1
|
Zhang J, Duan M, Wu S, Jiang S, Hu S, Chen W, Zhang J, Quan H, Yang W, Wang C. Comprehensive pharmacological and experimental study of Ginsenoside Re as a potential therapeutic agent for non-alcoholic fatty liver disease. Biomed Pharmacother 2024; 177:116955. [PMID: 38906030 DOI: 10.1016/j.biopha.2024.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVE Ginsenoside Re, a unique tetracyclic triterpenoid compound found in ginseng, has been suggested in previous reports to improve non-alcoholic fatty liver disease (NAFLD) by modulating lipid imbalance. This study aims to elucidate the potential mechanisms of Ginsenoside Re in treating NAFLD through a combination of bioinformatics analysis and biological experiments. METHODS Network pharmacology methods were employed to systematically depict the effective components and mechanisms of Ginsenoside Re in improving NAFLD. Molecular docking was utilized to evaluate the binding affinity of Ginsenoside Re with NAFLD-related targets and identify potential targets. NAFLD-related target genes were obtained from the GEO database for gene enrichment analysis, revealing signaling pathways, biological processes, and gene differential expression. Finally, animal experiments were conducted to verify the mechanism of action of Ginsenoside Re in NAFLD. RESULTS Network pharmacology analysis revealed that Ginsenoside Re improves NAFLD by modulating targets such as AKT1 and TLR4, findings corroborated by molecular docking, GEO database analysis, and experimental validation. Further investigation found that Ginsenoside Re ameliorates lipid metabolism disorders and inflammatory responses induced by NAFLD by modulating the PI3K/AKT and TLR4/NF-κB signaling pathways. CONCLUSION Our study demonstrates the pharmacological effects of Ginsenoside Re in treating NAFLD, implicating multiple components, targets, and pathways. This provides a solid foundation for considering Ginsenoside Re as an alternative therapy for NAFLD, with promising clinical applications.
Collapse
Affiliation(s)
- Jinshan Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Mingfei Duan
- Department of Thyroid and Breast Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Shaohong Wu
- Medical College of Jinan University, Guangzhou, China
| | - Shan Jiang
- Medical College of Jinan University, Guangzhou, China
| | - Songhao Hu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenhui Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junchang Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, China.
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Chen X, Du H, Liu Y, Shi T, Li J, Liu J, Zhao L, Liu S. Fully connected-convolutional (FC-CNN) neural network based on hyperspectral images for rapid identification of P. ginseng growth years. Sci Rep 2024; 14:7209. [PMID: 38532030 PMCID: PMC10966043 DOI: 10.1038/s41598-024-57904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
P. ginseng is a precious traditional Chinese functional food, which is used for both medicinal and food purposes, and has various effects such as immunomodulation, anti-tumor and anti-oxidation. The growth year of P. ginseng has an important impact on its medicinal and economic values. Fast and nondestructive identification of the growth year of P. ginseng is crucial for its quality evaluation. In this paper, we propose a FC-CNN network that incorporates spectral and spatial features of hyperspectral images to characterize P. ginseng from different growth years. The importance ranking of the spectra was obtained using the random forest method for optimal band selection. Based on the hyperspectral reflectance data of P. ginseng after radiometric calibration and the images of the best five VNIR bands and five SWIR bands selected, the year-by-year identification of P. ginseng age and its identification experiments for food and medicinal purposes were conducted, and the FC-CNN network and its FCNN and CNN branch networks were tested and compared in terms of their effectiveness in the identification of P. ginseng growth years. It has been experimentally verified that the best year-by-year recognition was achieved by utilizing images from five visible and near-infrared important bands and all spectral curves, and the recognition accuracy of food and medicinal use reached 100%. The FC-CNN network is significantly better than its branching model in the effect of edible and medicinal identification. The results show that for P. ginseng growth year identification, VNIR images have much more useful information than SWIR images. Meanwhile, the FC-CNN network utilizing the spectral and spatial features of hyperspectral images is an effective method for the identification of P. ginseng growth year.
Collapse
Affiliation(s)
- Xingfeng Chen
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hejuan Du
- The School of Information Engineering, Xizang Minzu University, Xianyang, 712089, China
| | - Yun Liu
- The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, 050000, China
| | - Tingting Shi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiaguo Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Jun Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Limin Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
3
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
4
|
Zhou C, Gong T, Chen J, Chen T, Yang J, Zhu P. Production of a Novel Protopanaxatriol-Type Ginsenoside by Yeast Cell Factories. Bioengineering (Basel) 2023; 10:bioengineering10040463. [PMID: 37106650 PMCID: PMC10135449 DOI: 10.3390/bioengineering10040463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Ginsenosides, the main active compounds in Panax species, are glycosides of protopanaxadiol (PPD) or protopanaxatriol (PPT). PPT-type ginsenosides have unique pharmacological activities on the central nervous system and cardiovascular system. As an unnatural ginsenoside, 3,12-Di-O-β-D-glucopyranosyl-dammar-24-ene-3β,6α,12β,20S-tetraol (3β,12β-Di-O-Glc-PPT) can be synthesized through enzymatic reactions but is limited by the expensive substrates and low catalytic efficiency. In the present study, we successfully produced 3β,12β-Di-O-Glc-PPT in Saccharomyces cerevisiae with a titer of 7.0 mg/L by expressing protopanaxatriol synthase (PPTS) from Panax ginseng and UGT109A1 from Bacillus subtilis in PPD-producing yeast. Then, we modified this engineered strain by replacing UGT109A1 with its mutant UGT109A1-K73A, overexpressing the cytochrome P450 reductase ATR2 from Arabidopsis thaliana and the key enzymes of UDP-glucose biosynthesis to increase the production of 3β,12β-Di-O-Glc-PPT, although these strategies did not show any positive effect on the yield of 3β,12β-Di-O-Glc-PPT. However, the unnatural ginsenoside 3β,12β-Di-O-Glc-PPT was produced in this study by constructing its biosynthetic pathway in yeast. To the best of our knowledge, this is the first report of producing 3β,12β-Di-O-Glc-PPT through yeast cell factories. Our work provides a viable route for the production of 3β,12β-Di-O-Glc-PPT, which lays a foundation for drug research and development.
Collapse
Affiliation(s)
- Chen Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jingjing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Tianjiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jinling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Wang R, Pu Z, Janke JJ, Zheng YC, Kong XD, Niu T, Zhao S, Yang L, Wang Z, Xu JH. Engineered Glycosidase for Significantly Improved Production of Naturally Rare Vina-Ginsenoside R7. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3852-3861. [PMID: 36790033 DOI: 10.1021/acs.jafc.2c09115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ginsenosides are the main bioactive ingredients in plants of the genus Panax. Vina-ginsenoside R7 (VG-R7) is one of the rare high-value ginsenosides with health benefits. The only reported method for preparing VG-R7 involves inefficient and low-yield isolation from highly valuable natural resources. Notoginsenoside Fc (NG-Fc) isolated in the leaves and stems of Panax notoginseng is a suitable substrate for the preparation of VG-R7 via specific hydrolysis of the outside xylose at the C-20 position. Here, we first screened putative enzymes belonging to the glycoside hydrolase (GH) families 1, 3, and 43 and found that KfGH01 can specifically hydrolyze the β-d-xylopyranosyl-(1 → 6)-β-d-glucopyranoside linkage of NG-Fc to form VG-R7. The I248F/Y410R variant of KfGH01 obtained by protein engineering displayed a kcat/KM value (305.3 min-1 mM-1) for the reaction enhanced by approximately 270-fold compared with wild-type KfGH01. A change in the shape of the substrate binding pockets in the mutant allows the substrate to sit closer to the catalytic residues which may explain the enhanced catalytic efficiency of the engineered enzyme. This study identifies the first glycosidase for bioconversion of a ginsenoside with more than four sugar units, and it will inspire efforts to investigate other promising enzymes to obtain valuable natural products.
Collapse
Affiliation(s)
- Rufeng Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongji Pu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jonathan Joel Janke
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Tengfei Niu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Kim J, Phung HM, Lee S, Kim KT, Son TK, Kang KS, Lee S. Anti-skin-aging effects of tissue-cultured mountain-grown ginseng and quantitative HPLC/ELSD analysis of major ginsenosides. J Nat Med 2022; 76:811-820. [PMID: 35748997 DOI: 10.1007/s11418-022-01633-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
Abstract
Mountain-grown ginseng has free radical scavenging activity and suppresses inflammation. We evaluated the anti-skin-aging effects of tissue-cultured mountain-grown ginseng (TG) and its major ginsenosides. The effect of three extracts of TG and ginsenosides Rg1 (1), Rf (2), Rb1 (3), Re (4), and Rd (5) on the secretion of matrix metalloproteinase-1 (MMP-1) and collagen type I alpha 1 (COLIA1) was compared with that of tumor necrosis factor-alpha (TNF-α) stimulation of human dermal fibroblasts (HDFs), as determined via enzyme-linked immunosorbent assay. An analytical high-performance liquid chromatographic method with evaporative light-scattering detection (HPLC/ELSD) was developed for the simultaneous determination of the major ginsenosides in TG obtained via supercritical fluid CO2 or ethanol extraction. TG residues obtained via supercritical fluid CO2 extraction (TG1) and TG not subject to extraction (TG3) suppressed MMP-1 secretion in TNF-α-stimulated HDFs. Major ginsenoside content was higher in the TG1 than in residues extracted with ethanol (TG2) and TG3; ginsenoside Rg1 (1) content was the highest among all TG residues. Among them, ginsenosides Rg1 (1) and Re (4) suppressed MMP-1 in TNF-α-stimulated HDFs, whereas ginsenosides Rb1 (3) and Rd (5) increased COLIA1. In conclusion, TG and its active ginsenosides may have anti-skin-aging effects. Ginsenoside Rg1 (1) may also be beneficial in ameliorating skin damage. HPLC/ELSD can identify major ginsenosides and supercritical fluid CO2 extraction can be applied during health supplement or drug development.
