1
|
Zhao AR, Li J, Wang SQ, Bian LH, Li WJ, Guo JY. Stress can affect mitochondrial energy metabolism and AMPK/SIRT1 signaling pathway in rats. Brain Res Bull 2023; 203:110770. [PMID: 37774988 DOI: 10.1016/j.brainresbull.2023.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
OBJECTION To investigate the potential link between aberrant mitochondrial energy metabolism mediated by the AMPK/SIRT1 pathway and the etiology of anxiety disorders. METHODS The anxiety rat model was established by uncertain empty water bottle(UEWB)stress. Rats were submitted behavioral tests on the seventh, fourteenth, and twenty-first days and had the prefrontal cortex and amygdala removed for biochemical tests. The morphological alterations of the mitochondria in the medial prefrontal cortex and amygdala were examined by using a transmission electron microscope. Expression levels of AMPK, SIRT1, PGC-1, NRF-1 and NRF-2 were tested by western-blot analysis. ATP, respiratory chain complex and caspase enzyme expressions were tested by neurochemical and biochemical assays. RESULTS Rats showed anxiety-like behavior after being exposed to the uncertain empty water bottle (UEWB) stress model. In model rats, mitochondrial structure is damaged, mitochondrial energy metabolism is decreased, and the expression of proteins associated with AMPK/SIRT1 pathway is significantly reduced in the brain. CONCLUSION The level of mitochondrial energy metabolism correlates with anxiety-like behavior. The main mechanism of anxiety disorder is a disturbance of mitochondrial energy metabolism, which might be related to AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- An-Ran Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Qi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Hua Bian
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wen-Jing Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-You Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua Zhejiang 321004.
| |
Collapse
|
2
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
3
|
Jannesari M, Akhavan O, Madaah Hosseini HR, Bakhshi B. Oxygen-Rich Graphene/ZnO 2-Ag nanoframeworks with pH-Switchable Catalase/Peroxidase activity as O 2 Nanobubble-Self generator for bacterial inactivation. J Colloid Interface Sci 2023; 637:237-250. [PMID: 36701869 DOI: 10.1016/j.jcis.2023.01.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The oxygen-rich organic/inorganic (reduced graphene oxide (rGO)/ZnO2-Ag) nanoframeworks as suppliers of O2 nanobubbles (NBs) with dual pH-and-temperature-sensitive behavior were developed to suppress bacterial growth. It was demonstrated that not only the rate but also the final product of oxygen-rich ZnO2 decomposition (to an intermediate product of H2O2) rate was dramatically controlled by pH adjustment. Furthermore, in the presence of Ag nanoparticles, ̇OH radical generation switched to O2 NBs evolution by shifting the pH from acidic to basic/neutral conditions, demonstrating an adjustable nanozyme function-ability between catalase and peroxidase-like activity, respectively. Antibacterial properties of the in-situ generated O2 NBs substantially enhanced against bacterial models including methicillin-resistant Staphylococcus aureus in the presence of rGO. In fact, deflecting the electrons from their main respiratory chain to an oxygen-rich bypath through rGO significantly stimulated reactive oxygen species (ROS) generation, combating bacteria more efficiently. Moreover, NIR laser irradiation-induced temperature rise (due to the inherent photothermal properties of rGO) facilitated ZnO2 decomposition and accelerated growth and collapse of NBs. The simultaneous microscale thermal and mechanical destructions induced stronger antibacterial behavior. These results hold great promises for designing simple organic/inorganic nanoframeworks as solid sources of NBs with tunable enzyme-like ability in response to environmental conditions suitable for forthcoming graphene-based bio-applications.
Collapse
Affiliation(s)
- Marziyeh Jannesari
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588, 89694, Tehran, Iran; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Omid Akhavan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588, 89694, Tehran, Iran; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Hamid R Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9466, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
4
|
Cryo-EM structures of intermediates suggest an alternative catalytic reaction cycle for cytochrome c oxidase. Nat Commun 2021; 12:6903. [PMID: 34824221 PMCID: PMC8617209 DOI: 10.1038/s41467-021-27174-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Cytochrome c oxidases are among the most important and fundamental enzymes of life. Integrated into membranes they use four electrons from cytochrome c molecules to reduce molecular oxygen (dioxygen) to water. Their catalytic cycle has been considered to start with the oxidized form. Subsequent electron transfers lead to the E-state, the R-state (which binds oxygen), the P-state (with an already split dioxygen bond), the F-state and the O-state again. Here, we determined structures of up to 1.9 Å resolution of these intermediates by single particle cryo-EM. Our results suggest that in the O-state the active site contains a peroxide dianion and in the P-state possibly an intact dioxygen molecule, the F-state may contain a superoxide anion. Thus, the enzyme's catalytic cycle may have to be turned by 180 degrees.
Collapse
|
5
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Microaerobic Lifestyle at Nanomolar O 2 Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria. mSystems 2021; 6:e0025021. [PMID: 34227829 PMCID: PMC8407424 DOI: 10.1128/msystems.00250-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
High-affinity terminal oxidases (TOs) are believed to permit microbial respiration at low oxygen (O2) levels. Genes encoding such oxidases are widespread, and their existence in microbial genomes is taken as an indicator for microaerobic respiration. We combined respiratory kinetics determined via highly sensitive optical trace O2 sensors, genomics, and transcriptomics to test the hypothesis that high-affinity TOs are a prerequisite to respire micro- and nanooxic concentrations of O2 in environmentally relevant model soil organisms: acidobacteria. Members of the Acidobacteria harbor branched respiratory chains terminating in low-affinity (caa3-type cytochrome c oxidases) as well as high-affinity (cbb3-type cytochrome c oxidases and/or bd-type quinol oxidases) TOs, potentially enabling them to cope with varying O2 concentrations. The measured apparent Km (Km(app)) values for O2 of selected strains ranged from 37 to 288 nmol O2 liter−1, comparable to values previously assigned to low-affinity TOs. Surprisingly, we could not detect the expression of the conventional high-affinity TO (cbb3 type) at micro- and nanomolar O2 concentrations but detected the expression of low-affinity TOs. To the best of our knowledge, this is the first observation of microaerobic respiration imparted by low-affinity TOs at O2 concentrations as low as 1 nM. This challenges the standing hypothesis that a microaerobic lifestyle is exclusively imparted by the presence of high-affinity TOs. As low-affinity TOs are more efficient at generating ATP than high-affinity TOs, their utilization could provide a great benefit, even at low-nanomolar O2 levels. Our findings highlight energy conservation strategies that could promote the success of Acidobacteria in soil but might also be important for as-yet-unrevealed microorganisms. IMPORTANCE Low-oxygen habitats are widely distributed on Earth, ranging from the human intestine to soils. Microorganisms are assumed to have the capacity to respire low O2 concentrations via high-affinity terminal oxidases. By utilizing strains of a ubiquitous and abundant group of soil bacteria, the Acidobacteria, and combining respiration kinetics, genomics, and transcriptomics, we provide evidence that these microorganisms use the energetically more efficient low-affinity terminal oxidases to respire low-nanomolar O2 concentrations. This questions the standing hypothesis that the ability to respire traces of O2 stems solely from the activity of high-affinity terminal oxidases. We propose that this energetically efficient strategy extends into other, so-far-unrevealed microbial clades. Our findings also demonstrate that physiological predictions regarding the utilization of different O2 concentrations based solely on the presence or absence of terminal oxidases in bacterial genomes can be misleading.
Collapse
|
7
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Harper-Leatherman AS, Wallace JM, Long JW, Rhodes CP, Graffam ME, Abunar BH, Rolison DR. Redox Cycling within Nanoparticle-Nucleated Protein Superstructures: Electron Transfer between Nanoparticulate Gold, Molecular Reductant, and Cytochrome c. J Phys Chem B 2021; 125:1735-1745. [PMID: 33576630 DOI: 10.1021/acs.jpcb.0c09688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously described how thousands of the heme protein cytochrome c (cyt.c) self-organize into multilayered, roughly spherical superstructures as initiated by nucleation around one colloidal gold or silver nanoparticle. Within these superstructures, the protein is stabilized to unfolding in buffered media and survives superstructure encapsulation within silica gels and processing to form bioaerogels. We now report that Au∼cyt.c superstructures in buffered media are not simply static groupings of proteins, but that the Au core and protein corona exhibit dynamic electron-transfer reactions within the superstructure as verified by UV-visible and resonance Raman spectroscopy. Within the superstructure, hundreds to thousands of ferricytochrome c (FeIII-cyt.c) are reduced to ferrocytochrome c (FeII-cyt.c) following first-order kinetics with an average apparent forward rate constant of 1.9 ±0.4 × 10-5 s-1. The reducing power in the microheterogeneous medium is derived from two multielectron reductants: tannic acid used to stabilize the commercial gold sol and the Au nanoparticle at the center of the protein superstructure. Fluorescence monitoring of guanidinium chloride-induced unfolding reveals that superstructure-associated cyt.c is stabilized to unfolding before and after chemical reduction of FeIII-cyt.c to form FeII-cyt.c, indicating that the superstructures remain intact during microheterogeneous redox reactions. Smaller nucleating Au nanoparticles or lower ionic strength in the buffered medium yields a greater extent of cyt.c reduction. Partial oxidation of the cyt.c-associated nanoparticulate Au is verified by X-ray photoelectron spectroscopy. The Au nanoparticle at the heart of the superstructure functions as a direct electron donor to the heme with oxidized Au atoms being recycled back to Au(0) as long as residual tannic acid, derived from the Au sol mother liquor, is present in the aqueous microheterogeneous medium.
Collapse
Affiliation(s)
- Amanda S Harper-Leatherman
- Department of Chemistry and Biochemistry, Fairfield University, 1073 North Benson Road, Fairfield, Connecticut 06824, United States
| | - Jean Marie Wallace
- Nova Research, Inc., 1900 Elkin Street, Alexandria, Virginia 22308, United States
| | - Jeffrey W Long
- Surface Chemistry Branch, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Christopher P Rhodes
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Molly E Graffam
- Department of Chemistry and Biochemistry, Fairfield University, 1073 North Benson Road, Fairfield, Connecticut 06824, United States
| | - Bayan H Abunar
- Department of Chemistry and Biochemistry, Fairfield University, 1073 North Benson Road, Fairfield, Connecticut 06824, United States
| | - Debra R Rolison
- Surface Chemistry Branch, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
9
|
Zhao J, Li F, Cao Y, Zhang X, Chen T, Song H, Wang Z. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv 2020; 53:107682. [PMID: 33326817 DOI: 10.1016/j.biotechadv.2020.107682] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Electroactive microorganisms (EAMs) are ubiquitous in nature and have attracted considerable attention as they can be used for energy recovery and environmental remediation via their extracellular electron transfer (EET) capabilities. Although the EET mechanisms of Shewanella and Geobacter have been rigorously investigated and are well characterized, much less is known about the EET mechanisms of other microorganisms. For EAMs, efficient EET is crucial for the sustainable economic development of bioelectrochemical systems (BESs). Currently, the low efficiency of EET remains a key factor in limiting the development of BESs. In this review, we focus on the EET mechanisms of different microorganisms, (i.e., bacteria, fungi, and archaea). In addition, we describe in detail three engineering strategies for improving the EET ability of EAMs: (1) enhancing transmembrane electron transport via cytochrome protein channels; (2) accelerating electron transport via electron shuttle synthesis and transmission; and (3) promoting the microbe-electrode interface reaction via regulating biofilm formation. At the end of this review, we look to the future, with an emphasis on the cross-disciplinary integration of systems biology and synthetic biology to build high-performance EAM systems.
