• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4616371)   Today's Articles (5075)   Subscriber (49394)
For: Blomberg MRA, Siegbahn PEM. How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient. Biochim Biophys Acta 2015;1847:364-76. [PMID: 25529353 DOI: 10.1016/j.bbabio.2014.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/18/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Number Cited by Other Article(s)
1
Radoń M. Benchmarks for transition metal spin-state energetics: why and how to employ experimental reference data? Phys Chem Chem Phys 2023;25:30800-30820. [PMID: 37938035 DOI: 10.1039/d3cp03537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
2
Du WGH, Götz AW, Noodleman L. Mössbauer Property Calculations on Fea33+∙∙∙H2O∙∙∙CuB2+ Dinuclear Center Models of the Resting Oxidized as-Isolated Cytochrome c Oxidase. Chemphyschem 2022;23:e202100831. [PMID: 35142420 PMCID: PMC9054037 DOI: 10.1002/cphc.202100831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Indexed: 11/24/2022]
3
Blomberg MRA. The importance of exact exchange-A methodological investigation of NO reduction in heme-copper oxidases. J Chem Phys 2021;154:055103. [PMID: 33557557 DOI: 10.1063/5.0035634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
4
Blomberg MRA. Activation of O2 and NO in heme-copper oxidases - mechanistic insights from computational modelling. Chem Soc Rev 2021;49:7301-7330. [PMID: 33006348 DOI: 10.1039/d0cs00877j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
5
Blomberg MRA. The Redox-Active Tyrosine Is Essential for Proton Pumping in Cytochrome c Oxidase. Front Chem 2021;9:640155. [PMID: 33937193 PMCID: PMC8079940 DOI: 10.3389/fchem.2021.640155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022]  Open
6
Marquardt M, Cula B, Budhija V, Dallmann A, Schwalbe M. Structural Determination of an Unusual CuI -Porphyrin-π-Bond in a Hetero-Pacman Cu-Zn-Complex. Chemistry 2021;27:3991-3996. [PMID: 33405305 PMCID: PMC7986761 DOI: 10.1002/chem.202004945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Indexed: 12/02/2022]
7
Siegbahn PEM. A quantum chemical approach for the mechanisms of redox-active metalloenzymes. RSC Adv 2021;11:3495-3508. [PMID: 35424322 PMCID: PMC8694229 DOI: 10.1039/d0ra10412d] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022]  Open
8
Blomberg MRA. Role of the Two Metals in the Active Sites of Heme Copper Oxidases-A Study of NO Reduction in cbb3 Cytochrome c Oxidase. Inorg Chem 2020;59:11542-11553. [PMID: 32799475 DOI: 10.1021/acs.inorgchem.0c01351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Abe T, Shiota Y, Itoh S, Yoshizawa K. Theoretical rationalization for the equilibrium between (μ-η22-peroxido)CuIICuII and bis(μ-oxido)CuIIICuIII complexes: perturbational effects from ligand frameworks. Dalton Trans 2020;49:6710-6717. [PMID: 32368776 DOI: 10.1039/d0dt01001d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
The structure of the oxidized state of cytochrome c oxidase - experiments and theory compared. J Inorg Biochem 2020;206:111020. [PMID: 32062501 DOI: 10.1016/j.jinorgbio.2020.111020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
11
Vilhjálmsdóttir J, Albertsson I, Blomberg MRA, Ädelroth P, Brzezinski P. Proton transfer in uncoupled variants of cytochrome c oxidase. FEBS Lett 2019;594:813-822. [PMID: 31725900 DOI: 10.1002/1873-3468.13679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 11/08/2022]
12
Blomberg MRA. The mechanism for oxygen reduction in the C family cbb3 cytochrome c oxidases - Implications for the proton pumping stoichiometry. J Inorg Biochem 2019;203:110866. [PMID: 31706225 DOI: 10.1016/j.jinorgbio.2019.110866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022]
13
Blomberg MRA. Active Site Midpoint Potentials in Different Cytochrome c Oxidase Families: A Computational Comparison. Biochemistry 2019;58:2028-2038. [PMID: 30892888 DOI: 10.1021/acs.biochem.9b00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Siegbahn PEM, Blomberg MRA. A Systematic DFT Approach for Studying Mechanisms of Redox Active Enzymes. Front Chem 2018;6:644. [PMID: 30627530 PMCID: PMC6309562 DOI: 10.3389/fchem.2018.00644] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 02/03/2023]  Open
15
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018;118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
16
Blomberg MRA, Ädelroth P. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018;1859:1223-1234. [PMID: 30248312 DOI: 10.1016/j.bbabio.2018.09.368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
17
Supekar S, Kaila VRI. Dewetting transitions coupled to K-channel activation in cytochrome c oxidase. Chem Sci 2018;9:6703-6710. [PMID: 30310604 PMCID: PMC6115622 DOI: 10.1039/c8sc01587b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]  Open
18
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018;118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
19
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018;118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
20
Fukuzumi S, Lee YM, Nam W. Mechanisms of Two-Electron versus Four-Electron Reduction of Dioxygen Catalyzed by Earth-Abundant Metal Complexes. ChemCatChem 2017. [DOI: 10.1002/cctc.201701064] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
21
Blomberg MRA, Ädelroth P. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017;1858:884-894. [PMID: 28801051 DOI: 10.1016/j.bbabio.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022]
22
Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies. Biochem Soc Trans 2017;45:813-829. [PMID: 28620043 DOI: 10.1042/bst20160139] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023]
23
Poiana F, von Ballmoos C, Gonska N, Blomberg MRA, Ädelroth P, Brzezinski P. Splitting of the O-O bond at the heme-copper catalytic site of respiratory oxidases. SCIENCE ADVANCES 2017;3:e1700279. [PMID: 28630929 PMCID: PMC5473675 DOI: 10.1126/sciadv.1700279] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/20/2017] [Indexed: 05/30/2023]
24
Blomberg MRA. Can Reduction of NO to N2O in Cytochrome c Dependent Nitric Oxide Reductase Proceed through a Trans-Mechanism? Biochemistry 2016;56:120-131. [DOI: 10.1021/acs.biochem.6b00788] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
25
Christou A, Antoniou C, Christodoulou C, Hapeshi E, Stavrou I, Michael C, Fatta-Kassinos D, Fotopoulos V. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016;557-558:652-664. [PMID: 27037887 DOI: 10.1016/j.scitotenv.2016.03.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 05/29/2023]
26
Blomberg MRA, Siegbahn PEM. Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR). J Comput Chem 2016;37:1810-8. [DOI: 10.1002/jcc.24396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/14/2022]
27
Blomberg MRA. Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine. Biochemistry 2016;55:489-500. [PMID: 26690322 DOI: 10.1021/acs.biochem.5b01205] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
28
Blomberg MRA, Siegbahn PEM. Protonation of the binuclear active site in cytochrome c oxidase decreases the reduction potential of CuB. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015;1847:1173-80. [PMID: 26072193 DOI: 10.1016/j.bbabio.2015.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 12/14/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA