1
|
Li S, Wang J, Andersen JV, Aldana BI, Zhang B, Prochownik EV, Rosenberg PA. Misprogramming of glucose metabolism impairs recovery of hippocampal slices from neuronal GLT-1 knockout mice and contributes to excitotoxic injury through mitochondrial superoxide production. J Neurochem 2025; 169:e16205. [PMID: 39193789 PMCID: PMC11659059 DOI: 10.1111/jnc.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
We have previously reported a failure of recovery of synaptic function in the CA1 region of acute hippocampal slices from mice with a conditional neuronal knockout (KO) of GLT-1 (EAAT2, Slc1A2) driven by synapsin-Cre (synGLT-1 KO). The failure of recovery of synaptic function is due to excitotoxic injury. We hypothesized that changes in mitochondrial metabolism contribute to the heightened vulnerability to excitotoxicity in the synGLT-1 KO mice. We found impaired flux of carbon from 13C-glucose into the tricarboxylic acid cycle in synGLT-1 KO cortical and hippocampal slices compared with wild-type (WT) slices. In addition, we found downregulation of the neuronal glucose transporter GLUT3 in both genotypes. Flux of carbon from [1,2-13C]acetate, thought to be astrocyte-specific, was increased in the synGLT-KO hippocampal slices but not cortical slices. Glycogen stores, predominantly localized to astrocytes, are rapidly depleted in slices after cutting, and are replenished during ex vivo incubation. In the synGLT-1 KO, replenishment of glycogen stores during ex vivo incubation was compromised. These results suggest both neuronal and astrocytic metabolic perturbations in the synGLT-1 KO slices. Supplementing incubation medium during recovery with 20 mM D-glucose normalized glycogen replenishment but had no effect on recovery of synaptic function. In contrast, 20 mM non-metabolizable L-glucose substantially improved recovery of synaptic function, suggesting that D-glucose metabolism contributes to the excitotoxic injury in the synGLT-1 KO slices. L-lactate substitution for D-glucose did not promote recovery of synaptic function, implicating mitochondrial metabolism. Consistent with this hypothesis, phosphorylation of pyruvate dehydrogenase, which decreases enzyme activity, was increased in WT slices during the recovery period, but not in synGLT-1 KO slices. Since metabolism of glucose by the mitochondrial electron transport chain is associated with superoxide production, we tested the effect of drugs that scavenge and prevent superoxide production. The superoxide dismutase/catalase mimic EUK-134 conferred complete protection and full recovery of synaptic function. A site-specific inhibitor of complex III superoxide production, S3QEL-2, was also protective, but inhibitors of NADPH oxidase were not. In summary, we find that the failure of recovery of synaptic function in hippocampal slices from the synGLT-1 KO mouse, previously shown to be due to excitotoxic injury, is caused by production of superoxide by mitochondrial metabolism.
Collapse
Affiliation(s)
- S Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J Wang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - E V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital, Pittsburgh, Pennsylvania, USA
| | - P A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Trejo-Solís C, Serrano-García N, Castillo-Rodríguez RA, Robledo-Cadena DX, Jimenez-Farfan D, Marín-Hernández Á, Silva-Adaya D, Rodríguez-Pérez CE, Gallardo-Pérez JC. Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma. Rev Neurosci 2024; 35:813-838. [PMID: 38841811 DOI: 10.1515/revneuro-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Rosa Angelica Castillo-Rodríguez
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, Xochitepec 62790, Mexico
| | - Diana Xochiquetzal Robledo-Cadena
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
3
|
Yin C, Qin R, Ma Z, Li F, Liu J, Liu H, Shu G, Xiong H, Jiang Q. Oxaloacetic acid induces muscle energy substrate depletion and fatigue by JNK-mediated mitochondrial uncoupling. FASEB J 2024; 38:e23373. [PMID: 38217376 DOI: 10.1096/fj.202301796r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
Fatigue is a common phenomenon closely related to physical discomfort and numerous diseases, which is severely threatening the life quality and health of people. However, the exact mechanisms underlying fatigue are not fully characterized. Herein, we demonstrate that oxaloacetic acid (OAA), a crucial tricarboxylic acid cycle intermediate, modulates the muscle fatigue. The results showed that serum OAA level was positively correlated with fatigue state of mice. OAA-treated induced muscle fatigue impaired the exercise performance of mice. Mechanistically, OAA increased the c-Jun N-terminal kinase (JNK) phosphorylation and uncoupling protein 2 (UCP2) levels in skeletal muscle, which led to decreased energy substrate and enhanced glycolysis. On the other hand, OAA boosted muscle mitochondrial oxidative phosphorylation uncoupled with energy production. In addition, either UCP2 knockout or JNK inhibition totally reversed the effects of OAA on skeletal muscle. Therein, JNK mediated UCP2 activation with OAA-treated. Our studies reveal a novel role of OAA in skeletal muscle metabolism, which would shed light on the mechanism of muscle fatigue and weakness.
Collapse
Affiliation(s)
- Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hairong Xiong
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Rosenberg AM, Saggar M, Monzel AS, Devine J, Rogu P, Limoges A, Junker A, Sandi C, Mosharov EV, Dumitriu D, Anacker C, Picard M. Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice. Nat Commun 2023; 14:4726. [PMID: 37563104 PMCID: PMC10415311 DOI: 10.1038/s41467-023-39941-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
The brain and behavior are under energetic constraints, limited by mitochondrial energy transformation capacity. However, the mitochondria-behavior relationship has not been systematically studied at a brain-wide scale. Here we examined the association between multiple features of mitochondrial respiratory chain capacity and stress-related behaviors in male mice with diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 brain areas, defining specific patterns of mito-behavior associations. By applying multi-slice network analysis to our brain-wide mitochondrial dataset, we identified three large-scale networks of brain areas with shared mitochondrial signatures. A major network composed of cortico-striatal areas exhibited the strongest mitochondria-behavior correlations, accounting for up to 50% of animal-to-animal behavioral differences, suggesting that this mito-based network is functionally significant. The mito-based brain networks also overlapped with regional gene expression and structural connectivity, and exhibited distinct molecular mitochondrial phenotype signatures. This work provides convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct, behaviorally-relevant mitochondrial phenotypes exist across the male mouse brain.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Rogu
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron Limoges
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne, Switzerland
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Dani Dumitriu
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Christoph Anacker
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
5
|
Sadri S, Zhang X, Audi SH, Cowley Jr. AW, Dash RK. Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla. FUNCTION 2023; 4:zqad038. [PMID: 37575476 PMCID: PMC10413947 DOI: 10.1093/function/zqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the mitochondria of these tissues. Intrinsic model parameters such as Michaelis-Menten constants were fixed at previously estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH2-linked metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and FADH2-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP synthesis in the heart and kidney cortex and OM mitochondria.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
| | - Allen W Cowley Jr.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
7
|
Yu L, Fink BD, Som R, Rauckhorst AJ, Taylor EB, Sivitz WI. Metabolic clearance of oxaloacetate and mitochondrial complex II respiration: Divergent control in skeletal muscle and brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148930. [PMID: 36272463 PMCID: PMC10225247 DOI: 10.1016/j.bbabio.2022.148930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
At low inner mitochondrial membrane potential (ΔΨ) oxaloacetate (OAA) accumulates in the organelles concurrently with decreased complex II-energized respiration. This is consistent with ΔΨ-dependent OAA inhibition of succinate dehydrogenase. To assess the metabolic importance of this process, we tested the hypothesis that perturbing metabolic clearance of OAA in complex II-energized mitochondria would alter O2 flux and, further, that this would occur in both ΔΨ and tissue-dependent fashion. We carried out respiratory and metabolite studies in skeletal muscle and interscapular brown adipose tissue (IBAT) directed at the effect of OAA transamination to aspartate (catalyzed by the mitochondrial form of glutamic-oxaloacetic transaminase, Got2) on complex II-energized respiration. Addition of low amounts of glutamate to succinate-energized mitochondria at low ΔΨ increased complex II (succinate)-energized respiration in muscle but had little effect in IBAT mitochondria. The transaminase inhibitor, aminooxyacetic acid, increased OAA concentrations and impaired succinate-energized respiration in muscle but not IBAT mitochondria at low but not high ΔΨ. Immunoblotting revealed that Got2 expression was far greater in muscle than IBAT mitochondria. Because we incidentally observed metabolism of OAA to pyruvate in IBAT mitochondria, more so than in muscle mitochondria, we also examined the expression of mitochondrial oxaloacetate decarboxylase (ODX). ODX was detected only in IBAT mitochondria. In summary, at low but not high ΔΨ, mitochondrial transamination clears OAA preventing loss of complex II respiration: a process far more active in muscle than IBAT mitochondria. We also provide evidence that OAA decarboxylation clears OAA to pyruvate in IBAT mitochondria.
Collapse
Affiliation(s)
- Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; Carver College of Medicine NMR Core Facility, University of Iowa, Iowa City, IA 52242, USA
| | - Brian D Fink
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Ritu Som
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - William I Sivitz
- Department of Internal Medicine/Endocrinology and Metabolism, University of Iowa and the Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Kinetic Mathematical Modeling of Oxidative Phosphorylation in Cardiomyocyte Mitochondria. Cells 2022; 11:cells11244020. [PMID: 36552784 PMCID: PMC9777548 DOI: 10.3390/cells11244020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) is an oxygen-dependent process that consumes catabolized nutrients to produce adenosine triphosphate (ATP) to drive energy-dependent biological processes such as excitation-contraction coupling in cardiomyocytes. In addition to in vivo and in vitro experiments, in silico models are valuable for investigating the underlying mechanisms of OXPHOS and predicting its consequences in both physiological and pathological conditions. Here, we compare several prominent kinetic models of OXPHOS in cardiomyocytes. We examine how their mathematical expressions were derived, how their parameters were obtained, the conditions of their experimental counterparts, and the predictions they generated. We aim to explore the general landscape of energy production mechanisms in cardiomyocytes for future in silico models.
Collapse
|
9
|
Neurodegeneration in a Regulatory Context: The Need for Speed. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Richardson RB, Mailloux RJ. WITHDRAWN: Mitochondria need their sleep: Sleep-wake cycling and the role of redox, bioenergetics, and temperature regulation, involving cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Free Radic Biol Med 2022:S0891-5849(22)01013-9. [PMID: 36462628 DOI: 10.1016/j.freeradbiomed.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada; McGill Medical Physics Unit, McGill University, Cedars Cancer Centre - Glen Site, Montreal, Quebec QC, H4A 3J1, Canada.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
11
|
Panconesi R, Widmer J, Carvalho MF, Eden J, Dondossola D, Dutkowski P, Schlegel A. Mitochondria and ischemia reperfusion injury. Curr Opin Organ Transplant 2022; 27:434-445. [PMID: 35950880 DOI: 10.1097/mot.0000000000001015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review describes the role of mitochondria in ischemia-reperfusion-injury (IRI). RECENT FINDINGS Mitochondria are the power-house of our cells and play a key role for the success of organ transplantation. With their respiratory chain, mitochondria are the main energy producers, to fuel metabolic processes, control cellular signalling and provide electrochemical integrity. The mitochondrial metabolism is however severely disturbed when ischemia occurs. Cellular energy depletes rapidly and various metabolites, including Succinate accumulate. At reperfusion, reactive oxygen species are immediately released from complex-I and initiate the IRI-cascade of inflammation. Prior to the development of novel therapies, the underlying mechanisms should be explored to target the best possible mitochondrial compound. A clinically relevant treatment should recharge energy and reduce Succinate accumulation before organ implantation. While many interventions focus instead on a specific molecule, which may inhibit downstream IRI-inflammation, mitochondrial protection can be directly achieved through hypothermic oxygenated perfusion (HOPE) before transplantation. SUMMARY Mitochondria are attractive targets for novel molecules to limit IRI-associated inflammation. Although dynamic preservation techniques could serve as delivery tool for new therapeutic interventions, their own inherent mechanism should not only be studied, but considered as key treatment to reduce mitochondrial injury, as seen with the HOPE-approach.
Collapse
Affiliation(s)
- Rebecca Panconesi
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Jeannette Widmer
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | | | - Janina Eden
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| | - Philipp Dutkowski
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence, Italy
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, Milan, Italy
| |
Collapse
|
12
|
Widmer J, Eden J, Carvalho MF, Dutkowski P, Schlegel A. Machine Perfusion for Extended Criteria Donor Livers: What Challenges Remain? J Clin Med 2022; 11:jcm11175218. [PMID: 36079148 PMCID: PMC9457017 DOI: 10.3390/jcm11175218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Based on the renaissance of dynamic preservation techniques, extended criteria donor (ECD) livers reclaimed a valuable eligibility in the transplantable organ pool. Being more vulnerable to ischemia, ECD livers carry an increased risk of early allograft dysfunction, primary non-function and biliary complications and, hence, unveiled the limitations of static cold storage (SCS). There is growing evidence that dynamic preservation techniques—dissimilar to SCS—mitigate reperfusion injury by reconditioning organs prior transplantation and therefore represent a useful platform to assess viability. Yet, a debate is ongoing about the advantages and disadvantages of different perfusion strategies and their best possible applications for specific categories of marginal livers, including organs from donors after circulatory death (DCD) and brain death (DBD) with extended criteria, split livers and steatotic grafts. This review critically discusses the current clinical spectrum of livers from ECD donors together with the various challenges and posttransplant outcomes in the context of standard cold storage preservation. Based on this, the potential role of machine perfusion techniques is highlighted next. Finally, future perspectives focusing on how to achieve higher utilization rates of the available donor pool are highlighted.
Collapse
Affiliation(s)
- Jeannette Widmer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Andrea Schlegel
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, 8091 Zürich, Switzerland
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
13
|
Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science 2022; 376:eabh2841. [PMID: 35737799 PMCID: PMC7612974 DOI: 10.1126/science.abh2841] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor necrosis factor (TNF) is a critical host resistance factor against tuberculosis. However, excess TNF produces susceptibility by increasing mitochondrial reactive oxygen species (mROS), which initiate a signaling cascade to cause pathogenic necrosis of mycobacterium-infected macrophages. In zebrafish, we identified the mechanism of TNF-induced mROS in tuberculosis. Excess TNF in mycobacterium-infected macrophages elevates mROS production by reverse electron transport (RET) through complex I. TNF-activated cellular glutamine uptake leads to an increased concentration of succinate, a Krebs cycle intermediate. Oxidation of this elevated succinate by complex II drives RET, thereby generating the mROS superoxide at complex I. The complex I inhibitor metformin, a widely used antidiabetic drug, prevents TNF-induced mROS and necrosis of Mycobacterium tuberculosis-infected zebrafish and human macrophages; metformin may therefore be useful in tuberculosis therapy.
Collapse
Affiliation(s)
- Francisco J. Roca
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- Current affiliation: Department of Biochemistry and Molecular Biology B and Immunology, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30120, Spain
| | - Laura J. Whitworth
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Hiran A. Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michael P. Murphy
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
14
|
Schlegel A, Porte R, Dutkowski P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J Hepatol 2022; 76:1330-1347. [PMID: 35589254 DOI: 10.1016/j.jhep.2022.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
The development of cholangiopathies after liver transplantation impacts on the quality and duration of graft and patient survival, contributing to higher costs as numerous interventions are required to treat strictures and infections at the biliary tree. Prolonged donor warm ischaemia time in combination with additional cold storage are key risk factors for the development of biliary strictures. Based on this, the clinical implementation of dynamic preservation strategies is a current hot topic in the field of donation after circulatory death (DCD) liver transplantation. Despite various retrospective studies reporting promising results, also regarding biliary complications, there are only a few randomised-controlled trials on machine perfusion. Recently, the group from Groningen has published the first randomised-controlled trial on hypothermic oxygenated perfusion (HOPE), demonstrating a significant reduction of symptomatic ischaemic cholangiopathies with the use of a short period of HOPE before DCD liver implantation. The most likely mechanism for this important effect, also shown in several experimental studies, is based on mitochondrial reprogramming under hypothermic aerobic conditions, e.g. exposure to oxygen in the cold, with a controlled and slow metabolism of ischaemically accumulated succinate and simultaneous ATP replenishment. This unique feature prevents mitochondrial oxidative injury and further downstream tissue inflammation. HOPE treatment therefore supports livers by protecting them from ischaemia-reperfusion injury (IRI), and thereby also prevents the development of post-transplant biliary injury. With reduced IRI-associated inflammation, recipients are also protected from activation of the innate immune system, with less acute rejections seen after HOPE.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy
| | - Robert Porte
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| |
Collapse
|
15
|
Fink BD, Rauckhorst AJ, Taylor EB, Yu L, Sivitz WI. Membrane potential-dependent regulation of mitochondrial complex II by oxaloacetate in interscapular brown adipose tissue. FASEB Bioadv 2022; 4:197-210. [PMID: 35392250 PMCID: PMC8973305 DOI: 10.1096/fba.2021-00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022] Open
Abstract
Classically, mitochondrial respiration responds to decreased membrane potential (ΔΨ) by increasing respiration. However, we found that for succinate-energized complex II respiration in skeletal muscle mitochondria (unencumbered by rotenone), low ΔΨ impairs respiration by a mechanism culminating in oxaloacetate (OAA) inhibition of succinate dehydrogenase (SDH). Here, we investigated whether this phenomenon extends to far different mitochondria of a tissue wherein ΔΨ is intrinsically low, i.e., interscapular brown adipose tissue (IBAT). Also, to advance our knowledge of the mechanism, we performed isotopomer studies of metabolite flux not done in our previous muscle studies. In additional novel work, we addressed possible ways ADP might affect the mechanism in IBAT mitochondria. UCP1 activity, and consequently ΔΨ, were perturbed both by GDP, a well-recognized potent inhibitor of UCP1 and by the chemical uncoupler carbonyl cyanide m-chlorophenyl hydrazone (FCCP). In succinate-energized mitochondria, GDP increased ΔΨ but also increased rather than decreased (as classically predicted under low ΔΨ) O2 flux. In GDP-treated mitochondria, FCCP reduced potential but also decreased respiration. Metabolite studies by NMR and flux analyses by LC-MS support a mechanism, wherein ΔΨ effects on the production of reactive oxygen alters the NADH/NAD+ ratio affecting OAA accumulation and, hence, OAA inhibition of SDH. We also found that ADP-altered complex II respiration in complex fashion probably involving decreased ΔΨ due to ATP synthesis, a GDP-like nucleotide inhibition of UCP1, and allosteric enzyme action. In summary, complex II respiration in IBAT mitochondria is regulated by UCP1-dependent ΔΨ altering substrate flow through OAA and OAA inhibition of SDH.
Collapse
Affiliation(s)
- Brian D. Fink
- Department of Internal Medicine/Endocrinology and MetabolismUniversity of Iowa and the Iowa City Veterans Affairs Medical CenterIowa CityIowaUSA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityIowaUSA
| | - Eric B. Taylor
- Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityIowaUSA
| | - Liping Yu
- Department of Biochemistry and Molecular BiologyUniversity of IowaIowa CityIowaUSA
- NMR Core FacilityUniversity of IowaIowa CityIowaUSA
| | - William I. Sivitz
- Department of Internal Medicine/Endocrinology and MetabolismUniversity of Iowa and the Iowa City Veterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
16
|
Tomar N, Zhang X, Kandel SM, Sadri S, Yang C, Liang M, Audi SH, Cowley AW, Dash RK. Substrate-dependent differential regulation of mitochondrial bioenergetics in the heart and kidney cortex and outer medulla. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148518. [PMID: 34864090 PMCID: PMC8957717 DOI: 10.1016/j.bbabio.2021.148518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 05/05/2023]
Abstract
The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats. The substrates were pyruvate+malate, glutamate+malate, palmitoyl-carnitine+malate, alpha-ketoglutarate+malate, and succinate±rotenone at saturating concentrations. The kinetics of OxPhos were interrogated by measuring mitochondrial bioenergetics under different ADP perturbations. Results show that the kinetics and efficiency of OxPhos are highly dependent on the substrates used, and this dependency is distinctly different between heart and kidney. Heart mitochondria showed higher respiratory rates and OxPhos efficiencies for all substrates in comparison to kidney mitochondria. Cortex mitochondria respiratory rates were higher than OM mitochondria, but OM mitochondria OxPhos efficiencies were higher than cortex mitochondria. State 3 respiration was low in heart mitochondria with succinate but increased significantly in the presence of rotenone, unlike kidney mitochondria. Similar differences were observed in mitochondrial membrane potential. Differences in H2O2 emission in the presence of succinate±rotenone were observed in heart mitochondria and to a lesser extent in OM mitochondria, but not in cortex mitochondria. Bioenergetics and H2O2 emission data with succinate±rotenone indicate that oxaloacetate accumulation and reverse electron transfer may play a more prominent regulatory role in heart mitochondria than kidney mitochondria. These studies provide novel quantitative data demonstrating that the choice of respiratory substrates affects mitochondrial responses in a tissue-specific manner.
Collapse
Affiliation(s)
- Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Sunil M Kandel
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI-53226, United States of America; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee WI-53223, United States of America
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI-53226, United States of America; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee WI-53226, United States of America.
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America; Department of Physiology, Medical College of Wisconsin, Milwaukee WI-53226, United States of America; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee WI-53226, United States of America.
| |
Collapse
|
17
|
Cell-Permeable Succinate Rescues Mitochondrial Respiration in Cellular Models of Amiodarone Toxicity. Int J Mol Sci 2021; 22:ijms222111786. [PMID: 34769217 PMCID: PMC8583998 DOI: 10.3390/ijms222111786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Amiodarone is a potent antiarrhythmic drug and displays substantial liver toxicity in humans. It has previously been demonstrated that amiodarone and its metabolite (desethylamiodarone, DEA) can inhibit mitochondrial function, particularly complexes I (CI) and II (CII) of the electron transport system in various animal tissues and cell types. The present study, performed in human peripheral blood cells, and one liver-derived human cell line, is primarily aimed at assessing the concentration-dependent effects of these drugs on mitochondrial function (respiration and cellular ATP levels). Furthermore, we explore the efficacy of a novel cell-permeable succinate prodrug in alleviating the drug-induced acute mitochondrial dysfunction. Amiodarone and DEA elicit a concentration-dependent impairment of mitochondrial respiration in both intact and permeabilized platelets via the inhibition of both CI- and CII-supported respiration. The inhibitory effect seen in human platelets is also confirmed in mononuclear cells (PBMCs) and HepG2 cells. Additionally, amiodarone elicits a severe concentration-dependent ATP depletion in PBMCs, which cannot be explained solely by mitochondrial inhibition. The succinate prodrug NV118 alleviates the respiratory deficit in platelets and HepG2 cells acutely exposed to amiodarone. In conclusion, amiodarone severely inhibits metabolism in primary human mitochondria, which can be counteracted by increasing mitochondrial function using intracellular delivery of succinate.
Collapse
|
18
|
Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion. PLoS One 2021; 16:e0257783. [PMID: 34710117 PMCID: PMC8553115 DOI: 10.1371/journal.pone.0257783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Marginal human donor livers are highly susceptible to ischaemia reperfusion injury and mitochondrial dysfunction. Oxygenation during hypothermic machine perfusion (HMP) was proposed to protect the mitochondria but the mechanism is unclear. Additionally, the distribution and uptake of perfusate oxygen during HMP are unknown. This study aimed to examine the feasibility of mitochondrial function analysis during end-ischaemic HMP, assess potential mitochondrial viability biomarkers, and record oxygenation kinetics. METHODS This was a randomised pilot study using human livers retrieved for transplant but not utilised. Livers (n = 38) were randomised at stage 1 into static cold storage (n = 6), hepatic artery HMP (n = 7), and non-oxygen supplemented portal vein HMP (n = 7) and at stage 2 into oxygen supplemented and non-oxygen supplemented portal vein HMP (n = 11 and 7, respectively). Mitochondrial parameters were compared between the groups and between low- and high-risk marginal livers based on donor history, organ steatosis and preservation period. The oxygen delivery efficiency was assessed in additional 6 livers using real-time measurements of perfusate and parenchymal oxygen. RESULTS The change in mitochondrial respiratory chain (complex I, II, III, IV) and Krebs cycle enzyme activity (aconitase, citrate synthase) before and after 4-hour preservation was not different between groups in both study stages (p > 0.05). Low-risk livers that could have been used clinically (n = 8) had lower complex II-III activities after 4-hour perfusion, compared with high-risk livers (73 nmol/mg/min vs. 113 nmol/mg/min, p = 0.01). Parenchymal pO2 was consistently lower than perfusate pO2 (p ≤ 0.001), stabilised in 28 minutes compared to 3 minutes in perfusate (p = 0.003), and decreased faster upon oxygen cessation (75 vs. 36 minutes, p = 0.003). CONCLUSIONS Actively oxygenated and air-equilibrated end-ischaemic HMP did not induce oxidative damage of aconitase, and respiratory chain complexes remained intact. Mitochondria likely respond to variable perfusate oxygen levels by adapting their respiratory function during end-ischaemic HMP. Complex II-III activities should be further investigated as viability biomarkers.
