1
|
Plouviez M, Dubreucq E. Key Proteomics Tools for Fundamental and Applied Microalgal Research. Proteomes 2024; 12:13. [PMID: 38651372 PMCID: PMC11036299 DOI: 10.3390/proteomes12020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Microscopic, photosynthetic prokaryotes and eukaryotes, collectively referred to as microalgae, are widely studied to improve our understanding of key metabolic pathways (e.g., photosynthesis) and for the development of biotechnological applications. Omics technologies, which are now common tools in biological research, have been shown to be critical in microalgal research. In the past decade, significant technological advancements have allowed omics technologies to become more affordable and efficient, with huge datasets being generated. In particular, where studies focused on a single or few proteins decades ago, it is now possible to study the whole proteome of a microalgae. The development of mass spectrometry-based methods has provided this leap forward with the high-throughput identification and quantification of proteins. This review specifically provides an overview of the use of proteomics in fundamental (e.g., photosynthesis) and applied (e.g., lipid production for biofuel) microalgal research, and presents future research directions in this field.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
- The Cawthron Institute, Nelson 7010, New Zealand
| | - Eric Dubreucq
- Agropolymer Engineering and Emerging Technologies, L’Institut Agro Montpellier, 34060 Montpellier, France;
| |
Collapse
|
2
|
Tejada-Jimenez M, Leon-Miranda E, Llamas A. Chlamydomonas reinhardtii-A Reference Microorganism for Eukaryotic Molybdenum Metabolism. Microorganisms 2023; 11:1671. [PMID: 37512844 PMCID: PMC10385300 DOI: 10.3390/microorganisms11071671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Molybdenum (Mo) is vital for the activity of a small but essential group of enzymes called molybdoenzymes. So far, specifically five molybdoenzymes have been discovered in eukaryotes: nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and mARC. In order to become biologically active, Mo must be chelated to a pterin, forming the so-called Mo cofactor (Moco). Deficiency or mutation in any of the genes involved in Moco biosynthesis results in the simultaneous loss of activity of all molybdoenzymes, fully or partially preventing the normal development of the affected organism. To prevent this, the different mechanisms involved in Mo homeostasis must be finely regulated. Chlamydomonas reinhardtii is a unicellular, photosynthetic, eukaryotic microalga that has produced fundamental advances in key steps of Mo homeostasis over the last 30 years, which have been extrapolated to higher organisms, both plants and animals. These advances include the identification of the first two molybdate transporters in eukaryotes (MOT1 and MOT2), the characterization of key genes in Moco biosynthesis, the identification of the first enzyme that protects and transfers Moco (MCP1), the first characterization of mARC in plants, and the discovery of the crucial role of the nitrate reductase-mARC complex in plant nitric oxide production. This review aims to provide a comprehensive summary of the progress achieved in using C. reinhardtii as a model organism in Mo homeostasis and to propose how this microalga can continue improving with the advancements in this field in the future.
Collapse
Affiliation(s)
- Manuel Tejada-Jimenez
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Esperanza Leon-Miranda
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
3
|
Bellido-Pedraza CM, Calatrava V, Llamas A, Fernandez E, Sanz-Luque E, Galvan A. Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the Microalga Chlamydomonas reinhardtii. Int J Mol Sci 2022; 23:9412. [PMID: 36012676 PMCID: PMC9409008 DOI: 10.3390/ijms23169412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas and an ozone-depleting compound whose synthesis and release have traditionally been ascribed to bacteria and fungi. Although plants and microalgae have been proposed as N2O producers in recent decades, the proteins involved in this process have been only recently unveiled. In the green microalga Chlamydomonas reinhardtii, flavodiiron proteins (FLVs) and cytochrome P450 (CYP55) are two nitric oxide (NO) reductases responsible for N2O synthesis in the chloroplast and mitochondria, respectively. However, the molecular mechanisms feeding these NO reductases are unknown. In this work, we use cavity ring-down spectroscopy to monitor N2O and CO2 in cultures of nitrite reductase mutants, which cannot grow on nitrate or nitrite and exhibit enhanced N2O emissions. We show that these mutants constitute a very useful tool to study the rates and kinetics of N2O release under different conditions and the metabolism of this greenhouse gas. Our results indicate that N2O production, which was higher in the light than in the dark, requires nitrate reductase as the major provider of NO as substrate. Finally, we show that the presence of nitrate reductase impacts CO2 emissions in both light and dark conditions, and we discuss the role of NO in the balance between CO2 fixation and release.