Collapse
Affiliation(s)
- Juree Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Korea
| | - Hung Manh Phung
- Department of Preventive Medicine, Gachon University, Seongnam, 13120, Korea
| | - Sullim Lee
- Department of Life Science, Gachon University, Seongnam, 13120, Korea
| | | | - Tae Kwon Son
- Department of Farm Management, Kyungpook National University, Daegu, 41566, Korea.,Apple Bio Co. Ltd, Daegu, 41566, Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, Gachon University, Seongnam, 13120, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Korea. .,BET Research Institute, Chung-Ang University, Anseong, 17546, Korea. .,Natural Product Institute of Science and Technology, Anseong, 17546, Korea.
| |
Collapse
|
7
|
Ju YI, Choi HJ, Sone T. Effects of Korean red ginseng on three-dimensional trabecular bone microarchitecture and strength in growing rats: Comparison with changes due to jump exercise. PLoS One 2022; 17:e0267466. [PMID: 35511775 PMCID: PMC9070934 DOI: 10.1371/journal.pone.0267466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives
The preventive effects of Korean red ginseng (KRG) on bone loss and microarchitectural deterioration have been extensively studied in animal models. However, few results have been reported for the effects of KRG on the trabecular microarchitecture as compared to changes resulting from physiological stimuli such as exercise load. We compared the effects of KRG and jump exercise on improvements in trabecular microarchitecture and strength of the distal femoral metaphysis in rats.
Methods and materials
Eleven-week-old male Wistar rats were divided into sedentary (CON), KRG-administered (KRG), and jump-exercised (JUM) groups. Rats were orally administered KRG extract (200 mg/kg body weight/day) once a day for 6 weeks. The jump exercise protocol comprised 10 jumps/day, 5 days/week at a jump height of 40 cm. We used microcomputed tomography to assess the microarchitecture, volumetric bone mineral density (vBMD), and fracture load as predicted by finite element analysis at the right distal femoral metaphysis. The left femur was used for the quantitative bone histomorphometry measurements.
Results
Although KRG produced significantly higher trabecular bone volume (BV/TV) than CON, BV/TV was even higher in JUM than in KRG, and differences in vBMD and fracture load were only significant between JUM and CON. In terms of trabecular microarchitecture, KRG increased trabecular number and connectivity, whereas the JUM group showed increased trabecular thickness. Bone resorption showed significant decrease by JUM and KRG group. In contrast, bone formation showed significant increase by JUM group.
Conclusions
These data show that KRG has weak but significant positive effects on bone mass and suggest that the effects on trabecular microarchitecture differ from those of jump exercise. The effects of combined KRG and jump exercise on trabecular bone mass and strength should be investigated.
Collapse
Affiliation(s)
- Yong-In Ju
- Department of Health and Sports Sciences, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
- * E-mail:
| | - Hak-Jin Choi
- School of Sport for All, Kyungwoon University, Gumi, Republic of Korea
| | - Teruki Sone
- Department of Nuclear Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
8
|
Gao XY, Liu GC, Zhang JX, Wang LH, Xu C, Yan ZA, Wang A, Su YF, Lee JJ, Piao GC, Yuan HD. Pharmacological Properties of Ginsenoside Re. Front Pharmacol 2022; 13:754191. [PMID: 35462899 PMCID: PMC9019721 DOI: 10.3389/fphar.2022.754191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Ginsenoside Re is a protopanaxatriol-type saponin extracted from the berry, leaf, stem, flower bud, and root of Panax ginseng. In recent years, ginsenoside Re (Re) has been attracting attention as a dietary phytochemical. In this review, studies on Re were compiled by searching a combination of keywords, namely “pharmacology,” “pharmacokinetics,” and “toxicology,” in the Google Scholar, NCBI, PubMed, and Web of Science databases. The aim of this review was to provide an exhaustive overview of the pharmacological activities, pharmacokinetics, and toxicity of Re, focusing on clinical evidence that has shown effectiveness in specific diseases, such as diabetes mellitus, nervous system diseases, inflammation, cardiovascular disease, and cancer. Re is also known to eliminate virus, enhance the immune response, improve osteoporosis, improve skin barrier function, enhance intracellular anti-oxidant actions, regulate cholesterol metabolism, alleviate allergic responses, increase sperm motility, reduce erectile dysfunction, promote cyclic growth of hair follicles, and reduce gastrointestinal motility dysfunction. Furthermore, this review provides data on pharmacokinetic parameters and toxicological factors to examine the safety profile of Re. Such data will provide a theoretical basis and reference for Re-related studies and future applications.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- College of Pharmacy, Yanbian University, Jilin, China
| | | | | | - Ling-He Wang
- College of Integration Science, Yanbian University, Jilin, China
| | - Chang Xu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Zi-An Yan
- College of Integration Science, Yanbian University, Jilin, China
| | - Ao Wang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yi-Fei Su
- College of Pharmacy, Yanbian University, Jilin, China
| | - Jung-Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| | - Guang-Chun Piao
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| | - Hai-Dan Yuan
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| |
Collapse
|
9
|
Ding K, Tabuchi Y, Makino T. Effect of steam-processing of the Panax ginseng root on its inducible activity on granulocyte-colony stimulating factor secretion in intestinal epithelial cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114927. [PMID: 34954265 DOI: 10.1016/j.jep.2021.114927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng root has been used as tonic in traditional Chinese medicine (TCM) and traditional Japanese Kampo medicine. Steam processing of Panax ginseng root is carried out to enhance its nourishing effects on qi. AIM OF THE STUDY In order to explore the mechanism of these beneficial effects behind the steam processing of the P. ginseng root, we evaluated effectiveness of processing on the granulocyte-colony stimulating factor (G-CSF) secretion in intestinal epithelial cell-like MCE301 cells. MATERIALS AND METHODS We collected P. ginseng root samples in the markets of China and Japan. Fresh or dried samples were steamed for different time lengths and subsequently dried and extracted. MCE301 cells were incubated with the medium containing various P. ginseng root extracts, while the concentration of G-CSF in the medium was measured. We also investigated the active ingredients by size exclusion HPLC. RESULTS The extracts of fresh P. ginseng hairy root samples steamed for more than 6 h significantly induced G-CSF secretion, and the maximum activity was recorded at a 9-h steaming. The same activity was noted when already dried P. ginseng hairy root samples were steamed. The extracts of fresh P. ginseng hairy root without steam processing and those of fresh P. ginseng root body samples with steam processing exhibited no activities. The active ingredients of steamed P. ginseng hairy root samples were high-molecular-weight compounds with an average molecular weight of 758 kDa, and the activity was mediated by the toll-like receptor (TLR) 9. CONCLUSIONS Our results shed on more light on the mechanism underlying the appearance of immunostimulatory activity of the P. ginseng hairy root induced by steam processing.
Collapse
Affiliation(s)
- Kewen Ding
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Toyama University, 2630, Sugitani, Toyama, 930-0194, Japan.
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
10
|
Liu Z, Qu CY, Li JX, Wang YF, Li W, Wang CZ, Wang DS, Song J, Sun GZ, Yuan CS. Hypoglycemic and Hypolipidemic Effects of Malonyl Ginsenosides from American Ginseng ( Panax quinquefolius L.) on Type 2 Diabetic Mice. ACS OMEGA 2021; 6:33652-33664. [PMID: 34926913 PMCID: PMC8675029 DOI: 10.1021/acsomega.1c04656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
American ginseng (Panax quinquefolius L.) is popularly consumed as traditional herbal medicine and health food for the treatment of type 2 diabetes mellitus (T2DM). Malonyl ginsenosides (MGR) are the main natural ginsenosides in American ginseng. However, whether the malonyl ginsenosides in P. quinquefolius (PQ-MGR) possess antidiabetic effects has not been explored yet. In this study, the antidiabetic effects and the underlying mechanism of PQ-MGR in high-fat diet/streptozotocin (HFD/STZ)-induced T2DM mice were investigated. The chemical composition was analyzed by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Our results showed that 14 malonyl ginsenosides were identified in the PQ-MGR. Among them, the content of m-Rb1 represented about 77.4% of the total malonyl ginsenosides. After a 5-week experiment, the PQ-MGR significantly reduced the fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), nonesterified fatty acid (NEFA), alanine transaminase (ALT), and aspartate transaminase (AST) levels and improved glucose tolerance and insulin resistance. Furthermore, Western blot analysis demonstrated that the protein expressions of p-PI3K, p-AKT, p-AMPK, p-ACC, PPARγ, and GLUT4 in the liver and skeletal muscle were significantly upregulated after PQ-MGR treatment. In contrast, the protein expressions of p-IRS1 and p-JNK were significantly downregulated. Our results revealed that PQ-MGR could ameliorate glucose and lipid metabolism and insulin resistance in T2DM via regulation of the insulin receptor substrate-1/phosphoinositide3-kinase/protein-kinase B (IRS1/PI3K/Akt) and AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathways. These findings suggest that PQ-MGR may be used as an antidiabetic candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Zhi Liu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- Institute
of Agricultural Modernization, Jilin Agricultural
University, Changchun 130118, China
| | - Chun-Yuan Qu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jia-Xin Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yan-Fang Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Chong-Zhi Wang
- Tang
Center for Herbal Medicine Research and The Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Dong-Sheng Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jia Song
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Guang-Zhi Sun
- Institute
of Agricultural Modernization, Jilin Agricultural
University, Changchun 130118, China
| | - Chun-Su Yuan
- Tang
Center for Herbal Medicine Research and The Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Zhu L, Xu L, Dou D, Huang L. The distinct of chemical profiles of mountainous forest cultivated ginseng and garden ginseng based on ginsenosides and oligosaccharides. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Indu S, Vijayalakshmi P, Selvaraj J, Rajalakshmi M. Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules 2021; 26:6812. [PMID: 34833905 PMCID: PMC8621110 DOI: 10.3390/molecules26226812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Here, we identified the mechanisms of action of antidiabetic activity of novel compounds isolated from Cassia fistula stem bark in STZ-diabetic animals. Novel triterpenoid compounds (C1, C2 and C3) were treated to STZ-administered diabetic animals at a concentration of 20mg/kg body weight orally for 60 days to assess their effects on plasma glucose, plasma insulin/C-peptide, serum lipid markers and the enzymes of carbohydrate metabolism, glucose oxidation and insulin signaling molecules. Oral administration of novel triterpenoid compounds to STZ-diabetic animals significantly decreased (p < 0.05) the plasma glucose concentration on the 7th, 15th, 30th, 45th and 60th daysin a duration-dependent manner (p < 0.05). Plasma insulin (p < 0.0001)/C-peptide (p < 0.0006), tissue glycogen (p < 0.0034), glycogen phosphorylase (p < 0.005), glucose 6-phosphatase (p < 0.0001) and lipid markers were significantly increased (p < 0.0001) in diabetic rats, whereas glucokinase (p < 0.0047), glycogen synthase (p < 0.003), glucose oxidation (p < 0.001), GLUT4 mRNA (p < 0.0463), GLUT4 protein (p < 0.0475) and the insulin-signaling molecules IR mRNA (p < 0.0195), IR protein (p < 0.0001), IRS-1 mRNA (p < 0.0478), p-IRS-1Tyr612 (p < 0.0185), Akt mRNA (p < 0.0394), p-AktSer473 (p < 0.0162), GLUT4 mRNA (p < 0.0463) and GLUT4 (p < 0.0475) were decreased in the gastrocnemius muscle. In silico analysis of C1-C3 with IRK and PPAR-γ protein coincided with in vivo findings. C1-C3 possessed promising antidiabetic activity by regulating insulin signaling mechanisms and carbohydrate metabolic enzymes.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- C-Peptide/blood
- Cassia/chemistry
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Glucokinase/metabolism
- Glucose-6-Phosphatase/metabolism
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Insulin/metabolism
- Insulin Receptor Substrate Proteins/metabolism
- Lipid Metabolism/drug effects
- Male
- Molecular Docking Simulation
- Molecular Structure
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- PPAR gamma/metabolism
- Plant Bark/chemistry
- Plants, Medicinal/chemistry
- Potassium Channels, Inwardly Rectifying/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Triterpenes/chemistry
- Triterpenes/isolation & purification
- Triterpenes/pharmacology
Collapse
Affiliation(s)
- Sabapathy Indu
- DBT-BIF Centre, PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Bharathidasan University, Trichy 620002, Tamil Nadu, India; (S.I.); (P.V.)
| | - Periyasamy Vijayalakshmi
- DBT-BIF Centre, PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Bharathidasan University, Trichy 620002, Tamil Nadu, India; (S.I.); (P.V.)
| | - Jayaraman Selvaraj
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600020, Tamil Nadu, India;
| | - Manikkam Rajalakshmi
- DBT-BIF Centre, PG & Research Department of Biotechnology & Bioinformatics, Holy Cross College (Autonomous), Bharathidasan University, Trichy 620002, Tamil Nadu, India; (S.I.); (P.V.)
| |
Collapse
|
13
|
UHPLC-MS-Based Serum and Urine Metabolomics Reveals the Anti-Diabetic Mechanism of Ginsenoside Re in Type 2 Diabetic Rats. Molecules 2021; 26:molecules26216657. [PMID: 34771066 PMCID: PMC8588396 DOI: 10.3390/molecules26216657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Panax ginseng was employed in the treatment of “Xiao-Ke” symptom, which nowadays known as diabetes mellitus, in traditional Chinese medicine for more than a thousand years. Ginsenoside Re was the major pharmacologic ingredient found abundantly in ginseng. However, the anti-diabetic of Ginsenoside Re and its underlying mechanism in metabolic level are still unclear. Serum and urine metabolomic method was carried out to investigate the anti-diabetic pharmacological effects and the potential mechanism of Ginsenoside Re on high-fat diet combined streptozotocin-induced type 2 diabetes mellitus (T2DM) rats based on ultra-high-performance liquid chromatography coupled with quadrupole exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS). Serum and urine samples were collected from the control group (CON), T2DM group, metformin (MET) treatment group, and ginsenoside Re treatment group after intervention. The biochemical parameters of serum were firstly analyzed. The endogenous metabolites in serum and urine were detected by UHPLC-MS. The potential metabolites were screened by multivariate statistical analysis and identified by accurate mass measurement, MS/MS, and metabolite databases. The anti-diabetic-related metabolites were analyzed by KEGG metabolic pathway, and its potential mechanism was discussed. The treatment of ginsenoside Re significantly reduced the blood glucose and serum lipid level improved the oxidative stress caused by T2DM. Biochemical parameters (urea nitrogen, uric acid) showed that ginsenoside Re could improve renal function in T2DM rats. Respective 2 and 6 differential metabolites were found and identified in serum and urine of ginsenoside Re compared with T2DM group and enriched in KEGG pathway. Metabolic pathways analysis indicated that the differential metabolites related to T2DM were mainly involved in arachidonic acid metabolism, Vitamin B6, steroid hormone biosynthesis, and bile secretion metabolic pathways. This study verified the anti-diabetic and anti-oxidation effects of ginsenoside Re, elaborated that ginsenoside Re has a good regulation of the metabolic disorder in T2DM rats, which could promote insulin secretion, stimulated cannabinoid type 1 receptor (CB1), and CaMKK β to activate AMPK signaling pathway, inhibited insulin resistance, and improved blood glucose uptake and diabetic nephropathy, so as to play the role of anti-diabetic.
Collapse
|
14
|
Yoo S, Park BI, Kim DH, Lee S, Lee SH, Shim WS, Seo YK, Kang K, Lee KT, Yim SV, Soung DY, Kim BH. Ginsenoside Absorption Rate and Extent Enhancement of Black Ginseng (CJ EnerG) over Red Ginseng in Healthy Adults. Pharmaceutics 2021; 13:pharmaceutics13040487. [PMID: 33918329 PMCID: PMC8067055 DOI: 10.3390/pharmaceutics13040487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Red ginseng (RG) and black ginseng (BG, CJ EnerG) were prepared from fresh ginseng using one and nine cycles of steaming and drying, respectively. This process reduces the molecular weight (MW) of ginsenoside-active compounds in ginseng by removing sugar moieties from their dammaranes. We compared the pharmacokinetic characteristics of ginsenosides between BG comprising mainly low-MW ginsenosides (Rg3, Rg5, Rk1, and Rh1) and RG that predominantly contains high-MW ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1). The safety profiles and tolerability were also studied using a randomized, double-blind, single-dose, crossover clinical trial. A combination of Rb1, Rg1, and Rg3, well-known representative and functional RG components, exhibited a 1 h faster absorption rate (Tmax) and 58% higher exposure (24 h area under the concentration–time curve, AUC24) in BG than in RG. Furthermore, the combination of Rg3, Rg5, and Rk1, the major and most efficient components in BG, displayed 824% higher absorption (AUC24) in BG than in RG. The total ginsenoside showed a 5 h rapid intestinal absorption (Tmax) and 79% greater systemic exposure (AUC24) in BG than in RG. No clinically significant findings were observed in terms of safety or tolerability. Thus, BG extract was more effective than RG extract.
Collapse
Affiliation(s)
- Saebyul Yoo
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
| | - Bom-I Park
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Do-hyun Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
| | - Sooyoung Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.L.); (K.-T.L.)
| | - Seung-hoon Lee
- Department of Statistics, lnha University, Incheon 22212, Korea;
| | - Wang-Seob Shim
- Kyung Hee Drug Analysis Center, College of Pharmacy, Medical Center, Kyung Hee University, Seoul 02447, Korea;
| | - Yong Ki Seo
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Kimoon Kang
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.L.); (K.-T.L.)
- Kyung Hee Drug Analysis Center, College of Pharmacy, Medical Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Do Yu Soung
- Food Research Institutes, CJ CheilJedang, Suwon 16495, Korea; (B.-I.P.); (Y.K.S.); (K.K.)
- Correspondence: (D.Y.S.); (B.-H.K.)
| | - Bo-Hyung Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (S.Y.); (D.-h.K.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Medical Center, Seoul 02447, Korea;
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (D.Y.S.); (B.-H.K.)
| |
Collapse
|
15
|
He M, Wang N, Zheng W, Cai X, Qi D, Zhang Y, Han C. Ameliorative effects of ginsenosides on myelosuppression induced by chemotherapy or radiotherapy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113581. [PMID: 33189841 DOI: 10.1016/j.jep.2020.113581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/17/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND and ethnopharmacological relevance: As the major side effect of radiotherapy or chemotherapy, myelosuppression usually leads to anemia, hemorrhage, immunosuppression, and even fatal infections, which may discontinue the process of cancer treatment. As a result, more and more attention is paid to the treatment of myelosuppression. Ginseng, root of Panax ginseng Meyer (Panax ginseng C. A. Mey), is considered as the king of herbs in the Orient, particularly in China, Korea and Japan. Ginsenosides, the most important active ingredients of ginseng, have been shown to have a variety of therapeutic effects, such as neuroprotective, anti-cancer and anti-diabetic properties. Considering that ginsenosides are closely associated with the pathogenesis of myelosuppression, researchers have carried out a few experiments on ginsenosides to attenuate myelosuppression induced by chemotherapy or radiotherapy in recent years. AIM OF THE STUDY To summarize previous studies about the effects of ginsenosides on alleviating myelosuppression and the mechanisms of action. METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, and ScienceDirect. RESULTS Ginsenosides play an important role in relieving myelosuppression predominantly by restoring hematopoiesis and immunity. CONCLUSION Ginsenosides might be potential candidates for the treatment of myelosuppression induced by chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Mengjiao He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Na Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Wenxiu Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
16
|
Liu J, Li T, Wang J, Zhao C, Geng C, Meng Q, Du G, Yin J. Different absorption and metabolism of ginsenosides after the administration of total ginsenosides and decoction of Panax ginseng. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8788. [PMID: 32196768 DOI: 10.1002/rcm.8788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Panax ginseng C.A. Meyer (PG), which contains polysaccharides and ginsenosides as the major bioactive components, has been used to promote health and treat diseases for thousands of years in China. Total ginsenosides were extracted from a decoction of Panax ginseng (GD), which included both ginsenosides and polysaccharides, and dissolved in water to obtain a total ginsenosides aqueous solution (TGAS). To study their absorption and metabolism, the pharmacokinetics (PK) and metabolites of ginsenosides in vivo were investigated after the administration of GD and TGAS. METHODS Rat and mice plasma samples were collected after the administration of GD and TGAS. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used with the UNIFI platform to identify metabolites in the plasma sample. The pharmacokinetic parameters were calculated using a noncompartmental method in the Drug and Statistics software package. RESULTS Thirty ginsenoside metabolites were identified in mice plasma, of which only seven were found in the rat plasma after the administration of GD. The PK of ginsenosides Rb1 , Rc, and Rd were also determined after the oral administration of GD and TGAS and showed significant differences in the pharmacokinetic parameters. CONCLUSIONS There was no difference in the biotransformation pathways after the oral administration of GD and TGAS, indicating that there was no influence of polysaccharides on the biotransformation of ginsenosides in vivo. However, the pharmacokinetic parameters were different after the administration of GD and TGAS, possibly because of the polysaccharides in GD. This study should be of significance in exploring the basis of PG bioactivities and lays the foundation for the further development of new drugs using PG.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Ting Li
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
- Department of Pharmaceutics, Changzhi Medical College, Changzhi, China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Chunfang Zhao
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Cong Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qin Meng
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jianyuan Yin
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
17
|
Abstract
Increasing longevity, along with an aging population in Europe, has caused serious concerns about diet-related chronic diseases such as obesity, diabetes, cardiovascular diseases, and certain cancers. As recently noted during the coronavirus pandemic, regular exercise and a robust immune system complemented by adequate consumption of fruit and vegetables are recommended due to their known health benefits. Although the volume of fresh vegetable consumption in the EU is barely growing, demand for diversified, nutritious, and exotic vegetables has been increasing. Therefore, the European market for fresh Asian vegetables is expected to expand across the EU member states, and the introduction of new vegetables has enormous potential. We conducted this review to address the high number and wide range of Asian vegetable species with a commercial potential for introduction into the current European vegetable market. Many of them have not received any attention yet. Four Asian vegetables: (1) Korean ginseng sprout, (2) Korean cabbage, (3) Coastal hog fennel and (4) Japanese (Chinese or Korean) angelica tree, are further discussed. All of these vegetables possess several health benefits, are increasingly in demand, are easy to cultivate, and align with current trends of the European vegetable market, e.g., vegetables having a unique taste, higher value, are decorative and small. Introducing Asian vegetables will enhance the diversity of nutritious horticultural products in Europe, associated with all their respective consumption benefits. Future research on the Asian vegetable market within Europe is needed. In addition, experimental studies of Asian vegetables under practical conditions for their production in different European environments are required. Economic, social, and ecological aspects also ought to be considered.
Collapse
|
18
|
Xie W, Zhou P, Qu M, Dai Z, Zhang X, Zhang C, Dong X, Sun G, Sun X. Ginsenoside Re Attenuates High Glucose-Induced RF/6A Injury via Regulating PI3K/AKT Inhibited HIF-1α/VEGF Signaling Pathway. Front Pharmacol 2020; 11:695. [PMID: 32528282 PMCID: PMC7253708 DOI: 10.3389/fphar.2020.00695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Hyperglycaemia-induced retinal microvascular endothelial cell apoptosis is a critical and principle event in diabetic retinopathy (DR), which involves a series of complex processes such as mitochondrial dysfunction and oxidative stress. Ginsenoside Re (Re), a key ingredients of ginseng, is considered to have various pharmacologic functions, such as antioxidative, inhibition of inflammation and anti-apoptotic properties. However, the effects of Re in DR and the related mechanisms of endothelial cell injury induced by high glucose (HG) exposure remain unclear. The present study was designed to investigate and evaluate the ability of Re to ameliorate HG-induced retinal endothelial RF/6A cell injury and the potential mechanisms involved in the hypoxia-inducible factor-1-alpha (HIF-1α)/vascular endothelial growth factor (VEGF) signaling regulated by phosphoinositide 3-kinase (PI3K)/AKT pathway. Our results showed that preincubation with Re exerted cytoprotective effects by reversing the HG-induced decrease in RF/6A cell viability, downregulation of apoptosis rate and inhibition of oxidative-related enzymes, thereby reducing the excess intracellular reactive oxygen species (ROS) and HG-triggered RF/6A cell injury. In addition, Western blot analysis results showed ginsenoside Re significantly increased HIF-1α expression in the cytoplasm but decreased its expression in the nucleus, suggesting that it reduced the translocation of HIF-1α from the cytoplasm to the nucleus, and downregulated VEGF level. Moreover, this effect is involved in the activation of the PI3K/Akt pathway. LY294002, a PI3K inhibitor, was used to block the Akt pathway. Afterwards, the effects of Re on the regulation of apoptotic related proteins, VEGF and HIF-1α nuclear transcription was partially reversed. These findings suggested the exerting protective effects of ginsenoside Re were associated with regulating of PI3K/AKT and HIF-1α/VEGF signaling pathway, which indicates that ginsenoside Re may ameliorates HG-induced retinal angiogenesis and suggests the potential for the development of Re as a therapeutic for DR.
Collapse
Affiliation(s)
- Weijie Xie
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Muwen Qu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Ziru Dai
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res 2020; 155:104746. [PMID: 32156650 DOI: 10.1016/j.phrs.2020.104746] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes and causes kidney failure. Ginsenoside Rg5 (Rg5) is an important monomer in the main protopanaxadiol component of black ginseng. Rg5 has exhibited some beneficial biological effects, such as anti-cancer, neuroprotection, and anti-depression, but the effect of Rg5 on DN and its potential mechanism remains unclear. The aim of this study is to investigate the effect of Rg5 on kidney injury of C57BL/6 diabetic mice induced by high-fat diet and streptozotocin. After treatment with different concentration of Rg5 (30 and 60 mg kg-1·d-1) for 6 consecutive weeks, the fasting blood glucose, insulin levels, serum creatinine, serum urea, and serum UA in Rg5-treated DN mice were significantly reduced, while the renal histopathology was remarkably improved, compared with untreated DN mice. Moreover, ROS production, oxidative stress markers (MDA, SOD, and GSH-PX), Nox4 and TXNIP expressions of kidney in DN mice were significantly reduced after Rg5 treatment. Additionally, the expression levels of the NLRP3 inflammasome (NLRP3, ASC, and Caspase-1) and the inflammatory cytokines IL-1β and IL-18 were significantly inhibited, and the expression of NF-kB and the phosphorylation of p38 MAPK were also decreased with Rg5 treatment compared with no treatment in DN mice. Together, our results indicate that Rg5 attenuated renal injury in diabetic mice by inhibiting oxidative stress and NLRP3 inflammasome activation to reduce inflammatory responses, indicating that Rg5 is a potential compound to prevent or control diabetic renal injury.
Collapse
|
20
|
Nguyen VB, Linh Giang VN, Waminal NE, Park HS, Kim NH, Jang W, Lee J, Yang TJ. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. J Ginseng Res 2020; 44:135-144. [PMID: 32148396 PMCID: PMC7033337 DOI: 10.1016/j.jgr.2018.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P . quinqu e folius and P . trifolius) from North America and five (P . ginseng, P . notoginseng, P . japonicus, P . vietnamensis, and P . stipuleanatus) from Asia. METHODS We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. RESULTS We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. CONCLUSION The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.
Collapse
Affiliation(s)
- Van Binh Nguyen
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Vo Ngoc Linh Giang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Hoon Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Woojong Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
21
|
Comparative Analysis of Panax ginseng Berries from Seven Cultivars Using UPLC-QTOF/MS and NMR-Based Metabolic Profiling. Biomolecules 2019; 9:biom9090424. [PMID: 31466413 PMCID: PMC6770912 DOI: 10.3390/biom9090424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The commercial use of Panax ginseng berries is increasing as P. ginseng berries are known to contain large amounts of ginsenosides, and many pharmacological activities have been reported for the various ginsenosides. For the proper use of P. ginseng berries, it is necessary to study efficient and accurate quality control and the profiling of the overall composition of each cultivar. Ginseng berry samples from seven cultivars (Eumseung, Chung-buk Province, Republic of Korea) were analyzed using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-QTOF/MS) for profiling of the ginsenosides, and high-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy for profiling of the primary metabolites. Comparing twenty-six ginsenoside profiles between the variant representatives and between the violet-stem variant, Kumpoong and Sunwon were classified. In the case of primary metabolites, the cultivars Kumpoong and Gopoong were classified. As a result of correlation analyses of the primary and secondary metabolites, in the Gopoong cultivar, the metabolism was found to lean toward energy metabolism rather than ginsenoside synthesis, and accumulation of osmolytes was low. The Gopoong cultivar had higher levels of most of the amino acids, such as arginine, phenylalanine, isoleucine, threonine, and valine, and it contained the highest level of choline and the lowest level of myo-inositol. Except for these, there were no significant differences of primary metabolites. In the Kumpoong cultivar, the protopanaxatriol (PPT)-type ginsenosides, ginsenoside Re and ginsenoside Rg2, were much lower than in the other cultivars, while the other PPT-type ginsenosides were inversely found in much higher amounts than in other cultivars. The Sunwon cultivar showed that variations of PPT-type ginsenosides were significantly different between samples. However, the median values of PPT-type ginsenosides of Sunwon showed similar levels to those of Kumpoong. The difference in primary metabolites used for metabolism for survival was found to be small in our results. Our data demonstrated the characteristics of each cultivar using profiling data of the primary and secondary metabolites, especially for Gopoong, Kumpoong, and Sunwon. These profiling data provided important information for further research and commercial use.
Collapse
|
22
|
Song H, Song KW, Hong SP. Simultaneous quantification of six nonpolar ginsenosides in white ginseng by reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection. J Ginseng Res 2019; 44:563-569. [PMID: 32617036 PMCID: PMC7322751 DOI: 10.1016/j.jgr.2019.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 01/14/2023] Open
Abstract
Background White ginseng consists of the roots and rhizomes of the Panax species, and red ginseng is made by steaming and drying white ginseng. While red ginseng has both polar and nonpolar ginsenosides, previous studies showed white ginseng to have only polar ginsenosides. Because nonpolar ginsenosides are formed through the manufacture of red ginseng from white ginseng, researchers have generally thought that nonpolar ginsenosides do not exist in white ginseng. Methods We developed a simultaneous quantitative method for six nonpolar ginsenosides in white ginseng using reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection. The nonpolar ginsenosides of white ginseng were extracted for 4 h under reflux with 50% methanol. Results Using the gradient elution system, all target components were completely separated within 50 min. Nonpolar ginsenosides were determined in the rhizome head (RH), main root (MR), lateral root, and hairy root (HR) of 6-year-old white ginseng samples obtained from several regions (Geumsan, Punggi, and Kanghwa). The total content in the HR of white ginseng was 37.8–56.8% of that in the HR of red ginseng. The total content in the MR of white ginseng was 5.9–24.3% of that in the MR of red ginseng. In addition, the total content in the RH of white ginseng was 28.5–35.8% of that in the HR of red ginseng Conclusion It was confirmed that nonpolar ginsenosides known to be specific components of red ginseng were present at substantial concentrations in the HR or RH of white ginseng.
Collapse
Affiliation(s)
- Hyeyoung Song
- Department of Oriental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Won Song
- Department of Oral medicine, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Seon-Pyo Hong
- Department of Oriental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Oriental Pharmaceutical Sciences, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Shi ZY, Zeng JZ, Wong AST. Chemical Structures and Pharmacological Profiles of Ginseng Saponins. Molecules 2019; 24:molecules24132443. [PMID: 31277214 PMCID: PMC6651355 DOI: 10.3390/molecules24132443] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/03/2023] Open
Abstract
Ginseng is a group of cosmopolitan plants with more than a dozen species belonging to the genus Panax in the family Araliaceae that has a long history of use in traditional Chinese medicine (TCM). Among the bioactive constituents extracted from ginseng, ginseng saponins are a group of natural steroid glycosides and triterpene saponins found exclusively throughout the plant. Studies have shown that these ginseng saponins play a significant role in exerting multiple therapeutic effects. This review covers their chemical structure and classification, as well as their pharmacological activities, including their regulatory effects on immunomodulation, their anticancer effects, and their functions in the central nervous and cardiovascular systems. The general benefits of ginseng saponins for boosting physical vitality and improving quality of life are also discussed. The review concludes with fruitful directions for future research in the use of ginseng saponins as effective therapeutic agents.
Collapse
Affiliation(s)
- Ze-Yu Shi
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Alice Sze Tsai Wong
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China.
| |
Collapse
|
24
|
Salacia chinensis stem extract and its thiosugar sulfonium constituent, neokotalanol, improves HbA1c levels in ob/ob mice. J Nat Med 2019; 73:584-588. [DOI: 10.1007/s11418-019-01311-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
|
25
|
Ginseng metabolite Protopanaxadiol induces Sestrin2 expression and AMPK activation through GCN2 and PERK. Cell Death Dis 2019; 10:311. [PMID: 30952841 PMCID: PMC6450862 DOI: 10.1038/s41419-019-1548-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Ginseng is one of the most commonly used herbs that is believed to have a variety of biological activities, including reducing blood sugar and cholesterol levels, anti-cancer, and anti-diabetes activities. However, little is known about the molecular mechanisms involved. In this study, we showed that protopanaxadiol (PPD), a metabolite of the protopanaxadiol group ginsenosides that are the major pharmacological constituents of ginsengs, significantly altered the expression of genes involved in metabolism, elevated Sestrin2 (Sesn2) expression, activated AMPK, and induced autophagy. Using CRISPR/CAS9-mediated gene editing and shRNA-mediated gene silencing, we demonstrated that Sesn2 is required for PPD-induced AMPK activation and autophagy. Interestingly, we showed that PPD-induced Sesn2 expression is mediated redundantly by the GCN2/ATF4 amino acid-sensing pathway and the PERK/ATF4 endoplasmic reticulum (ER) stress pathway. Our results suggest that ginseng metabolite PPD modulates the metabolism of amino acids and lipids, leading to the activation of the stress-sensing kinases GCN2 and PERK to induce Sesn2 expression, which promotes AMPK activation, autophagy, and metabolic health.
Collapse
|
26
|
The Effects of Environmental Factors on Ginsenoside Biosynthetic Enzyme Gene Expression and Saponin Abundance. Molecules 2018; 24:molecules24010014. [PMID: 30577538 PMCID: PMC6337439 DOI: 10.3390/molecules24010014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Panax ginseng C.A. Meyer is one of the most important medicinal plants in Northeast China, and ginsenosides are the main active ingredients found in medicinal ginseng. The biosynthesis of ginsenosides is regulated by environmental factors and the expression of key enzyme genes. Therefore, in this experiment, ginseng in the leaf opened stage, the green fruit stage, the red fruit stage, and the root growth stage was used as the test material, and nine individual ginsenosides and total saponins (the sum of the individual saponins) were detected by HPLC (High Performance Liquid Chromatography). There was a trend of synergistic increase and decrease, and saponin accumulation and transfer in different tissues. The expression of key enzyme genes in nine synthetic pathways was detected by real-time PCR, and the correlation between saponin content, gene expression, and ecological factors was analyzed. Correlation analysis showed that in root tissue, PAR (Photosynthetically Active Radiation) and soil water potential had a greater impact on ginsenoside accumulation, while in leaf tissue, temperature and relative humidity had a greater impact on ginsenoside accumulation. The results provide a theoretical basis for elucidating the relationship between ecological factors and genetic factors and their impact on the quality of medicinal materials. The results also have guiding significance for realizing the quality of medicinal materials.
