1
|
Harris PD, Ben Eliezer N, Keren N, Lerner E. Phytoplankton cell-states: multiparameter fluorescence lifetime flow-based monitoring reveals cellular heterogeneity. FEBS J 2024; 291:4125-4141. [PMID: 39110124 DOI: 10.1111/febs.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024]
Abstract
Phytoplankton are a major source of primary productivity. Their photosynthetic fluorescence are unique measures of their type, physiological state, and response to environmental conditions. Changes in phytoplankton photophysiology are commonly monitored by bulk fluorescence spectroscopy, where gradual changes are reported in response to different perturbations, such as light intensity changes. What is the meaning of such trends in bulk parameters if their values report ensemble averages of multiple unsynchronized cells? To answer this, we developed an experimental scheme that enables tracking fluorescence intensities, brightnesses, and their ratios, as well as mean photon nanotimes equivalent to mean fluorescence lifetimes, one cell at a time. We monitored three different phytoplankton species during diurnal cycles and in response to an abrupt increase in light intensity. Our results show that we can define specific subpopulations of cells by their fluorescence parameters for each of the phytoplankton species, and in response to varying light conditions. Importantly, we identify the cells undergo well-defined transitions between these subpopulations. The approach shown in this work will be useful in the exact characterization of phytoplankton cell states and parameter signatures in response to different changes these cells experience in marine environments, which will be applicable for monitoring marine-related environmental effects.
Collapse
Affiliation(s)
- Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Nadav Ben Eliezer
- Department of Plant Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Nir Keren
- Department of Plant Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
2
|
Begam K, Aksu H, Dunietz BD. Antioxidative Triplet Excitation Energy Transfer in Bacterial Reaction Center Using a Screened Range Separated Hybrid Functional. J Phys Chem B 2024. [PMID: 38687467 DOI: 10.1021/acs.jpcb.3c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Excess energy absorbed by photosystems (PSs) can result in photoinduced oxidative damage. Transfer of such energy within the core pigments of the reaction center in the form of triplet excitation is important in regulating and preserving the functionality of PSs. In the bacterial reaction center (BRC), the special pair (P) is understood to act as the electron donor in a photoinduced charge transfer process, triggering the charge separation process through the photoactive branch A pigments that experience a higher polarizing environment. At this work, triplet excitation energy transfer (TEET) in BRC is studied using a computational perspective to gain insights into the roles of the dielectric environment and interpigment orientations. We find in agreement with experimental observations that TEET proceeds through branch B. The TEET process toward branch B pigment is found to be significantly faster than the hypothetical process proceeding through branch A pigments with ps and ms time scales, respectively. Our calculations find that conformational differences play a major role in this branch asymmetry in TEET, where the dielectric environment asymmetry plays only a secondary role in directing the TEET to proceed through branch B. We also address TEET processes asserting the role of carotenoid as the final triplet energy acceptor and in a mutant form, where the branch pigments adjacent to P are replaced by bacteriopheophytins. The necessary electronic excitation energies and electronic state couplings are calculated by the recently developed polarization-consistent framework combining a screened range-separated hybrid functional and a polarizable continuum mode. The polarization-consistent potential energy surfaces are used to parametrize the quantum mechanical approach, implementing Fermi's golden rule expression of the TEET rate calculations.
Collapse
Affiliation(s)
- Khadiza Begam
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Huseyin Aksu
- Department of Physics, Faculty of Science at Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
Özcan E, Šímová I, Bína D, Litvín R, Polívka T. Ultrafast spectroscopy of the hydrophilic carotenoid crocin at various pH. Phys Chem Chem Phys 2024; 26:10225-10233. [PMID: 38497307 DOI: 10.1039/d4cp00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This study delves into the pH-dependent effects on the excited-state behavior of crocin, a hydrophilic carotenoid with diverse functions in biological systems. Steady-state spectroscopy demonstrates notable changes in absorption and fluorescence spectra, characterized by a pH-dependent blue shift and altered resolution of vibrational bands. Transient absorption spectra further elucidate these effects, highlighting a significant blue shift in the S1-Sn peak with increasing pH. Detailed kinetic analysis shows the pH-dependent dynamics of crocin's excited states. At pH 11, a shortening of effective conjugation is observed, resulting in a prolonged S1/ICT lifetime. Conversely, at pH 9, our data suggest a more complex scenario, suggesting the presence of two distinct crocin species with different relaxation patterns. This implies structural alterations within the crocin molecule, potentially linked to the deprotonation of hydroxyl groups in crocin and/or saponification at high pH.
Collapse
Affiliation(s)
- Emrah Özcan
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Radek Litvín
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Yakovlev AG, Taisova AS. Quenching of bacteriochlorophyll a triplet state by carotenoids in the chlorosome baseplate of green bacterium Chloroflexus aurantiacus. Phys Chem Chem Phys 2024; 26:8815-8823. [PMID: 38421198 DOI: 10.1039/d4cp00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
To capture weak light fluxes, green photosynthetic bacteria have unique structures - chlorosomes, consisting of 104-5 molecules of bacteriochlorophyll (BChl) c, d, e. Chlorosomes are attached to the cytoplasmic membrane through the baseplate, a paracrystalline protein structure containing BChl a and carotenoids (Car). The most important function of Car is the quenching of triplet states of BChl, which prevents the formation of singlet oxygen and thereby provides photoprotection. In our work, we studied the dynamics of the triplet states of BChl a and Car in the baseplate of Chloroflexus aurantiacus chlorosomes using picosecond differential spectroscopy. BChl a of the baseplate was excited into the Qy band at 810 nm, and the corresponding absorption changes were recorded in the range of 420-880 nm. It was found that the formation of the Car triplet state occurs in ∼1.3 ns, which is ∼3 times faster than the formation of this state in the peripheral antenna of C. aurantiacus according to literature data. The Car triplet state was recorded by the characteristic absorption band T1 → Tn at ∼550 nm. Simultaneously with the appearance of absorption T1 → Tn, there was a bleaching of the singlet absorption of Car in the region of 400-500 nm. Theoretical modeling made it possible to estimate the characteristic time of formation of the triplet state of BChl a as ∼0.5 ns. It is shown that the experimental data are well described by the sequential scheme of formation and quenching of the BChl a triplet state: BChl a* → BChl aT → CarT. Thus, carotenoids from green bacteria effectively protect the baseplate from possible damage by singlet oxygen.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, Moscow 119991, Russian Federation.
| | - Alexandra S Taisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, Moscow 119991, Russian Federation.
| |
Collapse
|
5
|
Kosumi D, Bandou-Uotani M, Kato S, Kawakami K, Yonekura K, Kamiya N. Reinvestigation on primary processes of PSII-dimer from Thermosynechococcus vulcanus by femtosecond pump-probe spectroscopy. PHOTOSYNTHESIS RESEARCH 2024; 159:79-91. [PMID: 38363474 DOI: 10.1007/s11120-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Cyanobacterial photosynthetic apparatus efficiently capture sunlight, and the energy is subsequently transferred to photosystem I (PSI) and II (PSII), to produce electrochemical potentials. PSII is a unique membrane protein complex that photo-catalyzes oxidation of water and majorly contains photosynthetic pigments of chlorophyll a and carotenoids. In the present study, the ultrafast energy transfer and charge separation dynamics of PSII from a thermophilic cyanobacterium Thermosynechococcus vulcanus were reinvestigated by femtosecond pump-probe spectroscopic measurements under low temperature and weak intensity excitation condition. The results imply the two possible models of the energy transfers and subsequent charge separation in PSII. One is the previously suggested "transfer-to-trapped limit" model. Another model suggests that the energy transfers from core CP43 and CP47 antennas to the primary electron donor ChlD1 with time-constants of 0.71 ps and 3.28 ps at 140 K (0.17 and 1.33 ps at 296 K), respectively and that the pheophytin anion (PheoD1-) is generated with the time-constant of 43.0 ps at 140 K (14.8 ps at 296 K) upon excitation into the Qy band of chlorophyll a at 670 nm. The secondary electron transfer to quinone QA: PheoD1-QA → PheoD1QA- is observed with the time-constant of 650 ps only at 296 K. On the other hand, an inefficient β-carotene → chlorophyll a energy transfer (33%) occurred after excitation to the S2 state of β-carotene at 500 nm. Instead, the carotenoid triplet state appeared in an ultrafast timescale after excitation at 500 nm.
Collapse
Affiliation(s)
- Daisuke Kosumi
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| | - Miki Bandou-Uotani
- School of Graduate Studies, The Open University of Japan, 2-11 Wakaba, Mihama-Ku, Chiba, 261-8586, Japan
- Division of Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Shunya Kato
- Department of Physics, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Keisuke Kawakami
- Biostructual Mechanism Laboratory, RIKEN, SPring-8 Center, 1-1-1, Kouto, Sayo, Hyougo, 679-5148, Japan.
| | - Koji Yonekura
- Biostructual Mechanism Laboratory, RIKEN, SPring-8 Center, 1-1-1, Kouto, Sayo, Hyougo, 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Nobuo Kamiya
- The OCU Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138Sumiyoshi-Ku, SugimotoOsaka City, Osaka, 558-8585, Japan
| |
Collapse
|
6
|
Migliore A, Corni S, Agostini A, Carbonera D. Unraveling the electronic origin of a special feature in the triplet-minus-singlet spectra of carotenoids in natural photosystems. Phys Chem Chem Phys 2023; 25:28998-29016. [PMID: 37859550 DOI: 10.1039/d3cp03836j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The influence of carotenoid triplet states on the Qy electronic transitions of chlorophylls has been observed in experiments on light-harvesting complexes over the past three decades, but the interpretation of the resulting spectral feature in the triplet minus singlet (T-S) absorption spectra of photosystems is still debated, as the physical-chemical explanation of this feature has been elusive. Here, we resolve this debate, by explaining the T-S spectra of pigment complexes over the Qy-band spectral region through a comparative study of chlorophyll-carotenoid model dyads and larger pigment complexes from the main light harvesting complex of higher plants (LHCII). This goal is achieved by combining state-of-the-art time-dependent density functional theory with analysis of the relationship between electronic properties and nuclear structure, and by comparison to the experiment. We find that the special signature in the T-S spectra of both model and natural photosystems is determined by singlet-like triplet excitations that can be described as effective singlet excitations on chlorophylls influenced by a stable electronic triplet on the carotenoid. The comparison with earlier experiments on different light-harvesting complexes confirms our theoretical interpretation of the T-S spectra in the Qy spectral region. Our results indicate an important role for the chlorophyll-carotenoid electronic coupling, which is also responsible for the fast triplet-triplet energy transfer, suggesting a fast trapping of the triplet into the relaxed carotenoid structure. The gained understanding of the interplay between the electronic and nuclear structures is potentially informative for future studies of the mechanism of photoprotection by carotenoids.
Collapse
Affiliation(s)
- Agostino Migliore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR Institute of Nanoscience, 41125 Modena, Italy
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
7
|
Biswas S, Niedzwiedzki DM, Pakrasi HB. Energy dissipation efficiency in the CP43 assembly intermediate complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148982. [PMID: 37146928 DOI: 10.1016/j.bbabio.2023.148982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Photosystem II in oxygenic organisms is a large membrane bound rapidly turning over pigment protein complex. During its biogenesis, multiple assembly intermediates are formed, including the CP43-preassembly complex (pCP43). To understand the energy transfer dynamics in pCP43, we first engineered a His-tagged version of the CP43 in a CP47-less strain of the cyanobacterium Synechocystis 6803. Isolated pCP43 from this engineered strain was subjected to advanced spectroscopic analysis to evaluate its excitation energy dissipation characteristics. These included measurements of steady-state absorption and fluorescence emission spectra for which correlation was tested with Stepanov relation. Comparison of fluorescence excitation and absorptance spectra determined that efficiency of energy transfer from β-carotene to chlorophyll a is 39 %. Time-resolved fluorescence images of pCP43-bound Chl a were recorded on streak camera, and fluorescence decay dynamics were evaluated with global fitting. These demonstrated that the decay kinetics strongly depends on temperature and buffer used to disperse the protein sample and fluorescence decay lifetime was estimated in 3.2-5.7 ns time range, depending on conditions. The pCP43 complex was also investigated with femtosecond and nanosecond time-resolved absorption spectroscopy upon excitation of Chl a and β-carotene to reveal pathways of singlet excitation relaxation/decay, Chl a triplet dynamics and Chl a → β-carotene triplet state sensitization process. The latter demonstrated that Chl a triplet in the pCP43 complex is not efficiently quenched by carotenoids. Finally, detailed kinetic analysis of the rise of the population of β-carotene triplets determined that the time constant of the carotenoid triplet sensitization is 40 ns.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Šímová I, Kuznetsova V, Gardiner AT, Šebelík V, Koblížek M, Fuciman M, Polívka T. Carotenoid responds to excess energy dissipation in the LH2 complex from Rhodoblastus acidophilus. PHOTOSYNTHESIS RESEARCH 2022; 154:75-87. [PMID: 36066816 DOI: 10.1007/s11120-022-00952-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The functions of both (bacterio) chlorophylls and carotenoids in light-harvesting complexes have been extensively studied during the past decade, yet, the involvement of BChl a high-energy Soret band in the cascade of light-harvesting processes still remains a relatively unexplored topic. Here, we present transient absorption data recorded after excitation of the Soret band in the LH2 complex from Rhodoblastus acidophilus. Comparison of obtained data to those recorded after excitation of rhodopin glucoside and B800 BChl a suggests that no Soret-to-Car energy transfer pathway is active in LH2 complex. Furthermore, a spectrally rich pattern observed in the spectral region of rhodopin glucoside ground state bleaching (420-550 nm) has been assigned to an electrochromic shift. The results of global fitting analysis demonstrate two more features. A 6 ps component obtained exclusively after excitation of the Soret band has been assigned to the response of rhodopin glucoside to excess energy dissipation in LH2. Another time component, ~ 450 ps, appearing independently of the excitation wavelength was assigned to BChl a-to-Car triplet-triplet transfer. Presented data demonstrate several new features of LH2 complex and its behavior following the excitation of the Soret band.
Collapse
Affiliation(s)
- Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Valentyna Kuznetsova
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Václav Šebelík
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching b. Munich, Germany
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marcel Fuciman
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
9
|
Karim MF, Johnson GN. Acclimation of Photosynthesis to Changes in the Environment Results in Decreases of Oxidative Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:683986. [PMID: 34630448 PMCID: PMC8495028 DOI: 10.3389/fpls.2021.683986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/18/2021] [Indexed: 05/08/2023]
Abstract
The dynamic acclimation of photosynthesis plays an important role in increasing the fitness of a plant under variable light environments. Since acclimation is partially mediated by a glucose-6-phosphate/phosphate translocator 2 (GPT2), this study examined whether plants lacking GPT2, which consequently have defective acclimation to increases in light, are more susceptible to oxidative stress. To understand this mechanism, we used the model plant Arabidopsis thaliana [accession Wassilewskija-4 (Ws-4)] and compared it with mutants lacking GPT2. The plants were then grown at low light (LL) at 100 μmol m-2 s-1 for 7 weeks. For the acclimation experiments, a set of plants from LL was transferred to 400 μmol m-2 s-1 conditions for 7 days. Biochemical and physiological analyses showed that the gpt2 mutant plants had significantly greater activity for ascorbate peroxidase (APX), guiacol peroxidase (GPOX), and superoxide dismutase (SOD). Furthermore, the mutant plants had significantly lower maximum quantum yields of photosynthesis (Fv/Fm). A microarray analysis also showed that gpt2 plants exhibited a greater induction of stress-related genes relative to wild-type (WT) plants. We then concluded that photosynthetic acclimation to a higher intensity of light protects plants against oxidative stress.