Collapse
Affiliation(s)
- Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
10
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
11
|
Theßeling A, Burschel S, Wohlwend D, Friedrich T. The long Q‐loop ofEscherichia colicytochromebdoxidase is required for assembly and structural integrity. FEBS Lett 2020; 594:1577-1585. [DOI: 10.1002/1873-3468.13749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 11/08/2022]
Affiliation(s)
| | - Sabrina Burschel
- Institut für Biochemie Albert‐Ludwigs‐Universität Freiburg Germany
| | - Daniel Wohlwend
- Institut für Biochemie Albert‐Ludwigs‐Universität Freiburg Germany
| | | |
Collapse
|
12
|
Vilhjálmsdóttir J, Albertsson I, Blomberg MRA, Ädelroth P, Brzezinski P. Proton transfer in uncoupled variants of cytochrome c oxidase. FEBS Lett 2019; 594:813-822. [PMID: 31725900 DOI: 10.1002/1873-3468.13679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 11/08/2022]
Abstract
Cytochrome c oxidase is a membrane-bound redox-driven proton pump that harbors two proton-transfer pathways, D and K, which are used at different stages of the reaction cycle. Here, we address the question if a D pathway with a modified energy landscape for proton transfer could take over the role of the K pathway when the latter is blocked by a mutation. Our data indicate that structural alterations near the entrance of the D pathway modulate energy barriers that influence proton transfer to the proton-loading site. The data also suggest that during reduction of the catalytic site, its protonation has to occur via the K pathway and that this proton transfer to the catalytic site cannot take place through the D pathway.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Ingrid Albertsson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Margareta R A Blomberg
- Department of Organic Chemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| |
Collapse
|
13
|
Vilhjálmsdóttir J, Gennis RB, Brzezinski P. The electron distribution in the "activated" state of cytochrome c oxidase. Sci Rep 2018; 8:7502. [PMID: 29760451 PMCID: PMC5951807 DOI: 10.1038/s41598-018-25779-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 11/09/2022] Open
Abstract
Cytochrome c oxidase catalyzes reduction of O2 to H2O at a catalytic site that is composed of a copper ion and heme group. The reaction is linked to translocation of four protons across the membrane for each O2 reduced to water. The free energy associated with electron transfer to the catalytic site is unequal for the four electron-transfer events. Most notably, the free energy associated with reduction of the catalytic site in the oxidized cytochrome c oxidase (state O) is not sufficient for proton pumping across the energized membrane. Yet, this electron transfer is mechanistically linked to proton pumping. To resolve this apparent discrepancy, a high-energy oxidized state (denoted OH) was postulated and suggested to be populated only during catalytic turnover. The difference between states O and OH was suggested to be manifested in an elevated midpoint potential of CuB in the latter. This proposal predicts that one-electron reduction of cytochrome c oxidase after its oxidation would yield re-reduction of essentially only CuB. Here, we investigated this process and found ~5% and ~6% reduction of heme a3 and CuB, respectively, i.e. the apparent redox potentials for heme a3 and CuB are lower than that of heme a.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801, United States
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
14
|
Costa NL, Clarke TA, Philipp LA, Gescher J, Louro RO, Paquete CM. Electron transfer process in microbial electrochemical technologies: The role of cell-surface exposed conductive proteins. BIORESOURCE TECHNOLOGY 2018; 255:308-317. [PMID: 29444758 DOI: 10.1016/j.biortech.2018.01.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Electroactive microorganisms have attracted significant interest for the development of novel biotechnological systems of low ecological footprint. These can be used for the sustainable production of energy, bioremediation of metal-contaminated environments and production of added-value products. Currently, almost 100 microorganisms from the Bacterial and Archaeal domains are considered electroactive, given their ability to efficiently interact with electrodes in microbial electrochemical technologies. Cell-surface exposed conductive proteins are key players in the electron transfer between cells and electrodes. Interestingly, it seems that among the electroactive organisms identified so far, these cell-surface proteins fall into one of four groups. In this review, the different types of cell-surface conductive proteins found in electroactive organisms will be overviewed, focusing on their structural and functional properties.
Collapse
Affiliation(s)
- Nazua L Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República-EAN, 2780-157, Oeiras, Portugal
| | - Thomas A Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Laura-Alina Philipp
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany; Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República-EAN, 2780-157, Oeiras, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República-EAN, 2780-157, Oeiras, Portugal.
| |
Collapse
|
15
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
16
|
Poiana F, von Ballmoos C, Gonska N, Blomberg MRA, Ädelroth P, Brzezinski P. Splitting of the O-O bond at the heme-copper catalytic site of respiratory oxidases. SCIENCE ADVANCES 2017; 3:e1700279. [PMID: 28630929 PMCID: PMC5473675 DOI: 10.1126/sciadv.1700279] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/20/2017] [Indexed: 05/30/2023]
Abstract
Heme-copper oxidases catalyze the four-electron reduction of O2 to H2O at a catalytic site that is composed of a heme group, a copper ion (CuB), and a tyrosine residue. Results from earlier experimental studies have shown that the O-O bond is cleaved simultaneously with electron transfer from a low-spin heme (heme a/b), forming a ferryl state (PR ; Fe4+=O2-, CuB2+-OH-). We show that with the Thermus thermophilus ba3 oxidase, at low temperature (10°C, pH 7), electron transfer from the low-spin heme b to the catalytic site is faster by a factor of ~10 (τ ≅ 11 μs) than the formation of the PR ferryl (τ ≅110 μs), which indicates that O2 is reduced before the splitting of the O-O bond. Application of density functional theory indicates that the electron acceptor at the catalytic site is a high-energy peroxy state [Fe3+-O--O-(H+)], which is formed before the PR ferryl. The rates of heme b oxidation and PR ferryl formation were more similar at pH 10, indicating that the formation of the high-energy peroxy state involves proton transfer within the catalytic site, consistent with theory. The combined experimental and theoretical data suggest a general mechanism for O2 reduction by heme-copper oxidases.
Collapse
Affiliation(s)
- Federica Poiana
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Nathalie Gonska
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Organic Chemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Abana CM, Brannon JR, Ebbott RA, Dunigan TL, Guckes KR, Fuseini H, Powers J, Rogers BR, Hadjifrangiskou M. Characterization of blue light irradiation effects on pathogenic and nonpathogenic Escherichia coli. Microbiologyopen 2017; 6. [PMID: 28332311 PMCID: PMC5552948 DOI: 10.1002/mbo3.466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 01/09/2023] Open
Abstract
Blue light irradiation (BLI) is an FDA-approved method for treating certain types of infections, like acne, and is becoming increasingly attractive as an antimicrobial strategy as the prevalence of antibiotic-resistant "superbugs" rises. However, no study has delineated the effectiveness of BLI throughout different bacterial growth phases, especially in more BLI-tolerant organisms such as Escherichia coli. While the vast majority of E. coli strains are nonpathogenic, several E. coli pathotypes exist that cause infection within and outside the gastrointestinal tract. Here, we compared the response of E. coli strains from five phylogenetic groups to BLI with a 455 nm wavelength (BLI455 ), using colony-forming unit and ATP measurement assays. Our results revealed that BLI455 is not bactericidal, but can retard E. coli growth in a manner that is dependent on culture age and strain background. This observation is critical, given that bacteria on and within mammalian hosts are found in different phases of growth.
Collapse
Affiliation(s)
- Courtney M Abana
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - John R Brannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ebbott
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Taryn L Dunigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kirsten R Guckes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hubaida Fuseini
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Powers
- Vanderbilt Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bridget R Rogers
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Berg J, Block S, Höök F, Brzezinski P. Single Proteoliposomes with E. coli
Quinol Oxidase: Proton Pumping without Transmembrane Leaks. Isr J Chem 2017. [DOI: 10.1002/ijch.201600138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Johan Berg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences; Stockholm University; SE-106 91 Stockholm Sweden
| | - Stephan Block
- Department of Physics, Division of Biological Physics; Chalmers University of Technology; Göteborg SE-412 96 Sweden
| | - Fredrik Höök
- Department of Physics, Division of Biological Physics; Chalmers University of Technology; Göteborg SE-412 96 Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences; Stockholm University; SE-106 91 Stockholm Sweden
| |
Collapse
|
19
|
Graf S, Fedotovskaya O, Kao WC, Hunte C, Ädelroth P, Bott M, von Ballmoos C, Brzezinski P. Rapid Electron Transfer within the III-IV Supercomplex in Corynebacterium glutamicum. Sci Rep 2016; 6:34098. [PMID: 27682138 PMCID: PMC5040959 DOI: 10.1038/srep34098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Complex III in C. glutamicum has an unusual di-heme cyt. c1 and it co-purifies with complex IV in a supercomplex. Here, we investigated the kinetics of electron transfer within this supercomplex and in the cyt. aa3 alone (cyt. bc1 was removed genetically). In the reaction of the reduced cyt. aa3 with O2, we identified the same sequence of events as with other A-type oxidases. However, even though this reaction is associated with proton uptake, no pH dependence was observed in the kinetics. For the cyt. bc1-cyt. aa3 supercomplex, we observed that electrons from the c-hemes were transferred to CuA with time constants 0.1–1 ms. The b-hemes were oxidized with a time constant of 6.5 ms, indicating that this electron transfer is rate-limiting for the overall quinol oxidation/O2 reduction activity (~210 e−/s). Furthermore, electron transfer from externally added cyt. c to cyt. aa3 was significantly faster upon removal of cyt. bc1 from the supercomplex, suggesting that one of the c-hemes occupies a position near CuA. In conclusion, isolation of the III-IV-supercomplex allowed us to investigate the kinetics of electron transfer from the b-hemes, via the di-heme cyt. c1 and heme a to the heme a3-CuB catalytic site of cyt. aa3.