Collapse
Affiliation(s)
| | - Victoria Calatrava
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Aurora Galvan
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
4
|
Chlamydomonas reinhardtii, an Algal Model in the Nitrogen Cycle. PLANTS 2020; 9:plants9070903. [PMID: 32708782 PMCID: PMC7412212 DOI: 10.3390/plants9070903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen (N) is an essential constituent of all living organisms and the main limiting macronutrient. Even when dinitrogen gas is the most abundant form of N, it can only be used by fixing bacteria but is inaccessible to most organisms, algae among them. Algae preferentially use ammonium (NH4+) and nitrate (NO3−) for growth, and the reactions for their conversion into amino acids (N assimilation) constitute an important part of the nitrogen cycle by primary producers. Recently, it was claimed that algae are also involved in denitrification, because of the production of nitric oxide (NO), a signal molecule, which is also a substrate of NO reductases to produce nitrous oxide (N2O), a potent greenhouse gas. This review is focused on the microalga Chlamydomonas reinhardtii as an algal model and its participation in different reactions of the N cycle. Emphasis will be paid to new actors, such as putative genes involved in NO and N2O production and their occurrence in other algae genomes. Furthermore, algae/bacteria mutualism will be considered in terms of expanding the N cycle to ammonification and N fixation, which are based on the exchange of carbon and nitrogen between the two organisms.
Collapse
|
5
|
Batista AD, Rosa RM, Machado M, Magalhães AS, Shalaguti BA, Gomes PF, Covell L, Vaz MGMV, Araújo WL, Nunes-Nesi A. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Metabolomics 2019; 15:31. [PMID: 30830512 DOI: 10.1007/s11306-019-1496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/21/2019] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The use of urea as a nitrogen (N) source by Chlorophytes usually enhances biomass and lipid production when compared to ammonium (NH4+). However, the metabolic shifts displayed by Chlamydomonas reinhardtii growing with this organic N source are not known. OBJECTIVES This study aimed: (i) to characterize the metabolism of C. reinhardtii cultivated in media containing only urea as N source as well as combined with different NH4+ ratios; (ii) to understand how metabolism respond to urea availability. METHODS Specific quantification of metabolites using 96-well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography (GC)-time-of-flight (TOF)-mass spectrometry (MS) were used in this study. In addition, GC analysis was used to determine fatty acid profiling. RESULTS The use of urea did not alter the growth rate in comparison with NH4+. Interestingly, the cell number decreased and the cell size increased proportionally with urea availability. Furthermore, chlorophyll, protein and lipid contents increased with the amount of urea. Regarding the fatty acid profile, oleic acid (C18:1 w8) decreased with amount of urea, while linoleic acid (C18:2 w6) doubled in urea-containing medium. CONCLUSIONS These results indicate that urea promotes remarkable adjustments in metabolism, without drastic changes in biomass, promoting changes in carbohydrate and amino acid metabolism, as well as in lipids production and fatty acid profile.
Collapse
Affiliation(s)
- Aline D Batista
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Rinamara M Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mariana Machado
- Instituto de Biociências, Universidade Federal de Goiás - Regional Jataí, Jataí, Goiás, 75801-615, Brazil
| | - Alan S Magalhães
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bárbara A Shalaguti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Priscilla F Gomes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Lidiane Covell
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo G M V Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
6
|
From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC. Molecules 2018; 23:molecules23123287. [PMID: 30545001 PMCID: PMC6321594 DOI: 10.3390/molecules23123287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic molybdenum (Mo) enzymes contain in their active site a Mo Cofactor (Moco), which is formed by a tricyclic pyranopterin with a dithiolene chelating the Mo atom. Here, the eukaryotic Moco biosynthetic pathway and the eukaryotic Moco enzymes are overviewed, including nitrate reductase (NR), sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and the last one discovered, the moonlighting enzyme mitochondrial Amidoxime Reducing Component (mARC). The mARC enzymes catalyze the reduction of hydroxylated compounds, mostly N-hydroxylated (NHC), but as well of nitrite to nitric oxide, a second messenger. mARC shows a broad spectrum of NHC as substrates, some are prodrugs containing an amidoxime structure, some are mutagens, such as 6-hydroxylaminepurine and some others, which most probably will be discovered soon. Interestingly, all known mARC need the reducing power supplied by different partners. For the NHC reduction, mARC uses cytochrome b5 and cytochrome b5 reductase, however for the nitrite reduction, plant mARC uses NR. Despite the functional importance of mARC enzymatic reactions, the structural mechanism of its Moco-mediated catalysis is starting to be revealed. We propose and compare the mARC catalytic mechanism of nitrite versus NHC reduction. By using the recently resolved structure of a prokaryotic MOSC enzyme, from the mARC protein family, we have modeled an in silico three-dimensional structure of a eukaryotic homologue.
