1
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Dominiak K, Galganski L, Budzinska A, Jarmuszkiewicz W. Coenzyme Q deficiency in endothelial mitochondria caused by hypoxia; remodeling of the respiratory chain and sensitivity to anoxia/reoxygenation. Free Radic Biol Med 2024; 214:158-170. [PMID: 38364943 DOI: 10.1016/j.freeradbiomed.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
This study examined the effects of hypoxia on coenzyme Q (Q) levels and mitochondrial function in EA. hy926 endothelial cells, shedding light on their responses to changes in oxygen levels. Chronic hypoxia during endothelial cell culture reduced Q synthesis by reducing hydroxy-methylglutaryl-CoA reductase (HMGCR) levels via hypoxia-inducible factor 1α (HIF1α), leading to severe Q deficiency. In endothelial mitochondria, hypoxia led to reorganization of the respiratory chain through upregulation of supercomplexes (I+III2+IV), forming a complete mitochondrial Q (mQ)-mediated electron transfer pathway. Mitochondria of endothelial cells cultured under hypoxic conditions showed reduced respiratory rates and membrane potential, as well as increased production of mitochondrial reactive oxygen species (mROS) as a result of increased mQ reduction levels (mQH2/mQtot). Anoxia/reoxygenation (A/R) in vitro caused impairment of endothelial mitochondria, manifested by reduced maximal respiration, complex III activity, membrane potential, coupling parameters, and increased mQ reduction and mROS production. Weaker A/R-induced changes compared to control mitochondria indicated better tolerance of A/R stress by the mitochondria of hypoxic cells. Moreover, in endothelial mitochondria, hypoxia-induced increases in uncoupling protein 3 (UCP3) and mitochondrial large-conductance Ca2+-activated potassium channel (mitoBKCa) levels and activities appear to have alleviated reoxygenation injury after A/R. These results not only highlight hypoxia-induced changes in mQ redox homeostasis and related mitochondrial function, but also indicate that chronic hypoxia during endothelial cell culture leads to mitochondrial adaptations that help mitochondria better withstand subsequent oxygen fluctuations.
Collapse
Affiliation(s)
- Karolina Dominiak
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Lukasz Galganski
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
3
|
Wu R, Zhang J, Zou G, Li S, Wang J, Li X, Xu J. Diabetes Mellitus and Thyroid Cancers: Risky Correlation, Underlying Mechanisms and Clinical Prevention. Diabetes Metab Syndr Obes 2024; 17:809-823. [PMID: 38380275 PMCID: PMC10878320 DOI: 10.2147/dmso.s450321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
The incidences of thyroid cancer and diabetes are rapidly increasing worldwide. The relationship between thyroid cancer and diabetes is a popular topic in medicine. Increasing evidence has shown that diabetes increases the risk of thyroid cancer to a certain extent. This mechanism may be related to genetic factors, abnormal thyroid-stimulating hormone secretion, oxidative stress injury, hyperinsulinemia, elevated insulin-like growth factor-1 levels, abnormal secretion of adipocytokines, and increased secretion of inflammatory factors and chemokines. This article reviews the latest research progress on the relationship between thyroid cancer and diabetes, including the association between diabetes and the risk of developing thyroid cancer, its underlying mechanisms, and potential anti-thyroid cancer effects of hypoglycemic drugs. It providing novel strategies for the prevention, treatment, and improving the prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Junping Zhang
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Guilin Zou
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jinying Wang
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoxinlei Li
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| |
Collapse
|
4
|
Woyda-Ploszczyca AM. Direct and indirect targets of carboxyatractyloside, including overlooked toxicity toward nucleoside diphosphate kinase (NDPK) and mitochondrial H + leak. PHARMACEUTICAL BIOLOGY 2023; 61:372-390. [PMID: 36799406 PMCID: PMC9946330 DOI: 10.1080/13880209.2023.2168704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT The toxicity of atractyloside/carboxyatractyloside is generally well recognized and commonly ascribed to the inhibition of mitochondrial ADP/ATP carriers, which are pivotal for oxidative phosphorylation. However, these glycosides may 'paralyze' additional target proteins. OBJECTIVE This review presents many facts about atractyloside/carboxyatractyloside and their plant producers, such as Xanthium spp. (Asteraceae), named cockleburs. METHODS Published studies and other information were obtained from databases, such as 'CABI - Invasive Species Compendium', 'PubMed', and 'The World Checklist of Vascular Plants', from 1957 to December 2022. The following major keywords were used: 'carboxyatractyloside', 'cockleburs', 'hepatotoxicity', 'mitochondria', 'nephrotoxicity', and 'Xanthium'. RESULTS In the third decade of the twenty first century, public awareness of the severe toxicity of cockleburs is still limited. Such toxicity is often only perceived by specialists in Europe and other continents. Interestingly, cocklebur is among the most widely distributed invasive plants worldwide, and the recognition of new European stands of Xanthium spp. is provided here. The findings arising from field and laboratory research conducted by the author revealed that (i) some livestock populations may instinctively avoid eating cocklebur while grazing, (ii) carboxyatractyloside inhibits ADP/GDP metabolism, and (iii) the direct/indirect target proteins of carboxyatractyloside are ambiguous. CONCLUSIONS Many aspects of the Xanthium genus still require substantial investigation/revision in the future, such as the unification of the Latin nomenclature of currently distinguished species, bur morphology status, true fruit (achene) description and biogeography of cockleburs, and a detailed description of the physiological roles of atractyloside/carboxyatractyloside and the toxicity of these glycosides, mainly toward mammals. Therefore, a more careful interpretation of atractyloside/carboxyatractyloside data, including laboratory tests using Xanthium-derived extracts and purified toxins, is needed.
Collapse
|
5
|
Amthor JS. ATP yield of plant respiration: potential, actual and unknown. ANNALS OF BOTANY 2023; 132:133-162. [PMID: 37409716 PMCID: PMC10550282 DOI: 10.1093/aob/mcad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns. METHOD A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP. KEY RESULTS Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential. CONCLUSIONS Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.
