1
|
Pinto M, Saliminasab M, Harris A, Lazaratos M, Bondar AN, Ladizhansky V, Brown LS. The retinal chromophore environment in an inward light-driven proton pump studied by solid-state NMR and hydrogen-bond network analysis. Phys Chem Chem Phys 2024; 26:24090-24108. [PMID: 39248601 DOI: 10.1039/d4cp02611j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Inward proton pumping is a relatively new function for microbial rhodopsins, retinal-binding light-driven membrane proteins. So far, it has been demonstrated for two unrelated subgroups of microbial rhodopsins, xenorhodopsins and schizorhodopsins. A number of recent studies suggest unique retinal-protein interactions as being responsible for the reversed direction of proton transport in the latter group. Here, we use solid-state NMR to analyze the retinal chromophore environment and configuration in an inward proton-pumping Antarctic schizorhodopsin. Using fully 13C-labeled retinal, we have assigned chemical shifts for every carbon atom and, assisted by structure modelling and molecular dynamics simulations, made a comparison with well-studied outward proton pumps, identifying locations of the unique protein-chromophore interactions for this functional subclass of microbial rhodopsins. Both the NMR results and molecular dynamics simulations point to the distinctive polar environment in the proximal part of the retinal, which may result in a hydration pattern dramatically different from that of the outward proton pumps, causing the reversed proton transport.
Collapse
Affiliation(s)
- Marie Pinto
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Maryam Saliminasab
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Michalis Lazaratos
- Freie Universität Berlin, Physics Department, Theoretical Molecular Biophysics Group, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele 077125, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), 52428 Jülich, Germany
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
2
|
Hirschi S, Lemmin T, Ayoub N, Kalbermatter D, Pellegata D, Ucurum Z, Gertsch J, Fotiadis D. Structural insights into the mechanism and dynamics of proteorhodopsin biogenesis and retinal scavenging. Nat Commun 2024; 15:6950. [PMID: 39138159 PMCID: PMC11322631 DOI: 10.1038/s41467-024-50960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Microbial ion-pumping rhodopsins (MRs) are extensively studied retinal-binding membrane proteins. However, their biogenesis, including oligomerisation and retinal incorporation, remains poorly understood. The bacterial green-light absorbing proton pump proteorhodopsin (GPR) has emerged as a model protein for MRs and is used here to address these open questions using cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations. Specifically, conflicting studies regarding GPR stoichiometry reported pentamer and hexamer mixtures without providing possible assembly mechanisms. We report the pentameric and hexameric cryo-EM structures of a GPR mutant, uncovering the role of the unprocessed N-terminal signal peptide in the assembly of hexameric GPR. Furthermore, certain proteorhodopsin-expressing bacteria lack retinal biosynthesis pathways, suggesting that they scavenge the cofactor from their environment. We shed light on this hypothesis by solving the cryo-EM structure of retinal-free proteoopsin, which together with mass spectrometry and MD simulations suggests that decanoate serves as a temporary placeholder for retinal in the chromophore binding pocket. Further MD simulations elucidate possible pathways for the exchange of decanoate and retinal, offering a mechanism for retinal scavenging. Collectively, our findings provide insights into the biogenesis of MRs, including their oligomeric assembly, variations in protomer stoichiometry and retinal incorporation through a potential cofactor scavenging mechanism.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
| | - Thomas Lemmin
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.
| | - Nooraldeen Ayoub
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - David Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Daniele Pellegata
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
3
|
Sano M, Tanaka R, Kamata K, Hirono-Hara Y, Ishii J, Matsuda F, Hara KY, Shimizu H, Toya Y. Conversion of Mevalonate to Isoprenol Using Light Energy in Escherichia coli without Consuming Sugars for ATP Supply. ACS Synth Biol 2022; 11:3966-3972. [PMID: 36441576 DOI: 10.1021/acssynbio.2c00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioconversion of key intermediate metabolites such as mevalonate into various useful chemicals is a promising strategy for microbial production. However, the conversion of mevalonate into isoprenoids requires a supply of adenosine triphosphate (ATP). Light-driven ATP regeneration using microbial rhodopsin is an attractive module for improving the intracellular ATP supply. In the present study, we demonstrated the ATP-consuming conversion of mevalonate to isoprenol using rhodopsin-expressing Escherichia coli cells as a whole-cell catalyst in a medium that does not contain energy cosubstrate, such as glucose. Heterologous genes for the synthesis of isoprenol from mevalonate, which requires three ATP molecules for the series of reactions, and a delta-rhodopsin gene derived from Haloterrigena turkmenica were cointroduced into E. coli. To evaluate the conversion efficiency of mevalonate to isoprenol, the cells were suspended in a synthetic medium containing mevalonate as the sole carbon source and incubated under dark or light illumination (100 μmol m-2 s-1). The specific isoprenol production rates were 10.0 ± 0.9 and 20.4 ± 0.7 μmol gDCW-1 h-1 for dark and light conditions, respectively. The conversion was successfully enhanced under the light condition. Furthermore, the conversion efficiency increased with increasing illumination intensity, suggesting that ATP regenerated by the proton motive force generated by rhodopsin using light energy can drive ATP-consuming reactions in the whole-cell catalyst.
Collapse
Affiliation(s)
- Mikoto Sano
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Ryo Tanaka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Kentaro Kamata
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yoko Hirono-Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka422-8526, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo657-8501, Japan.,Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Kiyotaka Y Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka422-8526, Japan.,Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka422-8526, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|
4
|
Otsuka K, Seike T, Toya Y, Ishii J, Hirono-Hara Y, Hara KY, Matsuda F. Evolutionary approach for improved proton pumping activity of heterologous rhodopsin expressed in Escherichia coli. J Biosci Bioeng 2022; 134:484-490. [PMID: 36171161 DOI: 10.1016/j.jbiosc.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
A light-driven ATP regeneration system using rhodopsin has been utilized as a method to improve the production of useful substances by microorganisms. To enable the industrial use of this system, the proton pumping rate of rhodopsin needs to be enhanced. Nonetheless, a method for this enhancement has not been established. In this study, we attempted to develop an evolutionary engineering method to improve the proton-pumping activity of rhodopsins. We first introduced random mutations into delta-rhodopsin (dR) from Haloterrigena turkmenica using error-prone PCR to generate approximately 7000 Escherichia coli strains carrying the mutant dR genes. Rhodopsin-expressing E. coli with enhanced proton pumping activity have significantly increased survival rates in prolonged saline water. Considering this, we enriched the mutant E. coli cells with higher proton pumping rates by selecting populations able to survive starvation under 50 μmol m-2 s-1 at 37 °C. As a result, we successfully identified two strains, in which proton pumping activity was enhanced two-fold by heterologous expression in E. coli in comparison to wild-type strains. The combined approach of survival testing using saline water and evolutionary engineering methods used in this study will contribute greatly to the discovery of a novel rhodopsin with improved proton pumping activity. This will facilitate the utilization of rhodopsin in industrial applications.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taisuke Seike
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoko Hirono-Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | - Kiyotaka Y Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan; Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Davison PA, Tu W, Xu J, Della Valle S, Thompson IP, Hunter CN, Huang WE. Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO 2 Fixation. ACS Synth Biol 2022; 11:3805-3816. [PMID: 36264158 PMCID: PMC9680020 DOI: 10.1021/acssynbio.2c00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO2 to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO2 fixation. A light-driven proton pump comprising Gloeobacter rhodopsin (GR) and its cofactor retinal have been assembled in Ralstonia eutropha (Cupriavidus necator) H16. In the presence of light, this strain fixed inorganic carbon (or bicarbonate) leading to 20% growth enhancement, when formate was used as an electron donor. We found that an electrode from a solar panel can replace organic compounds to serve as the electron donor, mediated by the electron shuttle molecule riboflavin. In this new autotrophic and photo-electrosynthetic system, GR is augmented by an external photocell for reductive CO2 fixation. We demonstrated that this hybrid photo-electrosynthetic pathway can drive the engineered R. eutropha strain to grow using CO2 as the sole carbon source. In this system, a bioreactor with only two inputs, light and CO2, enables the R. eutropha strain to perform a rhodopsin-dependent autotrophic growth. Light energy alone, supplied by a solar panel, can drive the conversion of CO2 into biomass with a maximum electron transfer efficiency of 20%.