Collapse
|
7
|
Gérin S, Leprince P, Sluse FE, Franck F, Mathy G. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2016; 7:1158. [PMID: 27555854 PMCID: PMC4977305 DOI: 10.3389/fpls.2016.01158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the metabolic adaptations contributing to maintain cellular homeostasis upon extensive environmental changes. Some of the results presented here could be used as starting points for more specific fundamental or applied investigations.
Collapse
Affiliation(s)
- Stéphanie Gérin
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, Faculty of Medicine, GIGA-Neurosciences, University of LiegeLiege, Belgium
| | - Francis E. Sluse
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Fabrice Franck
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Grégory Mathy
- Upstream Process Sciences, UCB PharmaBraine l'Alleud, Belgium
| |
Collapse
|
8
|
Rogov AG, Zvyagilskaya RA. Physiological role of alternative oxidase (from yeasts to plants). BIOCHEMISTRY (MOSCOW) 2016; 80:400-7. [PMID: 25869356 DOI: 10.1134/s0006297915040021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondria of all so far studied organisms, with the exception of Archaea, mammals, some yeasts, and protists, contain, along with the classical phosphorylating cytochrome pathway, a so-called cyanide-insensitive alternative oxidase (AOX) localized on the matrix side of the mitochondrial inner membrane, and electron transport through which is not coupled with ATP synthesis and energy accumulation. Mechanisms underlying plentiful functions of AOX in organisms at various levels of organization ranging from yeasts to plants are considered. First and foremost, AOX provides a chance of cell survival after inhibiting the terminal components of the main respiratory chain or losing the ability to synthesize these components. The vitally important role of AOX is obvious in thermogenesis of thermogenic plant organs where it becomes the only terminal oxidase with a very high activity, and the energy of substrate oxidation by this respiratory pathway is converted into heat, thus promoting evaporation of volatile substances attracting pollinating insects. AOX plays a fundamentally significant role in alleviating or preventing oxidative stress, thus ensuring the defense against a wide range of stresses and adverse environmental conditions, such as changes in temperature and light intensities, osmotic stress, drought, and attack by incompatible strains of bacterial pathogens, phytopathogens, or their elicitors. Participation of AOX in pathogen survival during its existence inside the host, in antivirus defense, as well as in metabolic rearrangements in plants during embryogenesis and cell differentiation is described. Examples are given to demonstrate that AOX might be an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | |
Collapse
|
9
|
Zalutskaya Z, Lapina T, Ermilova E. The Chlamydomonas reinhardtii alternative oxidase 1 is regulated by heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:229-34. [PMID: 26492131 DOI: 10.1016/j.plaphy.2015.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/03/2015] [Accepted: 10/09/2015] [Indexed: 05/27/2023]
Abstract
The alternative oxidase (AOX) is a non-energy conserving terminal oxidase that has emerged as an important mitochondrial component of the cell stress responses. Although the most studied abiotic condition in relation to Chlamydomonas reinhardtii is high temperature, changes in AOX capacity of the alga were studied only under oxidative stress and cold. To examine whether elevated temperatures affected AOX1 expression, we applied quantitative real-time PCR and pharmaceutical approaches. In this work, we demonstrated a sharp increase in AOX1 transcript and protein abundance under heat stress. Furthermore, C. reinhardtii cells displayed a large increase in alternative respiration in response to high temperature. Feeding with the protein kinase inhibitor staurosporine strongly retarded the AOX1 transcription. Finally, the addition of the calcium chelator EGTA prevented heat-induced AOX1 expression. Together, our results imply that heat-inducible Ca(2+) influx and protein kinase(s) may mediate AOX1 expression at elevated temperatures. Characterization of heat-induced AOX1 regulation in the green alga C. reinhardtii provides a framework for a more complete understanding of the function of this conserved protein.