Collapse
|
27
|
Karmazyn M, Gan XT. Ginseng for the treatment of diabetes and diabetes-related cardiovascular complications: a discussion of the evidence 1. Can J Physiol Pharmacol 2018; 97:265-276. [PMID: 30395481 DOI: 10.1139/cjpp-2018-0440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder associated with elevated blood glucose levels due either to insufficient insulin production (type 1 DM) or to insulin resistance (type 2 DM). The incidence of DM around the world continues to rise dramatically with more than 400 million cases reported today. Among the most serious consequences of chronic DM are cardiovascular complications that can have deleterious effects. Although numerous treatment options are available, including both pharmacological and nonpharmacological, there is substantial emerging interest in the use of traditional medicines for the treatment of this condition and its complications. Among these is ginseng, a medicinal herb that belongs to the genus Panax and has been used for thousands of years as a medicinal agent especially in Asian cultures. There is emerging evidence from both animal and clinical studies that ginseng, ginseng constituents including ginsenosides, and ginseng-containing formulations can produce beneficial effects in terms of normalization of blood glucose levels and attenuation of cardiovascular complications through a multiplicity of mechanisms. Although more research is required, ginseng may offer a useful therapy for the treatment of diabetes as well as its complications.
Collapse
|
28
|
Lee JW, Ji SH, Choi BR, Choi DJ, Lee YG, Kim HG, Kim GS, Kim K, Lee YH, Baek NI, Lee DY. UPLC-QTOF/MS-Based Metabolomics Applied for the Quality Evaluation of Four Processed Panax ginseng Products. Molecules 2018; 23:molecules23082062. [PMID: 30126124 PMCID: PMC6222836 DOI: 10.3390/molecules23082062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022] Open
Abstract
In the food industry and herbal markets, it is critical to control the quality of processed Panax ginseng products. In this study, ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/MS)-based metabolomics was applied for the quality evaluation of white ginseng (WG), tae-geuk ginseng (TG), red ginseng (RG), and black ginseng (BG). Diverse metabolites including ginsenosides were profiled by UPLC-QTOF/MS, and the datasets of WG, TG, RG, and BG were then subjected to multivariate analyses. In principal component analysis (PCA), four processed ginseng products were well-differentiated, and several ginsenosides were identified as major components of each product. S-plot also characterized the metabolic changes between two processed ginseng products, and the major ginsenosides of each product were found as follows: WG (M-Rb1, M-Rb2, M-Rc, Re, Rg1), TG (Rb2, Rc, Rd, Re, Rg1), RG (Rb1, Rb2, Rc, Rd, Re, Rg1), and BG (Rd, Rk1, Rg5, Rg3). Furthermore, the quantitative contents of ginsenosides were evaluated from the four processed ginseng products. Finally, it was indicated that the proposed metabolomics approach was useful for the quality evaluation and control of processed ginseng products.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Seung-Heon Ji
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Doo Jin Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Hyoung-Geun Kim
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| | - Kyuil Kim
- Institute of JinAn Red Ginseng, JinAn 55442, Korea.
| | - Youn-Hyung Lee
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Nam-In Baek
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| |
Collapse
|
29
|
Stereoselective and Simultaneous Analysis of Ginsenosides from Ginseng Berry Extract in Rat Plasma by UPLC-MS/MS: Application to a Pharmacokinetic Study of Ginseng Berry Extract. Molecules 2018; 23:molecules23071835. [PMID: 30041497 PMCID: PMC6099803 DOI: 10.3390/molecules23071835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/03/2022] Open
Abstract
The role of ginseng berry extract (GBE) has been attributed to its anti-hyperglycemic effect in humans. However, the pharmacokinetic characteristics of GBE constitutes after oral GBE administration have not been established yet. In this study, stereoselective and simultaneous analytical methods for 10 ginsenosides (ginsenoside Rb1, Rb2, Rc, Rd, Re, Rg1, S-Rg2, R-Rg2, S-Rg3, and R-Rg3) were developed using ultra-performance liquid chromatography, coupled with electrospray ionization triple quadrupole tandem mass spectrometry (UPLC-MS/MS), for the pharmacokinetic study of GBE. Furthermore, the pharmacokinetic profiles of 10 ginsenosides after oral GBE were evaluated in rats. All analytes were detected with a linear concentration range of 0.01–10 µg/mL. Lower limits of detection (LLOD) and quantification (LLOQ) were 0.003 and 0.01 µg/mL, respectively, for all 10 ginsenosides. This established method was adequately validated in linearity, sensitivity, intra- and inter-day precision, accuracy, recovery, matrix effect, and stability. Relative standard deviations for all intra- and inter-precision of the 10 ginsenosides were below 11.5% and accuracies were 85.3–111%, which were sufficient to evaluate the pharmacokinetic study of oral GBE in rats. We propose that Rb1, Rb2, Rc, Rd, Re, Rg1, S-Rg2, R-Rg2 and/or S-Rg3 were appropriate pharmacokinetic markers of systemic exposure following oral GBE administration.
Collapse
|
30
|
Tao C, Zhang J, Wang J, Le Y. Ginsenoside Drug Nanocomposites Prepared by the Aerosol Solvent Extraction System for Enhancing Drug Solubility and Stability. Pharmaceutics 2018; 10:pharmaceutics10030095. [PMID: 30021937 PMCID: PMC6161124 DOI: 10.3390/pharmaceutics10030095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 11/23/2022] Open
Abstract
Ginsenosides are the pharmacologically active constituents of ginseng. So far, more than 30 ginsenosides have been identified and widely used in pharmaceutical formulations. However, the therapeutic applications of ginsenosides are hampered by their poor solubility and low bioavailability. In this study, we selected two of the most important ginsenosides-Re and Rh2 as model drugs to prepare ginsenoside drug nanocomposites (NanoGS) using the simple aerosol solvent extraction system (ASES) technique to address the poor solubility and bioavailability of these compounds. Compared with raw ginsenosides, NanoGS exhibited significantly enhanced dissolution rate owing to their low crystallinity and high surface area. Furthermore, in vitro cellular investigations showed that NanoGS-Rh2 exhibited outstanding anticancer activity against MCF-7 cancer cells. Therefore, this study is expected to provide a promising strategy that could optimize and broaden the applications of ginsenosides, as well as other water-insoluble drugs in pharmaceutical formulations.
Collapse
Affiliation(s)
- Cheng Tao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianjun Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiexin Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuan Le
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
31
|
Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018; 42:255-263. [PMID: 29983606 PMCID: PMC6026358 DOI: 10.1016/j.jgr.2017.04.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/26/2017] [Accepted: 04/18/2017] [Indexed: 11/09/2022] Open
Abstract
Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Yang EJ, Kim TH, Shin KC, Oh DK. Complete conversion of all typical glycosylated protopanaxatriol ginsenosides to aglycon protopanaxatriol by combined bacterial β-glycosidases. AMB Express 2018; 8:8. [PMID: 29368130 PMCID: PMC5783978 DOI: 10.1186/s13568-018-0543-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/15/2018] [Indexed: 11/20/2022] Open
Abstract
Aglycon protopanaxatriol (APPT) has valuable pharmacological effects such as anti-inflammatory and anti-stress activities. However, the complete conversion of all typical glycosylated protopanaxatriol ginsenosides to APPT has not been achieved to date. β-Glycosidase from the hyperthermophilic bacterium Dictyoglomus turgidum (DT-bgl) hydrolyzes the glucose residues at C-6 and the inner glucose at C-20 in protopanaxatriol (PPT), but not the outer rhamnose residues at C-6. In contrast, β-glycosidase from the hyperthermophilic bacterium Pyrococcus furiosus (PF-bgl) hydrolyzes the outer rhamnose residue at C-6 but not the inner glucose residues at C-6 and C-20 in PPT. Thus, the combined use of DT-bgl and PF-bgl resulted in the complete the conversion of all typical glycosylated PPT ginsenosides, including R1, R2, Re, Rg1, Rg2, Rh1, Rf, F1, F3, and F5, to APPT. DT-bgl combined with PF-bgl completely hydrolyzed 1.0 mg ml-1 R1 and 1.0 mg ml-1 total PPT-type ginsenosides in Panax notoginseng root extract to 0.5 and 0.63 mg ml-1 APPT for 4 and 3 h, with molar conversions of 100% and productivities of 125 and 210 mg l-1 h-1, respectively. To the best of our knowledge, this is the first report of the complete conversion of all typical glycosylated PPT ginsenosides to APPT and the highest productivity of APPT obtained from ginseng extract achieved to date.
Collapse
Affiliation(s)
- Eun-Joo Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Republic of Korea
| | - Tae-Hun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
33
|
Yin J, Zhang D, Zhuang J, Huang Y, Mu Y, Lv S. Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji'an, China. Int J Mol Sci 2017; 18:ijms18122682. [PMID: 29232922 PMCID: PMC5751284 DOI: 10.3390/ijms18122682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022] Open
Abstract
Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji'an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC. HPLC, GC-MS, and LC-MS were combined to measure the enzyme activity of the key enzymes. Quantitative PCR was used in the investigation of gene expression. By analyzing the correlation between the enzyme activity and the transcription level of the key enzymes with ginsenoside content, we found that DS and GT enzyme activities are significantly correlated with the ginsenoside content in different ages of ginseng. Our findings might provide a new strategy to discriminate between ginseng of different years. Meanwhile, this research provides important information for the in-depth study of ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Juxin Yin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China.
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310000, China.
| | - Daihui Zhang
- Jilin Entry Exit Inspection and Quarantine Bureau, Changchun 130000, China.
| | - Jianjian Zhuang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China.
| | - Yi Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China.