Collapse
Affiliation(s)
- Paul A. Davison
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Weiming Tu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Jiabao Xu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Simona Della Valle
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Ian P. Thompson
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom,. Tel: +44 1865 283786
| |
Collapse
|
6
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
7
|
Church JR, Amoyal GS, Borin VA, Adam S, Olsen JMH, Schapiro I. Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry. Chemistry 2022; 28:e202200139. [PMID: 35307890 PMCID: PMC9325082 DOI: 10.1002/chem.202200139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 11/11/2022]
Abstract
Proteorhodopsin (PR) is a photoactive proton pump found in marine bacteria. There are two phenotypes of PR exhibiting an environmental adaptation to the ocean's depth which tunes their maximum absorption: blue‐absorbing proteorhodopsin (BPR) and green‐absorbing proteorhodopsin (GPR). This blue/green color‐shift is controlled by a glutamine to leucine substitution at position 105 which accounts for a 20 nm shift. Typically, spectral tuning in rhodopsins is rationalized by the external point charge model but the Q105L mutation is charge neutral. To study this tuning mechanism, we employed the hybrid QM/MM method with sampling from molecular dynamics. Our results reveal that the positive partial charge of glutamine near the C14−C15 bond of retinal shortens the effective conjugation length of the chromophore compared to the leucine residue. The derived mechanism can be applied to explain the color regulation in other retinal proteins and can serve as a guideline for rational design of spectral shifts.
Collapse
Affiliation(s)
- Jonathan R Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Gil S Amoyal
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | | | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
8
|
Beck C, Gong Y. Engineering rhodopsins' activation spectra using a FRET-based approach. Biophys J 2022; 121:1765-1776. [PMID: 35331688 PMCID: PMC9117881 DOI: 10.1016/j.bpj.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
In the past decade, optogenetics has become a nearly ubiquitous tool in neuroscience because it enables researchers to manipulate neural activity with high temporal resolution and genetic specificity. Rational engineering of optogenetic tools has produced channelrhodopsins with a wide range of kinetics and photocurrent magnitude. Genome mining for previously unidentified species of rhodopsin has uncovered optogenetic tools with diverse spectral sensitivities. However, rational engineering of a rhodopsin has thus far been unable to re-engineer spectral sensitivity while preserving full photocurrent. Here, we developed and characterized ChroME-mTFP, a rhodopsin-fluorescent protein fusion that drives photocurrent through Förster resonance energy transfer (FRET). This FRET-opsin mechanism artificially broadened the activation spectrum of the blue-green-light-activated rhodopsin ChroME by approximately 50 nm, driving higher photocurrent at blue-shifted excitation wavelengths without sacrificing kinetics. The excitation spectra's increase at short wavelengths enabled us to optogenetically excite neurons at lower excitation powers with shorter wavelengths of light. Increasing this rhodopsin's sensitivity to shorter, bluer wavelengths pushes it toward dual-channel, crosstalk-free optogenetic stimulation and imaging with green-light-activated sensors. However, this iteration of FRET-opsin suffers from some imaging-light-induced photocurrent crosstalk from green or yellow light due to maintained, low-efficiency excitation at longer wavelengths.
Collapse
Affiliation(s)
- Connor Beck
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| | - Yiyang Gong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
9
|
Toya Y, Hirono-Hara Y, Hirayama H, Kamata K, Tanaka R, Sano M, Kitamura S, Otsuka K, Abe-Yoshizumi R, Tsunoda SP, Kikukawa H, Kandori H, Shimizu H, Matsuda F, Ishii J, Hara KY. Optogenetic reprogramming of carbon metabolism using light-powering microbial proton pump systems. Metab Eng 2022; 72:227-236. [PMID: 35346842 DOI: 10.1016/j.ymben.2022.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/06/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022]
Abstract
In microbial fermentative production, ATP regeneration, while crucial for cellular processes, conflicts with efficient target chemical production because ATP regeneration exhausts essential carbon sources also required for target chemical biosynthesis. To wrestle with this dilemma, we harnessed the power of microbial rhodopsins with light-driven proton pumping activity to supplement with ATP, thereby facilitating the bioproduction of various chemicals. We first demonstrated a photo-driven ATP supply and redistribution of metabolic carbon flows to target chemical synthesis by installing already-known delta rhodopsin (dR) in Escherichia coli. In addition, we identified novel rhodopsins with higher proton pumping activities than dR, and created an engineered cell for in vivo self-supply of the rhodopsin-activator, all-trans-retinal. Our concept exploiting the light-powering ATP supplier offers a potential increase in carbon use efficiency for microbial productions through metabolic reprogramming.
Collapse
Affiliation(s)
- Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoko Hirono-Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hidenobu Hirayama
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kentaro Kamata
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Tanaka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikoto Sano
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sayaka Kitamura
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kensuke Otsuka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Hiroshi Kikukawa
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kiyotaka Y Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
10
|
Pedraza-González L, Barneschi L, Padula D, De Vico L, Olivucci M. Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol. Top Curr Chem (Cham) 2022; 380:21. [PMID: 35291019 PMCID: PMC8924150 DOI: 10.1007/s41061-022-00374-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 10/27/2022]
Abstract
In recent years, photoactive proteins such as rhodopsins have become a common target for cutting-edge research in the field of optogenetics. Alongside wet-lab research, computational methods are also developing rapidly to provide the necessary tools to analyze and rationalize experimental results and, most of all, drive the design of novel systems. The Automatic Rhodopsin Modeling (ARM) protocol is focused on providing exactly the necessary computational tools to study rhodopsins, those being either natural or resulting from mutations. The code has evolved along the years to finally provide results that are reproducible by any user, accurate and reliable so as to replicate experimental trends. Furthermore, the code is efficient in terms of necessary computing resources and time, and scalable in terms of both number of concurrent calculations as well as features. In this review, we will show how the code underlying ARM achieved each of these properties.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
11
|
Shim JG, Kang NR, Chuon K, Cho SG, Meas S, Jung KH. Mutational analyses identify a single amino acid critical for color tuning in proteorhodopsins. FEBS Lett 2022; 596:784-795. [PMID: 35090057 DOI: 10.1002/1873-3468.14297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Microbial rhodopsins are light-activated proteins that contain seven transmembrane alpha-helices. Spectral tuning in microbial rhodopsins is a useful optogenetic tool. In this study, we report a new site that controls spectral tuning. In the proteorhodopsins ISR34 and ISR36, a single amino-acid substitution at Cys189 caused an absorption maximum shift of 44 nm, indicating spectral tuning at a specific site. Comparison of single amino acid substitutions was conducted using photochemical and photobiological approaches. The maximum absorption for red-shift was measured for mutations at positions 189 and 105 in ISR34, both residues being equally important. Structural changes resulting from amino acid substitutions are related to pKa values, pumping activity, and spectral tuning.
Collapse
Affiliation(s)
- Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Na-Rae Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| |
Collapse
|
12
|
Kinetics of DNA looping by Anabaena sensory rhodopsin transducer (ASRT) by using DNA cyclization assay. Sci Rep 2021; 11:23721. [PMID: 34887464 PMCID: PMC8660804 DOI: 10.1038/s41598-021-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
DNA cyclization assay together with single-molecule FRET was employed to monitor protein-mediated bending of a short dsDNA (~ 100 bp). This method provides a simple and easy way to monitor the structural change of DNA in real-time without necessitating prior knowledge of the molecular structures for the optimal dye-labeling. This assay was applied to study how Anabaena sensory rhodopsin transducer (ASRT) facilitates loop formation of DNA as a possible mechanism for gene regulation. The ASRT-induced DNA looping was maximized at 50 mM of Na+, while Mg2+ also played an essential role in the loop formation.