Collapse
|
10
|
Psencik J, Hey D, Grimm B, Lokstein H. Photoprotection of Photosynthetic Pigments in Plant One-Helix Protein 1/2 Heterodimers. J Phys Chem Lett 2020; 11:9387-9392. [PMID: 33095593 DOI: 10.1021/acs.jpclett.0c02660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-helix proteins 1 and 2 (OHP1/2) are members of the family of light-harvesting-like proteins (LIL) in plants, and their potential function(s) have been initially analyzed only recently. OHP1 and OHP2 are structurally related to the transmembrane α-helices 1 and 3 of all members of the light-harvesting complex (LHC) superfamily. Arabidopsis thaliana OHPs form heterodimers which bind 6 chlorophylls (Chls) a and two carotenoids in vitro. Their function remains unclear, and therefore, a spectroscopic study with reconstituted OHP1/OHP2-complexes was performed. Steady-state spectroscopy did not indicate singlet excitation energy transfer between pigments. Thus, a light-harvesting function can be excluded. Possible pigment-storage and/or -delivery functions of OHPs require photoprotection of the bound Chls. Hence, Chl and carotenoid triplet formation and decays in reconstituted OHP1/2 dimers were measured using nanosecond transient absorption spectroscopy. Unlike in all other photosynthetic LHCs, unquenched Chl triplets were observed with unusually long lifetimes. Moreover, there were virtually no differences in both Chl and carotenoid triplet state lifetimes under either aerobic or anaerobic conditions. The results indicate that both Chls and carotenoids are shielded by the proteins from interactions with ambient oxygen and, thus, protected against formation of singlet oxygen. Only a minor portion of the Chl triplets was quenched by carotenoids. These results are in stark contrast to all previously observed photoprotective processes in LHC/LIL proteins and, thus, may constitute a novel mechanism of photoprotection in the plant photosynthetic apparatus.
Collapse
Affiliation(s)
- Jakub Psencik
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Daniel Hey
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Philippstrasse 13, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, Philippstrasse 13, D-10115 Berlin, Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| |
Collapse
|
11
|
Ngamwonglumlert L, Devahastin S, Chiewchan N, Raghavan V. Plant carotenoids evolution during cultivation, postharvest storage, and food processing: A review. Compr Rev Food Sci Food Saf 2020; 19:1561-1604. [DOI: 10.1111/1541-4337.12564] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Luxsika Ngamwonglumlert
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of EngineeringKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of EngineeringKing Mongkut's University of Technology Thonburi Bangkok Thailand
- The Academy of ScienceThe Royal Society of Thailand Bangkok Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of EngineeringKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, Macdonald CampusMcGill University Montreal Quebec Canada
| |
Collapse
|
12
|
Triplet state quenching of bacteriochlorophyll c aggregates in a protein-free environment of a chlorosome interior. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Saccon F, Durchan M, Kaňa R, Prášil O, Ruban AV, Polívka T. Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition. J Phys Chem B 2019; 123:9312-9320. [DOI: 10.1021/acs.jpcb.9b06293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Saccon
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Milan Durchan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
14
|
Büchel C. Light harvesting complexes in chlorophyll c-containing algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148027. [PMID: 31153887 DOI: 10.1016/j.bbabio.2019.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022]
Abstract
Besides the so-called 'green lineage' of eukaryotic photosynthetic organisms that include vascular plants, a huge variety of different algal groups exist that also harvest light by means of membrane intrinsic light harvesting proteins (Lhc). The main taxa of these algae are the Cryptophytes, Haptophytes, Dinophytes, Chromeridae and the Heterokonts, the latter including diatoms, brown algae, Xanthophyceae and Eustigmatophyceae amongst others. Despite the similarity in Lhc proteins between vascular plants and these algae, pigmentation is significantly different since no Chl b is bound, but often replaced by Chl c, and a large diversity in carotenoids functioning in light harvesting and/or photoprotection is present. Due to the presence of Chl c in most of the taxa the name 'Chl c-containing organisms' has become common, however, Chl b-less is more precise since some harbour Lhc proteins that only bind one type of Chl, Chl a. In recent years huge progress has been made about the occurrence and function of Lhc in diatoms, so-called fucoxanthin chlorophyll proteins (FCP), where also the first molecular structure became available recently. In addition, especially energy transfer amongst the unusual pigments bound was intensively studied in many of these groups. This review summarises the present knowledge about the molecular structure, the arrangement of the different Lhc in complexes, the excitation energy transfer abilities and the involvement in photoprotection of the different Lhc systems in the so-called Chl c-containing organisms. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.
