1
|
The evolution of the human mitochondrial bc1 complex- adaptation for reduced rate of superoxide production? J Bioenerg Biomembr 2023; 55:15-31. [PMID: 36737563 DOI: 10.1007/s10863-023-09957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
The mitochondrial bc1 complex is a major source of mitochondrial superoxide. While bc1-generated superoxide plays a beneficial signaling role, excess production of superoxide lead to aging and degenerative diseases. The catalytic core of bc1 comprises three peptides -cytochrome b, Fe-S protein, and cytochrome c1. All three core peptides exhibit accelerated evolution in anthropoid primates. It has been suggested that the evolution of cytochrome b in anthropoids was driven by a pressure to reduce the production of superoxide. In humans, the bc1 core peptides exhibit anthropoid-specific substitutions that are clustered near functionally critical sites that may affect the production of superoxide. Here we compare the high-resolution structures of bovine, mouse, sheep and human bc1 to identify structural changes that are associated with human-specific substitutions. Several cytochrome b substitutions in humans alter its interactions with other subunits. Most significantly, there is a cluster of seven substitutions, in cytochrome b, the Fe-S protein, and cytochrome c1 that affect the interactions between these proteins at the tether arm of the Fe-S protein and may alter the rate of ubiquinone oxidation and the rate of superoxide production. Another cluster of substitutions near heme bH and the ubiquinone reduction site, Qi, may affect the rate of ubiquinone reduction and thus alter the rate of superoxide production. These results are compatible with the hypothesis that cytochrome b in humans (and other anthropoid primates) evolve to reduce the rate of production of superoxide thus enabling the exceptional longevity and exceptional cognitive ability of humans.
Collapse
|
2
|
Buford TW, Manini TM, Kairalla JA, McDermott MM, Vaz Fragoso CA, Chen H, Fielding RA, King AC, Newman AB, Tranah GJ. Mitochondrial DNA Sequence Variants Associated With Blood Pressure Among 2 Cohorts of Older Adults. J Am Heart Assoc 2019; 7:e010009. [PMID: 30371200 PMCID: PMC6222953 DOI: 10.1161/jaha.118.010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Age‐related changes in blood pressure are associated with a variety of poor health outcomes. Genetic factors are proposed contributors to age‐related increases in blood pressure, but few genetic loci have been identified. We examined the role of mitochondrial genomic variation in blood pressure by sequencing the mitochondrial genome. Methods and Results Mitochondrial DNA (mtDNA) data from 1755 participants from the LIFE (Lifestyle Interventions and Independence for Elders) studies and 788 participants from the Health ABC (Health, Aging, and Body Composition) study were evaluated using replication analysis followed by meta‐analysis. Participants were aged ≥69 years, of diverse racial backgrounds, and assessed for systolic blood pressure (SBP), diastolic blood pressure, and mean arterial pressure. After meta‐analysis across the LIFE and Health ABC studies, statistically significant associations of mtDNA variants with higher SBP (m.3197T>C, 16S rRNA; P=0.0005) and mean arterial pressure (m.15924A>G, t‐RNA‐thr; P=0.004) were identified in white participants. Among black participants, statistically significant associations with higher SBP (m.93A>G, HVII; m.16183A>C, HVI; both P=0.0001) and mean arterial pressure (m.16172T>C, HVI; m.16183A>C, HVI; m.16189T>C, HVI; m.12705C>T; all P's<0.0004) were observed. Significant pooled effects on SBP were observed across all transfer RNA regions (P=0.0056) in white participants. The individual and aggregate variant results are statistically significant after multiple comparisons adjustment for the number of mtDNA variants and mitochondrial regions examined. Conclusions These results suggest that mtDNA‐encoded variants are associated with variation in SBP and mean arterial pressure among older adults. These results may help identify mitochondrial activities to explain differences in blood pressure in older adults and generate new hypotheses surrounding mtDNA variation and the regulation of blood pressure. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifiers: NCT01072500 and NCT00116194.