Collapse
Affiliation(s)
- J S Amthor
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
6
|
Kostenko S, Khatua B, Trivedi S, Pillai AN, McFayden B, Morsy M, Rajalingamgari P, Sharma V, Noel P, Patel K, El-Kurdi B, Borges da Silva H, Chen X, Chandan V, Navina S, Vela S, Cartin-Ceba R, Snozek C, Singh VP. Amphipathic Liponecrosis Impairs Bacterial Clearance and Causes Infection During Sterile Inflammation. Gastroenterology 2023; 165:999-1015. [PMID: 37263302 DOI: 10.1053/j.gastro.2023.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS Although transient bacteremia is common during dental and endoscopic procedures, infections developing during sterile diseases like acute pancreatitis (AP) can have grave consequences. We examined how impaired bacterial clearance may cause this transition. METHODS Blood samples from patients with AP, normal controls, and rodents with pancreatitis or those administered different nonesterified fatty acids (NEFAs) were analyzed for albumin-unbound NEFAs, microbiome, and inflammatory cell injury. Macrophage uptake of unbound NEFAs using a novel coumarin tracer were done and the downstream effects-NEFA-membrane phospholipid (phosphatidylcholine) interactions-were studied on isothermal titration calorimetry. RESULTS Patients with infected AP had higher circulating unsaturated NEFAs; unbound NEFAs, including linoleic acid (LA) and oleic acid (OA); higher bacterial 16S DNA; mitochondrial DNA; altered β-diversity; enrichment in Pseudomonadales; and increased annexin V-positive myeloid (CD14) and CD3-positive T cells on admission. These, and increased circulating dead inflammatory cells, were also noted in rodents with unbound, unsaturated NEFAs. Isothermal titration calorimetry showed progressively stronger unbound LA interactions with aqueous media, phosphatidylcholine, cardiolipin, and albumin. Unbound NEFAs were taken into protein-free membranes, cells, and mitochondria, inducing voltage-dependent anion channel oligomerization, reducing ATP, and impairing phagocytosis. These were reversed by albumin. In vivo, unbound LA and OA increased bacterial loads and impaired phagocytosis, causing infection. LA and OA were more potent for these amphipathic interactions than the hydrophobic palmitic acid. CONCLUSIONS Release of stored LA and OA can increase their circulating unbound levels and cause amphipathic liponecrosis of immune cells via uptake by membrane phospholipids. This impairs bacterial clearance and causes infection during sterile inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Bryce McFayden
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mahmoud Morsy
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Vijeta Sharma
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Pawan Noel
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Krutika Patel
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bara El-Kurdi
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Xianfeng Chen
- Department of Research Services, Mayo Clinic, Rochester, Minnesota
| | - Vishal Chandan
- Department of Pathology, School of Medicine, University of California, Irvine, California
| | | | - Stacie Vela
- Gastroenterology Section, Carl T. Hayden Veterans' Administration Medical Center, Phoenix, Arizona
| | - Rodrigo Cartin-Ceba
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Christine Snozek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
7
|
Antos-Krzeminska N, Kicinska A, Nowak W, Jarmuszkiewicz W. Acanthamoeba castellanii Uncoupling Protein: A Complete Sequence, Activity, and Role in Response to Oxidative Stress. Int J Mol Sci 2023; 24:12501. [PMID: 37569876 PMCID: PMC10419851 DOI: 10.3390/ijms241512501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Uncoupling proteins (UCPs) are mitochondrial inner membrane transporters that mediate free-fatty-acid-induced, purine-nucleotide-inhibited proton leak into the mitochondrial matrix, thereby uncoupling respiratory substrate oxidation from ATP synthesis. The aim of this study was to provide functional evidence that the putative Acucp gene of the free-living protozoan amoeba, A. castellanii, encodes the mitochondrial protein with uncoupling activity characteristic of UCPs and to investigate its role during oxidative stress. We report the sequencing and cloning of a complete Acucp coding sequence, its phylogenetic analysis, and the heterologous expression of AcUCP in the S. cerevisiae strain InvSc1. Measurements of mitochondrial respiratory activity and membrane potential indicate that the heterologous expression of AcUCP causes AcUCP-mediated uncoupling activity. In addition, in a model of oxidative stress with increased reactive oxygen species levels (superoxide dismutase 1 knockout yeasts), AcUCP expression strongly promotes cell survival and growth. The level of superoxide anion radicals is greatly reduced in the ΔSOD1 strain expressing AcUCP. These results suggest that AcUCP targeted to yeast mitochondria causes uncoupling and may act as an antioxidant system. Phylogenetic analysis shows that the A. castellanii UCP diverges very early from other UCPs, but clearly locates within the UCP subfamily rather than among other mitochondrial anion carrier proteins.
Collapse
Affiliation(s)
- Nina Antos-Krzeminska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (A.K.); (W.J.)
| | - Anna Kicinska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (A.K.); (W.J.)
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland;
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (A.K.); (W.J.)
| |
Collapse
|
8
|
Neuro-immunohistochemical and molecular expression variations during hibernation and activity phases between Rana mascareniensis and Rana ridibunda. J Therm Biol 2023. [DOI: 10.1016/j.jtherbio.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
9
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Metcalfe NB, Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 2022; 31:6040-6052. [PMID: 34435398 DOI: 10.1111/mec.16150] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
It is well known that oxidative stress is a major cause of DNA damage and telomere attrition. Most endogenous reactive oxygen species (ROS) are produced in the mitochondria, producing a link between mitochondrial function, DNA integrity and telomere dynamics. In this review we will describe how ROS production, rates of damage to telomeric DNA and DNA repair are dynamic processes. The rate of ROS production depends on mitochondrial features such as the level of inner membrane uncoupling and the proportion of time that ATP is actively being produced. However, the efficiency of ATP production (the ATP/O ratio) is positively related to the rate of ROS production, so leading to a trade-off between the body's energy requirements and its need to prevent oxidative stress. Telomeric DNA is especially vulnerable to oxidative damage due to features such as its high guanine content; while repair to damaged telomere regions is possible through a range of mechanisms, these can result in more rapid telomere shortening. There is increasing evidence that mitochondrial efficiency varies over time and with environmental context, as do rates of DNA repair. We argue that telomere dynamics can only be understood by appreciating that the optimal solution to the trade-off between energetic efficiency and telomere protection will differ between individuals and will change over time, depending on resource availability, energetic demands and life history strategy.