Collapse
|
13
|
Sun Y, Debeljak P, Obernosterer I. Microbial iron and carbon metabolism as revealed by taxonomy-specific functional diversity in the Southern Ocean. THE ISME JOURNAL 2021; 15:2933-2946. [PMID: 33941887 PMCID: PMC8443675 DOI: 10.1038/s41396-021-00973-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 02/01/2023]
Abstract
Marine microbes are major drivers of all elemental cycles. The processing of organic carbon by heterotrophic prokaryotes is tightly coupled to the availability of the trace element iron in large regions of the Southern Ocean. However, the functional diversity in iron and carbon metabolism within diverse communities remains a major unresolved issue. Using novel Southern Ocean meta-omics resources including 133 metagenome-assembled genomes (MAGs), we show a mosaic of taxonomy-specific ecological strategies in naturally iron-fertilized and high nutrient low chlorophyll (HNLC) waters. Taxonomic profiling revealed apparent community shifts across contrasting nutrient regimes. Community-level and genome-resolved metatranscriptomics evidenced a moderate association between taxonomic affiliations and iron and carbon-related functional roles. Diverse ecological strategies emerged when considering the central metabolic pathways of individual MAGs. Closely related lineages appear to adapt to distinct ecological niches, based on their distribution and gene regulation patterns. Our in-depth observations emphasize the complex interplay between the genetic repertoire of individual taxa and their environment and how this shapes prokaryotic responses to iron and organic carbon availability in the Southern Ocean.
Collapse
Affiliation(s)
- Ying Sun
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne, LOMIC, F-66650, Banyuls/mer, France.
| | - Pavla Debeljak
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne, LOMIC, F-66650, Banyuls/mer, France
- University of Vienna, Department of Functional and Evolutionary Ecology, A-1090, Vienna, Austria
| | - Ingrid Obernosterer
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne, LOMIC, F-66650, Banyuls/mer, France
| |
Collapse
|
14
|
Hirschi S, Kalbermatter D, Ucurum Z, Lemmin T, Fotiadis D. Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Nat Commun 2021; 12:4107. [PMID: 34226545 PMCID: PMC8257665 DOI: 10.1038/s41467-021-24429-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The green-light absorbing proteorhodopsin (GPR) is the archetype of bacterial light-driven proton pumps. Here, we present the 2.9 Å cryo-EM structure of pentameric GPR, resolving important residues of the proton translocation pathway and the oligomerization interface. Superposition with the structure of a close GPR homolog and molecular dynamics simulations reveal conformational variations, which regulate the solvent access to the intra- and extracellular half channels harbouring the primary proton donor E109 and the proposed proton release group E143. We provide a mechanism for the structural rearrangements allowing hydration of the intracellular half channel, which are triggered by changing the protonation state of E109. Functional characterization of selected mutants demonstrates the importance of the molecular organization around E109 and E143 for GPR activity. Furthermore, we present evidence that helices involved in the stabilization of the protomer interfaces serve as scaffolds for facilitating the motion of the other helices. Combined with the more constrained dynamics of the pentamer compared to the monomer, these observations illustrate the previously demonstrated functional significance of GPR oligomerization. Overall, this work provides molecular insights into the structure, dynamics and function of the proteorhodopsin family that will benefit the large scientific community employing GPR as a model protein.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - David Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Thomas Lemmin
- DS3Lab, System Group, Department of Computer Sciences, ETH Zurich, Zürich, Switzerland.
- Trkola Group, Institute of Medical Virology, University of Zurich, Zürich, Switzerland.
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112241. [PMID: 34130090 DOI: 10.1016/j.jphotobiol.2021.112241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Rhodopsin and carotenoids are two molecules that certain bacteria use to absorb and utilize light. Type I rhodopsin, the simplest active proton transporter, converts light energy into an electrochemical potential. Light produces a proton gradient, which is known as the proton motive force across the cell membrane. Some carotenoids are involved in light absorbance and transfer of absorbed energy to chlorophyll during photosynthesis. A previous study in Salinibacter ruber has shown that carotenoids act as antennae to harvest light and transfer energy to retinal in xanthorhodopsin (XR). Here, we describe the role of canthaxanthin (CAN), a carotenoid, as an antenna for Gloeobacter rhodopsin (GR). The non-covalent complex formed by the interaction between CAN and GR doubled the proton pumping speed and improved the pumping capacity by 1.5-fold. The complex also tripled the proton pumping speed and improved the pumping capacity by 5-fold in the presence of strong and weak light, respectively. Interestingly, when canthaxanthin was bound to Gloeobacter rhodopsin, it showed a 126-fold increase in heat resistance, and it survived better under drought conditions than Gloeobacter rhodopsin. The results suggest direct complementation of Gloeobacter rhodopsin with a carotenoid for primitive solar energy harvesting in cyanobacteria.
Collapse
|
16
|
Shtyrov AA, Nikolaev DM, Mironov VN, Vasin AV, Panov MS, Tveryanovich YS, Ryazantsev MN. Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima. Int J Mol Sci 2021; 22:ijms22063029. [PMID: 33809708 PMCID: PMC8002287 DOI: 10.3390/ijms22063029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 01/22/2023] Open
Abstract
A typical feature of proteins from the rhodopsin family is the sensitivity of their absorption band maximum to protein amino acid composition. For this reason, studies of these proteins often require methodologies that determine spectral shift caused by amino acid substitutions. Generally, quantum mechanics/molecular mechanics models allow for the calculation of a substitution-induced spectral shift with high accuracy, but their application is not always easy and requires special knowledge. In the present study, we propose simple models that allow us to estimate the direct effect of a charged or polar residue substitution without extensive calculations using only rhodopsin three-dimensional structure and plots or tables that are provided in this article. The models are based on absorption maximum values calculated at the SORCI+Q level of theory for cis- and trans-forms of retinal protonated Schiff base in an external electrostatic field of charges and dipoles. Each value corresponds to a certain position of a charged or polar residue relative to the retinal chromophore. The proposed approach was evaluated against an example set consisting of twelve bovine rhodopsin and sodium pumping rhodopsin mutants. The limits of the applicability of the models are also discussed. The results of our study can be useful for the interpretation of experimental data and for the rational design of rhodopsins with required spectral properties.
Collapse
Affiliation(s)
- Andrey A. Shtyrov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
| | - Dmitrii M. Nikolaev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
| | - Vladimir N. Mironov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Botechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia;
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Yuri S. Tveryanovich
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Mikhail N. Ryazantsev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
- Correspondence:
| |
Collapse
|
17
|
Abstract
Microbial rhodopsins are distributed through many microorganisms. Heliorhodopsins are newly discovered but have an unclear function. They have seven transmembrane helices similar to type-I and type-II rhodopsins, but they are different in that the N-terminal region of heliorhodopsin is cytoplasmic. We chose 13 representative heliorhodopsins from various microorganisms, expressed and purified with an N-terminal His tag, and measured the absorption spectra. The 13 natural variants had an absorption maximum (λmax) in the range 530–556 nm similar to proteorhodopsin (λmax = 490–525 nm). We selected several candidate residues that influence rhodopsin color-tuning based on sequence alignment and constructed mutants via site-directed mutagenesis to confirm the spectral changes. We found two important residues located near retinal chromophore that influence λmax. We also predict the 3D structure via homology-modeling of Thermoplasmatales heliorhodopsin. The results indicate that the color-tuning mechanism of type-I rhodopsin can be applied to understand the color-tuning of heliorhodopsin.
Collapse
|
18
|
El‐Tahawy MMT, Conti I, Bonfanti M, Nenov A, Garavelli M. Tailoring Spectral and Photochemical Properties of Bioinspired Retinal Mimics by in Silico Engineering. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohsen M. T. El‐Tahawy
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
- Chemistry Department Faculty of Science Damanhour University Damanhour 22511 Egypt
| | - Irene Conti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Artur Nenov
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Marco Garavelli
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| |
Collapse
|
19
|
El‐Tahawy MMT, Conti I, Bonfanti M, Nenov A, Garavelli M. Tailoring Spectral and Photochemical Properties of Bioinspired Retinal Mimics by in Silico Engineering. Angew Chem Int Ed Engl 2020; 59:20619-20627. [DOI: 10.1002/anie.202008644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Mohsen M. T. El‐Tahawy
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
- Chemistry Department Faculty of Science Damanhour University Damanhour 22511 Egypt
| | - Irene Conti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Artur Nenov
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Marco Garavelli
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| |
Collapse
|
20
|
Ganapathy S, Opdam L, Hontani Y, Frehan S, Chen Q, Hellingwerf KJ, de Groot HJ, Kennis JT, de Grip WJ. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183113. [DOI: 10.1016/j.bbamem.2019.183113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
|
21
|
Han S, Kim SH, Cho JC, Song J, Bleckner G, Jung KH. Photochemical characterization of flavobacterial rhodopsin: The importance of the helix E region for heat stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148092. [PMID: 31669491 DOI: 10.1016/j.bbabio.2019.148092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022]
Abstract
Although many microbial rhodopsins have been discovered many of organisms in a variety of habitats, little is known about the property and diversity of rhodopsin in flavobacteria. Recent studies discovered that many proteorhodopsin (PR)-like proteins exist in genomes of flavobacteria. Following the isolation of a flavobacterial rhodopsins (FR) from the flavobacteria IMCC1997 from the East Sea of Korea, we characterized its photochemical features. We confirmed that the FR expression is induced by light in the IMCC1997 cell. Upon receiving light energy in vitro, the proton acceptor (D83) and donor (E94) of the FR translocate protons from intracellular to extracellular regions. Compared with proteorhodopsin (PR), the FR from IMCC 1997 cells is very unstable, which may be explained by their primary sequence differences. The ratio of all trans/13-cis retinal conformation does not influence this stability. To measure the stability of FR, we tested heat endurance at 70 °C and found that the heat endurance time of some FR mutants increased. Based upon these results, we found the helix E of this protein to be critical for the unstability of FR.