Collapse
Affiliation(s)
- Simone Graf
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Melin F, Xie H, Meyer T, Ahn YO, Gennis RB, Michel H, Hellwig P. The unusual redox properties of C-type oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1892-1899. [PMID: 27664317 DOI: 10.1016/j.bbabio.2016.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
Cytochrome cbb3 (also known as C-type) oxidases belong to the family of heme-copper terminal oxidases which couple at the end of the respiratory chain the reduction of molecular oxygen into water and the pumping of protons across the membrane. They are expressed most often at low pressure of O2 and they exhibit a low homology of sequence with the cytochrome aa3 (A-type) oxidases found in mitochondria. Their binuclear active site comprises a high-spin heme b3 associated with a CuB center. The protein also contains one low-spin heme b and 3 hemes c. We address here the redox properties of cbb3 oxidases from three organisms, Rhodobacter sphaeroides, Vibrio cholerae and Pseudomonas stutzeri by means of electrochemical and spectroscopic techniques. We show that the redox potential of the heme b3 exhibits a relatively low midpoint potential, as in related cytochrome c-dependent nitric oxide reductases. Potential implications for the coupled electron transfer and proton uptake mechanism of C-type oxidases are discussed.
Collapse
Affiliation(s)
- Frederic Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Hao Xie
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Thomas Meyer
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Young Ok Ahn
- Department of Biochemistry, University of Illinois at Urbana Champaign, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, USA
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
21
|
Mazurenko I, Monsalve K, Rouhana J, Parent P, Laffon C, Goff AL, Szunerits S, Boukherroub R, Giudici-Orticoni MT, Mano N, Lojou E. How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23074-23085. [PMID: 27533778 DOI: 10.1021/acsami.6b07355] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to the lack of a valid approach in the design of electrochemical interfaces modified with enzymes for efficient catalysis, many oxidoreductases are still not addressed by electrochemistry. We report in this work an in-depth study of the interactions between two different bilirubin oxidases, (from the fungus Myrothecium verrucaria and from the bacterium Bacillus pumilus), catalysts of oxygen reduction, and carbon nanotubes bearing various surface charges (pristine, carboxylic-, and pyrene-methylamine-functionalized). The surface charges and dipole moment of the enzymes as well as the surface state of the nanomaterials are characterized as a function of pH. An original electrochemical approach allows determination of the best interface for direct or mediated electron transfer processes as a function of enzyme, nanomaterial type, and adsorption conditions. We correlate these experimental results to theoric voltammetric curves. Such an integrative study suggests strategies for designing efficient bioelectrochemical interfaces toward the elaboration of biodevices such as enzymatic fuel cells for sustainable electricity production.
Collapse
Affiliation(s)
- Ievgen Mazurenko
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Karen Monsalve
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Jad Rouhana
- Centre de Recherche Paul Pascal, UPR 8641, CNRS, Bordeaux University , 33600 Pessac, France
| | - Philippe Parent
- Aix Marseille Université, CNRS , CINaM UMR 7325, 13288 Marseille, France
| | - Carine Laffon
- Aix Marseille Université, CNRS , CINaM UMR 7325, 13288 Marseille, France
| | - Alan Le Goff
- Université Grenoble Alpes , DCM UMR 5250, 38000 Grenoble, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR CNRS 8520) , , Université Lille 1, Cité Scientifique Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR CNRS 8520) , , Université Lille 1, Cité Scientifique Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Marie-Thérèse Giudici-Orticoni
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal, UPR 8641, CNRS, Bordeaux University , 33600 Pessac, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| |
Collapse
|
22
|
Regulatory role of the respiratory supercomplex factors in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2016; 113:E4476-85. [PMID: 27432958 DOI: 10.1073/pnas.1601196113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The respiratory supercomplex factors (Rcf) 1 and 2 mediate supramolecular interactions between mitochondrial complexes III (ubiquinol-cytochrome c reductase; cyt. bc1) and IV (cytochrome c oxidase; CytcO). In addition, removal of these polypeptides results in decreased activity of CytcO, but not of cyt. bc1 In the present study, we have investigated the kinetics of ligand binding, the single-turnover reaction of CytcO with O2, and the linked cyt. bc1-CytcO quinol oxidation-oxygen-reduction activities in mitochondria in which Rcf1 or Rcf2 were removed genetically (strains rcf1Δ and rcf2Δ, respectively). The data show that in the rcf1Δ and rcf2Δ strains, in a significant fraction of the population, ligand binding occurs over a time scale that is ∼100-fold faster (τ ≅ 100 μs) than observed with the wild-type mitochondria (τ ≅ 10 ms), indicating structural changes. This effect is specific to removal of Rcf and not dissociation of the cyt. bc1-CytcO supercomplex. Furthermore, in the rcf1Δ and rcf2Δ strains, the single-turnover reaction of CytcO with O2 was incomplete. This observation indicates that the lower activity of CytcO is caused by a fraction of inactive CytcO rather than decreased CytcO activity of the entire population. Furthermore, the data suggest that the Rcf1 polypeptide mediates formation of an electron-transfer bridge from cyt. bc1 to CytcO via a tightly bound cyt. c We discuss the significance of the proposed regulatory mechanism of Rcf1 and Rcf2 in the context of supramolecular interactions between cyt. bc1 and CytcO.