Collapse
Affiliation(s)
- Thomas W Buford
- 1 Department of Medicine University of Alabama at Birmingham AL
| | - Todd M Manini
- 2 Department of Aging and Geriatric Research University of Florida Gainesville FL
| | - John A Kairalla
- 3 Department of Biostatistics University of Florida Gainesville FL
| | - Mary M McDermott
- 4 Department of Medicine and Preventive Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | | | - Haiying Chen
- 7 Department of Biostatistical Sciences Wake Forest School of Medicine Winston-Salem NC
| | - Roger A Fielding
- 8 Jean Mayer USDA Human Nutrition Research Center on Aging Tufts University Boston MA
| | - Abby C King
- 9 Department of Health Research and Policy and Stanford Prevention Research Center Stanford University Stanford CA
| | - Anne B Newman
- 10 Department of Epidemiology University of Pittsburgh PA
| | - Gregory J Tranah
- 11 California Pacific Medical Center Research Institute, San Francisco San Francisco CA
| |
Collapse
|
3
|
Vaz Fragoso CA, Manini TM, Kairalla JA, Buford TW, Hsu FC, Gill TM, Kritchevsky SB, McDermott MM, Sanders JL, Cummings SR, Tranah GJ. Mitochondrial DNA variants and pulmonary function in older persons. Exp Gerontol 2018; 115:96-103. [PMID: 30508565 DOI: 10.1016/j.exger.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND We provide the first examination of mitochondrial DNA (mtDNA) variants and pulmonary function in older persons. METHODS Cross-sectional associations between mtDNA variants and pulmonary function were evaluated as a combined p-values meta-analysis, using data from two independent cohorts of older persons. The latter included white and black participants, aged ≥70 years, from the Lifestyle Interventions and Independence for Elders study (LIFE) (N = 1247) and the Health, Aging and Body Composition study (Health ABC) (N = 731), respectively. Pulmonary function included the forced expiratory volume in one-second as a Z-score (FEV1z) and the maximal inspiratory pressure (MIP) in cm of water. RESULTS In black participants, significant associations were found between mtDNA variants and MIP: m.7146A > G, COI (p = 3E-5); m.7389 T > C, COI (p = 2E-4); m.15301G > A, CYB (p = 9E-5); m.16265A > G, HV1 (p = 9E-5); meta-analytical p-values <0.0002. Importantly, these mtDNA variants were unique to black participants and were not present in white participants. Moreover, in black participants, aggregate genetic effects on MIP were observed across mutations in oxidative phosphorylation complex IV (p = 0.004), complex V (p = 0.0007), and hypervariable (p = 0.003) regions. The individual and aggregate variant results were significant after adjustment for multiple comparisons. Otherwise, no significant associations were detected for MIP in whites or for FEV1z in whites or blacks. CONCLUSIONS We have shown that mtDNA variants of African origin are cross-sectionally associated with MIP, a measure of respiratory muscle strength. Thus, our results establish the rationale for longitudinal studies to evaluate whether mtDNA variants of African origin identify those at risk of subsequently developing a respiratory muscle impairment (lower MIP values).
Collapse
Affiliation(s)
- Carlos A Vaz Fragoso
- Yale School of Medicine, Department of Medicine, New Haven, CT, United States of America; Veterans Affairs Connecticut Healthcare System, Department of Medicine, West Haven, CT, United States of America.
| | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, Gainesville, FL, United States of America
| | - John A Kairalla
- University of Florida, Department of Biostatistics, Gainesville, FL, United States of America
| | - Thomas W Buford
- University of Alabama at Birmingham, Department of Medicine, Birmingham, AL, United States of America
| | - Fang-Chi Hsu
- Wake Forest School of Medicine, Department of Biostatistical Sciences, Winston-Salem, NC, United States of America
| | - Thomas M Gill
- Yale School of Medicine, Department of Medicine, New Haven, CT, United States of America
| | - Stephen B Kritchevsky
- Wake Forest School of Medicine, Sticht Center for Healthy Aging and Alzheimer's Prevention, Winston-Salem, NC, United States of America
| | - Mary M McDermott
- Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jason L Sanders
- Massachusetts General Hospital, Department of Medicine, Boston, MA, United States of America
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| |
Collapse
|
4
|
Manini TM, Buford TW, Kairalla JA, McDermott MM, Vaz Fragoso CA, Fielding RA, Hsu FC, Johannsen N, Kritchevsky S, Harris TB, Newman AB, Cummings SR, King AC, Pahor M, Santanasto AJ, Tranah GJ. Meta-analysis identifies mitochondrial DNA sequence variants associated with walking speed. GeroScience 2018; 40:497-511. [PMID: 30338417 DOI: 10.1007/s11357-018-0043-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Declines in walking speed are associated with a variety of poor health outcomes including disability, comorbidity, and mortality. While genetic factors are putative contributors to variability in walking, few genetic loci have been identified for this trait. We examined the role of mitochondrial genomic variation on walking speed by sequencing the entire mitochondrial DNA (mtDNA). Data were meta-analyzed from 1758 Lifestyle Interventions and Independence for Elders (LIFE) Study and replication data from 730 Health, Aging, and Body Composition (HABC) Study participants with baseline walking speed information. Participants were 69+ years old of diverse racial backgrounds (African, European, and other race/ethnic groups) and had a wide range of mean walking speeds [4-6 m (0.78-1.09 m/s) and 400 m (0.83-1.24 m/s)]. Meta-analysis across studies and racial groups showed that m.12705C>T, ND5 variant was significantly associated (p < 0.0001) with walking speed at both short and long distances. Replication and meta-analysis also identified statistically significant walking speed associations (p < 0.0001) between the m.5460.G>A, ND2 and m.309C>CT, HV2 variants at short and long distances, respectively. All results remained statistically significant after multiple comparisons adjustment for 499 mtDNA variants. The m.12705C>T variant can be traced to the beginnings of human global migration and that cells carrying this variant display altered tRNA expression. Significant pooled effects related to stopping during the long-distance walk test were observed across OXPHOS complexes I (p = 0.0017) and III (p = 0.0048). These results suggest that mtDNA-encoded variants are associated with differences in walking speed among older adults, potentially identifying those at risk of developing mobility impairments.
Collapse
Affiliation(s)
- Todd M Manini
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32611, USA.
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John A Kairalla
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Mary M McDermott
- General Internal Medicine and Geriatrics and Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carlos A Vaz Fragoso
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Roger A Fielding
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Fang-Chi Hsu
- The Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Neil Johannsen
- Preventive Medicine Department, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Stephen Kritchevsky
- Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tamara B Harris
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Abby C King
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marco Pahor
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32611, USA
| | - Adam J Santanasto
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA.
| |
Collapse
|
5
|
Tranah GJ, Maglione JE, Yaffe K, Katzman SM, Manini TM, Kritchevsky S, Newman AB, Harris TB, Cummings SR. Mitochondrial DNA m.13514G>A heteroplasmy is associated with depressive symptoms in the elderly. Int J Geriatr Psychiatry 2018; 33:1319-1326. [PMID: 29984425 DOI: 10.1002/gps.4928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Mitochondrial DNA (mtDNA) heteroplasmy is a mixture of normal and mutated mtDNA molecules in a cell. High levels of heteroplasmy at several mtDNA sites in complex I lead to inherited neurological neurologic diseases and brain magnetic resonance imaging (MRI) abnormalities. Here, we test the hypothesis that mtDNA heteroplasmy at these complex I sites is associated with depressive symptoms in the elderly. METHODS We examined platelet mtDNA heteroplasmy for associations with depressive symptoms among 137 participants over age 70 from the community-based Health, Aging and Body Composition Study. Depressive symptoms were assessed using the 10-point version of the Center for Epidemiologic Studies Depression Scale (CES-D 10). Complete mtDNA sequencing was performed and heteroplasmy derived for 5 mtDNA sites associated with neurologic mitochondrial diseases and tested for associations with depressive symptoms. RESULTS Of 5 candidate complex I mtDNA mutations examined for effects on depressive symptoms, increased heteroplasmy at m.13514A>G, ND5, was significantly associated with higher CES-D score (P = .01). A statistically significant interaction between m.13514A > G heteroplasmy and sex was detected (P = .04); in sex-stratified analyses, the impact of m.13514A>G heteroplasmy was stronger in male (P = .003) than in female (P = .98) participants. Men in highest tertile of mtDNA heteroplasmy exhibited significantly higher (P = .0001) mean ± SE CES-D 10 scores, 5.37 ± 0.58, when compared with those in the middle, 2.13 ± 0.52, and lowest tertiles, 2.47 ± 0.58. No associations between the 4 other candidate sites and depressive symptoms were observed. CONCLUSIONS Increased mtDNA heteroplasmy at m.13514A>G is associated with depressive symptoms in older men. Heteroplasmy may represent a novel biological risk factor for depression.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA, USA
| | - Jeanne E Maglione
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Kristine Yaffe
- University of California, San Francisco, Departments of Psychiatry, Neurology, and Epidemiology, San Francisco, CA, USA.,San Francisco VA Medical Center, San Francisco, CA, USA
| | | | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, Gainesville, FL, USA
| | - Stephen Kritchevsky
- Wake Forest School of Medicine, Sticht Center on Aging, Winston-Salem, NC, USA
| | - Anne B Newman
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Tamara B Harris
- National Institute on Aging, Intramural Research Program, Laboratory of Epidemiology and Population Sciences, Bethesda, MD, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
6
|
Toledo FGS, Dubé JJ, Goodpaster BH, Stefanovic-Racic M, Coen PM, DeLany JP. Mitochondrial Respiration is Associated with Lower Energy Expenditure and Lower Aerobic Capacity in African American Women. Obesity (Silver Spring) 2018; 26:903-909. [PMID: 29687648 PMCID: PMC5918421 DOI: 10.1002/oby.22163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Reasons for the higher obesity prevalence in African American women (AAW) compared with Caucasian women (CW) are unknown. Energy expenditure and maximal aerobic capacity (VO2 max) are lower in AAW. It was hypothesized that these differences are explained by skeletal muscle characteristics, particularly mitochondrial content and function. METHODS Multivariate regression analyses were used to examine the relationships between energy expenditure (resting and during a hyperinsulinemic-euglycemic clamp) and VO2 max versus body composition, physical activity, and skeletal muscle mitochondrial measurements in AAW and CW. RESULTS In AAW, VO2 max was lower (P < 0.0001). Body-composition-adjusted energy expenditure during the clamp was lower in AAW (P < 0.002). Physical activity was similar in both groups. After adjusting for mitochondrial respiration, racial differences in energy expenditure and VO2 max were no longer present. Another novel finding was that a thermogenic response to the clamp was observed in CW (+53 ± 22 kcal/d; P < 0.03) but not in AAW (-19 ± 24 kcal/d; P = 0.43). CONCLUSIONS AAW and CW show differences in adjusted energy expenditure and aerobic capacity that are largely accounted for by differences in skeletal muscle mitochondrial oxidative characteristics. Further research is needed to determine whether lower mitochondrial respiration and lower thermogenesis are risk factors for obesity in AAW.
Collapse
Affiliation(s)
- Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Dubé
- Department of Biology, School of Arts, Science, and Business, Chatham University, Pittsburgh, Pennsylvania, USA
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - Maja Stefanovic-Racic
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida, USA
| | - James P DeLany
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Tranah GJ, Yaffe K, Katzman SM, Lam ET, Pawlikowska L, Kwok PY, Schork NJ, Manini TM, Kritchevsky S, Thomas F, Newman AB, Harris TB, Coleman AL, Gorin MB, Helzner EP, Rowbotham MC, Browner WS, Cummings SR. Mitochondrial DNA Heteroplasmy Associations With Neurosensory and Mobility Function in Elderly Adults. J Gerontol A Biol Sci Med Sci 2015; 70:1418-24. [PMID: 26328603 DOI: 10.1093/gerona/glv097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) heteroplasmy is a mixture of normal and mutated mtDNA molecules in a cell. High levels of heteroplasmy at specific mtDNA sites lead to inherited mitochondrial diseases with neurological, sensory, and movement impairments. Here we test the hypothesis that heteroplasmy levels in elderly adults are associated with impaired function resembling mild forms of mitochondrial disease. METHODS We examined platelet mtDNA heteroplasmy at 20 disease-causing sites for associations with neurosensory and mobility function among 137 participants from the community-based Health, Aging, and Body Composition Study. RESULTS Elevated mtDNA heteroplasmy at four mtDNA sites in complex I and tRNA genes was nominally associated with reduced cognition, vision, hearing, and mobility: m.10158T>C with Modified Mini-Mental State Examination score (p = .009); m.11778G>A with contrast sensitivity (p = .02); m.7445A>G with high-frequency hearing (p = .047); and m.5703G>A with 400 m walking speed (p = .007). CONCLUSIONS These results indicate that increased mtDNA heteroplasmy at disease-causing sites is associated with neurosensory and mobility function in older persons. We propose the novel use of mtDNA heteroplasmy as a simple, noninvasive predictor of age-related neurologic, sensory, and movement impairments.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco.
