taken into account for their nutritional management (need for a high-energy diet to prevent malnutrition).
Collapse
Affiliation(s)
- Benoit Funalot
- Department of Neurology and ALS Regional Centre, Hôpital Universitaire Dupuytren, 2 av. Martin-Luther-King, Limoges Cedex, France.
| | | | | | | | | |
Collapse
|
38
|
Samudio I, Fiegl M, Andreeff M. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 2009; 69:2163-6. [PMID: 19258498 DOI: 10.1158/0008-5472.can-08-3722] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise mitochondrial alterations that underlie the increased dependence of cancer cells on aerobic glycolysis for energy generation have remained a mystery. Recent evidence suggests that mitochondrial uncoupling-the abrogation of ATP synthesis in response to mitochondrial membrane potential-promotes the Warburg effect in leukemia cells, and may contribute to chemoresistance. Intriguingly, leukemia cells cultured on bone marrow-derived stromal feeder layers are more resistant to chemotherapy, increase the expression of uncoupling protein 2, and decrease the entry of pyruvate into the Krebs cycle-without compromising the consumption of oxygen, suggesting a shift to the oxidation of nonglucose carbon sources to maintain mitochondrial integrity and function. Because fatty acid oxidation has been linked to chemoresistance and mitochondrial uncoupling, it is tempting to speculate that Warburg's observations may indeed be the result of the preferential oxidation of fatty acids by cancer cell mitochondria. Therefore, targeting fatty acid oxidation or anaplerotic pathways that support fatty acid oxidation may provide additional therapeutic tools for the treatment of hematopoietic malignancies.
Collapse
Affiliation(s)
- Ismael Samudio
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | |
Collapse
|
39
|
Bouillaud F. UCP2, not a physiologically relevant uncoupler but a glucose sparing switch impacting ROS production and glucose sensing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:377-83. [PMID: 19413946 DOI: 10.1016/j.bbabio.2009.01.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 01/28/2023]
Abstract
In mammals the two proteins UCP2 and UCP3 are highly similar to the mitochondrial uncoupling protein found in the brown adipose tissue (UCP1). Accordingly, it was proposed that UCP2 and UCP3 are also uncoupling proteins i.e. protonophores with impact on mitochondrial ROS production and glucose signaling. However, it appears now impossible to explain the physiological relevance of the new UCPs uniquely by their uncoupling activity as observed in vitro. Therefore, we propose a metabolic hypothesis in which UCP2 acts through a transport distinct of the proton transport. A consequence of this transport activity would be a decrease of the mitochondrial oxidation of the pyruvate originating from glucose. This would put UCP2 and UCP3 in a crucial position to influence cellular metabolism. The tight control exerted on UCP2 expression appears consistent with it. In this hypothesis, UCP2/3 would allow a cell to remain glycolytic within an aerobic organism. This tallies with the high expression level of UCP2 or UCP3 in glycolytic cells. The metabolic hypothesis would explain the spectacular modifications associated with UCP2 manipulation as well as the uncoupling activity usually called for and which in fact remains elusive in vivo.
Collapse
Affiliation(s)
- Frédéric Bouillaud
- Université Paris Descartes, CNRS, UPR9078, Faculté de Médecine, Necker Enfants Malades, 75730 Paris, France.