Collapse
|
19
|
Bakare AB, Rao RR, Iyer S. Cell-Permeable Succinate Increases Mitochondrial Membrane Potential and Glycolysis in Leigh Syndrome Patient Fibroblasts. Cells 2021; 10:cells10092255. [PMID: 34571904 PMCID: PMC8470843 DOI: 10.3390/cells10092255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial disorders represent a large group of severe genetic disorders mainly impacting organ systems with high energy requirements. Leigh syndrome (LS) is a classic example of a mitochondrial disorder resulting from pathogenic mutations that disrupt oxidative phosphorylation capacities. Currently, evidence-based therapy directed towards treating LS is sparse. Recently, the cell-permeant substrates responsible for regulating the electron transport chain have gained attention as therapeutic agents for mitochondrial diseases. We explored the therapeutic effects of introducing tricarboxylic acid cycle (TCA) intermediate substrate, succinate, as a cell-permeable prodrug NV118, to alleviate some of the mitochondrial dysfunction in LS. The results suggest that a 24-hour treatment with prodrug NV118 elicited an upregulation of glycolysis and mitochondrial membrane potential while inhibiting intracellular reactive oxygen species in LS cells. The results from this study suggest an important role for TCA intermediates for treating mitochondrial dysfunction in LS. We show, here, that NV118 could serve as a therapeutic agent for LS resulting from mutations in mtDNA in complex I and complex V dysfunctions.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Raj R. Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
- Correspondence:
| |
Collapse
|
20
|
Selivanov VA, Zagubnaya OA, Nartsissov YR, Cascante M. Unveiling a key role of oxaloacetate-glutamate interaction in regulation of respiration and ROS generation in nonsynaptic brain mitochondria using a kinetic model. PLoS One 2021; 16:e0255164. [PMID: 34343196 PMCID: PMC8330910 DOI: 10.1371/journal.pone.0255164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022] Open
Abstract
Glutamate plays diverse roles in neuronal cells, affecting cell energetics and reactive oxygen species (ROS) generation. These roles are especially vital for neuronal cells, which deal with high amounts of glutamate as a neurotransmitter. Our analysis explored neuronal glutamate implication in cellular energy metabolism and ROS generation, using a kinetic model that simulates electron transport details in respiratory complexes, linked ROS generation and metabolic reactions. The analysis focused on the fact that glutamate attenuates complex II inhibition by oxaloacetate, stimulating the latter's transformation into aspartate. Such a mechanism of complex II activation by glutamate could cause almost complete reduction of ubiquinone and deficiency of oxidized form (Q), which closes the main stream of electron transport and opens a way to massive ROS generating transfer in complex III from semiquinone radicals to molecular oxygen. In this way, under low workload, glutamate triggers the respiratory chain (RC) into a different steady state characterized by high ROS generation rate. The observed stepwise dependence of ROS generation on glutamate concentration experimentally validated this prediction. However, glutamate's attenuation of oxaloacetate's inhibition accelerates electron transport under high workload. Glutamate-oxaloacetate interaction in complex II regulation underlies the observed effects of uncouplers and inhibitors and acceleration of Ca2+ uptake. Thus, this theoretical analysis uncovered the previously unknown roles of oxaloacetate as a regulator of ROS generation and glutamate as a modifier of this regulation. The model predicted that this mechanism of complex II activation by glutamate might be operative in situ and responsible for excitotoxicity. Spatial-time gradients of synthesized hydrogen peroxide concentration, calculated in the reaction-diffusion model with convection under a non-uniform local approximation of nervous tissue, have shown that overproduction of H2O2 in a cell causes excess of its level in neighbor cells.
Collapse
Affiliation(s)
- Vitaly A. Selivanov
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Olga A. Zagubnaya
- Department of Mathematical Modeling and Statistical Analysis, Institute of Cytochemistry and Molecular Pharmacology, Moscow, Russia
| | - Yaroslav R. Nartsissov
- Department of Mathematical Modeling and Statistical Analysis, Institute of Cytochemistry and Molecular Pharmacology, Moscow, Russia
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
21
|
Knapp-Wilson A, Pereira GC, Buzzard E, Ford HC, Richardson A, Corey RA, Neal C, Verkade P, Halestrap AP, Gold VAM, Kuwabara PE, Collinson I. Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health. J Cell Sci 2021; 134:jcs258399. [PMID: 34106255 PMCID: PMC8277142 DOI: 10.1242/jcs.258399] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper.
Collapse
Affiliation(s)
| | | | - Emma Buzzard
- Living Systems Institute, Stocker Road, University of Exeter, Exeter EX4 4QD, UK
- College of Life and Environmental Sciences,Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Holly C. Ford
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Robin A. Corey
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Chris Neal
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Vicki A. M. Gold
- Living Systems Institute, Stocker Road, University of Exeter, Exeter EX4 4QD, UK
- College of Life and Environmental Sciences,Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
22
|
Tonnesen PT, Hjortbak MV, Lassen TR, Seefeldt JM, Bøtker HE, Jespersen NR. Myocardial salvage by succinate dehydrogenase inhibition in ischemia-reperfusion injury depends on diabetes stage in rats. Mol Cell Biochem 2021; 476:2675-2684. [PMID: 33666828 PMCID: PMC8192402 DOI: 10.1007/s11010-021-04108-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/11/2021] [Indexed: 01/03/2023]
Abstract
Inhibition of succinate dehydrogenase (SDH) by Dimethyl Malonate (DiMal) reduces cardiac ischemia-reperfusion (IR) injury. We investigated the cardioprotective effect of DiMal in a rat model during advancing type 2 diabetes. Zucker Diabetic Fatty rats and lean controls were investigated corresponding to prediabetes, onset and mature diabetes. Hearts were mounted in an isolated perfused model, and subjected to IR for investigation of infarct size (IS) and mitochondrial respiratory control ratio (RCR). DiMal was administered for 10 min before ischemia. Compared with age-matched non-diabetic rats, prediabetic rats had larger IS (49 ± 4% vs. 36 ± 2%, p = 0.007), rats with onset diabetes smaller IS (51 ± 3% vs. 62 ± 3%, p = 0.05) and rats with mature diabetes had larger IS (79 ± 3% vs. 69 ± 2%, p = 0.06). At the prediabetic stage DiMal did not alter IS. At onset of diabetes DiMal 0.6 mM increased IS in diabetic but not in non-diabetic control rats (72 ± 4% vs. 51 ± 3%, p = 0.003). At mature diabetes DiMal 0.1 and 0.6 mM reduced IS (68 ± 3% vs. 79 ± 3% and 64 ± 5% vs. 79 ± 3%, p = 0.1 and p = 0.01), respectively. DiMal 0.1 mM alone reduced IS in age-matched non-diabetic animals (55 ± 3% vs. 69 ± 2% p = 0.01). RCR was reduced at mature diabetes but not modulated by DiMal. Modulation of SDH activity results in variable infarct size reduction depending on presence and the stage of diabetes. Modulation of SDH activity may be an unpredictable cardioprotective approach.
Collapse
Affiliation(s)
- Pernille Tilma Tonnesen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jacob Marthinsen Seefeldt
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
23
|
McKenna HT, O'Brien KA, Fernandez BO, Minnion M, Tod A, McNally BD, West JA, Griffin JL, Grocott MP, Mythen MG, Feelisch M, Murray AJ, Martin DS. Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness. Redox Biol 2021; 41:101907. [PMID: 33667994 PMCID: PMC7937570 DOI: 10.1016/j.redox.2021.101907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023] Open
Abstract
Background Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support. Methods To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients. Results We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48 h was 27% lower than in non-survivors (p = 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors’ FAO enzyme activity was double that of non-survivors (p = 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups. Conclusion Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies.