Collapse
Affiliation(s)
- Neil B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Liao FH, Yao CN, Chen SP, Wu TH, Lin SY. Transdermal Delivery of Succinate Accelerates Energy Dissipation of Brown Adipocytes to Reduce Remote Fat Accumulation. Mol Pharm 2022; 19:4299-4310. [DOI: 10.1021/acs.molpharmaceut.2c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fang-Hsuean Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Chun-Nien Yao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Shu-Ping Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Te-Haw Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| |
Collapse
|
12
|
Goncalves J, Wan Y, Garcia LR. Stearoyl-CoA desaturases sustain cholinergic excitation and copulatory robustness in metabolically aging C. elegansmales. iScience 2022; 25:104082. [PMID: 35372802 PMCID: PMC8968053 DOI: 10.1016/j.isci.2022.104082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Regulated metabolism is required for behaviors as adults age. To understand how lipid usage affects motor coordination, we studied male Caenorhabditis elegans copulation as a model of energy-intensive behavior. Copulation performance drops after 48 h of adulthood. We found that 12–24 h before behavioral decline, males prioritize exploring and copulation behavior over feeding, suggesting that catabolizing stored metabolites, such as lipids, occurs during this period. Because fat-6/7-encoded stearoyl-CoA desaturases are essential for converting the ingested fatty acids to lipid storage, we examined the copulation behavior and neural calcium transients of fat-6(lf); fat-7(lf) mutants. In wild-type males, intestinal and epithelial fat-6/7 expression increases during the first 48 h of adulthood. The fat-6(lf); fat-7(lf) behavioral and metabolic defects indicate that in aging wild-type males, the increased expression of stearoyl-CoA desaturases in the epidermis may indirectly modulate the levels of EAG-family K+ channels in the reproductive cholinergic neurons and muscles. Tissue distribution of fat-6-encoded stearoyl-CoA desaturase changes in adulthood Markov modeling shows reduced feeding linked with more exploring in day 2 males fat-6(lf); fat-7(lf) disrupted behavior can be rescued by epidermal FAT-6 fat-6(lf); fat-7(lf) alters neural and muscular ERG and EAG K+ channel expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Jiang N, Li SZ, Zhang YWQ, Habib MR, Xiong T, Xu S, Dong H, Zhao QP. The identification of alternative oxidase in intermediate host snails of Schistosoma and its potential role in protecting Oncomelania hupensis against niclosamide-induced stress. Parasit Vectors 2022; 15:97. [PMID: 35313980 PMCID: PMC8935807 DOI: 10.1186/s13071-022-05227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Snail intermediate hosts are mandatory for the transmission of schistosomiasis, which has to date infected more than 200 million people worldwide. Our previous studies showed that niclosamide treatment caused the inhibition of aerobic respiration and oxidative phosphorylation, and the disruption of energy supply, in one of the intermediate hosts of schistosomiasis, Oncomelania hupensis, which eventually led to the death of the snails. Meanwhile, the terminal oxidase in the mitochondrial respiratory chain, alternative oxidase (AOX), was significantly up-regulated, which was thought to counterbalance the oxidative stress and maintain metabolic homeostasis in the snails. The aims of the present study are to identify the AOXs in several species of snails and investigate the potential activation of O. hupensis AOX (OhAOX) under niclosamide-induced stress, leading to enhanced survival of the snail when exposed to this molluscicide. METHODS The complete complementary DNA was amplified from the AOXs of O. hupensis and three species of Biomphalaria; the sequence characteristics were analysed and the phylogenetics investigated. The dynamic expression and localisation of the AOX gene and protein in O. hupensis under niclosamide-induced stress were examined. In addition, the expression pattern of genes in the mitochondrial respiratory complex was determined and the production of reactive oxygen species (ROS) calculated. Finally, the molluscicidal effect of niclosamide was compared between snails with and without inhibition of AOX activity. RESULTS AOXs containing the invertebrate AOX-specific motif NP-[YF]-XPG-[KQE] were identified from four species of snail, which phylogenetically clustered together into Gastropoda AOXs and further into Mollusca AOXs. After niclosamide treatment, the levels of OhAOX messenger RNA (mRNA) and OhAOX protein in the whole snail were 14.8 and 2.6 times those in untreated snails, respectively, but varied widely among tissues. Meanwhile, the level of cytochrome C reductase mRNA showed a significant decrease in the whole snail, and ROS production showed a significant decrease in the liver plus gonad (liver-gonad) of the snails. At 24 h post-treatment, the mortality of snails treated with 0.06-0.1 mg/L niclosamide and AOX inhibitor was 56.31-76.12% higher than that of snails treated with 0.1 mg/L niclosamide alone. CONCLUSIONS AOX was found in all the snail intermediate hosts of Schistosoma examined here. AOX was significantly activated in O. hupensis under niclosamide-induced stress, which led to a reduction in oxidative stress in the snail. The inhibition of AOX activity in snails can dramatically enhance the molluscicidal effect of niclosamide. A potential target for the development of an environmentally safe snail control method, which acts by inhibiting the activity of AOX, was identified in this study.