| | - Kristine Yaffe
- Department of Psychiatry, Department of Neurology and Department of Epidemiology, University of California San Francisco and the San Francisco VA Medical Center
| | | | | | - Ludmila Pawlikowska
- Department of Anesthesia and Perioperative Care, University of California San Francisco. Institute for Human Genetics, University of California San Francisco
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco
| | - Nicholas J Schork
- J. Craig Venter Institute and the University of California, San Diego
| | - Todd M Manini
- Department of Aging and Geriatric Research, University of Florida, Gainesville
| | - Stephen Kritchevsky
- Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Fridtjof Thomas
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pennsylvania
| | - Tamara B Harris
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland
| | - Anne L Coleman
- Jules Stein Eye Institute and UCLA Department of Ophthalmology, Los Angeles, California
| | - Michael B Gorin
- Jules Stein Eye Institute and UCLA Department of Ophthalmology, Los Angeles, California
| | - Elizabeth P Helzner
- Department of Epidemiology and Biostatistics, SUNY Downstate Medical Center, Brooklyn, New York
| | | | - Warren S Browner
- California Pacific Medical Center Research Institute, San Francisco
| | | | | |
Collapse
|
8
|
Li L, Zheng HX, Liu Z, Qin Z, Chen F, Qian D, Xu J, Jin L, Wang X. Mitochondrial genomes and exceptional longevity in a Chinese population: the Rugao longevity study. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9750. [PMID: 25666573 PMCID: PMC4322039 DOI: 10.1007/s11357-015-9750-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
Genetic variants of whole mitochondrial DNA (mtDNA) that predispose to exceptional longevity need to be systematically identified and appraised. Here, we conducted a case-control study with 237 exceptional longevity subjects (aged 95-107) and 444 control subjects (aged 40-69) randomly recruited from a "longevity town"-the city of Rugao in China-to investigate the effects of mtDNA variants on exceptional longevity. We sequenced the entire mtDNA genomes of the 681 subjects using a next-generation platform and employed a complete mtDNA phylogenetic analytical strategy. We identified T3394C as a candidate that counteracts longevity, and we observed a higher load of private nonsynonymous mutations in the COX1 gene predisposing to female longevity. Additionally, for the first time, we identified several variants and new subhaplogroups related to exceptional longevity. Our results provide new clues for genetic mechanisms of longevity and shed light on strategies for evaluating rare mitochondrial variants that underlie complex traits.