Collapse
|
23
|
Vilhjálmsdóttir J, Johansson AL, Brzezinski P. Structural Changes and Proton Transfer in Cytochrome c Oxidase. Sci Rep 2015; 5:12047. [PMID: 26310633 PMCID: PMC4550891 DOI: 10.1038/srep12047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that control the alternating proton access to the two sides of the membrane. Such redox-induced structural changes have been observed in X-ray crystallographic studies at residues 423-425 (in the R. sphaeroides oxidase), located near heme a. The aim of the present study is to investigate the functional effects of these structural changes on reaction steps associated with proton pumping. Residue Ser425 was modified using site-directed mutagenesis and time-resolved spectroscopy was used to investigate coupled electron-proton transfer upon reaction of the oxidase with O2. The data indicate that the structural change at position 425 propagates to the D proton pathway, which suggests a link between redox changes at heme a and modulation of intramolecular proton-transfer rates.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Hogle SL, Barbeau KA, Gledhill M. Heme in the marine environment: from cells to the iron cycle. Metallomics 2015; 6:1107-20. [PMID: 24811388 DOI: 10.1039/c4mt00031e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hemes are iron containing heterocyclic molecules important in many cellular processes. In the marine environment, hemes participate as enzymatic cofactors in biogeochemically significant processes like photosynthesis, respiration, and nitrate assimilation. Further, hemoproteins, hemes, and their analogs appear to be iron sources for some marine bacterioplankton under certain conditions. Current oceanographic analytical methodologies allow for the extraction and measurement of heme b from marine material, and a handful of studies have begun to examine the distribution of heme b in ocean basins. The study of heme in the marine environment is still in its infancy, but some trends can be gleaned from the work that has been published so far. In this review, we summarize what is known or might be inferred about the roles of heme in marine microbes as well as the few studies on heme in the marine environment that have been conducted to date. We conclude by presenting some future questions and challenges for the field.
Collapse
Affiliation(s)
- Shane L Hogle
- Geoscience Research Division, Scripps Institution of Oceanography, La Jolla, California, USA.
| | | | | |
Collapse
|
25
|
Dash BP, Alles M, Bundschuh FA, Richter OMH, Ludwig B. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:202-211. [PMID: 25445316 DOI: 10.1016/j.bbabio.2014.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 11/27/2022]
Abstract
The biogenesis of the mitochondrial cytochrome c oxidase is a complex process involving the stepwise assembly of its multiple subunits encoded by two genetic systems. Moreover, several chaperones are required to recruit and insert the redox-active metal centers into subunits I and II, two a-type hemes and a total of three copper ions, two of which form the CuA center located in a hydrophilic domain of subunit II. The copper-binding Sco protein(s) have been implicated with the metallation of this site in various model organisms. Here we analyze the role of the two Sco homologues termed ScoA and ScoB, along with two other copper chaperones, on the biogenesis of the cytochrome c oxidase in the bacterium Paracoccus denitrificans by deleting each of the four genes individually or pairwise, followed by assessing the functionality of the assembled oxidase both in intact membranes and in the purified enzyme complex. Copper starvation leads to a drastic decrease of oxidase activity in membranes from strains involving the scoB deletion. This loss is shown to be of dual origin, (i) a severe drop in steady-state oxidase levels in membranes, and (ii) a diminished enzymatic activity of the remaining oxidase complex, traced back to a lower copper content, specifically in the CuA site of the enzyme. Neither of the other proteins addressed here, ScoA or the two PCu proteins, exhibit a direct effect on the metallation of the CuA site in P. denitrificans, but are discussed as potential interaction partners of ScoB.
Collapse
Affiliation(s)
| | - Melanie Alles
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Freya Alena Bundschuh
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Oliver-M H Richter
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Bernd Ludwig
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany.
| |
Collapse
|
26
|
Gardner JG, Crouch L, Labourel A, Forsberg Z, Bukhman YV, Vaaje-Kolstad G, Gilbert HJ, Keating DH. Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium. Mol Microbiol 2014; 94:1121-1133. [PMID: 25294408 DOI: 10.1111/mmi.12821] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2014] [Indexed: 11/28/2022]
Abstract
Microbial depolymerization of plant cell walls contributes to global carbon balance and is a critical component of renewable energy. The genomes of lignocellulose degrading microorganisms encode diverse classes of carbohydrate modifying enzymes, although currently there is a paucity of knowledge on the role of these proteins in vivo. We report the comprehensive analysis of the cellulose degradation system in the saprophytic bacterium Cellvibrio japonicus. Gene expression profiling of C. japonicus demonstrated that three of the 12 predicted β-1,4 endoglucanases (cel5A, cel5B, and cel45A) and the sole predicted cellobiohydrolase (cel6A) showed elevated expression during growth on cellulose. Targeted gene disruptions of all 13 predicted cellulase genes showed that only cel5B and cel6A were required for optimal growth on cellulose. Our analysis also identified three additional genes required for cellulose degradation: lpmo10B encodes a lytic polysaccharide monooxygenase (LPMO), while cbp2D and cbp2E encode proteins containing carbohydrate binding modules and predicted cytochrome domains for electron transfer. CjLPMO10B oxidized cellulose and Cbp2D demonstrated spectral properties consistent with redox function. Collectively, this report provides insight into the biological role of LPMOs and redox proteins in cellulose utilization and suggests that C. japonicus utilizes a combination of hydrolytic and oxidative cleavage mechanisms to degrade cellulose.
Collapse
Affiliation(s)
- Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, 324 Biological Sciences Building, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abicht HK, Schärer MA, Quade N, Ledermann R, Mohorko E, Capitani G, Hennecke H, Glockshuber R. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. J Biol Chem 2014; 289:32431-44. [PMID: 25274631 DOI: 10.1074/jbc.m114.607127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two critical cysteine residues in the copper-A site (Cu(A)) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu(2+) transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E'0 = -231 mV) as compared with that of TlpA (E'0 = -256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 10(4) M(-1) s(-1) that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the Cu(A)-CoxB complex may be bypassed in vivo by high environmental Cu(2+) concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.
Collapse
Affiliation(s)
- Helge K Abicht
- From the Institute of Molecular Biology and Biophysics and Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | - Martin A Schärer
- From the Institute of Molecular Biology and Biophysics and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Nick Quade
- From the Institute of Molecular Biology and Biophysics and
| | | | | | - Guido Capitani
- the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | | |
Collapse
|
28
|
de Poulpiquet A, Ranava D, Monsalve K, Giudici-Orticoni MT, Lojou E. Biohydrogen for a New Generation of H2/O2Biofuel Cells: A Sustainable Energy Perspective. ChemElectroChem 2014. [DOI: 10.1002/celc.201402249] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Svahn E, Faxén K, Gennis RB, Brzezinski P. Proton pumping by an inactive structural variant of cytochrome c oxidase. J Inorg Biochem 2014; 140:6-11. [PMID: 25042731 DOI: 10.1016/j.jinorgbio.2014.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The aa3-type cytochrome c oxidases (CytcOs) from e.g. Rhodobacter sphaeroides and Paracoccus denitrificans harbor two proton-transfer pathways. The K pathway is used for proton uptake upon reduction of the CytcO, while the D pathway is used after binding of O2 to the catalytic site. The aim of the present study was to determine whether or not CytcO in which the K pathway is blocked (by e.g. the Lys362Met replacement) is capable of pumping protons. The process can not be studied using conventional assays because the O2-reduction activity is too low when the K pathway is blocked. Consequently, proton pumping with a blocked K pathway has not been demonstrated directly. Here, the Lys362Met and Ser299Glu structural variants were reconstituted in liposomes and allowed to (slowly) become completely reduced. Then, the reaction with O2 was studied with μs time resolution after flash photolysis of a blocking CO ligand bound to heme a3. The data show that with both the inactive Lys362Met and partly active Ser299Glu variants proton release occurred with the same time constants as with the wild-type oxidase, i.e. ~200μs and ~3ms, corresponding in time to formation of the ferryl and oxidized states, respectively. Thus, the data show that the K pathway is not required for proton pumping, suggesting that D and K pathways operate independently of each other after binding of O2 to the catalytic site.