Collapse
Affiliation(s)
- Helen T McKenna
- Division of Surgery and Interventional Science, University College London, Royal Free Hospital, London, NW3 2QG, UK; Intensive Care Unit, Royal Free Hospital, London, NW3 2QG, UK; Peninsula Medical School, University of Plymouth, John Bull Building, Derriford, Plymouth, PL6 8BU, UK
| | - Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Magdalena Minnion
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Adam Tod
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ben D McNally
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, CB2 1GA, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0RE, UK
| | - Julian L Griffin
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, CB2 1GA, UK; Section of Biomolecular Medicine, Department of Digestion, Metabolism and Reproduction, Imperial College London, SW7 2AZ, UK
| | - Michael P Grocott
- Anaesthesia Perioperative and Critical Care Research Group, Southampton National Institute of Health Research Biomedical Research Centre, University Hospital Southampton, SO16 6YD, UK
| | - Michael G Mythen
- University College London Hospitals and Great Ormond Street, National Institute of Health Research Biomedical Research Centres, London, WC1N 1EH, UK
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK; Anaesthesia Perioperative and Critical Care Research Group, Southampton National Institute of Health Research Biomedical Research Centre, University Hospital Southampton, SO16 6YD, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Daniel S Martin
- Division of Surgery and Interventional Science, University College London, Royal Free Hospital, London, NW3 2QG, UK; Intensive Care Unit, Royal Free Hospital, London, NW3 2QG, UK; Peninsula Medical School, University of Plymouth, John Bull Building, Derriford, Plymouth, PL6 8BU, UK
| |
Collapse
|
24
|
Ramalingam V, Rajaram R. A paradoxical role of reactive oxygen species in cancer signaling pathway: Physiology and pathology. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Moreno C, Santos RM, Burns R, Zhang WC. Succinate Dehydrogenase and Ribonucleic Acid Networks in Cancer and Other Diseases. Cancers (Basel) 2020; 12:cancers12113237. [PMID: 33153035 PMCID: PMC7693138 DOI: 10.3390/cancers12113237] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Although the dysfunction of the succinate dehydrogenase complex in mitochondria leads to cancer and other diseases due to aberrant metabolic reactions and signaling pathways, it is not well known how the succinate dehydrogenase complex is regulated. Our review highlights that non-coding ribonucleic acids (RNAs), RNA editing enzymes, and RNA modifying enzymes regulate expressions and functions of the succinate dehydrogenase complex. This research will provide new strategies for treating succinate dehydrogenase-relevant diseases in a clinic. Abstract Succinate dehydrogenase (SDH) complex connects both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) in the mitochondria. However, SDH mutation or dysfunction-induced succinate accumulation results in multiple cancers and non-cancer diseases. The mechanistic studies show that succinate activates hypoxia response and other signal pathways via binding to 2-oxoglutarate-dependent oxygenases and succinate receptors. Recently, the increasing knowledge of ribonucleic acid (RNA) networks, including non-coding RNAs, RNA editors, and RNA modifiers has expanded our understanding of the interplay between SDH and RNA networks in cancer and other diseases. Here, we summarize recent discoveries in the RNA networks and their connections to SDH. Additionally, we discuss current therapeutics targeting SDH in both pre-clinical and clinical trials. Thus, we propose a new model of SDH–RNA network interaction and bring promising RNA therapeutics against SDH-relevant cancer and other diseases.
Collapse
|
26
|
High-Resolution Respirometry Reveals MPP + Mitochondrial Toxicity Mechanism in a Cellular Model of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21217809. [PMID: 33105548 PMCID: PMC7659480 DOI: 10.3390/ijms21217809] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
MPP+ is the active metabolite of MPTP, a molecule structurally similar to the herbicide Paraquat, known to injure the dopaminergic neurons of the nigrostriatal system in Parkinson’s disease models. Within the cells, MPP+ accumulates in mitochondria where it inhibits complex I of the electron transport chain, resulting in ATP depletion and neuronal impairment/death. So far, MPP+ is recognized as a valuable tool to mimic dopaminergic degeneration in various cell lines. However, despite a large number of studies, a detailed characterization of mitochondrial respiration in neuronal cells upon MPP+ treatment is still missing. By using high-resolution respirometry, we deeply investigated oxygen consumption related to each respiratory state in differentiated neuroblastoma cells exposed to the neurotoxin. Our results indicated the presence of extended mitochondrial damage at the inner membrane level, supported by increased LEAK respiration, and a drastic drop in oxygen flow devoted to ADP phosphorylation in respirometry measurements. Furthermore, prior to complex I inhibition, an enhancement of complex II activity was observed, suggesting the occurrence of some compensatory effect. Overall our findings provide a mechanistic insight on the mitochondrial toxicity mediated by MPP+, relevant for the standardization of studies that employ this neurotoxin as a disease model.
Collapse
|
27
|
Almikhlafi MA, Stauch KL, Villeneuve LM, Purnell PR, Lamberty BG, Fox HS. Deletion of DJ-1 in rats affects protein abundance and mitochondrial function at the synapse. Sci Rep 2020; 10:13719. [PMID: 32792613 PMCID: PMC7426919 DOI: 10.1038/s41598-020-70486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
DJ-1 is a multifunctional protein affecting different biological and cellular processes. In addition, DJ-1 has roles in regulating mitochondrial function. Loss-of-function mutations in DJ-1 were found to cause an autosomal recessive form of Parkinson's disease. One of the main pathological features of PD is loss of dopamine neurons in the nigrostriatal pathway. DJ-1 knockout (KO) rats exhibit progressive nigral neurodegeneration with about 50% dopaminergic cell loss at 8 months of age. In order to assess the effects of DJ-1 deficiency on neuronal mitochondria prior to neuron loss, we performed proteomic analysis of synaptic mitochondria isolated from the striatum, the location of nigrostriatal pathway nerve terminals, of 3-month-old DJ-1 KO rats. In total, 371 mitochondrial proteins were quantified, and of these 76 were differentially expressed in DJ-1 KO rats. Proteins perturbed by the loss of DJ-1 were involved in several mitochondrial functional pathways, including the tricarboxylic acid cycle and electron transport chain. Thus, synaptic mitochondrial respiration was measured and showed a significant change due to DJ-1 deficiency. The dataset generated here highlights the role of synaptic mitochondria in PD associated with DJ-1. This study improves our understanding of DJ-1 effects in a complex tissue environment and the synaptic mitochondrial changes that accompany its loss.
Collapse
Affiliation(s)
- Mohannad A Almikhlafi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Toxicology, Collage of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lance M Villeneuve
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Department of Neurosurgery, Collage of Medicine, University of Oklahoma, Oklahoma City, OK, USA
| | - Phillip R Purnell
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,Otolaryngology/Head and Neck Surgery, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Benjamin G Lamberty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
28
|
Boteon Y, Flores Carvalho MA, Panconesi R, Muiesan P, Schlegel A. Preventing Tumour Recurrence after Liver Transplantation: The Role of Machine Perfusion. Int J Mol Sci 2020; 21:E5791. [PMID: 32806712 PMCID: PMC7460879 DOI: 10.3390/ijms21165791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour recurrence is currently a hot topic in liver transplantation. The basic mechanisms are increasingly discussed, and, for example, recurrence of hepatocellular carcinoma is often described in pre-injured donor livers, which frequently suffer from significant ischemia/reperfusion injury. This review article highlights the underlying mechanisms and describes the specific tissue milieu required to promote tumour recurrence after liver transplantation. We summarise the current literature in this field and show risk factors that contribute to a pro-tumour-recurrent environment. Finally, the potential role of new machine perfusion technology is discussed, including the most recent data, which demonstrate a protective effect of hypothermic oxygenated perfusion before liver transplantation.
Collapse
Affiliation(s)
- Yuri Boteon
- Liver Unit, Albert Einstein Hospital, 05652–900 São Paulo, Brazil;
- Albert Einstein Jewish Institute for Education and Research, 05652–900 São Paulo, Brazil
| | - Mauricio Alfredo Flores Carvalho
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| | - Rebecca Panconesi
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| | - Paolo Muiesan
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea Schlegel
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| |
Collapse
|
29
|
Wang W, Wang T, Bai S, Chen Z, Qi X, Xie P. Dl-3-n-butylphthalide attenuates mouse behavioral deficits to chronic social defeat stress by regulating energy metabolism via AKT/CREB signaling pathway. Transl Psychiatry 2020; 10:49. [PMID: 32066705 PMCID: PMC7026059 DOI: 10.1038/s41398-020-0731-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Dl-3-n-butylphthalide (NBP) is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The aim of this study was to investigate the effect of NBP in a chronic social defeat stress model of depression and its underlying molecular mechanisms. Here, we examined depression-related behavior and performed a targeted metabolomics analysis. Real-time quantitative polymerase chain reaction and western blotting were used to examine key genes and proteins involved in energy metabolism and the AKT/cAMP response element-binding protein (CREB) signaling pathway. Our results reveal NBP attenuates stress-induced social deficits, anxiety-like behavior and despair behavior, and alters metabolite levels of glycolysis and tricarboxylic acid (TCA) cycle components. NBP affected gene expression of key enzymes of the TCA cycle, as well as protein expression of p-AKT and p-CREB. Our findings provide the first evidence showing that NBP can attenuate stress-induced behavioral deficits by modulating energy metabolism by regulating activation of the AKT/CREB signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shunjie Bai
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China ,grid.452206.7Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Chen
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xunzhong Qi
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China. .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, China. .,Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, China.