Collapse
Affiliation(s)
- Ni Jiang
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
- Joint Inspection Center of Precision Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi China
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, National Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Yang-Wen-Qing Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Mohamed R. Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Tao Xiong
- Department of Microbiology, School of Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan China
| | - Sha Xu
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Huifen Dong
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Qin-Ping Zhao
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
| |
Collapse
|
14
|
Kv7.4 Channels Regulate Potassium Permeability in Neuronal Mitochondria. Biochem Pharmacol 2022; 197:114931. [DOI: 10.1016/j.bcp.2022.114931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023]
|
15
|
Woyda-Ploszczyca AM, Rybak AS. How can the commercial potential of microalgae from the Dunaliella genus be improved? The importance of nucleotide metabolism with a focus on nucleoside diphosphate kinase (NDPK). ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants (Basel) 2021; 10:antiox10111785. [PMID: 34829656 PMCID: PMC8615162 DOI: 10.3390/antiox10111785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Collapse
|
17
|
Friedrich VK, Rubel MA, Schurr TG. Mitochondrial genetic variation in human bioenergetics, adaptation, and adult disease. Am J Hum Biol 2021; 34:e23629. [PMID: 34146380 DOI: 10.1002/ajhb.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Mitochondria are critical for the survival of eukaryotic organisms due to their ability to produce cellular energy, which drives virtually all aspects of host biology. However, the effects of mitochondrial DNA (mtDNA) variation in relation to disease etiology and adaptation within contemporary global human populations remains incompletely understood. METHODS To develop a more holistic understanding of the role of mtDNA diversity in human adaptation, health, and disease, we investigated mitochondrial biology and bioenergetics. More specifically, we synthesized details from studies of mitochondrial function and variation in the context of haplogroup background, climatic adaptation, and oxidative disease. RESULTS The majority of studies show that mtDNA variation arose during modern human dispersal around the world. Some of these variants appear to have been positively selected for their adaptiveness in colder climates, with these sequence changes having implications for tissue-specific function and thermogenic capacity. In addition, many variants modulating energy production are also associated with damaging metabolic byproducts and mitochondrial dysfunction, which, in turn, are implicated in the onset and severity of several different adult mitochondrial diseases. Thus, mtDNA variation that governs bioenergetics, metabolism, and thermoregulation may potentially have adverse consequences for human health, depending on the genetic background and context in which it occurs. CONCLUSIONS Our review suggests that the mitochondrial research field would benefit from independently replicating mtDNA haplogroup-phenotype associations across global populations, incorporating potentially confounding environmental, demographic, and disease covariates into studies of mtDNA variation, and extending association-based studies to include analyses of complete mitogenomes and assays of mitochondrial function.
Collapse
Affiliation(s)
- Volney K Friedrich
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meagan A Rubel
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Translational Imaging and Precision Medicine, University of California - San Diego, La Jolla, California, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Alber NA, Vanlerberghe GC. The flexibility of metabolic interactions between chloroplasts and mitochondria in Nicotiana tabacum leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1625-1646. [PMID: 33811402 DOI: 10.1111/tpj.15259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the 'P700 oxidation capacity' of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast-mitochondrion interactions able to overcome lesions in energy metabolism.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
19
|
Shi M, Huang XY, Ren XY, Wei XY, Ma Y, Lin ZZ, Liu DT, Song L, Zhao TJ, Li G, Yao L, Zhu M, Zhang C, Xie C, Wu Y, Wu HM, Fan LP, Ou J, Zhan YH, Lin SY, Lin SC. AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1. Nat Cell Biol 2021; 23:268-277. [PMID: 33664495 DOI: 10.1038/s41556-021-00642-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The sympathetic nervous system-catecholamine-uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1. Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice. The PKA-AIDA-UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.
Collapse
Affiliation(s)
- Meng Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Yi Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yue Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Han-Ming Wu
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Li-Ping Fan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Centre of the Third Affiliated Hospital, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China
| | - Yi-Hong Zhan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
20
|
Jarmuszkiewicz W, Dominiak K, Galganski L, Galganska H, Kicinska A, Majerczak J, Zoladz JA. Lung mitochondria adaptation to endurance training in rats. Free Radic Biol Med 2020; 161:163-174. [PMID: 33075501 DOI: 10.1016/j.freeradbiomed.2020.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
We elucidated the impact of eight weeks of endurance training on the oxidative metabolism of rat lungs. Adult 3.5-month-old male rats were randomly allocated to a treadmill training group or a sedentary group as control. In the lungs, endurance training raised the expression level of the oxygen sensors hypoxia inducible factor 1α (HIF1α) and lysine-specific demethylase 6A (KDM6A) as well as stimulated mitochondrial oxidative capacity and mitochondrial biogenesis, while lactate dehydrogenase activity was reduced. Endurance training enhanced antioxidant systems (the coenzyme Q content and superoxide dismutase) in lung tissue but decreased them (and uncoupling protein 2) in lung mitochondria. In the lung mitochondria of trained rats, the decreased Q content and Complex I (CI) activity and the enhanced cytochrome pathway activity (CIII + CIV) may account for the diminished Q reduction level, resulting in a general decrease in H2O2 formation by mitochondria. Endurance training enhanced oxidation of glutamate and fatty acids and caused opposite effects in functional mitochondrial properties during malate and succinate oxidation, which were related to reduced activity of CI and increased activity of CII, respectively. In addition, endurance training downregulated CI in supercomplexes and upregulated CIII in the CIII2+CIV supercomplex in the oxidative phosphorylation system. We concluded that the adaptive lung responses observed could be due to hypoxia and oxidative stress induced by strenuous endurance training.
Collapse
Affiliation(s)
- Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Karolina Dominiak
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Lukasz Galganski
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Hanna Galganska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Anna Kicinska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Joanna Majerczak
- Department of Neurobiology, Faculty of Health Sciences, Poznan University of Physical Education, Poznan, Poland.
| | - Jerzy A Zoladz
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland.
| |
Collapse
|
21
|
Functional characterization of the mitochondrial uncoupling proteins from the white shrimp Litopenaeus vannamei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148209. [PMID: 32305415 DOI: 10.1016/j.bbabio.2020.148209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 04/14/2020] [Indexed: 01/21/2023]
Abstract
Mitochondrial uncoupling proteins (UCPs) play an essential role in dissipating the proton gradient and controlling the mitochondrial inner membrane potential. When active, UCPs promote proton leak across the inner membrane, oxidative phosphorylation uncoupling, oxygen uptake increase and decrease the ATP synthesis. Invertebrates possess only isoforms UCP4 and UCP5, however, the role of these proteins is not clear in most species since it may depend on the physiological needs of each animal. This study presents the first functional characterization of crustacean uncoupling proteins from the white shrimp Litopenaeus vannamei LvUCP4 and LvUCP5. Free radicals production in various shrimp organs/tissues was first evaluated, and mitochondria were isolated from shrimp pleopods. The oxygen consumption rate, membrane potential and proton transport of the isolated non-phosphorylating mitochondria were used to determine LvUCPs activation/inhibition. Results indicate that UCPs activity is stimulated in the presence of 4-hydroxyl-2-nonenal (HNE) and myristic acid, and inhibited by the purine nucleotide GDP. A hypoxia/re-oxygenation assay was conducted to determine whether UCPs participate in shrimp mitochondria response to oxidative stress. Isolated mitochondria from shrimp at re-oxygenation produced large quantities of hydrogen peroxide and higher levels of both LvUCPs were immunodetected. Results suggest that, besides the active response of the shrimp antioxidant system, UCP-like activity is activated after hypoxia exposure and during re-oxygenation. LvUCPs may represent a mild uncoupling mechanism, which may be activated before the antioxidant system of cells, to early control reactive oxygen species production and oxidative damage in shrimp.
Collapse
|
22
|
Ulgherait M, Chen A, McAllister SF, Kim HX, Delventhal R, Wayne CR, Garcia CJ, Recinos Y, Oliva M, Canman JC, Picard M, Owusu-Ansah E, Shirasu-Hiza M. Circadian regulation of mitochondrial uncoupling and lifespan. Nat Commun 2020; 11:1927. [PMID: 32317636 PMCID: PMC7174288 DOI: 10.1038/s41467-020-15617-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Because old age is associated with defects in circadian rhythm, loss of circadian regulation is thought to be pathogenic and contribute to mortality. We show instead that loss of specific circadian clock components Period (Per) and Timeless (Tim) in male Drosophila significantly extends lifespan. This lifespan extension is not mediated by canonical diet-restriction longevity pathways but is due to altered cellular respiration via increased mitochondrial uncoupling. Lifespan extension of per mutants depends on mitochondrial uncoupling in the intestine. Moreover, upregulated uncoupling protein UCP4C in intestinal stem cells and enteroblasts is sufficient to extend lifespan and preserve proliferative homeostasis in the gut with age. Consistent with inducing a metabolic state that prevents overproliferation, mitochondrial uncoupling drugs also extend lifespan and inhibit intestinal stem cell overproliferation due to aging or even tumorigenesis. These results demonstrate that circadian-regulated intestinal mitochondrial uncoupling controls longevity in Drosophila and suggest a new potential anti-aging therapeutic target.
Collapse
Affiliation(s)
- Matt Ulgherait
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Anna Chen
- Columbia College, New York, NY, 10027, USA
| | | | - Han X Kim
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Rebecca Delventhal
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Charlotte R Wayne
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Christian J Garcia
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yocelyn Recinos
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | | | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
23
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds? Phytother Res 2020; 34:1868-1888. [PMID: 32166791 PMCID: PMC7496984 DOI: 10.1002/ptr.6654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
Medicine has utilised plant‐based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti‐pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well‐described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | | | - Stanley W Botchway
- STFC, UKRI & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
24
|
Weaver RJ. Hypothesized Evolutionary Consequences of the Alternative Oxidase (AOX) in Animal Mitochondria. Integr Comp Biol 2020; 59:994-1004. [PMID: 30912813 DOI: 10.1093/icb/icz015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The environment in which eukaryotes first evolved was drastically different from what they experience today, and one of the key limiting factors was the availability of oxygen for mitochondrial respiration. During the transition to a fully oxygenated Earth, other compounds such as sulfide posed a considerable constraint on using mitochondrial aerobic respiration for energy production. The ancestors of animals, and those that first evolved from the simpler eukaryotes have mitochondrial respiratory components that are absent from later-evolving animals. Specifically, mitochondria of most basal metazoans have a sulfide-resistant alternative oxidase (AOX), which provides a secondary oxidative pathway to the classical cytochrome pathway. In this essay, I argue that because of its resistance to sulfide, AOX respiration was critical to the evolution of animals by enabling oxidative metabolism under otherwise inhibitory conditions. I hypothesize that AOX allowed for metabolic flexibility during the stochastic oxygen environment of early Earth which shaped the evolution of basal metazoans. I briefly describe the known functions of AOX, with a particular focus on the decreased production of reactive oxygen species (ROS) during stress conditions. Then, I propose three evolutionary consequences of AOX-mediated protection from ROS observed in basal metazoans: 1) adaptation to stressful environments, 2) the persistence of facultative sexual reproduction, and 3) decreased mitochondrial DNA mutation rates. Recognizing the diversity of mitochondrial respiratory systems present in animals may help resolve the mechanisms involved in major evolutionary processes such as adaptation and speciation.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL 36849, USA
| |
Collapse
|
25
|
Wang T, Yao J, Chen S, Mao Z, Brinton RD. Allopregnanolone Reverses Bioenergetic Deficits in Female Triple Transgenic Alzheimer's Mouse Model. Neurotherapeutics 2020; 17:178-188. [PMID: 31664643 PMCID: PMC7053503 DOI: 10.1007/s13311-019-00793-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previously, we reported that the neurosteroid allopregnanolone (Allo) promoted neural stem cell regeneration, restored cognitive function, and reduced Alzheimer's Disease (AD) pathology in the triple transgenic Alzheimer's mouse model (3xTgAD). To investigate the underlying systems biology of Allo action in AD models in vivo, we assessed the regulation of Allo on the bioenergetic system of the brain. Outcomes of these analysis indicated that Allo significantly reversed deficits in mitochondrial respiration and biogenesis and key mitochondrial enzyme activity and reduced lipid peroxidation in the 3xTgAD mice in vivo. To explore the mechanisms by which Allo regulates the brain metabolism, we conducted targeted transcriptome analysis. These data further confirmed that Allo upregulated genes involved in glucose metabolism, mitochondrial bioenergetics, and signaling pathways while simultaneously downregulating genes involved in Alzheimer's pathology, fatty acid metabolism, and mitochondrial uncoupling and dynamics. Upstream regulatory pathway analysis predicted that Allo induced peroxisome proliferator-activated receptor gamma (PPARG) and coactivator 1-alpha (PPARGC1A) pathways while simultaneously inhibiting the presenilin 1 (PSEN 1), phosphatase and tensin homolog (PTEN), and tumor necrosis factor (TNF) pathways to reduce AD pathology. Collectively, these data indicate that Allo functions as a systems biology regulator of bioenergetics, cholesterol homeostasis, and β-amyloid reduction in the brain. These systems are critical to neurological health, thus providing a plausible mechanistic rationale for Allo as a therapeutic to promote neural cell function and reduce the burden of AD pathology.
Collapse
Affiliation(s)
- Tian Wang
- Center for Innovation in Brain Science, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85721, United States
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, California, Los Angeles, USA
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85721, United States
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85721, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85721, United States.
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
- Department of Neurology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
26
|
Oliveira HCF, Vercesi AE. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol Aspects Med 2019; 71:100840. [PMID: 31882067 DOI: 10.1016/j.mam.2019.100840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
In the first part of this review, we summarize basic mitochondrial bioenergetics concepts showing that mitochondria are critical regulators of cell life and death. Until a few decades ago, mitochondria were considered to play essential roles only in respiration, ATP formation, non-shivering thermogenesis and a variety of metabolic pathways. However, the concept presented by Peter Mitchell regarding coupling between electron flow and ATP synthesis through the intermediary of a H+ electrochemical potential leads to the recognition that the proton-motive force also regulates a series of relevant cell signalling processes, such as superoxide generation, redox balance and Ca2+ handling. Alterations in these processes lead to cell death and disease states. In the second part of this review, we discuss the role of mitochondrial dysfunctions in the specific context of hypercholesterolemia-induced atherosclerosis. We provide a literature analysis that indicates a decisive role of mitochondrial redox dysfunction in the development of atherosclerosis and discuss the underlying molecular mechanisms. Finally, we highlight the potential mitochondrial-targeted therapeutic strategies that are relevant for atherosclerosis.
Collapse
Affiliation(s)
- Helena C F Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
27
|
Li J, Jiang R, Cong X, Zhao Y. UCP2 gene polymorphisms in obesity and diabetes, and the role of UCP2 in cancer. FEBS Lett 2019; 593:2525-2534. [PMID: 31330574 DOI: 10.1002/1873-3468.13546] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria are the primary sites for ATP synthesis and free radical generation in organisms. Abnormal mitochondrial metabolism contributes to many diseases, including obesity, diabetes and cancer. UCP2 is an ion/anion transporter located in mitochondrial inner membrane, and has a crucial role in regulating oxidative stress, cellular metabolism, cell proliferation and cell death. Polymorphisms of the UCP2 gene have been associated with diabetes and obesity because UCP2 is involved in energy expenditure and insulin secretion. Moreover, UCP2 gene expression is often amplified in cancers, and increased UCP2 expression contributes to cancer growth, cancer metabolism, anti-apoptosis and drug resistance. The present review summarizes the latest findings of UCP2 with respect to obesity, diabetes and cancer.
Collapse
Affiliation(s)
- Jinran Li
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun, China.,Department of Pharmacology, Toxicology & Neurosciences, LSU Health Sciences Center, Shreveport, LA, USA
| | - Rihua Jiang
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neurosciences, LSU Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
28
|
Balbuena-Pecino S, Riera-Heredia N, Vélez EJ, Gutiérrez J, Navarro I, Riera-Codina M, Capilla E. Temperature Affects Musculoskeletal Development and Muscle Lipid Metabolism of Gilthead Sea Bream ( Sparus aurata). Front Endocrinol (Lausanne) 2019; 10:173. [PMID: 30967839 PMCID: PMC6439310 DOI: 10.3389/fendo.2019.00173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
World population is expected to increase to approximately 9 thousand million people by 2050 with a consequent food security decline. Besides, climate change is a major challenge that humanity is facing, with a predicted rise in mean sea surface temperature of more than 2°C during this century. This study aims to determine whether a rearing temperature of 19, 24, or 28°C may influence musculoskeletal development and muscle lipid metabolism in gilthead sea bream juveniles. The expression of growth hormone (GH)/insulin-like growth factors (IGFs) system-, osteogenic-, myogenic-, and lipid metabolism-related genes in bone and/or white muscle of treated fish, and the in vitro viability, mineralization, and osteogenic genes expression in primary cultured cells derived from bone of the same fish were analyzed. The highest temperature significantly down-regulated igf-1, igf-2, the receptor igf-1ra, and the binding proteins igfbp-4 and igfbp-5b in bone, and in muscle, igf-1 and igf-1ra, suggesting impaired musculoskeletal development. Concerning myogenic factors expression, contrary responses were observed, since the increase to 24°C significantly down-regulated myod1 and mrf4, while at 28°C myod2 and myogenin were significantly up-regulated. Moreover, in the muscle tissue, the expression of the fatty acid transporters cd36 and fabp11, and the lipases lipa and lpl-lk resulted significantly increased at elevated temperatures, whereas β-oxidation markers cpt1a and cpt1b were significantly reduced. Regarding the primary cultured bone-derived cells, a significant up-regulation of the extracellular matrix proteins on, op, and ocn expression was found with increased temperatures, together with a gradual decrease in mineralization along with fish rearing temperature. Overall, these results suggest that increasing water temperature in this species appears to induce unfavorable growth and development of bone and muscle, through modulating the expression of different members of the GH/IGFs axis, myogenic and osteogenic genes, while accelerating the utilization of lipids as an energy source, although less efficiently than at optimal temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Jarmuszkiewicz W, Szewczyk A. Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Arch Biochem Biophys 2019; 664:102-109. [DOI: 10.1016/j.abb.2019.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023]
|
30
|
Sanin DE, Matsushita M, Klein Geltink RI, Grzes KM, van Teijlingen Bakker N, Corrado M, Kabat AM, Buck MD, Qiu J, Lawless SJ, Cameron AM, Villa M, Baixauli F, Patterson AE, Hässler F, Curtis JD, O'Neill CM, O'Sullivan D, Wu D, Mittler G, Huang SCC, Pearce EL, Pearce EJ. Mitochondrial Membrane Potential Regulates Nuclear Gene Expression in Macrophages Exposed to Prostaglandin E2. Immunity 2018; 49:1021-1033.e6. [PMID: 30566880 PMCID: PMC7271981 DOI: 10.1016/j.immuni.2018.10.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/16/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
Abstract
Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.
Collapse
Affiliation(s)
- David E Sanin
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Ramon I Klein Geltink
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Mauro Corrado
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Michael D Buck
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Jing Qiu
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Simon J Lawless
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Alanna M Cameron
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Matteo Villa
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Francesc Baixauli
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Annette E Patterson
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Fabian Hässler
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Jonathan D Curtis
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Christina M O'Neill
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - David O'Sullivan
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Duojiao Wu
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gerhard Mittler
- Proteomics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
31
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
32
|
Jin S, Yang L, He T, Fan X, Wang Y, Ge K, Geng Z. Polymorphisms in the uncoupling protein 3 gene and their associations with feed efficiency in chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1401-1406. [PMID: 29879809 PMCID: PMC6127571 DOI: 10.5713/ajas.18.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Abstract
Objective The uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily and has crucial effects on growth and feed efficiency in many species. Therefore, the objective of the present study was to examine the association of polymorphisms in the UCP3 gene with feed efficiency in meat-type chickens. Methods Six single nucleotide polymorphisms (SNPs) of the UCP3 gene were chosen to be genotyped using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in meat-type chicken populations with 724 birds in total. Body weight at 49 (BW49) and 70 days of age (BW70) and feed intake (FI) in the interval were collected, then body weight gain (BWG) and feed conversion ratio (FCR) were calculated individually. Results One SNP with a low minor allele frequency (<1%) was removed by quality control and data filtering. The results showed that rs13997809 of UCP3 was significantly associated with BWG and FCR (p<0.05), and that rs13997811 had significant effects on BW70 and BWG (p<0.05). Rs13997812 of UCP3 was strongly associated with BW70, FI, and FCR (p<0.05). Furthermore, individuals with AA genotype of rs13997809 had significantly higher BWG and lower FCR (p<0.05) than those with AT genotype. The GG individuals showed strongly higher BW70 and BWG than AA birds in rs13997811 (p<0.05). Birds with the TT genotype of rs13997812 had significantly greater BW70 and lower FCR compared with the CT birds (p<0.05). In addition, the TAC haplotype based on rs13997809, rs13997811, and rs13997812 showed significant effects on BW70, FI, and FCR (p<0.05). Conclusion Our results therefore demonstrate important roles for UCP3 polymorphisms in growth and feed efficiency that might be used in meat-type chicken breeding programs.
Collapse
Affiliation(s)
- Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tingting He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinfeng Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiqiu Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kai Ge
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
33
|
Regulation of mitochondrial respiration and ATP synthesis via cytochrome c oxidase. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0710-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Pietrangelo T, Di Filippo ES, Locatelli M, Piacenza F, Farina M, Pavoni E, Di Donato A, Innosa D, Provinciali M, Fulle S. Extracellular Guanosine 5'-Triphosphate Induces Human Muscle Satellite Cells to Release Exosomes Stuffed With Guanosine. Front Pharmacol 2018; 9:152. [PMID: 29615899 PMCID: PMC5865081 DOI: 10.3389/fphar.2018.00152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/13/2018] [Indexed: 11/13/2022] Open
Abstract
The extracellular guanosine 5'-triphosphate, GTP, has been demonstrated to be an enhancer of myogenic cell differentiation in a murine cell line, not yet in human muscle cells. Our hypothesis was that GTP could influence also human skeletal muscle regeneration, specifically in the first phases. We tested GTP stimulus on human muscle precursor cells established in culture by human satellite cells derived from Vastus Lateralis of three young male. Our data show that extracellular GTP (a) up-regulated miRNA (specifically miR133a and miR133b) and myogenic regulator factor and (b) induces human myogenic precursor cells to release exosomes stuffed with guanosine based molecules (mainly guanosine) in the extracellular milieu. We think that probably these exosomes could be addressed to influence by means of their content (mainly guanosine) in paracrine or autocrine manner the surrounding cells and/or at distance other muscles or tissues.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Dipartimento Neuroscienze Imaging and Scienze Cliniche, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Ester S Di Filippo
- Dipartimento Neuroscienze Imaging and Scienze Cliniche, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Marcello Locatelli
- Dipartimento di Farmacia, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesco Piacenza
- IRCCS-Istituto Nazionale di Riposo e Cura per Anziani, Polo Scientifico e Tecnologico, Centro di Tecnologie Avanzate nell'Invecchiamento, Ancona, Italy
| | - Marco Farina
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Pavoni
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Di Donato
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Denise Innosa
- Facoltà di Bioscienze e Tecnologie Agro-Alimentari e Ambientali, Università di Teramo, Teramo, Italy
| | - Mauro Provinciali
- IRCCS-Istituto Nazionale di Riposo e Cura per Anziani, Polo Scientifico e Tecnologico, Centro di Tecnologie Avanzate nell'Invecchiamento, Ancona, Italy
| | - Stefania Fulle
- Dipartimento Neuroscienze Imaging and Scienze Cliniche, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
35
|
Bryant HJ, Chung DJ, Schulte PM. Subspecies differences in thermal acclimation of mitochondrial function and the role of uncoupling proteins in killifish. J Exp Biol 2018; 221:jeb.186320. [DOI: 10.1242/jeb.186320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Abstract
Thermal effects on mitochondrial efficiency and ATP production can influence whole-animal thermal tolerance and performance. Thus, organisms may have the capacity to alter mitochondrial processes through acclimation or adaptation to mitigate these effects. One possible mechanism is through the action of uncoupling proteins (UCPs) which can decrease the proton motive force independent of the production of ATP. To test this hypothesis, we examined the mRNA expression patterns of UCP isoforms and characterized the effects of thermal acclimation and putative local thermal adaptation on mitochondrial capacity, proton leak, and P/O ratios in two subspecies of Atlantic killifish (Fundulus heteroclitus). Ucp1 was the dominant isoform in liver and was more highly expressed in northern killifish. We found that cold acclimation increased mitochondrial capacity (state III and maximum substrate oxidation capacity), state II membrane potential, proton leak, and P/O ratios in northern, but not southern killifish liver mitochondria. Palmitate-induced mitochondrial uncoupling was detected in northern, but not southern, killifish liver mitochondria, consistent with the differences in mRNA expression between the subspecies. Taken together, our data suggest that mitochondrial function is more plastic in response to thermal acclimation in northern killifish than southern killifish and that UCP1 may play a role in regulating the proton motive force in northern, but not southern killifish in response to thermal acclimation. These data demonstrate the potential for adaptive variation in mitochondrial plasticity in response to cold.
Collapse
Affiliation(s)
- Heather J. Bryant
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| | - Dillon J. Chung
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
36
|
Behringer EJ, Segal SS. Impact of Aging on Calcium Signaling and Membrane Potential in Endothelium of Resistance Arteries: A Role for Mitochondria. J Gerontol A Biol Sci Med Sci 2017; 72:1627-1637. [PMID: 28510636 DOI: 10.1093/gerona/glx079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Impaired blood flow to peripheral tissues during advanced age is associated with endothelial dysfunction and diminished bioavailability of nitric oxide (NO). However, it is unknown whether aging impacts coupling between intracellular calcium ([Ca2+]i) signaling and small- and intermediate K+ channel (SKCa/IKCa) activity during endothelium-derived hyperpolarization (EDH), a signaling pathway integral to dilation of the resistance vasculature. To address the potential impact of aging on EDH, Fura-2 photometry and intracellular recording were applied to evaluate [Ca2+]i and membrane potential of intact endothelial tubes (width, 60 µm; length, 1-3 mm) freshly isolated from superior epigastric arteries of young (4-6 mo) and old (24-26 mo) male C57BL/6 mice. In response to acetylcholine, intracellular release of Ca2+ from the endoplasmic reticulum (ER) was enhanced with aging. Further, treatment with the mitochondrial uncoupler FCCP evoked a significant increase of [Ca2+]i with membrane hyperpolarization in an SKCa/IKCa-dependent manner in the endothelium of old but not young mice. We conclude that the ability of resistance artery endothelium to release Ca2+ from intracellular stores (ie, ER and mitochondria) and hyperpolarize Vm via SKCa/IKCa activation is augmented as compensation for reduced NO bioavailability during advanced age.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, Loma Linda University, California.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia.,Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
37
|
Acuña-Castroviejo D, Rahim I, Acuña-Fernández C, Fernández-Ortiz M, Solera-Marín J, Sayed RKA, Díaz-Casado ME, Rusanova I, López LC, Escames G. Melatonin, clock genes and mitochondria in sepsis. Cell Mol Life Sci 2017; 74:3965-3987. [PMID: 28785808 PMCID: PMC11107653 DOI: 10.1007/s00018-017-2610-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
After the characterization of the central pacemaker in the suprachiasmatic nucleus, the expression of clock genes was identified in several peripheral tissues including the immune system. The hierarchical control from the central clock to peripheral clocks extends to other functions including endocrine, metabolic, immune, and mitochondrial responses. Increasing evidence links the disruption of the clock genes expression with multiple diseases and aging. Chronodisruption is associated with alterations of the immune system, immunosenescence, impairment of energy metabolism, and reduction of pineal and extrapineal melatonin production. Regarding sepsis, a condition coursing with an exaggerated response of innate immunity, experimental and clinical data showed an alteration of circadian rhythms that reflects the loss of the normal oscillation of the clock. Moreover, recent data point to that some mediators of the immune system affects the normal function of the clock. Under specific conditions, this control disappears reactivating the immune response. So, it seems that clock gene disruption favors the innate immune response, which in turn induces the expression of proinflammatory mediators, causing a further alteration of the clock. Here, the clock control of the mitochondrial function turns off, leading to a bioenergetic decay and formation of reactive oxygen species that, in turn, activate the inflammasome. This arm of the innate immunity is responsible for the huge increase of interleukin-1β and entrance into a vicious cycle that could lead to the death of the patient. The broken clock is recovered by melatonin administration, that is accompanied by the normalization of the innate immunity and mitochondrial homeostasis. Thus, this review emphasizes the connection between clock genes, innate immunity and mitochondria in health and sepsis, and the role of melatonin to maintain clock homeostasis.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain.
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain.
| | - Ibtissem Rahim
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- Département de Biologie et Physiologie Cellulaire, Faculté des Sciences de la Nature et de la Vie, Université Blida 1, Blida, Algeria
| | - Carlos Acuña-Fernández
- Unidad of Anestesiología y Reanimación, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Marisol Fernández-Ortiz
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Jorge Solera-Marín
- Unidad of Anestesiología y Reanimación, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ramy K A Sayed
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohâg, Egypt
| | - María E Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
| | - Iryna Rusanova
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| | - Luis C López
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| |
Collapse
|
38
|
Vishwakarma A, Gupta KJ. Isolation and Structural Studies of Mitochondria from Pea Roots. Methods Mol Biol 2017; 1670:87-95. [PMID: 28871538 DOI: 10.1007/978-1-4939-7292-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
For structural and respiratory studies, isolation of intact and active mitochondria is essential. Here, we describe an isolation method which gave good yield and intact mitochondria from 2-week-old pea (Pisum sativum) roots grown hydroponically under standard growth conditions. We used Percoll gradient centrifugation for this isolation procedure. The yield of purified mitochondria was 50 μg/g FW. Isolated mitochondria maintained their structure which was observed by using MitoTracker green in confocal microscope and scanning electron microscopy (SEM). Intact mitochondria are clearly visible in SCM images. Taken together this isolation method can be used for physiological and microscopic studies on mitochondria.
Collapse
Affiliation(s)
- Abhaypratap Vishwakarma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi, 110067, India
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi, 110067, India.
| |
Collapse
|