Collapse
Affiliation(s)
- Lei Li
- />State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Songhu Rd., Shanghai, 200433 China
| | - Hong-Xiang Zheng
- />State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Songhu Rd., Shanghai, 200433 China
| | - Zuyun Liu
- />State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Songhu Rd., Shanghai, 200433 China
| | - Zhendong Qin
- />State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Songhu Rd., Shanghai, 200433 China
| | - Fei Chen
- />Rugao Longevity Institute, Rugao, Jiangsu China
| | - Degui Qian
- />Rugao Longevity Institute, Rugao, Jiangsu China
| | - Jun Xu
- />Rugao Longevity Institute, Rugao, Jiangsu China
| | - Li Jin
- />State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Songhu Rd., Shanghai, 200433 China
| | - Xiaofeng Wang
- />State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Songhu Rd., Shanghai, 200433 China
| |
Collapse
|
9
|
Katzman SM, Strotmeyer ES, Nalls MA, Zhao Y, Mooney S, Schork N, Newman AB, Harris TB, Yaffe K, Cummings SR, Liu Y, Tranah GJ. Mitochondrial DNA Sequence Variation Associated With Peripheral Nerve Function in the Elderly. J Gerontol A Biol Sci Med Sci 2014; 70:1400-8. [PMID: 25394619 DOI: 10.1093/gerona/glu175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a prominent hallmark of many sensory neuropathies. The purpose of this study was to assess the influence of mitochondrial DNA sequence variation on peripheral nerve function in the population-based Health, Aging, and Body Composition Study. METHODS We investigated the role of common mitochondrial DNA variation (n = 1,580) and complete mitochondrial DNA sequences (n = 138) on peroneal motor nerve conduction velocity and amplitude, average vibration detection threshold, and monofilament sensitivity. RESULTS Nominal associations among common mitochondrial DNA variants and haplogroups were identified but were not statistically significant after adjustment for multiple comparisons. Sequence-based approaches were used to identify aggregate variant associations across the 16S rRNA (weighted-sum, p = 2E-05 and variable threshold, p = 9E-06) for nerve conduction velocity. Several of these rare 16S variants occurred at or near sites with earlier disease associations and are also in close proximity to the peptidyl transferase center, which is the catalytic center of the 16S rRNA CONCLUSIONS: These results suggest that sequence variation related to mitochondrial protein synthesis/assembly is associated with peripheral nerve function and may provide insight into targets for intervention or new clinical strategies to preserve nerve function in late life.
Collapse
Affiliation(s)
- Shana M Katzman
- Department of Innovation, Technology, and Alliances, University of California, San Francisco and
| | - Elsa S Strotmeyer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania and
| | - Michael A Nalls
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, Bethesda, Maryland and
| | - Yiqiang Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China and
| | - Sean Mooney
- Department of Bioinformatics, Buck Institute for Research on Aging, Novato, California and
| | - Nik Schork
- Department of Human Biology, J. Craig Venter Institute, La Jolla, California and
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania and
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland and
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology, University of California, and Department of Geriatric Psychiatry, San Francisco VA Medical Center and
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco and
| | - Yongmei Liu
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco and
| | | |
Collapse
|
10
|
Tranah GJ, Yokoyama JS, Katzman SM, Nalls MA, Newman AB, Harris TB, Cesari M, Manini TM, Schork NJ, Cummings SR, Liu Y, Yaffe K. Mitochondrial DNA sequence associations with dementia and amyloid-β in elderly African Americans. Neurobiol Aging 2014; 35:442.e1-8. [PMID: 24140124 PMCID: PMC4019378 DOI: 10.1016/j.neurobiolaging.2013.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/25/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Mitochondrial dysfunction occurs early in the course of several neurodegenerative diseases, and is potentially related to increased oxidative damage and amyloid-β (Aβ) formation in Alzheimer's disease. The goals of this study were to assess mtDNA sequence associations with dementia risk, 10-year cognitive change, and markers of oxidative stress and Aβ among 1089 African-Americans in the population-based Health, Aging, and Body Composition Study. Participants were free of dementia at baseline, and incidence was determined in 187 (18%) cases over 10 to 12 follow-up years. Haplogroup L1 participants were at increased risk for developing dementia (odds ratio = 1.88, 95% confidence interval = 1.23-2.88, p = 0.004), lower plasma Aβ42 levels (p = 0.03), and greater 10-year decline on the Digit Symbol Substitution Test (p = 0.04) when compared with common haplogroup L3. The p.V193I, ND2 substitution was associated with significantly higher Aβ42 levels (p = 0.0012), and this association was present in haplogroup L3 (p = 0.018) but not L1 (p = 0.90) participants. All associations were independent of potential confounders, including APOEε4 status and nuclear genetic ancestry. Identification of mtDNA sequence variation associated with dementia risk and cognitive decline may contribute to the development of new treatment targets and diagnostic tests that identify responders to interventions targeting mitochondria.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute-San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Boirie Y, Morio B, Caumon E, Cano NJ. Nutrition and protein energy homeostasis in elderly. Mech Ageing Dev 2014; 136-137:76-84. [PMID: 24486557 DOI: 10.1016/j.mad.2014.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/11/2014] [Accepted: 01/22/2014] [Indexed: 12/27/2022]
Abstract
Protein-energy homeostasis is a major determinant of healthy aging. Inadequate nutritional intakes and physical activity, together with endocrine disturbances are associated with of sarcopenia and frailty. Guidelines from scientific societies mainly address the quantitative aspects of protein and energy nutrition in elderly. Besides these quantitative aspects of protein load, perspective strategies to promote muscle protein synthesis and prevent sarcopenia include pulse feeding, the use of fast proteins and the addition of leucine or citrulline to dietary protein. An integrated management of sarcopenia, taking into account the determinants of muscle wasting, i.e. nutrition, physical activity, anabolic factors such as androgens, vitamin D and n-3 polyunsaturated fatty acids status, needs to be tested in the prevention and treatment of sarcopenia. The importance of physical activity, specifically resistance training, is emphasized, not only in order to facilitate muscle protein anabolism but also to increase appetite and food intake in elderly people at risk of malnutrition. According to present data, healthy nutrition in elderly should respect the guidelines for protein and energy requirement, privilege a Mediterranean way of alimentation, and be associated with a regular physical activity. Further issues relate to the identification of the genetics determinants of protein energy wasting in elderly.