| |
Collapse
|
30
|
Maekawa S, Takada S, Furihata T, Fukushima A, Yokota T, Kinugawa S. Mitochondrial respiration of complex II is not lower than that of complex I in mouse skeletal muscle. Biochem Biophys Rep 2019; 21:100717. [PMID: 31890905 PMCID: PMC6928343 DOI: 10.1016/j.bbrep.2019.100717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle (SKM) requires a large amount of energy, which is produced mainly by mitochondria, for their daily functioning. Of the several mitochondrial complexes, it has been reported that the dysfunction of complex II is associated with several diseases, including myopathy. However, the degree to which complex II contributes to ATP production by mitochondria remains unknown. As complex II is not included in supercomplexes, which are formed to produce ATP efficiently, we hypothesized that complex II-linked respiration was lower than that of complex I. In addition, differences in the characteristics of complex I and II activity suggest that different factors might regulate their function. The isolated mitochondria from gastrocnemius muscle was used for mitochondrial respiration measurement and immunoblotting in male C57BL/6J mice. Student paired t-tests were performed to compare means between two groups. A univariate linear regression model was used to determine the correlation between mitochondrial respiration and proteins. Contrary to our hypothesis, complex II-linked respiration was not significantly less than complex I-linked respiration in SKM mitochondria (complex I vs complex II, 3402 vs 2840 pmol/[s × mg]). Complex I-linked respiration correlated with the amount of complex I incorporated in supercomplexes (r = 0.727, p < 0.05), but not with the total amount of complex I subunits. In contrast, complex II-linked respiration correlated with the total amount of complex II (r = 0.883, p < 0.05), but not with the amount of each complex II subunit. We conclude that both complex I and II play important roles in mitochondrial respiration and that the assembly of both supercomplexes and complex II is essential for the normal functioning of complex I and II in mouse SKM mitochondria. Complex II-linked respiration was comparable to complex I-linked respiration in isolated skeletal muscle mitochondria. Complex I-linked respiration correlated with the amount of complex I incorporated in supercomplexes, but not with the complex I subunit. Complex II-linked respiration correlated with the amount of complex II, but not with the SDH subunit.
Collapse
Affiliation(s)
- Satoshi Maekawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Faculty of Lifelong Sport, Department of Sports Education, Hokusho University, Ebetsu, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
31
|
Galkin A. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:1411-1423. [PMID: 31760927 DOI: 10.1134/s0006297919110154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/08/2024]
Abstract
Ischemic stroke and neonatal hypoxic-ischemic encephalopathy are two of the leading causes of disability in adults and infants. The energy demands of the brain are provided by mitochondrial oxidative phosphorylation. Ischemia/reperfusion (I/R) affects the production of ATP in brain mitochondria, leading to energy failure and death of the affected tissue. Among the enzymes of the mitochondrial respiratory chain, mitochondrial complex I is the most sensitive to I/R; however, the mechanisms of its inhibition are poorly understood. This article reviews some of the existing data on the mitochondria impairment during I/R and proposes two distinct mechanisms of complex I damage emerging from recent studies. One mechanism is a reversible dissociation of natural flavin mononucleotide cofactor from the enzyme I after ischemia. Another mechanism is a modification of critical cysteine residue of complex I involved into the active/deactive conformational transition of the enzyme. I describe potential effects of these two processes in the development of mitochondrial I/R injury and briefly discuss possible neuroprotective strategies to ameliorate I/R brain injury.
Collapse
Affiliation(s)
- A Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University William Black Building, NY 10032, New York, USA.
| |
Collapse
|
32
|
Stepanova A, Konrad C, Guerrero-Castillo S, Manfredi G, Vannucci S, Arnold S, Galkin A. Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain. J Cereb Blood Flow Metab 2019; 39:1790-1802. [PMID: 29629602 PMCID: PMC6727140 DOI: 10.1177/0271678x18770331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mortality from perinatal hypoxic-ischemic (HI) brain injury reached 1.15 million worldwide in 2010 and is also a major factor for neurological disability in infants. HI directly influences the oxidative phosphorylation enzyme complexes in mitochondria, but the exact mechanism of HI-reoxygenation response in brain remains largely unresolved. After induction of HI-reoxygenation in postnatal day 10 rats, activities of mitochondrial respiratory chain enzymes were analysed and complexome profiling was performed. The effect of conformational state (active/deactive (A/D) transition) of mitochondrial complex I on H2O2 release was measured simultaneously with mitochondrial oxygen consumption. In contrast to cytochrome c oxidase and succinate dehydrogenase, HI-reoxygenation resulted in inhibition of mitochondrial complex I at 4 h after reoxygenation. Immediately after HI, we observed a robust increase in the content of deactive (D) form of complex I. The D-form is less active in reactive oxygen species (ROS) production via reversed electron transfer, indicating the key role of the deactivation of complex I in ischemia/reoxygenation. We describe a novel mechanism of mitochondrial response to ischemia in the immature brain. HI induced a deactivation of complex I in order to reduce ROS production following reoxygenation. Delayed activation of complex I represents a novel mitochondrial target for pathological-activated therapy.
Collapse
Affiliation(s)
- Anna Stepanova
- 1 School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK.,2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Csaba Konrad
- 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sergio Guerrero-Castillo
- 3 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giovanni Manfredi
- 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Susan Vannucci
- 4 Department of Pediatrics/Newborn Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Susanne Arnold
- 3 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Galkin
- 1 School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK.,2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
33
|
Bird MJ, Radenkovic S, Vermeersch P, Cassiman D. Measuring Rates of ATP Synthesis. Methods Mol Biol 2019; 1862:97-107. [PMID: 30315462 DOI: 10.1007/978-1-4939-8769-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Here, we offer you a high-throughput assay to measure the ATP synthesis capacity in cells or isolated mitochondria. More specifically, the assay is linked to the mitochondrial' electron transport chain components of your interest being either through complex I (with or without a linkage to pyruvate dehydrogenase activity), through complex II, or through the electron transport flavoprotein and complex I (β-oxidation of fatty acids).
Collapse
Affiliation(s)
- Matthew J Bird
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium. .,Hepatology Laboratory, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
| | - Silvia Radenkovic
- Hepatology Laboratory, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Metabolomics Expertise Center, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | | | - David Cassiman
- Hepatology Laboratory, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Metabolic Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Structural basis for the bi-functionality of human oxaloacetate decarboxylase FAHD1. Biochem J 2018; 475:3561-3576. [PMID: 30348641 DOI: 10.1042/bcj20180750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022]
Abstract
Whereas enzymes in the fumarylacetoacetate hydrolase (FAH) superfamily catalyze several distinct chemical reactions, the structural basis for their multi-functionality remains elusive. As a well-studied example, human FAH domain-containing protein 1 (FAHD1) is a mitochondrial protein displaying both acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. As mitochondrial ODx, FAHD1 acts antagonistically to pyruvate carboxylase, a key metabolic enzyme. Despite its importance for mitochondrial function, very little is known about the catalytic mechanisms underlying FAHD1 enzymatic activities, and the architecture of its ligated active site is currently ill defined. We present crystallographic data of human FAHD1 that provide new insights into the structure of the catalytic center at high resolution, featuring a flexible 'lid'-like helical region which folds into a helical structure upon binding of the ODx inhibitor oxalate. The oxalate-driven structural transition results in the generation of a potential catalytic triad consisting of E33, H30 and an associated water molecule. In silico docking studies indicate that the substrate is further stabilized by a complex hydrogen-bond network, involving amino acids Q109 and K123, identified herein as potential key residues for FAHD1 catalytic activity. Mutation of amino acids H30, E33 and K123 each had discernible influence on the ApH and/or ODx activity of FAHD1, suggesting distinct catalytic mechanisms for both activities. The structural analysis presented here provides a defined structural map of the active site of FAHD1 and contributes to a better understanding of the FAH superfamily of enzymes.