| |
Collapse
|
40
|
Stephens JW, Bain SC, Humphries SE. Gene–environment interaction and oxidative stress in cardiovascular disease. Atherosclerosis 2008; 200:229-38. [PMID: 18490019 DOI: 10.1016/j.atherosclerosis.2008.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/10/2008] [Accepted: 04/04/2008] [Indexed: 12/18/2022]
|
41
|
Aires CC, Soveral G, Luís PB, ten Brink HJ, de Almeida IT, Duran M, Wanders RJ, Silva MF. Pyruvate uptake is inhibited by valproic acid and metabolites in mitochondrial membranes. FEBS Lett 2008; 582:3359-66. [DOI: 10.1016/j.febslet.2008.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/06/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
|
42
|
Moukdar F, Robidoux J, Lyght O, Pi J, Daniel KW, Collins S. Reduced antioxidant capacity and diet-induced atherosclerosis in uncoupling protein-2-deficient mice. J Lipid Res 2008; 50:59-70. [PMID: 18698091 DOI: 10.1194/jlr.m800273-jlr200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular dysfunction in response to reactive oxygen species (ROS) plays an important role in the development and progression of atherosclerotic lesions. In most cells, mitochondria are the major source of cellular ROS during aerobic respiration. Under most conditions the rates of ROS formation and elimination are balanced through mechanisms that sense relative ROS levels. However, a chronic imbalance in redox homeostasis is believed to contribute to various chronic diseases, including atherosclerosis. Uncoupling protein-2 (UCP2) is a mitochondrial inner membrane protein shown to be a negative regulator of macrophage ROS production. In response to a cholesterol-containing atherogenic diet, C57BL/6J mice significantly increased expression of UCP2 in the aorta, while mice lacking UCP2, in the absence of any other genetic modification, displayed significant endothelial dysfunction following the atherogenic diet. Compared with wild-type mice, Ucp2(-/-) mice had decreased endothelial nitric oxide synthase, an increase in vascular cell adhesion molecule-1 expression, increased ROS production, and an impaired ability to increase total antioxidant capacity. These changes in Ucp2(-/-) mice were associated with increased aortic macrophage infiltration and more numerous and larger atherosclerotic lesions. These data establish that in the vasculature UCP2 functions as an adaptive antioxidant defense to protect against the development of atherosclerosis in response to a fat and cholesterol diet.
Collapse
Affiliation(s)
- Fatiha Moukdar
- The Endocrine Biology Program, Division of Translational Biology, The Hamner Institutes for Health Sciences, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
43
|
Galetti S, Sarre A, Perreten H, Produit-Zengaffinen N, Muzzin P, Assimacopoulos-Jeannet F. Fatty acids do not activate UCP2 in pancreatic beta cells: comparison with UCP1. Pflugers Arch 2008; 457:931-40. [PMID: 18626658 DOI: 10.1007/s00424-008-0548-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/14/2008] [Indexed: 01/29/2023]
Abstract
UCP2 is expressed in pancreatic beta cells where its postulated uncoupling activity will modulate glucose-induced changes in ATP/ADP ratio and insulin secretion. The consequences of UCP2 over/underexpression on beta-cell function has mainly been studied in the basal state; however, a UCP has no uncoupling activity unless stimulated by fatty acids and/or reactive oxygen species. Here, UCP2 was overexpressed in INS-1 cells and parameters reflecting mitochondrial coupling measured in the basal state and after stimulation by fatty acids. For comparison, UCP1 was expressed to similar levels and the same parameters measured. Neither UCP1 expression nor UCP2 overexpression modified basal or glucose-stimulated metabolic changes. Upon addition of fatty acids, UCP1-expressing cells displayed the expected mitochondrial uncoupling effect, while UCP2 did not elicit any measurable change in mitochondrial function. Taken together, our data demonstrate that, in pancreatic beta-cells, UCP2 has no uncoupling activity in the basal state or after fatty acid stimulation.