Collapse
Affiliation(s)
- Zhanneta Zalutskaya
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Tatiana Lapina
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Elena Ermilova
- Lab Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia.
| |
Collapse
|
10
|
Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions. BIOCHEMISTRY (MOSCOW) 2015; 79:1615-34. [PMID: 25749168 DOI: 10.1134/s0006297914130112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
11
|
Gérin S, Mathy G, Franck F. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC SYSTEMS BIOLOGY 2014; 8:96. [PMID: 25123231 PMCID: PMC4236732 DOI: 10.1186/s12918-014-0096-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/04/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND In photosynthetic organisms, the influence of light, carbon and inorganic nitrogen sources on the cellular bioenergetics has extensively been studied independently, but little information is available on the cumulative effects of these factors. Here, sequential statistical analyses based on design of experiments (DOE) coupled to standard least squares multiple regression have been undertaken to model the dependence of respiratory and photosynthetic responses (assessed by oxymetric and chlorophyll fluorescence measurements) upon the concomitant modulation of light intensity as well as acetate, CO₂, nitrate and ammonium concentrations in the culture medium of Chlamydomonas reinhardtii. The main goals of these analyses were to explain response variability (i.e. bioenergetic plasticity) and to characterize quantitatively the influence of the major explanatory factor(s). RESULTS For each response, 2 successive rounds of multiple regression coupled to one-way ANOVA F-tests have been undertaken to select the major explanatory factor(s) (1st-round) and mathematically simulate their influence (2nd-round). These analyses reveal that a maximal number of 3 environmental factors over 5 is sufficient to explain most of the response variability, and interestingly highlight quadratic effects and second-order interactions in some cases. In parallel, the predictive ability of the 2nd-round models has also been investigated by k-fold cross-validation and experimental validation tests on new random combinations of factors. These validation procedures tend to indicate that the 2nd-round models can also be used to predict the responses with an inherent deviation quantified by the analytical error of the models. CONCLUSIONS Altogether, the results of the 2 rounds of modeling provide an overview of the bioenergetic adaptations of C. reinhardtii to changing environmental conditions and point out promising tracks for future in-depth investigations of the molecular mechanisms underlying the present observations.
Collapse
Affiliation(s)
| | | | - Fabrice Franck
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of Liege, Boulevard du Rectorat 27, Liege, 4000, Belgium.
| |
Collapse
|
12
|
Tejada-Jiménez M, Schwarz G. Molybdenum and Tungsten. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for the majority of organisms ranging from bacteria to animals. To fulfil its biological role, it is incorporated into a pterin-based Mo-cofactor (Moco) and can be found in the active centre of more than 50 enzymes that are involved in key reactions of carbon, nitrogen and sulfur metabolism. Five of the Mo-enzymes are present in eukaryotes: nitrate reductase (NR), sulfite oxidase (SO), aldehyde oxidase (AO), xanthine oxidase (XO) and the amidoxime-reducing component (mARC). Cells acquire Mo in form of the oxyanion molybdate using specific molybdate transporters. In bacteria, molybdate transport is an extensively studied process and is mediated mainly by the ATP-binding cassette system ModABC. In contrast, in eukaryotes, molybdate transport is poorly understood since specific molybdate transporters remained unknown until recently. Two rather distantly related families of proteins, MOT1 and MOT2, are involved in eukaryotic molybdate transport. They each feature high-affinity molybdate transporters that regulate the intracellular concentration of Mo and thus control activity of Mo-enzymes. The present chapter presents an overview of the biological functions of Mo with special focus on recent data related to its uptake, binding and storage.
Collapse
Affiliation(s)
- Manuel Tejada-Jiménez
- Institute of Biochemistry, Department of Chemistry, University of Cologne Zuelpicher Str. 47 Cologne 50674 Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne Zuelpicher Str. 47 Cologne 50674 Germany
- Center for Molecular Medicine Cologne, University of Cologne Robert-Koch Str. 21 Cologne 50931 Germany
- Cluster of Excellence in Ageing Research, CECAD Research Center Joseph-Stelzmann-Str. 26 Cologne 50931 Germany
| |
Collapse
|
13
|
Remacle C, Eppe G, Coosemans N, Fernandez E, Vigeolas H. Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:23-33. [PMID: 24187418 PMCID: PMC3883280 DOI: 10.1093/jxb/ert339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microalgae are receiving increasing attention as alternative production systems for renewable energy such as biofuel. The photosynthetic alga Chlamydomonas reinhardtii is widely recognized as the model system to study all aspects of algal physiology, including the molecular mechanisms underlying the accumulation of starch and triacylglycerol (TAG), which are the precursors of biofuel. All of these pathways not only require a carbon (C) supply but also are strongly dependent on a source of nitrogen (N) to sustain optimal growth rate and biomass production. In order to gain a better understanding of the regulation of C and N metabolisms and the accumulation of storage carbohydrates, the effect of different N sources (NH4NO3 and ) on primary metabolism using various mutants impaired in either NIA1, NIT2 or both loci was performed by metabolic analyses. The data demonstrated that, using NH4NO3, nia1 strain displayed the most striking phenotype, including an inhibition of growth, accumulation of intracellular nitrate, and strong starch and TAG accumulation. The measurements of the different C and N intermediate levels (amino, organic, and fatty acids), together with the determination of acetate and remaining in the medium, clearly excluded the hypothesis of a slower and acetate assimilation in this mutant in the presence of NH4NO3. The results provide evidence of the implication of intracellular nitrate and NIT2 in the control of C partitioning into different storage carbohydrates under mixotrophic conditions in Chlamydomonas. The underlying mechanisms and implications for strategies to increase biomass yield and storage product composition in oleaginous algae are discussed.