Collapse
|
35
|
da Silva-Candal A, Pérez-Díaz A, Santamaría M, Correa-Paz C, Rodríguez-Yáñez M, Ardá A, Pérez-Mato M, Iglesias-Rey R, Brea J, Azuaje J, Sotelo E, Sobrino T, Loza MI, Castillo J, Campos F. Clinical validation of blood/brain glutamate grabbing in acute ischemic stroke. Ann Neurol 2018; 84:260-273. [DOI: 10.1002/ana.25286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Andrés da Silva-Candal
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Amparo Pérez-Díaz
- Drug Screening Platform/Biofarma Research Group, Molecular Medicine and Chronic Diseases Research Center; University of Santiago de Compostela; Santiago de Compostela Spain
| | - María Santamaría
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Manuel Rodríguez-Yáñez
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions Unit, CIC bioGUNE; Derio Spain
| | - María Pérez-Mato
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - José Brea
- Drug Screening Platform/Biofarma Research Group, Molecular Medicine and Chronic Diseases Research Center; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Jhonny Azuaje
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS); University of Santiago de Compostela; Santiago de Compostela Spain
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS); University of Santiago de Compostela; Santiago de Compostela Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - M. Isabel Loza
- Drug Screening Platform/Biofarma Research Group, Molecular Medicine and Chronic Diseases Research Center; University of Santiago de Compostela; Santiago de Compostela Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
36
|
Kim M, Stepanova A, Niatsetskaya Z, Sosunov S, Arndt S, Murphy MP, Galkin A, Ten VS. Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury. Free Radic Biol Med 2018; 124:517-524. [PMID: 30037775 PMCID: PMC6389362 DOI: 10.1016/j.freeradbiomed.2018.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Establishing sustained reoxygenation/reperfusion ensures not only the recovery, but may initiate a reperfusion injury in which oxidative stress plays a major role. This study offers the mechanism and this mechanism-specific therapeutic strategy against excessive release of reactive oxygen species (ROS) associated with reperfusion-driven recovery of mitochondrial metabolism. AIMS AND METHODS In neonatal mice subjected to cerebral hypoxia-ischaemia (HI) and reperfusion, we examined conformational changes and activity of mitochondrial complex I with and without post-HI administration of S-nitrosating agent, MitoSNO. Assessment of mitochondrial ROS production, oxidative brain damage, neuropathological and neurofunctional outcomes were used to define neuroprotective strength of MitoSNO. A specificity of reperfusion-driven mitochondrial ROS production to conformational changes in complex I was examined in-vitro. RESULTS HI deactivated complex I, changing its conformation from active form (A) into the catalytically dormant, de-active form (D). Reperfusion rapidly converted the D-form into the A-form and increased ROS generation. Administration of MitoSNO at the onset of reperfusion, decelerated D→A transition of complex I, attenuated oxidative stress, and significantly improved neurological recovery. In cultured neurons, after simulated ischaemia-reperfusion injury, MitoSNO significantly reduced ROS generation and neuronal mortality. In isolated mitochondria subjected to anoxia-reoxygenation, MitoSNO restricted ROS release during D→A transitions. CONCLUSION Rapid D→A conformation in response to reperfusion reactivates complex I. This is essential not only for metabolic recovery, but also contributes to excessive release of mitochondrial ROS and reperfusion injury. We propose that the initiation of reperfusion should be followed by pharmacologically-controlled gradual reactivation of complex I.
Collapse
Affiliation(s)
- Minso Kim
- Department of Pediatrics, Division of Neonatology, Columbia University, NY, USA
| | - Anna Stepanova
- Department of Pediatrics, Division of Neonatology, Columbia University, NY, USA; School of Biological Sciences, Queen's University Belfast, UK
| | - Zoya Niatsetskaya
- Department of Pediatrics, Division of Neonatology, Columbia University, NY, USA
| | - Sergey Sosunov
- Department of Pediatrics, Division of Neonatology, Columbia University, NY, USA
| | - Sabine Arndt
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Alexander Galkin
- Department of Pediatrics, Division of Neonatology, Columbia University, NY, USA; School of Biological Sciences, Queen's University Belfast, UK.
| | - Vadim S Ten
- Department of Pediatrics, Division of Neonatology, Columbia University, NY, USA.
| |
Collapse
|
37
|
Abstract
This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
38
|
Etemad S, Petit M, Weiss AKH, Schrattenholz A, Baraldo G, Jansen-Dürr P. Oxaloacetate decarboxylase FAHD1 - a new regulator of mitochondrial function and senescence. Mech Ageing Dev 2018; 177:22-29. [PMID: 30055189 DOI: 10.1016/j.mad.2018.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022]
Abstract
FAHD1, a member of the FAH superfamily of enzymes, was identified in a proteomic screen for mitochondrial proteins with differential expression in young versus senescent human endothelial cells. FAHD1 acts as oxaloacetate decarboxylase, and recent observations suggest that FAHD1 plays an important role in regulating mitochondrial function. Thus, mutation of the nematode homolog, fahd-1, impairs mitochondrial function in Caenorhabditis elegans. When FAHD1 gene expression was silenced in human cells, activity of the mitochondrial electron transport (ETC) system was reduced and the cells entered premature senescence-like growth arrest. These findings suggest a model where FAHD1 regulates mitochondrial function and in consequence senescence. These findings are discussed here in the context of a new concept where senescence is divided into deep senescence and less severe forms of senescence. We propose that genetic inactivation of FAHD1 in human cells induces a specific form of cellular senescence, which we term senescence light and discuss it in the context of mitochondrial dysfunction associated senescence (MiDAS) described by others. Together these findings suggest the existence of a continuum of cellular senescence phenotypes, which may be at least in part reversible.
Collapse
Affiliation(s)
- Solmaz Etemad
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Michèle Petit
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Alexander K H Weiss
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | | | - Giorgia Baraldo
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
39
|
Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part III. [4Fe-4S], [3Fe-4S] and [2Fe-2S] iron-sulfur proteins. J Struct Biol 2018; 202:264-274. [DOI: 10.1016/j.jsb.2018.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/16/2018] [Indexed: 11/18/2022]
|
40
|
Kahl A, Stepanova A, Konrad C, Anderson C, Manfredi G, Zhou P, Iadecola C, Galkin A. Critical Role of Flavin and Glutathione in Complex I-Mediated Bioenergetic Failure in Brain Ischemia/Reperfusion Injury. Stroke 2018; 49:1223-1231. [PMID: 29643256 PMCID: PMC5916474 DOI: 10.1161/strokeaha.117.019687] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood. Methods— We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure. Results— Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a reversible oxidative modification of mitochondrial complex I thiol residues and inhibition of the enzyme. Administration of glutathione-ethyl ester at the onset of reperfusion prevented the decline of complex I activity and was associated with smaller infarct size and improved neurological outcome, suggesting that decreased oxidation of complex I thiols during I/R-induced oxidative stress may contribute to the neuroprotective effect of glutathione ester. Conclusions— Our results unveil a key role of mitochondrial complex I in the development of I/R brain injury and provide the mechanistic basis for the well-established mitochondrial dysfunction caused by I/R. Targeting the functional integrity of complex I in the early phase of reperfusion may provide a novel therapeutic strategy to prevent tissue injury after stroke.
Collapse
Affiliation(s)
- Anja Kahl
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Anna Stepanova
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.).,School of Biological Sciences, Queen's University Belfast, United Kingdom (A.S., A.G.)
| | - Csaba Konrad
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Corey Anderson
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Giovanni Manfredi
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Ping Zhou
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Costantino Iadecola
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.)
| | - Alexander Galkin
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (A.K., A.S., C.K., C.A., G.M., P.Z., C.I., A.G.).,School of Biological Sciences, Queen's University Belfast, United Kingdom (A.S., A.G.)
| |
Collapse
|
41
|
Lin H, Magrane J, Rattelle A, Stepanova A, Galkin A, Clark EM, Dong YN, Halawani SM, Lynch DR. Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia. Dis Model Mech 2017; 10:1343-1352. [PMID: 29125827 PMCID: PMC5719255 DOI: 10.1242/dmm.030502] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common recessive inherited ataxia, results from deficiency of frataxin, a small mitochondrial protein crucial for iron-sulphur cluster formation and ATP production. Frataxin deficiency is associated with mitochondrial dysfunction in FRDA patients and animal models; however, early mitochondrial pathology in FRDA cerebellum remains elusive. Using frataxin knock-in/knockout (KIKO) mice and KIKO mice carrying the mitoDendra transgene, we show early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in this FRDA model. At asymptomatic stages, the levels of PGC-1α (PPARGC1A), the mitochondrial biogenesis master regulator, are significantly decreased in cerebellar homogenates of KIKO mice compared with age-matched controls. Similarly, the levels of the PGC-1α downstream effectors, NRF1 and Tfam, are significantly decreased, suggesting early impaired cerebellar mitochondrial biogenesis pathways. Early mitochondrial deficiency is further supported by significant reduction of the mitochondrial markers GRP75 (HSPA9) and mitofusin-1 in the cerebellar cortex. Moreover, the numbers of Dendra-labeled mitochondria are significantly decreased in cerebellar cortex, confirming asymptomatic cerebellar mitochondrial biogenesis deficits. Functionally, complex I and II enzyme activities are significantly reduced in isolated mitochondria and tissue homogenates from asymptomatic KIKO cerebella. Structurally, levels of the complex I core subunit NUDFB8 and complex II subunits SDHA and SDHB are significantly lower than those in age-matched controls. These results demonstrate complex I and II deficiency in KIKO cerebellum, consistent with defects identified in FRDA patient tissues. Thus, our findings identify early cerebellar mitochondrial biogenesis deficits as a potential mediator of cerebellar dysfunction and ataxia, thereby providing a potential therapeutic target for early intervention of FRDA.