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310000, China.
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China.
| |
Collapse
|
34
|
Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS. Molecules 2017; 22:molecules22122147. [PMID: 29207539 PMCID: PMC6149965 DOI: 10.3390/molecules22122147] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022] Open
Abstract
The effective production and usage of ginsenosides, given their distinct pharmacological effects, are receiving increasing amounts of attention. As the ginsenosides content differs in different parts of Panax ginseng, we wanted to assess and compare the ginsenosides content in the ginseng roots, leave, stems, and berries. To extract the ginsenosides, 70% (v/v) methanol was used. The optimal ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) method was used to profile various ginsenosides from the different parts of P. ginseng. The datasets were then subjected to multivariate analysis including principal component analysis (PCA) and hierarchical clustering analysis (HCA). A UPLC-QTOF/MS method with an in-house library was constructed to profile 58 ginsenosides. With this method, a total of 39 ginsenosides were successfully identified and quantified in the ginseng roots, leave, stem, and berries. PCA and HCA characterized the different ginsenosides compositions from the different parts. The quantitative ginsenoside contents were also characterized from each plant part. The results of this study indicate that the UPLC-QTOF/MS method can be an effective tool to characterize various ginsenosides from the different parts of P. ginseng.
Collapse
|
35
|
Dai YL, Qiao MD, Yu P, Zheng F, Yue H, Liu SY. Comparing eight types of ginsenosides in ginseng of different plant ages and regions using RRLC-Q-TOF MS/MS. J Ginseng Res 2017; 44:205-214. [PMID: 32148401 PMCID: PMC7031739 DOI: 10.1016/j.jgr.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022] Open
Abstract
Background This article aims to compare and analyze the contents of ginsenosides in ginseng of different plant ages from different localities in China. Methods In this study, 77 fresh ginseng samples aged 2–4 years were collected from 13 different cultivation regions in China. The content of eight ginsenosides (Rg3, Rc, Rg1, Rf, Rb2, Rb1, Re, and Rd) was determined using rapid resolution liquid chromatography coupled with quadrupole–time-of-flight tandem mass spectrometry (RRLC-Q-TOF MS/MS) to comparatively evaluate the influences of cultivation region and age. Results Ginsenoside contents differed significantly depending on age and cultivation region. The contents of ginsenosides Re, Rc, Rg1, Rg3, and Rf increased with cultivation age, whereas that of ginsenoside Rb1 peaked in the third year of cultivation. Moreover, the highest ginsenoside content was obtained from Changbai (19.36 mg/g) whereas the lowest content was obtained from Jidong (12.05 mg/g). Ginseng from Jilin Province contained greater total ginsenosides and was richer in ginsenoside Re than ginseng of the same age group in Heilongjiang and Liaoning provinces, where Rb1 and Rg1 contents were relatively high. Conclusion In this study, RRLC-Q-TOF MS/MS was used to analyze ginsenoside contents in 77 ginseng samples aged 2–4 years from different cultivation regions. These patterns of variation in ginsenoside content, which depend on harvesting location and age, could be useful for interested parties to choose ginseng products according to their needs.
Collapse
Affiliation(s)
- Yu-Lin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Meng-Dan Qiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Yu
- School of pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shu-Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
36
|
Characterization of the changes in eicosanoid profiles of activated macrophages treated with 20(S)-ginsenoside Rg3. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:14-19. [PMID: 28938131 DOI: 10.1016/j.jchromb.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/30/2022]
Abstract
In this study, we used ultra-performance liquid chromatography coupled with tandem mass spectrometry to assess the levels of eicosanoids from RAW264.7 macrophages treated with lipopolysaccharides (LPS) and 20(S)-ginsenoside Rg3 (Rg3). The production of nitric oxide (NO) and the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were increased in inflammatory macrophages treated with LPS. Rg3 treatment, however, decreased the levels of NO, TNF-α, and IL-6 in activated macrophages. Eicosanoids, known as major metabolites correlated with inflammation, have pro- or anti-inflammatory activities. For a detailed characterization of the eicosanoids altered by treatment with LPS and Rg3, the eicosanoids were profiled by multiple reaction monitoring. A total of 69 macrophage eicosanoids were analyzed and the profiling dataset was statistically analyzed. Principal component and hierarchical cluster analyses differentiated control cells from cells treated with LPS, Rg3, or LPS+Rg3 for 12 or 24h. Furthermore, 18 differentially regulated eicosanoids were found between macrophages treated with LPS for 24h and those treated with LPS+Rg3 for 24h (fold change>2, p value<0.05). These results indicate that Rg3 alters eicosanoid metabolism in activated macrophages treated with LPS. Furthermore, we also identified several eicosanoids correlated with the anti-inflammatory activity of Rg3.
Collapse
|
37
|
Huang Y, Zhang T, Zhao Y, Zhou H, Tang G, Fillet M, Crommen J, Jiang Z. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J Pharm Biomed Anal 2017; 144:213-219. [DOI: 10.1016/j.jpba.2017.03.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 11/29/2022]
|
38
|
Li Z, Ahn HJ, Kim NY, Lee YN, Ji GE. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities. Biol Pharm Bull 2017; 39:1461-7. [PMID: 27582326 DOI: 10.1248/bpb.b16-00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University
| | | | | | | | | |
Collapse
|
39
|
DNA Microarray-Based Screening and Characterization of Traditional Chinese Medicine. MICROARRAYS 2017; 6:microarrays6010004. [PMID: 28146102 PMCID: PMC5374364 DOI: 10.3390/microarrays6010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
The application of DNA microarray assay (DMA) has entered a new era owing to recent innovations in omics technologies. This review summarizes recent applications of DMA-based gene expression profiling by focusing on the screening and characterizationof traditional Chinese medicine. First, herbs, mushrooms, and dietary plants analyzed by DMA along with their effective components and their biological/physiological effects are summarized and discussed by examining their comprehensive list and a list of representative effective chemicals. Second, the mechanisms of action of traditional Chinese medicine are summarized by examining the genes and pathways responsible for the action, the cell functions involved in the action, and the activities found by DMA (silent estrogens). Third, applications of DMA for traditional Chinese medicine are discussed by examining reported examples and new protocols for its use in quality control. Further innovations in the signaling pathway based evaluation of beneficial effects and the assessment of potential risks of traditional Chinese medicine are expected, just as are observed in other closely related fields, such as the therapeutic, environmental, nutritional, and pharmacological fields.
Collapse
|
40
|
Choi HS, Kim S, Kim MJ, Kim MS, Kim J, Park CW, Seo D, Shin SS, Oh SW. Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2017; 42:90-97. [PMID: 29348727 PMCID: PMC5766700 DOI: 10.1016/j.jgr.2017.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background Antihyperglycemic effects of Panax ginseng berry have never been explored in humans. The aims of this study were to assess the efficacy and safety of a 12-wk treatment with ginseng berry extract in participants with a fasting glucose level between 100 mg/dL and 140 mg/dL. Methods This study was a 12-wk, randomized, double-blind, placebo-controlled clinical trial. A total of 72 participants were randomly allocated to two groups of either ginseng berry extract or placebo, and 63 participants completed the study. The parameters related to glucose metabolism were assessed. Results Although the present study failed to show significant antihyperglycemic effects of ginseng berry extract on the parameters related to blood glucose and lipid metabolism in the total study population, it demonstrated that ginseng berry extract could significantly decrease serum concentration of fasting glucose by 3.7% (p = 0.035), postprandial glucose at 60 min during 75 g oral glucose tolerance test by 10.7% (p = 0.006), and the area under the curve for glucose by 7.7% (p = 0.024) in those with fasting glucose level of 110 mg/dL or higher, while the placebo group did not exhibit a statistically significant decrease. Safety profiles were not different between the two groups. Conclusion The present study suggests that ginseng berry extract has the potential to improve glucose metabolism in human, especially in those with fasting glucose level of 110 mg/dL or higher. For a more meaningful benefit, further research in people with higher blood glucose levels is required.
Collapse
Affiliation(s)
- Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Sunmi Kim
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Min Jung Kim
- Nutrition and Metabolism Research Group, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Myung-Sunny Kim
- Nutrition and Metabolism Research Group, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Juewon Kim
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Chan-Woong Park
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Daebang Seo
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Song Seok Shin
- Research and Development Center, Amorepacific Corporation, Yongin, Gyeonggi, Republic of Korea
| | - Sang Woo Oh
- Department of Family Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| |
Collapse
|
41
|
Park TY, Hong M, Sung H, Kim S, Suk KT. Effect of Korean Red Ginseng in chronic liver disease. J Ginseng Res 2017; 41:450-455. [PMID: 29021690 PMCID: PMC5628344 DOI: 10.1016/j.jgr.2016.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease, one of the most common diseases, typically arises from nonalcoholic fatty liver disease, alcoholic liver disease, chronic viral hepatitis, or hepatocellular carcinoma. Therefore, there is a pressing need for improved treatment strategies. Korean Red Ginseng has been known to have positive effects on liver disease and liver function. In this paper, we summarize the current knowledge on the beneficial effects of Korean Red Ginseng on chronic liver disease, a condition encompassing nonalcoholic fatty liver disease, alcoholic liver disease, chronic viral hepatitis, and hepatocellular carcinoma, as supported by experimental evaluation and clinical investigation.