Collapse
Affiliation(s)
- Sandrine Galetti
- Department of Cell Physiology and Metabolism, Medical Faculty, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Klingenspor M, Fromme T, Hughes DA, Manzke L, Polymeropoulos E, Riemann T, Trzcionka M, Hirschberg V, Jastroch M. An ancient look at UCP1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:637-41. [DOI: 10.1016/j.bbabio.2008.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 03/12/2008] [Indexed: 02/07/2023]
|
45
|
Valouskova E, Modriansky M. MODULATION OF UCP2 EXPRESSION BY P38 - A LINK TO CARDIOPROTECTION. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152:3-7. [DOI: 10.5507/bp.2008.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
46
|
Abstract
Uncoupling protein 2 (UCP2) is upregulated in the brain after sublethal ischemia, and overexpression of UCP2 is neuroprotective in several models of neurodegenerative disease. We investigated if increased levels of UCP2 diminished neuronal damage after global brain ischemia by subjecting mice overexpressing UCP2 (UCP2/3tg) and wild-type littermates (wt) to a 12-min global ischemia. The histopathological outcome in the cortex, hippocampus, striatum, and thalamus was evaluated at 4 days of recovery, allowing maturation of the selective neuronal death. Global ischemia led to extensive cell death in the striatum, thalamus, and in the CA1 and CA2, and less-pronounced cell death in the CA3 and dentate gyrus (DG) hippocampal subfields. Histologic damage was significantly lower in the ventral posterolateral VPL and medial VPM thalamic nuclei in UCP2/3tg animals compared with wt. These thalamic regions showed a larger increase in UCP2 expression in UCP2/3tg compared with wt animals relative to the nonprotected DG. In the other regions studied, the histologic damage was lower or equal in UCP2/3tg animals compared with wt. Consequently, neuroprotection in the thalamus correlated with a high expression of UCP2, which is neuroprotective in a number of models of neurodegenerative diseases.
Collapse
|
47
|
Neschen S, Katterle Y, Richter J, Augustin R, Scherneck S, Mirhashemi F, Schürmann A, Joost HG, Klaus S. Uncoupling protein 1 expression in murine skeletal muscle increases AMPK activation, glucose turnover, and insulin sensitivity in vivo. Physiol Genomics 2008; 33:333-40. [DOI: 10.1152/physiolgenomics.00226.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uncoupling of oxidative phosphorylation represents a potential target for the treatment of hyperglycemia and insulin resistance in obesity and type 2 diabetes. The present study investigated whether the expression of uncoupling protein 1 in skeletal muscles of transgenic (mUCP1 TG) mice modulates insulin action in major insulin target tissues in vivo. Euglycemic-hyperinsulinemic clamps (17 pM·kg lean body mass−1·min−1) were performed in 9-mo-old hemizygous male mUCP1 TG mice and wild-type (WT) littermates matched for body composition. mUCP1 TG mice exhibited fasting hypoglycemia and hypoinsulinemia compared with WT mice, whereas fasting hepatic glucose production rates were comparable in both genotypes. mUCP1 TG mice were markedly more sensitive to insulin action compared with WT mice and displayed threefold higher glucose infusion rates, enhanced skeletal muscle and white adipose tissue glucose uptake, and whole body glycolysis rates. In the absence of alterations in plasma adiponectin concentrations, acceleration of insulin-stimulated glucose turnover in skeletal muscle of mUCP1 TG mice was accompanied by increased phosphorylated Akt-to-Akt and phosphorylated AMP-activated protein kinase (AMPK)-to-AMPK ratios compared with WT mice. UCP1-mediated uncoupling of oxidative phosphorylation in skeletal muscle was paralleled by AMPK activation and thereby stimulated insulin-mediated glucose uptake in skeletal muscle.
Collapse
Affiliation(s)
- Susanne Neschen
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Yvonne Katterle
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Julia Richter
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert Augustin
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stephan Scherneck
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Farshad Mirhashemi
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Annette Schürmann
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Hans-Georg Joost
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Susanne Klaus
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
48
|
Graier WF, Trenker M, Malli R. Mitochondrial Ca2+, the secret behind the function of uncoupling proteins 2 and 3? Cell Calcium 2008; 44:36-50. [PMID: 18282596 DOI: 10.1016/j.ceca.2008.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 12/20/2022]
Abstract
The underlying molecular action of the novel uncoupling proteins 2 and 3 (UCP2 and UCP3) is still under debate. The proteins have been implicated in many cell functions, including the regulation of insulin secretion and regulation of reactive oxygen species (ROS) generation. These effects have mainly been explained by suggesting that the proteins establish a proton leak through the inner mitochondrial membrane (IMM). However, accumulating data question this mechanism and suggest that UCP2 and UCP3 may play other roles, including carrying free fatty acids from the matrix towards the intermembrane space, or contributing to the mitochondrial Ca(2+) uniport. Accordingly, in this review we reflect on these actions of UCP2/UCP3 and discuss alternative explanations for the molecular mechanisms by which UCP2/UCP3 might contribute to aspects of cell function. Based on the potential role of UCP2/UCP3 in regulating mitochondrial Ca(2+) uptake, we propose a scheme whereby these proteins integrate Ca(2+)-dependent signal transduction and energy metabolism in order to meet the energy demand of the cell for its continuous response, adaptation, and stimulation to environmental input.