Collapse
Affiliation(s)
- Hong Lin
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jordi Magrane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amy Rattelle
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anna Stepanova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisia M Clark
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Na Dong
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah M Halawani
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Analysis of mitochondrial metabolism in situ: Combining stable isotope labeling with selective permeabilization. Metab Eng 2017; 43:147-155. [DOI: 10.1016/j.ymben.2016.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/25/2022]
|
43
|
Biasibetti-Brendler H, Schmitz F, Pierozan P, Zanotto BS, Prezzi CA, de Andrade RB, Wannmacher CMD, Wyse ATS. Hypoxanthine Induces Neuroenergetic Impairment and Cell Death in Striatum of Young Adult Wistar Rats. Mol Neurobiol 2017; 55:4098-4106. [PMID: 28593435 DOI: 10.1007/s12035-017-0634-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
Hypoxanthine is the major purine involved in the salvage pathway of purines in the brain. High levels of hypoxanthine are characteristic of Lesch-Nyhan Disease. Since hypoxanthine is a purine closely related to ATP formation, the aim of this study was to investigate the effect of intrastriatal hypoxanthine administration on neuroenergetic parameters (pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, and ATP levels) and mitochondrial function (mitochondrial mass and membrane potential) in striatum of rats. We also evaluated the effect of cell death parameters (necrosis and apoptosis). Wistar rats of 60 days of life underwent stereotactic surgery and were divided into two groups: control (infusion of saline 0.9%) and hypoxanthine (10 μM). Intrastriatal hypoxanthine administration did not alter pyruvate kinase activity, but increased succinate dehydrogenase and complex II activities and diminished cytochrome c oxidase activity and immunocontent. Hypoxanthine injection decreased the percentage of cells with mitochondrial membrane label and increased mitochondrial membrane potential labeling. There was a decrease in the number of live cells and an increase in the number of apoptotic cells by caused hypoxanthine. Our findings show that intrastriatal hypoxanthine administration altered neuroenergetic parameters, and caused mitochondrial dysfunction and cell death by apoptosis, suggesting that these processes may be associated, at least in part, with neurological symptoms found in patients with Lesch-Nyhan Disease.
Collapse
Affiliation(s)
- Helena Biasibetti-Brendler
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Paula Pierozan
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Bruna S Zanotto
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Caroline A Prezzi
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Rodrigo Binkowski de Andrade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Clovis M D Wannmacher
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. .,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. .,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
44
|
Korge P, John SA, Calmettes G, Weiss JN. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II. J Biol Chem 2017; 292:9896-9905. [PMID: 28450394 DOI: 10.1074/jbc.m116.768325] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/14/2017] [Indexed: 01/02/2023] Open
Abstract
Succinate-driven reverse electron transport (RET) through complex I is hypothesized to be a major source of reactive oxygen species (ROS) that induces permeability transition pore (PTP) opening and damages the heart during ischemia/reperfusion. Because RET can only generate ROS when mitochondria are fully polarized, this mechanism is self-limiting once PTP opens during reperfusion. In the accompanying article (Korge, P., Calmettes, G., John, S. A., and Weiss, J. N. (2017) J. Biol. Chem. 292, 9882-9895), we showed that ROS production after PTP opening can be sustained when complex III is damaged (simulated by antimycin). Here we show that complex II can also contribute to sustained ROS production in isolated rabbit cardiac mitochondria following inner membrane pore formation induced by either alamethicin or calcium-induced PTP opening. Two conditions are required to maximize malonate-sensitive ROS production by complex II in isolated mitochondria: (a) complex II inhibition by atpenin A5 or complex III inhibition by stigmatellin that results in succinate-dependent reduction of the dicarboxylate-binding site of complex II (site IIf); (b) pore opening in the inner membrane resulting in rapid efflux of succinate/fumarate and other dicarboxylates capable of competitively binding to site IIf The decrease in matrix [dicarboxylate] allows O2 access to reduced site IIf, thereby making electron donation to O2 possible, explaining the rapid increase in ROS production provided that site IIf is reduced. Because ischemia is known to inhibit complexes II and III and increase matrix succinate/fumarate levels, we hypothesize that by allowing dicarboxylate efflux from the matrix, PTP opening during reperfusion may activate sustained ROS production by this mechanism after RET-driven ROS production has ceased.
Collapse
Affiliation(s)
- Paavo Korge
- From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Scott A John
- From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Guillaume Calmettes
- From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - James N Weiss
- From the UCLA Cardiovascular Research Laboratory and the Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|
45
|
Kiprowska MJ, Stepanova A, Todaro DR, Galkin A, Haas A, Wilson SM, Figueiredo-Pereira ME. Neurotoxic mechanisms by which the USP14 inhibitor IU1 depletes ubiquitinated proteins and Tau in rat cerebral cortical neurons: Relevance to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1157-1170. [PMID: 28372990 DOI: 10.1016/j.bbadis.2017.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease proteasome activity is reportedly downregulated, thus increasing it could be therapeutically beneficial. The proteasome-associated deubiquitinase USP14 disassembles polyubiquitin-chains, potentially delaying proteasome-dependent protein degradation. We assessed the protective efficacy of inhibiting or downregulating USP14 in rat and mouse (Usp14axJ) neuronal cultures treated with prostaglandin J2 (PGJ2). IU1 concentrations (HIU1>25μM) reported by others to inhibit USP14 and be protective in non-neuronal cells, reduced PGJ2-induced Ub-protein accumulation in neurons. However, HIU1 alone or with PGJ2 is neurotoxic, induces calpain-dependent Tau cleavage, and decreases E1~Ub thioester levels and 26S proteasome assembly, which are energy-dependent processes. We attribute the two latter HIU1 effects to ATP-deficits and mitochondrial Complex I inhibition, as shown herein. These HIU1 effects mimic those of mitochondrial inhibitors in general, thus supporting that ATP-depletion is a major mediator of HIU1-actions. In contrast, low IU1 concentrations (LIU1≤25μM) or USP14 knockdown by siRNA in rat cortical cultures or loss of USP14 in cortical cultures from ataxia (Usp14axJ) mice, failed to prevent PGJ2-induced Ub-protein accumulation. PGJ2 alone induces Ub-protein accumulation and decreases E1~Ub thioester levels. This seemingly paradoxical result may be attributed to PGJ2 inhibiting some deubiquitinases (such as UCH-L1 but not USP14), thus triggering Ub-protein stabilization. Overall, IU1-concentrations that reduce PGJ2-induced accumulation of Ub-proteins are neurotoxic, trigger calpain-mediated Tau cleavage, lower ATP, E1~Ub thioester and E1 protein levels, and reduce proteasome activity. In conclusion, pharmacologically inhibiting (with low or high IU1 concentrations) or genetically down-regulating USP14 fail to enhance proteasomal degradation of Ub-proteins or Tau in neurons.
Collapse
Affiliation(s)
- Magdalena J Kiprowska
- Department of Biological Sciences, Hunter College, Biology and Biochemistry Programs, Graduate Center, The City University of New York, New York, NY 10065, USA
| | - Anna Stepanova
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dustin R Todaro
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Alexander Galkin
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Arthur Haas
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Scott M Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Biology and Biochemistry Programs, Graduate Center, The City University of New York, New York, NY 10065, USA.
| |
Collapse
|