Collapse
Affiliation(s)
- Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany.
| |
Collapse
|
15
|
Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:111-120. [DOI: 10.1016/j.bbabio.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022]
|
16
|
Polívka T. Tuning the Triplet-Triplet Energy Transfer Between Phthalocyanine and Carotenoid by Methyl Groups on the Conjugated Chain. Photochem Photobiol 2019; 95:453-454. [DOI: 10.1111/php.13017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Tomáš Polívka
- Institute of Physics; Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| |
Collapse
|
17
|
Staleva-Musto H, West R, Trathnigg M, Bína D, Litvín R, Polívka T. Carotenoid–chlorophyll energy transfer in the fucoxanthin–chlorophyll complex binding a fucoxanthin acyloxy derivative. Faraday Discuss 2019; 216:460-475. [DOI: 10.1039/c8fd00193f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A fucoxanthin derivative has negligible charge-transfer character of the S1/ICT state resulting in slowing down of the carotenoid–chlorophyll energy transfer.
Collapse
Affiliation(s)
| | - Robert West
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
| | - Marco Trathnigg
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
| | - David Bína
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| | - Radek Litvín
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| | - Tomáš Polívka
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| |
Collapse
|
18
|
Vinklárek IS, Bornemann TLV, Lokstein H, Hofmann E, Alster J, Pšenčík J. Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates. J Phys Chem B 2018; 122:8834-8845. [PMID: 30179014 DOI: 10.1021/acs.jpcb.8b06751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chlorophyll (Chl) triplet states generated in photosynthetic light-harvesting complexes (LHCs) can be quenched by carotenoids to prevent the formation of reactive singlet oxygen. Although this quenching occurs with an efficiency close to 100% at physiological temperatures, the Chl triplets are often observed at low temperatures. This might be due to the intrinsic temperature dependence of the Dexter mechanism of excitation energy transfer, which governs triplet quenching, or by temperature-induced conformational changes. Here, we report about the temperature dependence of Chl triplet quenching in two LHCs. We show that both the effects contribute significantly. In LHC II of higher plants, the core Chls are quenched with a high efficiency independent of temperature. A different subpopulation of Chls, which increases with lowering temperature, is not quenched at all. This is probably caused by the conformational changes which detach these Chls from the energy-transfer chain. In a membrane-intrinsic LHC of dinoflagellates, similarly two subpopulations of Chls were observed. In addition, another part of Chl triplets is quenched by carotenoids with a rate which decreases with temperature. This allowed us to study the temperature dependence of Dexter energy transfer. Finally, a part of Chls was quenched by triplet-triplet annihilation, a phenomenon which was not observed for LHCs before.