Collapse
Affiliation(s)
- Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Molecular and Cellular Physiology Research Unit, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, Graz, Austria.
| | | | | |
Collapse
|
49
|
Jensen DR, Knaub LA, Konhilas JP, Leinwand LA, MacLean PS, Eckel RH. Increased thermoregulation in cold-exposed transgenic mice overexpressing lipoprotein lipase in skeletal muscle: an avian phenotype? J Lipid Res 2008; 49:870-9. [PMID: 18175800 DOI: 10.1194/jlr.m700519-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
LPL is an enzyme involved in the breakdown and uptake of lipoprotein triglycerides. In the present study, we examined how the transgenic (Tg) overexpression of human LPL in mouse skeletal muscle affected tolerance to cold temperatures, cold-induced thermogenesis, and fuel utilization during this response. Tg mice and their nontransgenic controls were placed in an environmental chamber and housed in metabolic chambers that monitored oxygen consumption and carbon dioxide production with calorimetry. When exposed to 4 degrees C, an attenuation in the decline in body temperature in Tg mice was accompanied by an increased metabolic rate (15%; P < 0.001) and a reduction in respiratory quotient (P < 0.05). Activity levels, the expression of uncoupling proteins in brown fat and muscle, and lean mass failed to explain the enhanced cold tolerance and thermogenesis in Tg mice. The more oxidative type IIa fibers were favored over the more glycolytic type IIb fibers (P < 0.001) in the gastrocnemius and quadriceps muscles of Tg mice. These data suggest that Tg overexpression of LPL in skeletal muscle increases cold tolerance by enhancing the capacity for fat oxidation, producing an avian-like phenotype in which skeletal muscle contributes significantly to the thermogenic response to cold temperatures.
Collapse
Affiliation(s)
- Dalan R Jensen
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado at Denver, Aurora, CO, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Nübel T, Emre Y, Rabier D, Chadefaux B, Ricquier D, Bouillaud F. Modified glutamine catabolism in macrophages of Ucp2 knock-out mice. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:48-54. [PMID: 18054322 DOI: 10.1016/j.bbabio.2007.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/17/2007] [Accepted: 11/05/2007] [Indexed: 12/15/2022]
Abstract
Uncoupling protein 2 (UCP2) belongs to a family of transporters of the mitochondrial inner membrane and is reported to uncouple respiration from ATP synthesis. Our observation that the amino acid glutamine specifically induces UCP2 protein expression prompted us to investigate metabolic consequences of a UCP2 knockdown (Ucp2-KO) when glutamine is offered as a substrate. We found that Ucp2-KO macrophages incubated in the presence of glutamine exhibit a lower ammonium release, a decreased respiratory rate, and an intracellular accumulation of aspartate. Therefore, we conclude that UCP2 expression is required for efficient oxidation of glutamine in macrophages. This role of UCP2 in glutamine metabolism appears independent from the uncoupling activity of UCP2.
Collapse
Affiliation(s)
- Tobias Nübel
- BIOTRAM, Université Paris Descartes, CNRS UPR9078, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard 75730 Paris, France
| | | | | | | | | | | |
Collapse
|