Collapse
Affiliation(s)
- C. Remacle
- University of Liege, Institute of Botany, B22, Genetics of Microorganisms, 4000 Liege, Belgium
| | - G. Eppe
- University of Liege, Inorganic Analytical Chemistry, LSM-CART, Allée de la Chimie B6c, 4000 Liege, Belgium
| | - N. Coosemans
- University of Liege, Institute of Botany, B22, Genetics of Microorganisms, 4000 Liege, Belgium
| | - E. Fernandez
- Departamento de Bioquımica y Biologıa Molecular, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | - H. Vigeolas
- University of Liege, Institute of Botany, B22, Genetics of Microorganisms, 4000 Liege, Belgium
- * To whom correspondence should be addressed.
| |
Collapse
|
14
|
Tejada-Jiménez M, Chamizo-Ampudia A, Galván A, Fernández E, Llamas Á. Molybdenum metabolism in plants. Metallomics 2013; 5:1191-203. [DOI: 10.1039/c3mt00078h] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Ng S, Giraud E, Duncan O, Law SR, Wang Y, Xu L, Narsai R, Carrie C, Walker H, Day DA, Blanco NE, Strand Å, Whelan J, Ivanova A. Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. J Biol Chem 2012; 288:3449-59. [PMID: 23229550 DOI: 10.1074/jbc.m112.416727] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants must deal effectively with unfavorable growth conditions that necessitate a coordinated response to integrate cellular signals with mitochondrial retrograde signals. A genetic screen was carried out to identify regulators of alternative oxidase (rao mutants), using AOX1a expression as a model system to study retrograde signaling in plants. Two independent rao1 mutant alleles identified CDKE1 as a central nuclear component integrating mitochondrial retrograde signals with energy signals under stress. CDKE1 is also necessary for responses to general cellular stresses, such as H(2)O(2) and cold that act, at least in part, via anterograde pathways, and integrates signals from central energy/stress sensing kinase signal transduction pathways within the nucleus. Together, these results place CDKE1 as a central kinase integrating diverse cellular signals and shed light on a mechanism by which plants can effectively switch between growth and stress responses.
Collapse
Affiliation(s)
- Sophia Ng
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Llamas A, Tejada-Jiménez M, Fernández E, Galván A. Molybdenum metabolism in the alga Chlamydomonas stands at the crossroad of those in Arabidopsis and humans. Metallomics 2011; 3:578-90. [PMID: 21623427 DOI: 10.1039/c1mt00032b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molybdenum (Mo) is a very scarce element whose function is fundamental in living beings within the active site of Mo-oxidoreductases, playing key roles in the metabolism of N, S, purines, hormone biosynthesis, transformation of drugs and xenobiotics, etc. In eukaryotes, each step from Mo acquisition until its incorporation into a biologically active molybdenum cofactor (Moco) together with the assembly of this Moco in Mo-enzymes is almost understood. The deficiency in function of a particular molybdoenzyme can be critical for the survival of the organism dependent on the pathway involved. However, incapacity in forming a functional Moco has a pleiotropic effect in the different processes involving this cofactor. A detailed overview of Mo metabolism: (a) specific transporters for molybdate, (b) the universal biosynthesis pathway for Moco from GTP, (c) Moco-carrier and Moco-binding proteins for Moco transfer and (d) Mo-enzymes, is analyzed in light of recent findings and three systems are compared, the unicellular microalga Chlamydomonas, the plant Arabidopsis and humans.
Collapse
Affiliation(s)
- Angel Llamas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071 Córdoba, Spain.
| | | | | | | |
Collapse
|