Collapse
Affiliation(s)
- SongI Han
- Dept. of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Se-Hwan Kim
- Dept. of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Jang-Chon Cho
- Dept. of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Jaeho Song
- Dept. of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Gwen Bleckner
- Princeton international school of mathematics and science, Princeton, NJ 08540, USA
| | - Kwang-Hwan Jung
- Dept. of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
22
|
Cooney EC, Fredrickson KA, Bright KJ, Strom SL. Contrasting effects of high-intensity photosynthetically active radiation on two bloom-forming dinoflagellates. JOURNAL OF PHYCOLOGY 2019; 55:1082-1095. [PMID: 31177532 DOI: 10.1111/jpy.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
While light limitation can inhibit bloom formation in dinoflagellates, the potential for high-intensity photosynthetically active radiation (PAR) to inhibit blooms by causing stress or damage has not been well-studied. We measured the effects of high-intensity PAR on the bloom-forming dinoflagellates Alexandrium fundyense and Heterocapsa rotundata. Various physiological parameters (photosynthetic efficiency Fv /Fm , cell permeability, dimethylsulfoniopropionate [DMSP], cell volume, and chlorophyll-a content) were measured before and after exposure to high-intensity natural sunlight in short-term light stress experiments. In addition, photosynthesis-irradiance (P-E) responses were compared for cells grown at different light levels to assess the capacity for photophysiological acclimation in each species. Experiments revealed distinct species-specific responses to high PAR. While high light decreased Fv /Fm in both species, A. fundyense showed little additional evidence of light stress in short-term experiments, although increased membrane permeability and intracellular DMSP indicated a response to handling. P-E responses further indicated a high light-adapted species with Chl-a inversely proportional to growth irradiance and no evidence of photoinhibition; reduced maximum per-cell photosynthesis rates suggest a trade-off between photoprotection and C fixation in high light-acclimated cells. Heterocapsa rotundata cells, in contrast, swelled in response to high light and sometimes lysed in short-term experiments, releasing DMSP. P-E responses confirmed a low light-adapted species with high photosynthetic efficiencies associated with trade-offs in the form of substantial photoinhibition and a lack of plasticity in Chl-a content. These contrasting responses illustrate that high light constrains dinoflagellate community composition through species-specific stress effects, with consequences for bloom formation and ecological interactions within the plankton.
Collapse
Affiliation(s)
- Elizabeth C Cooney
- Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Rd, Anacortes, Washington, 98221, USA
| | - Kerri A Fredrickson
- Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Rd, Anacortes, Washington, 98221, USA
| | - Kelley J Bright
- Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Rd, Anacortes, Washington, 98221, USA
| | - Suzanne L Strom
- Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Rd, Anacortes, Washington, 98221, USA
| |
Collapse
|
23
|
Lee HJ, Huang KC, Mei G, Zong C, Mamaeva N, DeGrip WJ, Rothschild KJ, Cheng JX. Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. J Phys Chem Lett 2019; 10:4374-4381. [PMID: 31313926 DOI: 10.1021/acs.jpclett.9b01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Voltage imaging allows mapping of the membrane potential in living cells. Yet, current intensity-based imaging approaches are limited to relative membrane potential changes, missing important information conveyed by the absolute value of the membrane voltage. This challenge arises from various factors affecting the signal intensity, such as concentration, illumination intensity, and photobleaching. Here, we demonstrate electronic preresonance hyperspectral stimulated Raman scattering (EPR-hSRS) for spectroscopic detection of the membrane voltage using a near-infrared-absorbing microbial rhodopsin expressed in E. coli. This newly developed near-infrared active microbial rhodopsin enables electronic preresonance SRS imaging at high sensitivity. By spectral profiling, we identified voltage-sensitive SRS peaks in the fingerprint region in single E. coli cells. These spectral signatures offer a new approach for quantitation of the absolute membrane voltage in living cells.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Kai-Chih Huang
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Gaoxiang Mei
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physics , Boston University , Boston , Massachusetts 02215 , United States
| | - Cheng Zong
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Natalia Mamaeva
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physics , Boston University , Boston , Massachusetts 02215 , United States
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry , Leiden University , 2300 RA Leiden , The Netherlands
- Department of Biochemistry , Radboud University Medical School , 6500 HB Nijmegen , The Netherlands
| | - Kenneth J Rothschild
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physics , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physiology and Biophysics , Boston University School of Medicine , Boston , Massachusetts 02218 , United States
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physics , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
24
|
Isolation, cultivation, and genome analysis of proteorhodopsin-containing SAR116-clade strain Candidatus Puniceispirillum marinum IMCC1322. J Microbiol 2019; 57:676-687. [PMID: 31201724 DOI: 10.1007/s12275-019-9001-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/21/2023]
Abstract
Strain IMCC1322 was isolated from a surface water sample from the East Sea of Korea. Based on 16S rRNA analysis, IMCC1322 was found to belong to the OCS28 sub-clade of SAR116. The cells appeared as short vibrioids in logarithmic-phase culture, and elongated spirals during incubation with mitomycin or in aged culture. Growth characteristics of strain IMCC1322 were further evaluated based on genomic information; proteorhodopsin (PR), carbon monoxide dehydrogenase, and dimethylsulfoniopropionate (DMSP)-utilizing enzymes. IMCC1322 PR was characterized as a functional retinylidene protein that acts as a light-driven proton pump in the cytoplasmic membrane. However, the PR-dependent phototrophic potential of strain IMCC1322 was only observed under CO-inhibited and nutrient-limited culture conditions. A DMSP-enhanced growth response was observed in addition to cultures grown on C1 compounds like methanol, formate, and methane sulfonate. Strain IMCC1322 cultivation analysis revealed biogeochemical processes characteristic of the SAR116 group, a dominant member of the microbial community in euphotic regions of the ocean. The polyphasic taxonomy of strain IMCC1322 is given as Candidatus Puniceispirillum marinum, and was confirmed by chemotaxonomic tests, in addition to 16S rRNA phylogeny and cultivation analyses.
Collapse
|
25
|
Borin VA, Wiebeler C, Schapiro I. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin. Faraday Discuss 2019; 207:137-152. [PMID: 29393940 DOI: 10.1039/c7fd00198c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The primary photochemical reaction of the green-absorbing proteorhodopsin is studied by means of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The simulations are based on a homology model derived from the blue-absorbing proteorhodopsin crystal structure. The geometry of retinal and the surrounding sidechains in the protein binding pocket were optimized using the QM/MM method. Starting from this geometry the isomerization was studied with a relaxed scan along the C13[double bond, length as m-dash]C14 dihedral. It revealed an "aborted bicycle pedal" mechanism of isomerization that was originally proposed by Warshel for bovine rhodopsin and bacteriorhodopsin. However, the isomerization involved the concerted rotation about C13[double bond, length as m-dash]C14 and C15[double bond, length as m-dash]N, with the latter being highly twisted but not isomerized. Further, the simulation showed an increased steric interaction between the hydrogen at the C14 of the isomerizing bond and the hydroxyl group at the neighbouring tyrosine 200. In addition, we have simulated a nonadiabatic trajectory which showed the timing of the isomerization. In the first 20 fs upon excitation the order of the conjugated double and single bonds is inverted, consecutively the C13[double bond, length as m-dash]C14 rotation is activated for 200 fs until the S1-S0 transition is detected. However, the isomerization is reverted due to the specific interaction with the tyrosine as observed along the relaxed scan calculation. Our simulations indicate that the retinal - tyrosine 200 interaction plays an important role in the outcome of the photoisomerization.
Collapse
Affiliation(s)
- Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
26
|
Pedraza-González L, De Vico L, del Carmen Marín M, Fanelli F, Olivucci M. a-ARM: Automatic Rhodopsin Modeling with Chromophore Cavity Generation, Ionization State Selection, and External Counterion Placement. J Chem Theory Comput 2019; 15:3134-3152. [PMID: 30916955 PMCID: PMC7141608 DOI: 10.1021/acs.jctc.9b00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Automatic Rhodopsin Modeling (ARM) protocol has recently been proposed as a tool for the fast and parallel generation of basic hybrid quantum mechanics/molecular mechanics (QM/MM) models of wild type and mutant rhodopsins. However, in its present version, input preparation requires a few hours long user's manipulation of the template protein structure, which also impairs the reproducibility of the generated models. This limitation, which makes model building semiautomatic rather than fully automatic, comprises four tasks: definition of the retinal chromophore cavity, assignment of protonation states of the ionizable residues, neutralization of the protein with external counterions, and finally congruous generation of single or multiple mutations. In this work, we show that the automation of the original ARM protocol can be extended to a level suitable for performing the above tasks without user's manipulation and with an input preparation time of minutes. The new protocol, called a-ARM, delivers fully reproducible (i.e., user independent) rhodopsin QM/MM models as well as an improved model quality. More specifically, we show that the trend in vertical excitation energies observed for a set of 25 wild type and 14 mutant rhodopsins is predicted by the new protocol better than when using the original. Such an agreement is reflected by an estimated (relative to the probed set) trend deviation of 0.7 ± 0.5 kcal mol-1 (0.03 ± 0.02 eV) and mean absolute error of 1.0 kcal mol-1 (0.04 eV).
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - María del Carmen Marín
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, I-41125 Modena, Italy
| | - Massimo Olivucci
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
27
|
Ganapathy S, Kratz S, Chen Q, Hellingwerf KJ, de Groot HJM, Rothschild KJ, de Grip WJ. Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. Photochem Photobiol 2019; 95:959-968. [PMID: 30860604 PMCID: PMC6849744 DOI: 10.1111/php.13093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
Archaerhodopsin‐3 (AR3) is a member of the microbial rhodopsin family of hepta‐helical transmembrane proteins, containing a covalently bound molecule of all‐trans retinal as a chromophore. It displays an absorbance band in the visible region of the solar spectrum (λmax 556 nm) and functions as a light‐driven proton pump in the archaeon Halorubrum sodomense. AR3 and its mutants are widely used in neuroscience as optogenetic neural silencers and in particular as fluorescent indicators of transmembrane potential. In this study, we investigated the effect of analogs of the native ligand all‐trans retinal A1 on the spectral properties and proton‐pumping activity of AR3 and its single mutant AR3 (F229S). While, surprisingly, the 3‐methoxyretinal A2 analog did not redshift the absorbance maximum of AR3, the analogs retinal A2 and 3‐methylamino‐16‐nor‐1,2,3,4‐didehydroretinal (MMAR) did generate active redshifted AR3 pigments. The MMAR analog pigments could even be activated by near‐infrared light. Furthermore, the MMAR pigments showed strongly enhanced fluorescence with an emission band in the near‐infrared peaking around 815 nm. We anticipate that the AR3 pigments generated in this study have widespread potential for near‐infrared exploitation as fluorescent voltage‐gated sensors in optogenetics and artificial leafs and as proton pumps in bioenergy‐based applications.
Collapse
Affiliation(s)
- Srividya Ganapathy
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Svenja Kratz
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Que Chen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Huub J M de Groot
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| | - Willem J de Grip
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Munro RA, de Vlugt J, Ward ME, Kim SY, Lee KA, Jung KH, Ladizhansky V, Brown LS. Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:49-58. [PMID: 30719609 DOI: 10.1007/s10858-019-00225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The isomerization of a covalently bound retinal is an integral part of both microbial and animal rhodopsin function. As such, detailed structure and conformational changes in the retinal binding pocket are of significant interest and are studied in various NMR, FTIR, and Raman spectroscopy experiments, which commonly require isotopic labeling of retinal. Unfortunately, the de novo organic synthesis of an isotopically-labeled retinal is complex and often cost-prohibitive, especially for large scale expression required for solid-state NMR. We present the novel protocol for biosynthetic production of an isotopically labeled retinal ligand concurrently with an apoprotein in E. coli as a cost-effective alternative to the de novo organic synthesis. Previously, the biosynthesis of a retinal precursor, β-carotene, has been introduced into many different organisms. We extended this system to the prototrophic E. coli expression strain BL21 in conjunction with the inducible expression of a β-dioxygenase and proteo-opsin. To demonstrate the applicability of this system, we were able to assign several new carbon resonances for proteorhodopsin-bound retinal by using fully 13C-labeled glucose as the sole carbon source. Furthermore, we demonstrated that this biosynthetically produced retinal can be extracted from E. coli cells by applying a hydrophobic solvent layer to the growth medium and reconstituted into an externally produced opsin of any desired labeling pattern.
Collapse
Affiliation(s)
- Rachel A Munro
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jeffrey de Vlugt
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Meaghan E Ward
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - So Young Kim
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Keon Ah Lee
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
| | - Kwang-Hwan Jung
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
| | - Vladimir Ladizhansky
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Leonid S Brown
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
29
|
Mei G, Mamaeva N, Ganapathy S, Wang P, DeGrip WJ, Rothschild KJ. Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate. PLoS One 2018; 13:e0209506. [PMID: 30586409 PMCID: PMC6306260 DOI: 10.1371/journal.pone.0209506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial rhodopsins have become an important tool in the field of optogenetics. However, effective in vivo optogenetics is in many cases severely limited due to the strong absorption and scattering of visible light by biological tissues. Recently, a combination of opsin site-directed mutagenesis and analog retinal substitution has produced variants of proteorhodopsin which absorb maximally in the near-infrared (NIR). In this study, UV-Visible-NIR absorption and resonance Raman spectroscopy were used to study the double mutant, D212N/F234S, of green absorbing proteorhodopsin (GPR) regenerated with MMAR, a retinal analog containing a methylamino modified β-ionone ring. Four distinct subcomponent absorption bands with peak maxima near 560, 620, 710 and 780 nm are detected with the NIR bands dominant at pH <7.3, and the visible bands dominant at pH 9.5. FT-Raman using 1064-nm excitation reveal two strong ethylenic bands at 1482 and 1498 cm-1 corresponding to the NIR subcomponent absorption bands based on an extended linear correlation between λmax and γC = C. This spectrum exhibits two intense bands in the fingerprint and HOOP mode regions that are highly characteristic of the O640 photointermediate from the light-adapted bacteriorhodopsin photocycle. In contrast, 532-nm excitation enhances the 560-nm component, which exhibits bands very similar to light-adapted bacteriorhodopsin and/or the acid-purple form of bacteriorhodopsin. Native GPR and its mutant D97N when regenerated with MMAR also exhibit similar absorption and Raman bands but with weaker contributions from the NIR absorbing components. Based on these results it is proposed that the NIR absorption in GPR-D212N/F234S with MMAR arises from an O-like chromophore, where the Schiff base counterion D97 is protonated and the MMAR adopts an all-trans configuration with a non-planar geometry due to twists in the conjugated polyene segment. This configuration is characterized by extensive charge delocalization, most likely involving nitrogens atoms in the MMAR chromophore.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Natalia Mamaeva
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden UniversityAR Leiden, The Netherlands
| | - Peng Wang
- Bruker Corporation, Billerica, MA, United States of America
| | - Willem J. DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden UniversityAR Leiden, The Netherlands
| | - Kenneth J. Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Understanding Colour Tuning Rules and Predicting Absorption Wavelengths of Microbial Rhodopsins by Data-Driven Machine-Learning Approach. Sci Rep 2018; 8:15580. [PMID: 30349075 PMCID: PMC6197263 DOI: 10.1038/s41598-018-33984-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/07/2018] [Indexed: 11/09/2022] Open
Abstract
The light-dependent ion-transport function of microbial rhodopsin has been widely used in optogenetics for optical control of neural activity. In order to increase the variety of rhodopsin proteins having a wide range of absorption wavelengths, the light absorption properties of various wild-type rhodopsins and their artificially mutated variants were investigated in the literature. Here, we demonstrate that a machine-learning-based (ML-based) data-driven approach is useful for understanding and predicting the light-absorption properties of microbial rhodopsin proteins. We constructed a database of 796 proteins consisting of microbial rhodopsin wildtypes and their variants. We then proposed an ML method that produces a statistical model describing the relationship between amino-acid sequences and absorption wavelengths and demonstrated that the fitted statistical model is useful for understanding colour tuning rules and predicting absorption wavelengths. By applying the ML method to the database, two residues that were not considered in previous studies are newly identified to be important to colour shift.