Collapse
Affiliation(s)
- Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kristina Faxén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, IL 61801, United States
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
30
|
Bagkos G, Koufopoulos K, Piperi C. A new model for mitochondrial membrane potential production and storage. Med Hypotheses 2014; 83:175-81. [PMID: 24907229 DOI: 10.1016/j.mehy.2014.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/10/2014] [Indexed: 02/05/2023]
Abstract
Mitochondrial membrane potential (MMP) is the most reliable indicator of mitochondrial function. The MMP value range of -136 to -140mV has been considered optimal for maximum ATP production for all living organisms. Even small changes from the above range result in a large fall in ATP production and a large increase in ROS production. The resulting bioenergetic deregulation is considered as the causative agent for numerous major human diseases. Normalization of MMP value improves mitochondrial function and gives excellent therapeutic results. In order for a systematic effective treatment of these diseases to be developed, a detailed knowledge of the mechanism of MMP production is absolutely necessary. However, despite the long-standing research efforts, a concrete mechanism for MMP production has not been found yet. The present paper proposes a novel mechanism of MMP production based on new considerations underlying the function of the two basic players of MMP production, the electron transport chain (ETC) and the F1F0 ATP synthase. Under normal conditions, MMP is almost exclusively produced by the electron flow through ETC complexes I-IV, creating a direct electric current that stops in subunit II of complex IV and gradually charges MMP. However, upon ETC dysfunction F1F0 ATP synthase reverses its action and starts to hydrolyze ATP. ATP hydrolysis further produces electric energy which is transferred, in the form of a direct electric current, from F1 to F0 where is used to charge MMP. This new model is expected to redirect current experimental research on mitochondrial bioenergetics and indicate new therapeutic schemes for mitochondrial disorders.
Collapse
Affiliation(s)
- Georgios Bagkos
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Kostas Koufopoulos
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece.
| |
Collapse
|
31
|
Näsvik Öjemyr L, Maréchal A, Vestin H, Meunier B, Rich PR, Brzezinski P. Reaction of wild-type and Glu243Asp variant yeast cytochrome c oxidase with O2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1012-8. [PMID: 24685432 DOI: 10.1016/j.bbabio.2014.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/07/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
We have studied internal electron transfer during the reaction of Saccharomyces cerevisiae mitochondrial cytochrome c oxidase with dioxygen. Similar absorbance changes were observed with this yeast oxidase as with the previously studied Rhodobacter sphaeroides and bovine mitochondrial oxidases, which suggests that the reaction proceeds along the same trajectory. However, notable differences were observed in rates and electron-transfer equilibrium constants of specific reaction steps, for example the ferryl (F) to oxidized (O) reaction was faster with the yeast (0.4ms) than with the bovine oxidase (~1ms) and a larger fraction CuA was oxidized with the yeast than with the bovine oxidase in the peroxy (PR) to F reaction. Furthermore, upon replacement of Glu243, located at the end of the so-called D proton pathway, by Asp the PR→F and F→O reactions were slowed by factors of ~3 and ~10, respectively, and electron transfer from CuA to heme a during the PR→F reaction was not observed. These data indicate that during reduction of dioxygen protons are transferred through the D pathway, via Glu243, to the catalytic site in the yeast mitochondrial oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Amandine Maréchal
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Henrik Vestin
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brigitte Meunier
- Centre de Génétique Moléculaire du CNRS, UPR 3404, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Peter R Rich
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
32
|
Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site. FEBS Lett 2014; 588:1537-41. [PMID: 24681096 DOI: 10.1016/j.febslet.2014.03.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/08/2014] [Accepted: 03/14/2014] [Indexed: 11/23/2022]
Abstract
Cytochrome bd ubiquinol oxidase uses the electron transport from ubiquinol to oxygen to establish a proton gradient across the membrane. The enzyme complex consists of subunits CydA and B and contains two b- and one d-type hemes as cofactors. Recently, it was proposed that a third subunit named CydX is essential for the function of the complex. Here, we show that CydX is indeed a subunit of purified Escherichia coli cytochrome bd oxidase and that the small protein is needed either for the assembly or the stability of the active site di-heme center and, thus, is essential for oxidase activity.
Collapse
|
33
|
Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1178-87. [PMID: 24486503 DOI: 10.1016/j.bbabio.2014.01.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/28/2022]
Abstract
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme-copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
34
|
Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production. Anal Bioanal Chem 2013; 406:1011-27. [DOI: 10.1007/s00216-013-7465-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/01/2013] [Accepted: 10/25/2013] [Indexed: 12/26/2022]
|
35
|
Biochemical and biophysical characterization of the two isoforms of cbb3-type cytochrome c oxidase from Pseudomonas stutzeri. J Bacteriol 2013; 196:472-82. [PMID: 24214947 DOI: 10.1128/jb.01072-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cbb3-type cytochrome c oxidases (cbb3-CcOs) are members of the heme-copper oxidase superfamily that couple the reduction of oxygen to translocation of protons across the membrane. The cbb3-CcOs are present only in bacteria and play a primary role in microaerobic respiration, being essential for nitrogen-fixing endosymbionts and for some human pathogens. As frequently observed in Pseudomonads, Pseudomonas stutzeri contains two independent ccoNO(Q)P operons encoding the two cbb3 isoforms, Cbb3-1 and Cbb3-2. While the crystal structure of Cbb3-1 from P. stutzeri was determined recently and cbb3-CcOs from other organisms were characterized functionally, less emphasis has been placed on the isoform-specific differences between the cbb3-CcOs. In this work, both isoforms were homologously expressed in P. stutzeri strains from which the genomic version of the respective operon was deleted. We purified both cbb3 isoforms separately by affinity chromatography and increased the yield of Cbb3-2 to a similar level as Cbb3-1 by replacing its native promoter. Mass spectrometry, UV-visible (UV-Vis) spectroscopy, differential scanning calorimetry, as well as oxygen reductase and catalase activity measurements were employed to characterize both cbb3 isoforms. Differences were found concerning the thermal stability and the presence of subunit CcoQ. However, no significant differences between the two isoforms were observed otherwise. Interestingly, a surprisingly high turnover of at least 2,000 electrons s(-1) and a high Michaelis-Menten constant (Km ~ 3.6 mM) using ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) as the electron donor were characteristic for both P. stutzeri cbb3-CcOs. Our work provides the basis for further mutagenesis studies of each of the two cbb3 isoforms specifically.
Collapse
|
36
|
Brzezinski P, Öjemyr LN, Ädelroth P. Intermediates generated during the reaction of reduced Rhodobacter sphaeroides cytochrome c oxidase with dioxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:843-7. [DOI: 10.1016/j.bbabio.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
|
37
|
Johansson AL, Carlsson J, Högbom M, Hosler JP, Gennis RB, Brzezinski P. Proton uptake and pKa changes in the uncoupled Asn139Cys variant of cytochrome c oxidase. Biochemistry 2013; 52:827-36. [PMID: 23305515 DOI: 10.1021/bi301597a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme that links electron transfer from cytochrome c to O(2) to proton pumping across the membrane. Protons are transferred through specific pathways that connect the protein surface with the catalytic site as well as the proton input with the proton output sides. Results from earlier studies have shown that one site within the so-called D proton pathway, Asn139, located ~10 Å from the protein surface, is particularly sensitive to mutations that uncouple the O(2) reduction reaction from the proton pumping activity. For example, none of the Asn139Asp (charged) or Asn139Thr (neutral) mutant CytcOs pump protons, although the proton-uptake rates are unaffected. Here, we have investigated the Asn139Cys and Asn139Cys/Asp132Asn mutant CytcOs. In contrast to other structural variants investigated to date, the Cys side chain may be either neutral or negatively charged in the experimentally accessible pH range. The data show that the Asn139Cys and Asn139Asp mutations result in the same changes of the kinetic and thermodynamic parameters associated with the proton transfer. The similarity is not due to introduction of charge at position 139, but rather introduction of a protonatable group that modulates the proton connectivity around this position. These results illuminate the mechanism by which CytcO couples electron transfer to proton pumping.
Collapse
Affiliation(s)
- Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Heering HA. Analysis of protein film voltammograms as Michaelis–Menten saturation curves yield the electron cooperativity number for deconvolution. Bioelectrochemistry 2012; 87:58-64. [DOI: 10.1016/j.bioelechem.2011.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 12/28/2022]
|
39
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
40
|
Lin MT, Gennis RB. Product-controlled steady-state kinetics between cytochrome aa(3) from Rhodobacter sphaeroides and equine ferrocytochrome c analyzed by a novel spectrophotometric approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1894-900. [PMID: 22516686 DOI: 10.1016/j.bbabio.2012.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase (CcO) catalyzes the reduction of molecular oxygen to water using ferrocytochrome c (cyt c(2+)) as the electron donor. In this study, the oxidation of horse cyt c(2+) by CcO from Rhodobacter sphaeroides, was monitored using stopped-flow spectrophotometry. A novel analytic procedure was applied in which the spectra were deconvoluted into the reduced and oxidized forms of cyt c by a least-squares fitting method, yielding the reaction rates at various concentrations of cyt c(2+) and cyt c(3+). This allowed an analysis of the effects of cyt c(3+) on the steady-state kinetics between CcO and cyt c(2+). The results show that cyt c(3+) exhibits product inhibition by two mechanisms: competition with cyt c(2+) at the catalytic site and, in addition, an interaction at a second site which further modulates the reaction of cyt c(2+) at the catalytic site. These results are generally consistent with previous reports, indicating the reliability of the new procedure. We also find that a 6×His-tag at the C-terminus of the subunit II of CcO affects the binding of cyt c at both sites. The approach presented here should be generally useful in spectrophotometric studies of complex enzyme kinetics. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Myat T Lin
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
41
|
Öjemyr LN, von Ballmoos C, Faxén K, Svahn E, Brzezinski P. The membrane modulates internal proton transfer in cytochrome c oxidase. Biochemistry 2012; 51:1092-100. [PMID: 22257086 DOI: 10.1021/bi201795c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The functionality of membrane proteins is often modulated by the surrounding membrane. Here, we investigated the effect of membrane reconstitution of purified cytochrome c oxidase (CytcO) on the kinetics and thermodynamics of internal electron and proton-transfer reactions during O(2) reduction. Reconstitution of the detergent-solubilized enzyme in small unilamellar soybean phosphatidylcholine vesicles resulted in a lowering of the pK(a) in the pH dependence profile of the proton-uptake rate. This pK(a) change resulted in decreased proton-uptake rates in the pH range of ~6.5-9.5, which is explained in terms of lowering of the pK(a) of an internal proton donor within CytcO. At pH 7.5, the rate decreased to the same extent when vesicles were prepared from the pure zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or the anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho(1-rac-glycerol) (DOPG). In addition, a small change in the internal Cu(A)-heme a electron equilibrium constant was observed. This effect was lipid-dependent and explained in terms of a lower electrostatic potential within the membrane-spanning part of the protein with the anionic DOPG lipids than with the zwitterionic DOPC lipids. In conclusion, the data show that the membrane significantly modulates internal charge-transfer reactions and thereby the function of the membrane-bound enzyme.
Collapse
Affiliation(s)
- Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
42
|
Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1398-413. [PMID: 21756872 PMCID: PMC3171616 DOI: 10.1016/j.bbabio.2011.06.016] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/03/2023]
Abstract
Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation.
| | | | | | | |
Collapse
|
43
|
Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy RM. Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 2011; 6:56. [PMID: 22024028 PMCID: PMC3214167 DOI: 10.1186/1745-6150-6-56] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria mediate most of the energy production that occurs in the majority of eukaryotic organisms. These subcellular organelles contain a genome that differs from the nuclear genome and is referred to as mitochondrial DNA (mtDNA). Despite a disparity in gene content, all mtDNAs encode at least two components of the mitochondrial electron transport chain, including cytochrome c oxidase I (Cox1). PRESENTATION OF THE HYPOTHESIS A positionally conserved ORF has been found on the complementary strand of the cox1 genes of both eukaryotic mitochondria (protist, plant, fungal and animal) and alpha-proteobacteria. This putative gene has been named gau for gene antisense ubiquitous in mtDNAs. The length of the deduced protein is approximately 100 amino acids. In vertebrates, several stop codons have been found in the mt gau region, and potentially functional gau regions have been found in nuclear genomes. However, a recent bioinformatics study showed that several hypothetical overlapping mt genes could be predicted, including gau; this involves the possible import of the cytosolic AGR tRNA into the mitochondria and/or the expression of mt antisense tRNAs with anticodons recognizing AGR codons according to an alternative genetic code that is induced by the presence of suppressor tRNAs. Despite an evolutionary distance of at least 1.5 to 2.0 billion years, the deduced Gau proteins share some conserved amino acid signatures and structure, which suggests a possible conserved function. Moreover, BLAST analysis identified rare, sense-oriented ESTs with poly(A) tails that include the entire gau region. Immunohistochemical analyses using an anti-Gau monoclonal antibody revealed strict co-localization of Gau proteins and a mitochondrial marker. TESTING THE HYPOTHESIS This hypothesis could be tested by purifying the gau gene product and determining its sequence. Cell biological experiments are needed to determine the physiological role of this protein. IMPLICATIONS OF THE HYPOTHESIS Studies of the gau ORF will shed light on the origin of novel genes and their functions in organelles and could also have medical implications for human diseases that are caused by mitochondrial dysfunction. Moreover, this strengthens evidence for mitochondrial genes coded according to an overlapping genetic code.