Collapse
Affiliation(s)
- Ivo S Vinklárek
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic
| | - Till L V Bornemann
- Protein Crystallography, Faculty of Biology and Biotechnology , Ruhr-University Bochum , D-44780 Bochum , Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology , Ruhr-University Bochum , D-44780 Bochum , Germany
| | - Jan Alster
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic
| |
Collapse
|
19
|
Changing the site energy of per-614 in the Peridinin-chlorophyll a-protein does not alter its capability of chlorophyll triplet quenching. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:612-618. [DOI: 10.1016/j.bbabio.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/15/2018] [Indexed: 11/21/2022]
|
20
|
Scholz M, Dědic R, Hála J. Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells. Photochem Photobiol Sci 2018; 16:1643-1653. [PMID: 28936518 DOI: 10.1039/c7pp00132k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.
Collapse
Affiliation(s)
- Marek Scholz
- Charles University, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16, Prague, The Czech Republic.
| | | | | |
Collapse
|
21
|
Khoroshyy P, Bína D, Gardian Z, Litvín R, Alster J, Pšenčík J. Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. PHOTOSYNTHESIS RESEARCH 2018; 135:213-225. [PMID: 28669083 DOI: 10.1007/s11120-017-0416-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.
Collapse
Affiliation(s)
- Petro Khoroshyy
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic
| | - David Bína
- Biological Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Zdenko Gardian
- Biological Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Radek Litvín
- Biological Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Jan Alster
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, 121 16, Prague 2, Czech Republic.
| |
Collapse
|
22
|
Mandal S, Carey AM, Locsin J, Gao BR, Williams JC, Allen JP, Lin S, Woodbury NW. Mechanism of Triplet Energy Transfer in Photosynthetic Bacterial Reaction Centers. J Phys Chem B 2017; 121:6499-6510. [DOI: 10.1021/acs.jpcb.7b03373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sarthak Mandal
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | - Anne-Marie Carey
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Locsin
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
| | | | - JoAnn C. Williams
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - James P. Allen
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - Su Lin
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| | - Neal W. Woodbury
- Center
for Innovations in Medicine, The Biodesign Institute at ASU, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287−1604, United States
| |
Collapse
|
23
|
Vinklárek IS, Scholz M, Dědic R, Hála J. Singlet oxygen feedback delayed fluorescence of protoporphyrin IX in organic solutions. Photochem Photobiol Sci 2017; 16:507-518. [DOI: 10.1039/c6pp00298f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PpIX DF show the significant role of SOFDF mechanism at high concentrations and at atmospheric partial pressure of oxygen and should be considered when developing diagnostic tools for clinical applications.
Collapse
Affiliation(s)
- Ivo S. Vinklárek
- Charles University
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- Prague
- The Czech Republic
| | - Marek Scholz
- Charles University
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- Prague
- The Czech Republic
| | - Roman Dědic
- Charles University
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- Prague
- The Czech Republic
| | - Jan Hála
- Charles University
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- Prague
- The Czech Republic
| |
Collapse
|
24
|
Distance measurements in peridinin-chlorophyll a-protein by light-induced PELDOR spectroscopy. Analysis of triplet state localization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1909-1916. [PMID: 27659505 DOI: 10.1016/j.bbabio.2016.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 11/22/2022]
Abstract
Triplet-triplet energy transfer from chlorophylls to carotenoids is the mechanism underlying the photoprotective role played by carotenoids in many light harvesting complexes, during photosynthesis. The peridinin-chlorophyll-a protein (PCP) is a water-soluble light harvesting protein of the dinoflagellate Amphidinium carterae, employing peridinin as the main carotenoid to fulfil this function. The dipolar coupling of the triplet state of peridinin, populated under light excitation in isolated PCP, to the MTSSL nitroxide, introduced in the protein by site-directed mutagenesis followed by spin labeling, has been measured by Pulse ELectron-electron DOuble Resonance (PELDOR) spectroscopy. The triplet-nitroxide distance derived by this kind of experiments, performed for the first time in a protein system, allowed the assignment of the triplet state to a specific peridinin molecule belonging to the pigment cluster. The analysis strongly suggests that this peridinin is the one in close contact with the water ligand to the chlorophyll a, thus supporting previous evidences based on ENDOR and time resolved-EPR.
Collapse
|