Collapse
|
31
|
Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat Biotechnol 2018; 36:530-535. [PMID: 29806849 DOI: 10.1038/nbt.4140] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/11/2018] [Indexed: 01/15/2023]
Abstract
Inside cells, complex metabolic reactions are distributed across the modular compartments of organelles. Reactions in organelles have been recapitulated in vitro by reconstituting functional protein machineries into membrane systems. However, maintaining and controlling these reactions is challenging. Here we designed, built, and tested a switchable, light-harvesting organelle that provides both a sustainable energy source and a means of directing intravesicular reactions. An ATP (ATP) synthase and two photoconverters (plant-derived photosystem II and bacteria-derived proteorhodopsin) enable ATP synthesis. Independent optical activation of the two photoconverters allows dynamic control of ATP synthesis: red light facilitates and green light impedes ATP synthesis. We encapsulated the photosynthetic organelles in a giant vesicle to form a protocellular system and demonstrated optical control of two ATP-dependent reactions, carbon fixation and actin polymerization, with the latter altering outer vesicle morphology. Switchable photosynthetic organelles may enable the development of biomimetic vesicle systems with regulatory networks that exhibit homeostasis and complex cellular behaviors.
Collapse
|
32
|
Expression of Anabaena sensory rhodopsin is influenced by different codons of seven residues at the N-terminal region. Protein Expr Purif 2018; 151:1-8. [PMID: 29793033 DOI: 10.1016/j.pep.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/19/2018] [Indexed: 11/23/2022]
Abstract
Microbial rhodopsins are well-known seven-transmembrane proteins that have been extensively studied for their structure and function. These retinal-binding proteins can be divided into two types. Type I is microbial rhodopsin, and type II (visual pigment) is expressed mostly in mammalian eyes. The two primary functions of type I rhodopsin are ion pumping activity and sensory transduction. Anabaena sensory rhodopsin (ASR) is a microbial rhodopsin with a specific function of photosensory transduction. ASR is expressed at moderate levels in Escherichia coli, but its expression level is lower compared to the general green light absorbing proteorhodopsin (GPR). In this study, full-length ASR was used to test the influence of codon usage on expression E. coli. Seven amino acids at the N-terminal region of ASR after the Met start codon were changed randomly using designed primers, which allowed for 8192 different nucleotide combinations. The codon changes were screened for the preferable codons that resulted in higher expression yield. Among the 57 selected mutations, 24 color-enhanced E. coli colonies contained ASR proteins, and they expressed ASR at a higher level than the bacteria with wild-type ASR codon usage. This result strongly suggests that the specific codon usage of only the N-terminal portion of a protein can increase the expression level of the entire protein.
Collapse
|
33
|
Deletion of sll1541 in Synechocystis sp. Strain PCC 6803 Allows Formation of a Far-Red-Shifted holo-Proteorhodopsin In Vivo. Appl Environ Microbiol 2018; 84:AEM.02435-17. [PMID: 29475867 DOI: 10.1128/aem.02435-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/08/2018] [Indexed: 12/25/2022] Open
Abstract
In many pro- and eukaryotes, a retinal-based proton pump equips the cell to drive ATP synthesis with (sun)light. Such pumps, therefore, have been proposed as a plug-in for cyanobacteria to artificially increase the efficiency of oxygenic photosynthesis. However, little information on the metabolism of retinal, their chromophore, is available for these organisms. We have studied the in vivo roles of five genes (sll1541, slr1648, slr0091, slr1192, and slr0574) potentially involved in retinal metabolism in Synechocystis sp. strain PCC 6803. With a gene deletion approach, we have shown that Synechocystis apo-carotenoid-15,15-oxygenase (SynACO), encoded by gene sll1541, is an indispensable enzyme for retinal synthesis in Synechocystis, presumably via asymmetric cleavage of β-apo-carotenal. The second carotenoid oxygenase (SynDiox2), encoded by gene slr1648, competes with SynACO for substrate(s) but only measurably contributes to retinal biosynthesis in stationary phase via an as-yet-unknown mechanism. In vivo degradation of retinal may proceed through spontaneous chemical oxidation and via enzyme-catalyzed processes. Deletion of gene slr0574 (encoding CYP120A1), but not of slr0091 or of slr1192, causes an increase (relative to the level in wild-type Synechocystis) in the retinal content in both the linear and stationary growth phases. These results suggest that CYP120A1 does contribute to retinal degradation. Preliminary data obtained using 13C-labeled retinal suggest that conversion to retinol and retinoic acid and subsequent further oxidation also play a role. Deletion of sll1541 leads to deficiency in retinal synthesis and allows the in vivo reconstitution of far-red-absorbing holo-proteorhodopsin with exogenous retinal analogues, as demonstrated here for all-trans 3,4-dehydroretinal and 3-methylamino-16-nor-1,2,3,4-didehydroretinal.IMPORTANCE Retinal is formed by many cyanobacteria and has a critical role in most forms of life for processes such as photoreception, growth, and stress survival. However, the metabolic pathways in cyanobacteria for synthesis and degradation of retinal are poorly understood. In this paper we identify genes involved in its synthesis, characterize their role, and provide an initial characterization of the pathway of its degradation. This led to the identification of sll1541 (encoding SynACO) as the essential gene for retinal synthesis. Multiple pathways for retinal degradation presumably exist. These results have allowed us to construct a strain that expresses a light-dependent proton pump with an action spectrum extending beyond 700 nm. The availability of this strain will be important for further work aimed at increasing the overall efficiency of oxygenic photosynthesis.
Collapse
|
34
|
Kim HA, Kim HJ, Lee MJ, Park J, Choi AR, Jeong H, Jung KH, Kim P, Lee SJ. Genome Variations of Evolved Escherichia coli ET8 With a Rhodopsin-Based Phototrophic Metabolism. Biotechnol J 2018; 13:e1700497. [PMID: 29469946 DOI: 10.1002/biot.201700497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 02/07/2018] [Indexed: 11/10/2022]
Abstract
We reported that the phototrophic metabolism via plasmid-originated Gloeobacter rhodopsin(GR)-expression is improved in Escherichia coli ET5 harboring pKJ606-GR by a genomic point mutation (dgcQC1082A ) encoding a transmembrane cell signaling protein (Microb. Cell Fact. 16:111, 2017). Another evolved descendant is isolated from the chemostat, and the genome variation of the strain named ET8 harboring pKJ606-GR is investigated in this study. Whole genome sequencing analysis identifies a single point mutation (C3831976A) located in the non-coding upstream region of kdtA and an IS4 insertional mutation at galUG706 without any mutations in the plasmid. ET8 strain shows enhanced kdtA transcription and no growth in the D-galactose or lactose sole carbon sourced minimal media. Size of ET8 strain are almost identical to that of the ancestor. Phototrophic growth and proton pumping in ET8 expressing GR (ET8 + GR) are increased 1.5-fold and threefold, respectively, compared with those in the ancestor (W3110 + GR). To verify the effects of the genomic mutations, either the kdtA-upregulation or the galU-disruption is conducted in the ancestor. Both the kdtA-upregulation and the galU-disruption result in the drastic increases of proton-pumping. The physiological properties arising from the genomic variations of the evolved host with the new phototrophic metabolism are further discussed.