Collapse
Affiliation(s)
- Eric Faure
- Université de Provence, Marseille cedex 3, France.
| | | | | | | | | | | |
Collapse
|
44
|
Varanasi L, Hosler JP. Subunit III-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:545-51. [PMID: 22023935 DOI: 10.1016/j.bbabio.2011.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022]
Abstract
We review studies of subunit III-depleted cytochrome c oxidase (CcO III (-)) that elucidate the structural basis of steady-state proton uptake from solvent into an internal proton transfer pathway. The removal of subunit III from R. sphaeroides CcO makes proton uptake into the D pathway a rate-determining step, such that measurements of the pH dependence of steady-state O(2) consumption can be used to compare the rate and functional pK(a) of proton uptake by D pathways containing different initial proton acceptors. The removal of subunit III also promotes spontaneous suicide inactivation by CcO, greatly shortening its catalytic lifespan. Because the probability of suicide inactivation is controlled by the rate at which the D pathway delivers protons to the active site, measurements of catalytic lifespan provide a second method to compare the relative efficacy of proton uptake by engineered CcO III (-) forms. These simple experimental systems have been used to explore general questions of proton uptake by proteins, such as the functional value of an initial proton acceptor, whether an initial acceptor must be surface-exposed, which side chains will function as initial proton acceptors and whether multiple acceptors can speed proton uptake.
Collapse
Affiliation(s)
- Lakshman Varanasi
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS, USA.
| | | |
Collapse
|
45
|
Hill BC, Andrews D. Differential affinity of BsSCO for Cu(II) and Cu(I) suggests a redox role in copper transfer to the Cu(A) center of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:948-54. [PMID: 21945854 DOI: 10.1016/j.bbabio.2011.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/01/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the Cu(A) center contained within subunit II of the oxidase complex. The Cu(A) center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a(3) and Cu(B). Cu(A) consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of Cu(A) present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in Cu(A) assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-Cu(A) site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Bruce C Hill
- Department of Biochemistry and Protein Function Discovery Group, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | |
Collapse
|
46
|
Sarti P, Forte E, Mastronicola D, Giuffrè A, Arese M. Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:610-9. [PMID: 21939634 DOI: 10.1016/j.bbabio.2011.09.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.
Collapse
Affiliation(s)
- Paolo Sarti
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.
| | | | | | | | | |
Collapse
|
47
|
Giuffrè A, Borisov VB, Mastronicola D, Sarti P, Forte E. Cytochromebdoxidase and nitric oxide: From reaction mechanisms to bacterial physiology. FEBS Lett 2011; 586:622-9. [DOI: 10.1016/j.febslet.2011.07.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/27/2022]
|
48
|
Varanasi L, Hosler J. Alternative initial proton acceptors for the D pathway of Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 2011; 50:2820-8. [PMID: 21344856 DOI: 10.1021/bi102002v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To characterize protein structures that control proton uptake, we assayed forms of cytochrome c oxidase (CcO) containing a carboxyl or a thiol group in line with the initial, internal waters of the D pathway for proton transfer in the presence and absence of subunit III. Subunit III provides approximately half of the protein surrounding the entry region of the D pathway. The N139D/D132N mutant contains a carboxyl group 6 Å within the D pathway and lacks the normal, surface-exposed proton acceptor, Asp-132. With subunit III, the steady-state activity of this mutant is slow, but once subunit III is removed, its activity is the same as that of wild-type CcO lacking subunit III (∼1800 H+/s). Thus, a carboxyl group∼25% within the pathway enhances proton uptake even though the carboxyl has no direct contact with bulk solvent. Protons from solvent apparently move to internal Asp-139 through a short file of waters, normally blocked by subunit III. Cys-139 also supports rapid steady-state proton uptake, demonstrating that an anion other than a carboxyl can attract and transfer protons into the D pathway. When both Asp-132 and Asp/Cys-139 are present, the removal of subunit III increases CcO activity to rates greater than that of normal CcO because of simultaneous proton uptake by two initial acceptors. The results show how the environment of the initial proton acceptor for the D pathway in these CcO forms dictates the pH range of CcO activity, with implications for the function of Asp-132, the normal proton acceptor.
Collapse
Affiliation(s)
- Lakshman Varanasi
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | | |
Collapse
|
49
|
Anttila J, Heinonen P, Nenonen T, Pino A, Iwaï H, Kauppi E, Soliymani R, Baumann M, Saksi J, Suni N, Haltia T. Is coproporphyrin III a copper-acquisition compound in Paracoccus denitrificans? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:311-8. [DOI: 10.1016/j.bbabio.2010.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 11/25/2022]
|
50
|
Rea SL, Graham BH, Nakamaru-Ogiso E, Kar A, Falk MJ. Bacteria, yeast, worms, and flies: exploiting simple model organisms to investigate human mitochondrial diseases. ACTA ACUST UNITED AC 2011; 16:200-18. [PMID: 20818735 DOI: 10.1002/ddrr.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level. Here, we review the relative utility of four different model organisms, namely the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, in studying the role of mitochondrial proteins relevant to human disease. E. coli are single cell, prokaryotic bacteria that have proven to be a useful model system in which to investigate mitochondrial respiratory chain protein structure and function. S. cerevisiae is a single-celled eukaryote that can grow equally well by mitochondrial-dependent respiration or by ethanol fermentation, a property that has proven to be a veritable boon for investigating mitochondrial functionality. C. elegans is a multicellular, microscopic worm that is organized into five major tissues and has proven to be a robust model animal for in vitro and in vivo studies of primary respiratory chain dysfunction and its potential therapies in humans. Studied for over a century, D. melanogaster is a classic metazoan model system offering an abundance of genetic tools and reagents that facilitates investigations of mitochondrial biology using both forward and reverse genetics. The respective strengths and limitations of each species relative to mitochondrial studies are explored. In addition, an overview is provided of major discoveries made in mitochondrial biology in each of these four model systems.
Collapse
Affiliation(s)
- Shane L Rea
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| | | | | | | | | |
Collapse
|