Collapse
Affiliation(s)
- Yves Boirie
- CHU Clermont-Ferrand, Service de Nutrition Clinique, F-63003 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; INRA, UMR 1019, UNH, CRNH Auvergne, 58 rue Montalembert, BP 321, F-63009 Clermont-Ferrand cedex 01, France.
| | - Béatrice Morio
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; INRA, UMR 1019, UNH, CRNH Auvergne, 58 rue Montalembert, BP 321, F-63009 Clermont-Ferrand cedex 01, France.
| | - Elodie Caumon
- CHU Clermont-Ferrand, Service de Nutrition Clinique, F-63003 Clermont-Ferrand, France.
| | - Noël J Cano
- CHU Clermont-Ferrand, Service de Nutrition Clinique, F-63003 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; INRA, UMR 1019, UNH, CRNH Auvergne, 58 rue Montalembert, BP 321, F-63009 Clermont-Ferrand cedex 01, France.
| |
Collapse
|
12
|
Tranah GJ, Nalls MA, Katzman SM, Yokoyama JS, Lam ET, Zhao Y, Mooney S, Thomas F, Newman AB, Liu Y, Cummings SR, Harris TB, Yaffe K. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J Alzheimers Dis 2012; 32:357-72. [PMID: 22785396 PMCID: PMC4156011 DOI: 10.3233/jad-2012-120466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be a major cause of abnormal reactive oxidative species production in AD or increased neuronal susceptibility to oxidative injury during aging. The purpose of this study was to assess the influence of mtDNA sequence variation on clinically significant cognitive impairment and dementia risk in the population-based Health, Aging, and Body Composition (Health ABC) Study. We first investigated the role of common mtDNA haplogroups and individual variants on dementia risk and 8-year change on the Modified Mini-Mental State Examination (3MS) and Digit Symbol Substitution Test (DSST) among 1,631 participants of European genetic ancestry. Participants were free of dementia at baseline and incidence was determined in 273 cases from hospital and medication records over 10-12 follow-up years. Participants from haplogroup T had a statistically significant increased risk of developing dementia (OR = 1.86, 95% CI = 1.23, 2.82, p = 0.0008) and haplogroup J participants experienced a statistically significant 8-year decline in 3MS (β = -0.14, 95% CI = -0.27, -0.03, p = 0.0006), both compared with common haplogroup H. The m.15244A>G, p.G166G, CytB variant was associated with a significant decline in DSST score (β = -0.58, 95% CI -0.89, -0.28, p = 0.00019) and the m.14178T>C, p.I166V, ND6 variant was associated with a significant decline in 3MS score (β = -0.87, 95% CI -1.31, -3.86, p = 0.00012). Finally, we sequenced the complete ~16.5 kb mtDNA from 135 Health ABC participants and identified several highly conserved and potentially functional nonsynonymous variants unique to 22 dementia cases and aggregate sequence variation across the hypervariable 2-3 regions that influences 3MS and DSST scores.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|