Collapse
Affiliation(s)
- Hyun Aaron Kim
- Hana Academy Seoul, Seoul, Republic of Korea.,Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Min Ju Lee
- Department of Biotechnology, the Catholic University of Korea, Bucheon, Gyeonggi, Republic of Korea
| | - Jihoon Park
- Department of Biotechnology, the Catholic University of Korea, Bucheon, Gyeonggi, Republic of Korea
| | - Ah Reum Choi
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Pil Kim
- Department of Biotechnology, the Catholic University of Korea, Bucheon, Gyeonggi, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
35
|
Dong B, Sánchez-Magraner L, Luecke H. Structure of an Inward Proton-Transporting Anabaena Sensory Rhodopsin Mutant: Mechanistic Insights. Biophys J 2017; 111:963-72. [PMID: 27602724 DOI: 10.1016/j.bpj.2016.04.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023] Open
Abstract
Microbial rhodopsins are light-activated, seven-α-helical, retinylidene transmembrane proteins that have been identified in thousands of organisms across archaea, bacteria, fungi, and algae. Although they share a high degree of sequence identity and thus similarity in structure, many unique functions have been discovered and characterized among them. Some function as outward proton pumps, some as inward chloride pumps, whereas others function as light sensors or ion channels. Unique among the microbial rhodopsins characterized thus far, Anabaena sensory rhodopsin (ASR) is a photochromic sensor that interacts with a soluble 14-kDa cytoplasmic transducer that is encoded on the same operon. The sensor itself stably interconverts between all-trans-15-anti and 13-cis-15-syn retinal forms depending on the wavelength of illumination, although only the former participates in a photocycle with a signaling M intermediate. A mutation in the cytoplasmic half-channel of the protein, replacing Asp217 with Glu (D217E), results in the creation of a light-driven, single-photon, inward proton transporter. We present the 2.3 Å structure of dark-adapted D217E ASR, which reveals significant changes in the water network surrounding Glu217, as well as a shift in the carbon backbone near retinal-binding Lys210, illustrating a possible pathway leading to the protonation of Glu217 in the cytoplasmic half-channel, located 15 Å from the Schiff base. Crystallographic evidence for the protonation of nearby Glu36 is also discussed, which was described previously by Fourier transform infrared spectroscopy analysis. Finally, two histidine residues near the extracellular surface and their possible role in proton uptake are discussed.
Collapse
Affiliation(s)
- Bamboo Dong
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | | | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California.
| |
Collapse
|
36
|
Chen Q, Arents J, Ganapathy S, de Grip WJ, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin inSynechocystissp. PCC6803. Photochem Photobiol 2017; 93:772-781. [DOI: 10.1111/php.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Jos Arents
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Willem J. de Grip
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
37
|
Ganapathy S, Venselaar H, Chen Q, de Groot HJM, Hellingwerf KJ, de Grip WJ. Retinal-Based Proton Pumping in the Near Infrared. J Am Chem Soc 2017; 139:2338-2344. [PMID: 28094925 PMCID: PMC5342321 DOI: 10.1021/jacs.6b11366] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) are retinal-based light-driven proton pumps that absorb visible light (maxima at 520-540 nm). Shifting the action spectra of these proton pumps beyond 700 nm would generate new prospects in optogenetics, membrane sensor technology, and complementation of oxygenic phototrophy. We therefore investigated the effect of red-shifting analogues of retinal, combined with red-shifting mutations, on the spectral properties and pump activity of the resulting pigments. We investigated a variety of analogues, including many novel ones. One of the novel analogues we tested, 3-methylamino-16-nor-1,2,3,4-didehydroretinal (MMAR), produced exciting results. This analogue red-shifted all of the rhodopsin variants tested, accompanied by a strong broadening of the absorbance band, tailing out to 850-950 nm. In particular, MMAR showed a strong synergistic effect with the PR-D212N,F234S double mutant, inducing an astonishing 200 nm red shift in the absorbance maximum. To our knowledge, this is by far the largest red shift reported for any retinal protein. Very importantly, all MMAR-containing holoproteins are the first rhodopsins retaining significant pump activity under near-infrared illumination (730 nm light-emitting diode). Such MMAR-based rhodopsin variants present very promising opportunities for further synthetic biology modification and for a variety of biotechnological and biophysical applications.
Collapse
Affiliation(s)
- Srividya Ganapathy
- Leiden Institute of Chemistry, Leiden University , 2333 CC Leiden, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center , 6500 HB Nijmegen, The Netherlands
| | - Que Chen
- Swammerdam Institute for Life Sciences, University of Amsterdam , 1090 GE Amsterdam, The Netherlands
| | - Huub J M de Groot
- Leiden Institute of Chemistry, Leiden University , 2333 CC Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam , 1090 GE Amsterdam, The Netherlands
| | - Willem J de Grip
- Leiden Institute of Chemistry, Leiden University , 2333 CC Leiden, The Netherlands
| |
Collapse
|
38
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
39
|
Kim S, Kimleng C, Jang H, Sohn H, Kim GJ, Lee GR, Kim KS, Choi A, Jung KH. Isolation and characterization of proteorhodopsin homologue from Yellow Sea of Korea. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Chen Q, van der Steen JB, Dekker HL, Ganapathy S, de Grip WJ, Hellingwerf KJ. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metab Eng 2016; 35:83-94. [PMID: 26869136 DOI: 10.1016/j.ymben.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 10(5) molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B van der Steen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Lee KA, Lee SS, Kim SY, Choi AR, Lee JH, Jung KH. Mistic-fused expression of algal rhodopsins in Escherichia coli and its photochemical properties. Biochim Biophys Acta Gen Subj 2015; 1850:1694-703. [PMID: 25869488 DOI: 10.1016/j.bbagen.2015.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/10/2015] [Accepted: 04/03/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Since algal rhodopsins, the eukaryotic seven-transmembrane proteins, are generally difficult to express in Escherichia coli, eukaryotic cells have been used for heterologous expression. Mistic, a membrane-associated protein that was originally discovered in Bacillus subtilis, has been shown to improve the expression levels of many foreign integral membrane proteins in E. coli when used as a fusion partner linked to the N-terminus of cargo proteins. METHODS Here, we expressed two algal rhodopsins with N- and C-terminal Mistic domains in E. coli-Acetabularia rhodopsin I (ARI) and Chlamydomonas sensory rhodopsin B (CSRB, channel rhodopsin 2). UV/VIS spectroscopy, pH titration of proton acceptor residue, laser-induced photolysis and electrophysiological measurement were used for investigating important residues in proton transport and spectroscopic characters of the proteins. RESULTS Protein yield of two algal rhodopsins was enhanced, obtaining 0.12mg of Mistic-ARI and 0.04mg of Mistic-CSRB per liter of culture. Spheroplast expression Mistic-ARI had outward proton-pumping activity, indicating protein functionality. Asp89 of ARI changed its protonation state by light absorption, and Asp100 was important for O(600) formation. Electrophysiology revealed that both residues took part in proton transport. The spectroscopic analyses of Mistic-CSRB revealed its characteristics. CONCLUSIONS Fusion to the membrane-integrating protein Mistic can enhance overexpression of eukaryotic type I rhodopsins in E. coli. GENERAL SIGNIFICANCE These findings indicate that Mistic fusion and E. coli expression method could be an effective, low cost technique for studying eukaryotic membrane proteins. This may have useful implications, for example, in studying structural characteristics and optogenetics for rhodopsins.
Collapse
Affiliation(s)
- Keon Ah Lee
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Sang-Soo Lee
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - So Young Kim
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Ah Reum Choi
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Jung-Ha Lee
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea.
| |
Collapse
|
42
|
Modulation of spectral properties and pump activity of proteorhodopsins by retinal analogues. Biochem J 2015; 467:333-43. [DOI: 10.1042/bj20141210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microbial proteorhodopsins are light-driven proton pumps, using the vitamin A derivative retinal as chromophore. We show that retinal analogues can shift their absorbance band with preservation of functionality. This may provide attractive opportunities in biotechnology, optogenetics and as potential sensors.
Collapse
|
43
|
Kim SH, Kim SY, Jung KH, Kim D. DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy. Biosci Biotechnol Biochem 2015; 79:1070-4. [PMID: 25755018 DOI: 10.1080/09168451.2015.1015950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, K(D), of ASRT to 20 bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.