Collapse
Affiliation(s)
- Tae Young Park
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Meegun Hong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hotaik Sung
- Department of Molecular and Cell Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sangyeol Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
42
|
Jang GY, Lee YJ, Li M, Kim MY, Lee SH, Hwang IG, Lee J, Jeong HS. Changes in Ginsenoside Compositions by High Temperature Processing under Various Soaking Conditions. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Gwi Yeong Jang
- Department of Food Science and Biotechnology, Chungbuk National University
| | - Yoon Jeong Lee
- Department of Food Science and Biotechnology, Chungbuk National University
| | - Meishan Li
- Department of Food Science and Biotechnology, Chungbuk National University
| | - Min Young Kim
- Department of Food Science and Biotechnology, Chungbuk National University
| | - Sang Hoon Lee
- Functional Food & Nutrition Division, Department of Agrofood Resources, National Academy of Agricultural Science, Rural Development Administration
| | - In Guk Hwang
- Functional Food & Nutrition Division, Department of Agrofood Resources, National Academy of Agricultural Science, Rural Development Administration
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University
| |
Collapse
|
43
|
Teng H, Chen L, Fang T, Yuan B, Lin Q. Rb2 inhibits α-glucosidase and regulates glucose metabolism by activating AMPK pathways in HepG2 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
44
|
Yin J, Wang L, Huang Y, Mu Y, Lv S. Authentication of Panax ginseng from different regions. RSC Adv 2017. [DOI: 10.1039/c7ra09537f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The correlation of gene expressions of HMGR and DS with total ginsenoside content was significant.
Collapse
Affiliation(s)
- Juxin Yin
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Liwu Wang
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Yi Huang
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Ying Mu
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou 310000
| | - Shaowu Lv
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| |
Collapse
|
45
|
Kim HM, Kim DH, Han HJ, Park CM, Ganipisetti SR, Valan Arasu M, Kim YO, Park CG, Kim BY, Soung NK. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model. Molecules 2016; 22:molecules22010042. [PMID: 28036069 PMCID: PMC6155621 DOI: 10.3390/molecules22010042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/15/2022] Open
Abstract
Bone homeostasis is tightly regulated to balance bone formation and bone resorption. Many anabolic drugs are used as bone-targeted therapeutic agents for the promotion of osteoblast-mediated bone formation or inhibition of osteoclast-mediated bone resorption. Previous studies showed that ginsenoside Re has the effect of the suppression of osteoclast differentiation in mouse bone-marrow derived macrophages and zebrafish. Herein, we investigated whether ginsenoside Re affects osteoblast differentiation and mineralization in in vitro and in vivo models. Mouse osteoblast precursor MC3T3-E1 cells were used to investigate cell viability, alkaline phosphatase (ALP) activity, and mineralization. In addition, we examined osteoblastic signaling pathways. Ginsenoside Re affected ALP activity without cytotoxicity, and we also observed the stimulation of osteoblast differentiation through the activation of osteoblast markers including runt-related transcription factor 2, type 1 collagen, ALP, and osteocalcin in MC3T3-E1 cells. Moreover, Alizarin red S staining indicated that ginsenoside Re increased osteoblast mineralization in MC3T3-E1 cells and zebrafish scales compared to controls. These results suggest that ginsenoside Re promotes osteoblast differentiation as well as inhibits osteoclast differentiation, and it could be a potential therapeutic agent for bone diseases.
Collapse
Affiliation(s)
- Hye-Min Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Dong Hyun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Ho-Jin Han
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Chan-Mi Park
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
| | - Srinivas Rao Ganipisetti
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Young Ock Kim
- Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong 27709, Korea.
| | - Chun Geun Park
- Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong 27709, Korea.
| | - Bo-Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| |
Collapse
|
46
|
Discrimination of Korean ginseng ( Panax ginseng Meyer) cultivar Chunpoong and American ginseng ( Panax quinquefolius) using the auxin repressed protein gene. J Ginseng Res 2016; 40:395-399. [PMID: 27746692 PMCID: PMC5052432 DOI: 10.1016/j.jgr.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/03/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022] Open
Abstract
Background Korean ginseng (Panax ginseng) is one of the most important medicinal plants in the Orient. Among nine cultivars of P. ginseng, Chunpoong commands a much greater market value and has been planted widely in Korea. Chunpoong has superior quality “Chunsam” (1st grade ginseng) when made into red ginseng. Methods A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the auxin repressed protein gene of nine Korean ginseng cultivars using specific primers. Results An SNP was detected between Chunpoong and other cultivars, and modified allele-specific primers were designed from this SNP site to specifically identify the Chunpoong cultivar and P. quinquefolius via multiplex polymerase chain reaction (PCR). Conclusion These results suggest that great impact to prevent authentication of precise Chunpoong and other cultivars using the auxin repressed protein gene. We therefore present an effective method for the authentication of the Chunpoong cultivar of P. ginseng and P. quinquefolius.
Collapse
|
47
|
Shi Y, Wan X, Shao N, Ye R, Zhang N, Zhang Y. Protective and anti-angiopathy effects of ginsenoside Re against diabetes mellitus via the activation of p38 MAPK, ERK1/2 and JNK signaling. Mol Med Rep 2016; 14:4849-4856. [DOI: 10.3892/mmr.2016.5821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
|
48
|
Inhibitory effects of ginsenosides on basic fibroblast growth factor-induced melanocyte proliferation. J Ginseng Res 2016; 41:268-276. [PMID: 28701866 PMCID: PMC5489749 DOI: 10.1016/j.jgr.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/04/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND UV-B-exposed keratinocytes secrete various paracrine factors. Among these factors, basic fibroblast growth factor (bFGF) stimulates the proliferation of melanocytes. Ginsenosides, the major active compounds of ginseng, are known to have broad pharmacological effects. In this study, we examined the antiproliferative effects of ginsenosides on bFGF-induced melanocyte proliferation. METHODS We investigated the inhibitory effects of Korean Red Ginseng and ginsenosides from Panax ginseng on bFGF-induced proliferation of melan-a melanocytes. RESULTS When melan-a melanocytes were treated with UV-B-irradiated SP-1 keratinocytes media, cell proliferation increased. This increased proliferation of melanocytes decreased with a neutralizing anti-bFGF antibody. To elucidate the effects of ginsenosides on melanocyte proliferation induced by bFGF, we tested 15 types of ginsenoside compounds. Among them, Rh3, Rh1, F1, and CK demonstrated antiproliferative effects on bFGF-induced melanocyte proliferation after 72 h of treatment. bFGF stimulated cell proliferation via extracellular signal-regulated kinase (ERK) activation in various cell types. Western blot analysis found bFGF-induced ERK phosphorylation in melan-a. Treatment with Rh3 inhibited bFGF-induced maximum ERK phosphorylation and F1-delayed maximum ERK phosphorylation, whereas Rh1 and CK had no detectable effects. In addition, cotreatment with Rh3 and F1 significantly suppressed bFGF-induced ERK phosphorylation. Western blot analysis found that bFGF increased microphthalmia-associated transcription factor (MITF) protein levels in melan-a. Treatment with Rh3 or F1 had no detectable effects, whereas cotreatment with Rh3 and F1 inhibited bFGF-induced MITF expression levels more strongly than a single treatment. CONCLUSION In summary, we found that ginsenosides Rh3 and F1 have a synergistic antiproliferative effect on bFGF-induced melan-a melanocyte proliferation via the inhibition of ERK-mediated upregulation of MITF.
Collapse
|
49
|
The inhibition of α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by ginsenosides from Panax ginseng C.A. Meyer and simultaneous determination by HPLC-ELSD. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Kim KS, Jung Yang H, Lee IS, Kim KH, Park J, Jeong HS, Kim Y, Seok Ahn K, Na YC, Jang HJ. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci Rep 2015; 5:18325. [PMID: 26675132 PMCID: PMC4682129 DOI: 10.1038/srep18325] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/16/2015] [Indexed: 12/25/2022] Open
Abstract
Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides stimulate GLP-1 secretion according to the position of their sugar moieties. Through a pharmacological approach and RNA interference technique to inhibit the cellular signal cascade and using the Gαgust−/− mice, we elucidated that GLP-1 secreting effect of Rg3 mediated by the sweet taste receptor mediated the signaling pathway. Rg3, a ginsenoside metabolite that transformed the structure through a steaming process, showed the strongest GLP-1 secreting effects in NCI-H716 cells and also showed an anti-hyperglycemic effect on a type 2 diabetic mouse model through increased plasma GLP-1 and plasma insulin levels during an oral glucose tolerance test. Our study reveals a novel mechanism where the sugar moieties of ginsenosides Rg3 stimulates GLP-1 secretion in enteroendocrine L cells through a sweet taste receptor-mediated signal transduction pathway and thus has an anti-hyperglycemic effect on the type 2 diabetic mouse model.
Collapse
Affiliation(s)
- Ki-Suk Kim
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Hea Jung Yang
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - In-Seung Lee
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Kang-Hoon Kim
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Jiyoung Park
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Hyeon-Soo Jeong
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Yoomi Kim
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea.,Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 120-140, Republic of Korea
| | - Kwang Seok Ahn
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 120-140, Republic of Korea
| | - Hyeung-Jin Jang
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| |
Collapse
|