Collapse
Affiliation(s)
- Sung Hyun Kim
- a Department of Physics , Sogang University , Seoul , Korea
| | | | | | | |
Collapse
|
44
|
Mao J, Do NN, Scholz F, Reggie L, Mehler M, Lakatos A, Ong YS, Ullrich SJ, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural basis of the green-blue color switching in proteorhodopsin as determined by NMR spectroscopy. J Am Chem Soc 2014; 136:17578-90. [PMID: 25415762 DOI: 10.1021/ja5097946] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteorhodopsins (PRs) found in marine microbes are the most abundant retinal-based photoreceptors on this planet. PR variants show high levels of environmental adaptation, as their colors are tuned to the optimal wavelength of available light. The two major green and blue subfamilies can be interconverted through a L/Q point mutation at position 105. Here we reveal the structural basis behind this intriguing color-tuning effect. High-field solid-state NMR spectroscopy was used to visualize structural changes within green PR directly within the lipid bilayer upon introduction of the green-blue L105Q mutation. The observed effects are localized within the binding pocket and close to retinal carbons C14 and C15. Subsequently, magic-angle spinning (MAS) NMR spectroscopy with sensitivity enhancement by dynamic nuclear polarization (DNP) was applied to determine precisely the retinal structure around C14-C15. Upon mutation, a significantly stretched C14-C15 bond, deshielding of C15, and a slight alteration of the retinal chain's out-of-plane twist was observed. The L105Q blue switch therefore acts locally on the retinal itself and induces a conjugation defect between the isomerization region and the imine linkage. Consequently, the S0-S1 energy gap increases, resulting in the observed blue shift. The distortion of the chromophore structure also offers an explanation for the elongated primary reaction detected by pump-probe spectroscopy, while chemical shift perturbations within the protein can be linked to the elongation of late-photocycle intermediates studied by flash photolysis. Besides resolving a long-standing problem, this study also demonstrates that the combination of data obtained from high-field and DNP-enhanced MAS NMR spectroscopy together with time-resolved optical spectroscopy enables powerful synergies for in-depth functional studies of membrane proteins.
Collapse
Affiliation(s)
- Jiafei Mao
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Choi AR, Shi L, Brown LS, Jung KH. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. PLoS One 2014; 9:e110643. [PMID: 25347537 PMCID: PMC4210194 DOI: 10.1371/journal.pone.0110643] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/02/2014] [Indexed: 12/02/2022] Open
Abstract
A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids.
Collapse
Affiliation(s)
- Ah Reum Choi
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Lichi Shi
- Department of Physics, University of Guelph, Ontario, Canada
| | - Leonid S. Brown
- Department of Physics, University of Guelph, Ontario, Canada
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
46
|
Kim SY, Yoon SR, Han S, Yun Y, Jung KH. A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol Microbiol 2014; 93:403-14. [PMID: 24798792 DOI: 10.1111/mmi.12635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
In 2003, Anabaena sensory rhodopsin (ASR), a membrane-bound light sensor protein, was discovered in cyanobacteria. Since then, a large number of functions have been described for ASR, based on protein biochemical and biophysical studies. However, no study has determined the in vivo mechanism of photosensory transduction for ASR and its transducer protein (ASRT). Here, we aimed to determine the role of ASRT in physiological photo-regulation. ASRT is known to be related to photochromism, because it regulates the expression of phycocyanin (cpc-gene) and phycoerythrocyanin (pec gene), two major proteins of the phycobilisome in cyanobacteria. By examining wild type and knockout mutant Anabaena cells, we showed that ASRT repressed the expression of these two genes. We also demonstrated physical interactions between ASRT, ASR, and the promoter regions of cpc, pec, kaiABC (circadian clock gene) and the asr operon, both in vitro and in vivo. Binding assays indicated that ASRT had different sites of interaction for binding to ASR and DNA promoter regions. ASRT also influenced the retinal re-isomerization rate in dark through a physical interaction with ASR, and it regulated reporter gene expression in vivo. These results suggested that ASRT relayed the photosignal from ASR and directly regulated gene expression.
Collapse
Affiliation(s)
- So Young Kim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Korea
| | | | | | | | | |
Collapse
|
47
|
Directed evolution of Gloeobacter violaceus rhodopsin spectral properties. J Mol Biol 2014; 427:205-20. [PMID: 24979679 DOI: 10.1016/j.jmb.2014.06.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/05/2014] [Accepted: 06/22/2014] [Indexed: 01/01/2023]
Abstract
Proton-pumping rhodopsins (PPRs) are photoactive retinal-binding proteins that transport ions across biological membranes in response to light. These proteins are interesting for light-harvesting applications in bioenergy production, in optogenetics applications in neuroscience, and as fluorescent sensors of membrane potential. Little is known, however, about how the protein sequence determines the considerable variation in spectral properties of PPRs from different biological niches or how to engineer these properties in a given PPR. Here we report a comprehensive study of amino acid substitutions in the retinal-binding pocket of Gloeobacter violaceus rhodopsin (GR) that tune its spectral properties. Directed evolution generated 70 GR variants with absorption maxima shifted by up to ±80nm, extending the protein's light absorption significantly beyond the range of known natural PPRs. While proton-pumping activity was disrupted in many of the spectrally shifted variants, we identified single tuning mutations that incurred blue and red shifts of 42nm and 22nm, respectively, that did not disrupt proton pumping. Blue-shifting mutations were distributed evenly along the retinal molecule while red-shifting mutations were clustered near the residue K257, which forms a covalent bond with retinal through a Schiff base linkage. Thirty eight of the identified tuning mutations are not found in known microbial rhodopsins. We discovered a subset of red-shifted GRs that exhibit high levels of fluorescence relative to the WT (wild-type) protein.
Collapse
|
48
|
Claassens NJ, Volpers M, dos Santos VAPM, van der Oost J, de Vos WM. Potential of proton-pumping rhodopsins: engineering photosystems into microorganisms. Trends Biotechnol 2013; 31:633-42. [PMID: 24120288 DOI: 10.1016/j.tibtech.2013.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 01/04/2023]
Abstract
A wide range of proton-pumping rhodopsins (PPRs) have been discovered in recent years. Using a synthetic biology approach, PPR photosystems with different features can be easily introduced in nonphotosynthetic microbial hosts. PPRs can provide hosts with the ability to harvest light and drive the sustainable production of biochemicals or biofuels. PPRs use light energy to generate an outward proton flux, and the resulting proton motive force can subsequently power cellular processes. Recently, the introduction of PPRs in microbial production hosts has successfully led to light-driven biotechnological conversions. In this review, we discuss relevant features of natural PPRs, evaluate reported biotechnological applications of microbial production hosts equipped with PPRs, and provide an outlook on future developments.
Collapse
Affiliation(s)
- Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Kim S, Yoon Y, Lee H, Choi AR, Jung KH, Babajanyan A, Abrahamyan T, Yoo H, Lee JH, Cha D, Berthiau G, Friedman B, Lee K. Application of a sensitive near-field microwave microprobe to the nondestructive characterization of microbial rhodopsin. JOURNAL OF BIOPHOTONICS 2013; 6:163-170. [PMID: 22517728 DOI: 10.1002/jbio.201100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
We study the opto-electrical properties of Natronomonas pharaonis sensory rhodopsin II (NpSRII) by using a near-field microwave microprobe (NFMM) under external light illumination. To investigate the possibility of application of NFMM to biological macromolecules, we used time dependent properties of NPSRII before/after light activation which has three distinct states - ground-state, M-state, and O-state. The diagnostic ability of NFMM is demonstrated by measuring the microwave reflection coefficient (S(11)) spectrum of NpSRII under steady-state illumination in the wavelength range of 350-650 nm. Moreover, we present microwave reflection coefficient S(11) spectra in the same wavelength range for two fast-photocycling rhodopsins: green light-absorbing proteorhodopsin (GPR) and Gloeobacter rhodopsin (GR). In addition the frequency sweep shift can be detected completely even for tiny amounts of sample (∼10(-3) OD of rhodopsin). Based on these results NFMM shows both very high sensitivity for detecting conformational changes and produces a good time-resolved spectrum.
Collapse
Affiliation(s)
- Songhui Kim
- Department of Physics, Kunsan National University, Gunsan 573-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hussain S, Franck JM, Han S. Transmembrane Protein Activation Refined by Site-Specific Hydration Dynamics. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201206147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|